
HAL Id: hal-04436187
https://hal.science/hal-04436187

Preprint submitted on 3 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bayesian Likelihood Free Inference using Mixtures of
Experts

Florence Forbes, Hien Duy Nguyen, Trungtin Nguyen

To cite this version:
Florence Forbes, Hien Duy Nguyen, Trungtin Nguyen. Bayesian Likelihood Free Inference using
Mixtures of Experts. 2024. �hal-04436187�

https://hal.science/hal-04436187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Bayesian Likelihood Free Inference
using Mixtures of Experts
Florence Forbes, Hien Duy Nguyen, TrungTin Nguyen

Abstract—We extend Bayesian Synthetic Likelihood (BSL)
methods to non-Gaussian approximations of the likelihood func-
tion. In this setting, we introduce Mixtures of Experts (MoEs),
a class of neural network models, as surrogate likelihoods
that exhibit desirable approximation theoretic properties. More-
over, MoEs can be estimated using Expectation–Maximization
algorithm-based approaches, such as the Gaussian Locally Linear
Mapping model estimators that we implement. Further, we
provide theoretical evidence towards the ability of our procedure
to estimate and approximate a wide range of likelihood functions.
Through simulations, we demonstrate the superiority of our
approach over existing BSL variants in terms of both posterior
approximation accuracy and computational efficiency.

Index Terms—Likelihood Free Inference, Bayesian Synthetic
Likelihood, Mixture of Experts, Gaussian Locally Linear Map-
ping

I. INTRODUCTION

Likelihood-free inference, or simulation-based inference,
entails estimation of parameters θ of a stochastic model
without a feasible likelihood function. However, we assume
the ability to simulate observations given known parameters.
This study takes a Bayesian stance, where we aim to estimate
posterior parameter distributions.

In this work, we concentrate on methods that utilize surro-
gate parametric models in place of an intractable likelihoods.
Specifically, we study the class of methods generally called
Synthetic likelihood (SL) procedures. These methods provide
estimates of likelihood functions that are then used as inputs
for a sampling procedure, such as a Markov chain Monte
Carlo (MCMC) scheme, to estimate the posterior distribution.
Bayesian Synthetic Likelihood (BSL) approaches [23] have, in
the past, been investigated as Bayesian extensions of the SL
approach of [31]. SL is typically characterized by a Gaussian
assumption, while more general formulations are studied under
the parametric Bayesian indirect likelihood (pBIL) framework,
which includes a number of variants [5]. For comparisons with
our approaches, we focus on the variants implemented in the
BSL package in R [2].

The typical approach of BSL methods is to approximate the
intractable likelihood by a multivariate Gaussian distribution
whose mean and covariance parameters depend on θ and are
estimated pointwise for each value of θ via the empirical
mean and covariance estimators of a sample of m independent
and identically distributed (i.i.d.) summary statistics, simulated
from the underlying likelihood, respectively (cf. [23], [31]).

For good performance, the number of simulations m should
not be too small, and evidence suggests that, in practice,
the ideal m increases as the dimension of the summary

statistics grows [23]. Various approaches have been explored
to decrease the required number of simulations, such as sparse
techniques [3] and shrinkage techniques [22], [24], which aim
to diminish the number of parameters necessary for estimat-
ing the covariance matrix. Additionally, the uBSL approach
of [23] consider unbiased estimation of the normal density
functional rather than its mean and covariance parameters. A
Semi-parametric variant, semiBSL, has also been suggested to
provide robustness when likelihoods are non-Gaussian [1].

In [7], two other variants are considered, referred to as miss-
BSL. They aim to estimate the Gaussian synthetic likelihood in
a more robust manner, to account for incompatibilities between
model and summary choice, i.e., model misspecification. The
first approach, denoted as missBSLmean, augments the mean
of the simulated summaries with additional free parameters,
while the second approach, missBSLvar, augments the variance
with free parameters, instead.

For all described BSL alternatives, above, an MCMC
scheme is required to carry out the posterior inference. There-
fore, if I evaluations of the likelihood are needed in the
subsequent MCMC algorithm, it is necessary to simulate I
values of θ according to the prior and then simulate I × m
values of observations y due to the pointwise construction
of the SL estimators. For large I and m, this can be overly
costly. The solution we investigate is based on Mixture of
Experts (MoE), a class of neural network models [15], [33],
using the so-called Gaussian Locally Linear Mapping model
(GLLiM; [4], [32]) estimator. Our approach has the advantage
to both reduce the number of simulations m and depart from
Gaussianity assumptions. Additionally, it allows us to exploit
recent approximation and estimation theoretic results regarding
MoEs [16]–[20] to establish desirable theoretical results. These
results fill a gap in the BSL literature, where there is a lack of
theory based on mild and easily checkable assumptions that
allow for guarantees in the relationship between the estimated
BSL posterior and the target posterior measures.

II. BAYESIAN SYNTHETIC LIKELIHOOD

Let (Ω,F,P) be a probability space. We observe data Xn =
(Xi)i∈[n], where [n] = {1, . . . , n} and Xi : Ω → X is a
random variable taking value in the measurable space (X,X),
for each i ∈ [n]. We can thus endow Xn with the push-forward
probability space (Xn,X⊗n,Pn). Further define the parameter
space (T,T), with typical element θ, and equip it with the
prior measure Π : T→ [0, 1]. In classical Bayesian inference
(see e.g., [25] and [29]), one assumes that (θ,X1, . . . ,Xn)
has joint measure (T × Xn,T ⊗ X⊗n,Qn), where Qn � λ



for some dominating measure λ (e.g. Lebesgue or counting
measures), where, for each A ∈ T⊗ X⊗n:

Qn(A) =

∫
A
fn(xn|θ)π(θ)λ(dθ × dxn).

We typically call fn : Xn×T→ R≥0 the likelihood function,
with the property that

∫
Xn fn(xn|θ)λ(dxn) = 1, for each

θ ∈ T, and where π : T → R≥0 is the density of the
prior measure Π, with respect to λ. The target of Bayesian
inference is to either provide an expression for the posterior
measure Π(·|xn) : T → [0, 1], characterized by integration
with respect to the posterior density π(θ|xn) ∝ fn(xn|θ)π(θ)
or to construct Monte Carlo estimators for integrals with
respect to Π(·|xn).

A. BSL original and variants

Most Bayesian approaches require a closed-form expression
for fn and cannot be used in the likelihood-free setting. In the
BSL setting, fn can be intractable but we assume that we
can simulate i.i.d. samples: Ym

N = (θj ,X
1
n,j , . . . ,X

m
n,j)j∈[N ],

where θj has prior measure Π and Xk
n,j |θj has measure

fn(·|θ)dλ, for k ∈ [m]. We then use these data to esti-
mate some tractable replacement for the likelihood function:
gn(η(·)|θ) : Xn → R≥0, with

∫
Rd gn(η|θ)λ(dη) = 1, for

each θ ∈ T and a summary statistic η : Xn → Rd. In
particular, the approach of [23] suggests to use simulations
Ym
N to estimate the likelihood replacement

gn,m(η(xn)|θ) =∫
Rd×m

Nd(η(xn);µ((xkn)k∈[m]),Σ((xkn)k∈[m]))

×
m∏
k=1

fn(xkn|θ)λ(d(xkn)k∈[m]), (1)

where

µn = µ((xkn)k∈[m]) =
1

m

m∑
k=1

η(xkn), (2)

Σn = Σ((xkn)k∈[m]) =
1

m

m∑
k=1

η(xkn)η>(xkn)

− 1

m
µ((xkn)k∈[m])µ

>((xkn)k∈[m]) (3)

and Nd(·;µ,Σ) is the d-dimensional normal density function,
with mean µ ∈ Rd and positive definite covarianceΣ ∈ Rd×d.

Variations on this construction have been proposed, for
example, by [1] and [7]. In [1] the authors propose to replace
Nd (η (xn) ;µn,Σn), in (1), by a copula transformation of
a marginal kernel density estimator, leading to the semiBSL.
In [7], the authors introduce a prior on an additional free pa-
rameter that improves robustness to misspecification of choice
of summary statistic η, leading to the missBSL approach.
Further refinements have subsequently been considered by [8],
where the covariance estimator (3) is replaced by more general
classes of covariance estimators.

B. Theoretical insights of BSL

It is noteworthy that a number of theoretical results have
been proved with respect to the described BSL algorithms.
Firstly, for fixed xn, [5] proved a weak consistency result re-
garding the approximate posterior measure defined by density

gm(θ|xn) ∝ gn,m(η(xn)|θ)π(θ)

to a limiting posterior measure defined by

g(θ|xn) ∝ gn(η(xn)|θ)π(θ),

where, gn(η(xn)|θ) = Nd(η(xn);µ∞(θ),Σ∞(θ)), under
the condition that

µ((Xk
n,j)k∈[m]) −→

m→∞
µ∞(θj), and

Σ((Xk
n,j)k∈[m]) −→

m→∞
Σ∞(θj),

in measure fn(·|θj)dλ, along with uniform integrability as-
sumptions on the sequences of measures (gn,m(·|xn)dλ)m∈N
and densities

(Nd(η(xn);µ((Xk
n,j)k∈[m]),Σ((Xk

n,j)k∈[m])))m∈N,

for each j ∈ [N ]. We note that these results only say that
gm(·|xn) converges to some g(·|xn), as m→∞, but provide
no intuition regarding the form of g(·|xn), nor how it relates
to the target: π(·|xn).

Stronger results were obtained by [8], who required stricter
conditions, to prove Bernstein–von Mises-type normal limit
theorems for the class of covariance estimator-adjusted BSL
techniques. For instance, the authors assume a central limit
theorem with respect to the summary η(Xn) and its limit η0,
for some θ0 ∈ Rd. They further assume that there is a mapping
θ 7→ η̄(θ), for which η̄(θ0) = η0, uniquely for some θ0 ∈ T,
and further that η̄ is differentiable with full-rank Jacobian in
a neighbourhood of θ0. The covariance matrix estimator is
further assumed to satisfy a uniform law of large numbers,
under appropriate scaling, and the moment generating function
of the scaled difference between η(Xn) and η0, which admits
a central limit theorem, also has sub-Gaussian tails for suffi-
ciently large n. Under these assumptions, the BSL posterior
density estimator obtained using covariance estimators that
satisfy the regularity conditions will converge, in probability,
to a normal density function, in the total variation topology, as
both n and m approach infinity. This can better be interpreted
as the convergence in distribution of an appropriately scaling
of the posterior mean, Xn 7→

∫
T θgm(θ|Xn)λ(dθ), to a

normal random variable.
Notice that these assumptions are difficult to intuit and to

verify for many sufficiently complex practical scenarios, and
can be violated in simple cases. For example, one cannot use
summary statistics such as M-estimator solutions [27], where
the extrema are unidentifiable (see, e.g., [26, Sec. 5.1]); nor
U- and V-statistics defined by degenerate kernels [12, Ch. 4].



III. BSL VIA MIXTURE OF EXPERTS

A. Surrogate likelihoods via mixture of experts

As with the BSL methods described above, we seek to
approximate the likelihood fn(xn|θ) in some form, when
T ⊂ Rp, for some p ∈ N. Namely, given a choice of summary
statistic η : Xn → Rd, we consider the classes of MoEs with
normal experts and Gaussian gating (cf. [11], [15], [32]). The
main reason for this choice is that the maximum conditional
likelihood estimator (MCLE) is well approximated by the
computationally more convenient GLLiM model estimator of
[4]. Mutatis mutandis, the same results can be obtained for
the softmax gating function via the equivalence between two
classes (cf. [17, Lem. 1]). Writing ηn = η(xn), our likelihood
approximators take the form (ηn,θ) 7→ hn,K(ηn|θ) ∈ MK ,
where K ∈ N is the number of mixture components, and

MK =

{
hK : Rd × T→ R : hK(η|θ) =

K∑
k=1

γk(θ;ψK)Nd(η; bk +Akθ,Σk)

}
(4)

with bk ∈ Rd,Ak ∈ Rd×p, and Σk ∈ S+
d (the positive definite

matrices in Rd×d), for each k ∈ [K]. Further, we take the
sequence of gating functions γK(·;ψK) = (γk(·;ψK))k∈[K]

in the set of Gaussian gating functions:

GK =

{
γK(·;ψK) : γk(θ;ψK) =

πkNp(θ; ck,Γk)∑K
l=1 πlNp(θ; cl,Γl)

, k ∈ [K]

}
,

where ck ∈ Rp, Γk ∈ S+
p , and πk ∈ [0, 1], for each k ∈

[K], with
∑K
k=1 πk = 1. We denote ψK = (πk, ck,Γk)k∈[K],

and χK = (bk,Ak,Σk)k∈[K]. Then we assume that ΨK =
(ψK ,χK) ∈ X , for some domain X satisfying the parameter
space restrictions, above.

For a fixed ΨK , a mixture inMK can be seen as a function
of θ. The idea is then to learn an estimate of ΨK so that
the corresponding mixture is a good approximation of the
likelihood for every θ.

B. Approximation capacities

The approximation of the likelihood by a function in MK

is appealing for a number of reasons. Let f̄n(ηn|θ) denote the
pushforward likelihood of ηn = η(Xn), based on fn(xn|θ).
Then, on every compact subset K ⊂ T, as long as f̄n(ηn; ·)
is continuous on T, for every ε > 0, there exists a sufficiently
large K ∈ N and hn,K(ηn|θ) ∈ MK , such that the con-
ditional expectations according to f̄n(ηn|θ) and hn,K(ηn|θ)
are uniformly close [16]:

sup
θ∈K

∣∣∣∣∫
Rd

ηn
{
f̄n(ηn|θ)− hn,K(ηn|θ)

}
λ(dηn)

∣∣∣∣ < ε.

This implies that we can approximate the mean of any push-
forward likelihood arbitrarily well using an approximation in

MK , for sufficiently large K. Further, on any compact sets
H ⊂ Rd and K ⊂ T, if f̄n is a density on H for each
fixed θ ∈ K, and if f̄n is continuous on H × K, then, by
[17, Thm. 1], for each q ∈ [1,∞) and ε > 0, there exists a
hn,K(ηn|θ) ∈MK such that{∫

H×K

∣∣f̄n(ηn|θ)− hn,K(ηn|θ)
∣∣q λ(dηn × dθ)

}1/q

< ε.

Thus, not only is the mean of hn,K(ηn|θ) close to its target,
but if the target is compactly supported, then hn,K(ηn|θ) will
be close to its target conditional density in any q-norm as well.

C. Posterior consistency

In Bayesian settings, the subsequent step is to consider the
posterior distribution induced by the likelihood approximation.
For fixed, K ∈ N, we first wish to estimate the parameter ΨK

that determines the optimal hn,K = hn,K(·|·; Ψk), where we
now make the dependence on ΨK explicit. More specifically,
using N simulated i.i.d. samples YN = ((θj ,Xn,j))j∈[N ]

from the joint measure Qn capturing the likelihood informa-
tion, we consider the MCLE of ΨK :

Ψ̂K,N = arg max
ΨK

1

N

N∑
j=1

log hn,K(η(Xn,j)|θj ; ΨK), (5)

and parameters Ψ∗K minimizing the Kullback–Leibler diver-
gence between f̄n and mixtures in MK (cf. [30, Ch. 21]):

min
ΨK

EQn
log

{
f̄n (η (Xn) |θ)

hn,K (η (Xn) |θ; ΨK)

}
= EQn log

{
f̄n(η(Xn)|θ)

hn,K(η(Xn)|θ; Ψ∗K)

}
.

For each parameter ΨK , we then define the posterior measure
corresponding to hn,K(η(xn)|θ; ΨK) via the density

hn,K(θ|xn; ΨK) ∝ hn,K(η(xn)|θ; ΨK)π(θ).

and show the following convergence result.

Theorem 1 (Posterior consistency). Assume that η(Xn) and
θ have finite second moments with respect to Qn and X
is compact. Then, if Φ is compact and

(
Ψ̂K,N

)
N∈N

is
a convergent sequence, the posterior measures defined by(
Ψ̂K,N

)
N∈N

converge in total variation, almost surely, to the
posterior measure defined by Ψ∗K , in the sense that, for each
xn ∈ Xn,∫

T

∣∣∣hn,K (θ|xn; Ψ̂K,N

)
− hn,K (θ|xn; Ψ∗K)

∣∣∣λ (dθ) −→
N→∞

0

for almost every (YN )N∈N.

The proof of Theorem 1 is given in the Appendix.



D. Fast convergence rates

Note that not only is the MoE approximation of the like-
lihood and posterior consistency attractive, but we can also
obtain near-optimal convergence estimation rates via Theorem
2, which is proved in the Appendix. We specialize to the
well-specified case, where the generative measure Qn has
conditional density in MK , denoted as hn,K0(·|·; Ψ0

K0) with
K0 number of mixture components, where K0 ≤ K. For each
θ ∈ T, we define the Hellinger distance, denoted by He(·, ·),
as follows:

He
(
hn,K(·|θ; Ψ̂K,N ), hn,K0(·|θ; Ψ0

K0)
)

=

[
1

2

∫
X

(√
hn,K(ηn|θ; Ψ̂K,N )−

√
hn,K0(ηn|θ; Ψ0

K0)
)2

× λ(dηn)

]1/2

.

Theorem 2 (Conditional density estimation). Assume that
((θj ,Xn,j))j∈[N ] are sampled i.i.d from generative joint mea-
sure Qn. Assume that X is compact and T is bounded. Given
Ψ̂K,N defined in (5), the corresponding conditional density
function hn,K(·|·; Ψ̂K,N ) admits the convergence rate of order
O((logN/N)−1/2) under the Hellinger distance in the sense
that:

P
(
EΠ

[
He
(
hn,K(·|θ; Ψ̂K,N ), hn,K0(·|θ; Ψ0

K0)
)]

> C1(logN/N)−1/2
)
≤ C2N

−C3 ,

where C1, C2 and C3 are universal positive constants.

IV. NUMERICAL ILLUSTRATIONS

A. Surrogate MoE likelihoods via GLLiM

For our numerical illustration, we use the GLLiM estimator
of [4]. GLLiM has been used previously in [6] to provide
surrogate posterior estimators. In our current setting, it is the
likelihood that we approximate as an MoE:

hn,K(ηn|θ; ΨK)=

K∑
k=1

γk(θ;ψK)Nd(ηn; bk+Akθ,Σk) (6)

with n = 1 and ηn(Xn) = X in each of our examples.
In the pBIL framework and notation of [5], we thus have

an auxiliary model hn,K , which can be viewed as a mixture
of K Gaussian densities with parameters

Φ(θ; ΨK) = ((γk(θ;ψK), bk +Akθ,Σk))k∈[K]. (7)

Specifically, Φ(θ,ΨK) is now a parametric function of θ
that depends on ΨK and specifies the proportions, means
and covariance matrices of the K components. To define the
mapping Φ, we only need an estimate of ΨK . The parameter
ΨK can be estimated, from the sample YN , using a GLLiM
model estimator Ψ̄K,N , computed via a standard Expectation–
Maximization (EM) algorithm. Details of the estimation proce-
dure appears in [4]. Once we have computed Ψ̄K,N , no further
simulations are required. That is, ΨK can be estimated using

only the size N simulation: YN = ((θj ,Xn,j))j∈[N ], with
N fixed and independent of the required number of MCMC
iterations. In the sequel, we will referred to our approach,
using GLLiM model estimated MoE for BSL, as GLLiM-BSL.

B. Posterior samples

To sample from the posterior measure, BSL procedures
use an estimation of the likelihood, plugged into an MCMC
algorithm. In the BSL package [2], the default MCMC scheme
is a Random Walk Metropolis Hastings (RW MH) algorithm,
as provided by the mcmc package [9]. The covariance matrix
of the Gaussian proposal is set to sI , where s > 0 is a scale
parameter that has to be carefully chosen and I is the identity
matrix. For GLLiM-BSL, we also test a Slice Sampler (SS)
[14] and a Metropolis Hastings scheme, using the GLLiM
approximation of the posterior as a proposal distribution (G
MH). These two latter choices have the advantage of not
requiring tuning. For all MCMC schemes, we perform 3×105

iterations, with a burnin of 2 × 105 and a 1-in-100 sample
thinning, resulting in a sample of 1000 θ values.

An MoE is learned on a sample YN of size N = 105,
obtained by simulating parameters from the prior and un-
derlying measure defined by fn, using a GLLiM estimator.
The Bayesian information criterion (BIC) is used to choose
the number of mixture components K. Once estimated with
the selected K, the MoE provides an approximation of the
likelihood which is used together with one of the afore-
mentioned MCMC schemes. For comparison, we also use
the GLLiM model approximation of the posterior measure
to directly generate a sample of size 1000, as per [6]. This
does not require any MCMC scheme. These direct GLLiM-
based samples are then compared with samples resulting
from various BSL procedures from the BSL package: BSL,
semiBSL, missBSLmean, missBSLvar and uBSL; see [2] for
details. We limit to visual comparison as it is enough to
illustrate the improvement obtained by our method. There
exists quantitative criteria for comparing samples, such as
distances between samples (e.g. Wasserstein, energy distances
etc.), 2-sample tests, etc. [13]. However, they provide highly
volatile and inconsistent rankings between methods that are
inconsistent with visual diagnoses. The development of quality
assessment tools in likelihood free settings is actually an open
question. It is a promising direction for future research that
falls outside the scope of this paper.

C. Two moons example

The two moons model corresponds to a simulator that,
given some parameters θ = (θ1, θ2) ∈ R2, produces an
observation X ∈ R2 via the scheme: X = P + 1√

2
(−|θ1 +

θ2|,−θ1 + θ2), with P = [R cos(U) + 0.22, R sin(U)] and
U ∼ U(−π/2, π/2), R ∼ N (0.1, 0.012), where U is the
uniform distribution.

We adopt the same setting as in [10]. Variable P follow
a single crescent-shaped distribution, which is subsequently
shifted and rotated around the origin, depending on θ. The
absolute value |θ1 + θ2| gives rise to the second crescent



in the posterior. The prior is uniform over [−1, 1]2 and the
observed data is set to x = (0, 0). The likelihood cannot be
expressed explicitly but Figure 1 (a) shows 1000 simulations
for θ = (−0.5, 0.75), which clearly exhibit a non-Gaussian
shape. A sample obtained from the GLLiM approximation of
the likelihood, with K = 49 Gaussian components, is shown
in Figure 1 (b), for comparison. The approximation is quite
good, with a few extra outliers visible on the right indicating
that some of the components are located there, but with low
weight. The true posterior measure is made of two moon-like
parts, see e.g. [10] and Figure 2 (a).

Fig. 1. Data X generated from the Two Moons example for θ =
(−0.5, 0.75). Samples of size 1000 from (a) the 2 moons simulator and from
(b) the GLLiM likelihood estimation with K = 49 Gaussian components.

The GLLiM model is estimated using simulations YN .
Selecting from K = 2 to 50, the smallest BIC was obtained
for K = 49. Figure 2 shows the different obtained samples.
In this example, only the RW MH algorithm is tested as a
MCMC scheme. We note that the uBSL variant from the BSL
package exhibited a runtime error in this particular example
and, as a result, was not used.

All methods identify the bimodality of the posterior dis-
tribution, but the BSL methods do not correctly recover the
local structure of the two parts. In contrast, GLLiM-BSL
provides a good representation of the posterior mass and moon
structures. Among GLLiM-based procedures, the two moons
were slightly better recovered with GLLiM-BSL than with
the direct GLLiM posterior approximation. Table I shows the
computing times obtained on a laptop (MacBook Pro, 2.4
GHz Quad-Core Intel Core i5) using the mentioned CRAN
packages, and additional basic R code with no resorting to
parallel computing. For the low dimensions of this example,
i.e., d = p = 2, the computing times were always less for
GLLiM-based procedures, but not significantly so. However,
the amortization nature of the GLLiM solution becomes an
advantage in higher-dimensional problems, as seen in the
following example.

D. Hyperboloids example

This example was introduced in [6] and exhibits a posterior
distribution whose mass is located on 4 hyperboloids, as
illustrated in Figure 3 (a). The GLLiM estimator was used
to produce an MoE with K = 38 mixture components, as
selected by BIC. The GLLiM-based likelihood was used with
an RW MH algorithm to make comparisons with the standard
BSL procedures. We also considered SS and G MH. In G
MH, the variance of the GLLiM posterior was multiplied by

2 to avoid the proposal distribution being too narrow. The
acceptance rate was 60% for G MH vs 16% for RW MH.

As depicted in Figure 3, although the posterior is far from
being unimodal, some of the standard BSL variants (semiBSL
and missBSL) succeed in capturing it satisfactorily compared
to the previous example. This is likely due to the fact that
the likelihood is simpler here, being a mixture of two Student
distributions. Figure 3 shows the best results, obtained with
GLLiM-BSL (c,d) and semiBSL (f). GLLiM approximations
(Figure 3 (b,c,d)) appear to be better at capturing the hy-
perboloid branches, while some of the BSL variants (f,g,h),
are more precise in the center with an obvious excess mass
at the intersections of the branches. To complement this
visual comparison, we also show the posterior marginals in
Figure 4. The marginal plots allow us to better visualize the
difference with standard BSL procedures. Refer to Figure 4 (f-
j), which all show larger deviations from the truth, determined
by numerical integration. Both true posterior marginals are
the same due to symmetry in the model formulation and
exhibit a non-smooth shape, which has also been double-
checked using a long run of 3 × 105 iterations of the SS
algorithm; see Figure 4 (a). For GLLiM-BSL, among the three
MCMC schemes, it appears that the SS version in Figure 4
(d) provides more satisfactory samples than the MH versions
(c, e). The gain over the direct GLLiM posterior sample (b) is
also clearer. Computing times are reported in Table I. For the
larger dimensional example (d = 10), GLLiM methods take
much less time than standard BSL, even when considering
BIC and learning times.

V. CONCLUSION

MoE approaches provide several advantages over previous
BSL variants. The flexibility of the model allows for better
approximations of likelihoods that strongly depart from Gaus-
sianity. In particular, GLLiM model estimators have interest-
ing amortization properties. GLLiM-based procedures can be
applied in a wide variety of settings, such as sets of i.i.d.
observations or time series, as illustrated in [6].To the best of
our knowledge, we are the first to demonstrate approximation
and estimation theoretical properties of MoEs in this setting.

VI. APPENDIX

Proof of Theorem 1. By the uniform strong law of large num-
bers [26, Thm. 9.60],

sup
ΨK∈X

∣∣∣∣N−1
N∑
j=1

log hn,K (η (Xn,j) |θj ; ΨK)−

EQn
[log hn,K (η (Xn,j) |θj ; ΨK)]

∣∣∣∣ a.s.−→
N→∞

0

under the assumptions that η (Xn) and θ have finite second
moments with respect to Qn, and compact X . By [26, Thm.
5.3], this implies that since

(
Ψ̂K,N

)
N∈N

is convergent and

conditional likelihood maximizing, Ψ̂K,N −→
N→∞

Ψ∗K for
almost every (YN )N∈N, for some Kullback–Leibler divergence



(a) GLLiM Posterior (b) GLLiM-BSL (c) BSL

(d) semiBSL (e) missBSLmean (f) missBSLvar

Fig. 2. Two moons example. Plots are zoomed in on [−0.6, 0.6]2. Plots (a) and (b): GLLiM posterior and GLLiM-BSL samples for K = 49. Plots (c) to
(f): BSL variants, respectively BSL, semiBSL, missBSLmean and missBSLvar. The MCMC scheme is a random walk Metropolis Hastings algorithm.

(a): RW MH (b): GLLiM posterior (c): G-BSL RW MH (d): G MH

(e): BSL (f): semiBSL (g): missBSLmean (h): missBSLvar (i): uBSL
Fig. 3. Hyperboloid example. Plot (a): reference Metropolis Hastings (RW MH) sample. Plots (b,c,d): GLLiM posterior, GLLiM-BSL (RW MH and G MH)
samples for K = 38. Plots (e) to (i): BSL variants with RW MH, respectively BSL, semiBSL, missBSLmean, missBSLvar, uBSL.

minimizing Ψ∗K . Then, on this almost sure event, the conti-
nuity of hn,K (η (xn) |θ; ·) implies that

hn,K

(
η (xn) |θ; Ψ̂K,N

)
−→ hn,K (η (xn) |θ; Ψ∗K)

for every fixed xn and θ. It suffices to show that on the event,∫
T
hn,K

(
η (xn) |θ; Ψ̂K,N

)
π (θ)λ (dθ) −→

N→∞∫
T
hn,K (η (xn) |θ; Ψ∗K)π (θ)λ (dθ) ,

which follows from the dominated convergence theorem by
noticing that, for each fixed xn and ΨK ,

|hn,K (η (xn) |θ; ΨK)π (θ)| ≤ Cπ (θ)

for some constant C <∞ and
∫
T π (θ)λ (dθ) = 1. We obtain

our desired conclusion by an application of Scheffe’s theorem
[28, Cor. 2.30].

Proof of Theorem 2. It is convenient to index the true con-
ditional density hn,K0(·|·; Ψ0

K0) as hG0(·|·; Ψ0
K0), by the

discrete mixing measure on the parameters as follows:
G0 =

∑K0

k=1 π
0
kδ(c0k,Γ0

k,A
0
k,b

0
k,Σ

0
k) where δ(c0k,Γ0

k,A
0
k,b

0
k,Σ

0
k) is

the Dirac measure indexing the atom (c0
k,Γ

0
k,A

0
k, b

0
k,Σ

0
k), for

each k ∈ [K0]. Here we denote the space of measures with at
least K0 atoms by OK , which equalsG =

K∑
k=1

πkδ(ck,Γk,Ak,bk,Σk) : K ∈ [K], K ≥ K0

 .

Note that for any K0 ≤ K, OK can be defined equivalently
as MK = {hG(η|θ) : G ∈ OK} and write Q1/2

K =

{h1/2
(G+G0)/2(η|θ) : G ∈ OK}. Then, we define the Hellinger

ball centered around the conditional density hG0(η|θ) and
intersected with the set Q1/2

K by Q1/2
K (γ) =

{
g1/2 ∈ Q1/2

K :



(a): True marginal (b): GLLiM posterior (c): G-BSL RW MH (d): G-BSL SS (e): G MH

(f): BSL (g): semiBSL (h) : missBSLmean (i): missBSLvar (j): uBSL
Fig. 4. Hyperboloid posterior marginals. Plot (a): true marginal and slice sampler (SS) histogram. Plot (b): GLLiM posterior. Plots (c,d,e): GLLiM-BSL resp.
with RW MH, SS and GLLiM posterior proposal (G MH). Plots (f) to (j): BSL variants, respectively BSL, semiBSL, missBSLmean, missBSLvar, uBSL.

TABLE I
SETTINGS AND COMPUTATION TIMES FOR THE 2 EXAMPLES AND VARIOUS PROCEDURES.

Example Procedure MCMC p d K N m BIC GLLiM 3 ∗ 105 iterations R Package(s)
2 Moons GLLiM BSL RW MH 2 2 49 105 - 1h 28min 3min 6s 12min 30s xLLiM, mcmc

GLLiM post - 2 2 49 105 - 1h 28min 3min 6s - xLLiM
BSL RW MH 2 2 - - 500 - - 23min 39s BSL

semiBSL RW MH 2 2 - - 500 - - 33min 40s BSL
missBSLmean RW MH 2 2 - - 500 - - 30min 21s BSL
missBSLvar RW MH 2 2 - - 500 - - 29min 14s BSL

Hyperboloids GLLiM BSL RW MH 2 10 38 105 - 1h 43min 4min 47s 43min 20s xLLiM, mcmc
GLLiM BSL SS 2 10 38 105 - 1h 43min 4min 47s 2h 35min xLLiM, diversitree
GLLiM BSL G MH 2 10 38 105 - 1h 43min 4min 47s 46min 28s xLLiM
GLLiM post - 2 10 38 105 - 1h 43min 4min 47s - xLLiM

BSL RW MH 2 10 - - 500 - - 4h 19min BSL, mcmc
semiBSL RW MH 2 10 - - 500 - - 4h 49min BSL, mcmc

missBSLmean RW MH 2 10 - - 500 - - 4h 49min BSL, mcmc
missBSLvar RW MH 2 10 - - 500 - - 4h 34min BSL, mcmc

uBSL RW MH 2 10 - - 500 - - 4h 10min BSL, mcmc
N is the number of samples used to learn a MoE and m is the number of simulations at each BSL iteration. The BIC column indicates the learning time

for all GLLiM models between K = 2 and some Kmax, while the GLLiM column shows the time for the selected K indicated under column K. The
second last column shows times for 3× 105 MCMC iterations. The CRAN packages used are indicated in the last column.

He(g, hG0) ≤ γ
}

. Following the framework from [27], we
introduce the following quantity to capture the size of the
above Hellinger ball:

JB(γ,Q1/2
K )

=

[∫ γ

γ2/213

H
1/2
B (u,Q1/2

K (u), ‖ · ‖)λ(du)

]
∨ γ. (8)

Here, H1/2
B (u,Q1/2

K (u), ‖·‖) denotes the bracketing entropy of
Q1/2
K (u) under the Euclidean distance, and u∨γ = max{u, γ}.

Next, we introduce the upper bounds of the covering number
(under the sup norm ‖·‖∞), N(ε,MK , ‖·‖∞), and the brack-
eting entropy (under the Hellinger distance) HB(ε,MK ,He)
of the metric space MK . Note that by using the definition of
the spaces Q1/2

K and MK and the relationship between ‖ · ‖
and He, for any u > 0, it holds that

H
1/2
B (u,Q1/2

K (u), ‖ · ‖) ≤ H1/2
B (u,MK ,He). (9)

Then (8) implies that JB(γ,Q1/2
K ) is upper bounbed by∫ γ

γ2/213

H
1/2
B (u,MK ,He)λ(du) ∨ γ

≤
∫ γ

γ2/213

log(1/u)λ(du) ∨ γ ≤ T (γ). (10)

The first inequality follows from Lemmas 4.3 and 4.6 in
[21] while the second inequality is obtained with T (γ) =
γ[log(1/γ)]1/2 and that T (γ)/γ2 is a non-increasing function
of γ. Finally, let γN =

√
log(N)/N , then

√
Nγ2

N ≥ CT (γN )
holds for some universal constant C. This leads to the desired
convergence rate thanks to Lemma 1. The proof of Lemma
1 for the conditional density estimation rate is similar to
Theorem 7.4 in [27] for joint densities and is not presented
here.

Lemma 1 (Theorem 7.4 in [27]). Take T (γ) ≥ JB(γ,Q1/2
K )

such that T (γ)/γ2 is a non-increasing function of γ. Then,



for a universal constant C and a sequence (γN ) that satisfies√
Nγ2

N ≥ CT (γN ), for γ ≥ γN , it holds

P
(
EΠ

[
He
(
hn,K(·|θ; Ψ̂K,N ), hn,K0(·|θ; Ψ0

K0)
)]

> γ
)

≤ C exp

(
−Nγ

2

C2

)
.
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