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A B S T R A C T

The impact of fractures on the behavior of rock masses is frequently assessed with numerical methods for
hydromechanical modeling and upscaling. Given the popularity of these methods, they can benefit from an
open-source environment for their development. This paper introduces DuMux FracLab, a new module of the
open-source software DuMux that extends the original code, already robust for solving flow and transport in
porous media, to support poromechanical analyses in elastoplastic fractured media using the Box method with
zero-thickness interface elements for discretization of the porous fractured domain. Novel features include
the solution of elastoplastic problems with the Box method and functions that facilitate homogenization and
the upscaling of properties with different boundary conditions. Notably, the imposition of periodic boundary
conditions is made using a recent methodology based on the mortar method that we adapted for triple-node
interfaces. We present the mathematical formulation, the design and main features behind DuMux FracLab as
well as validation tests. Finally, two numerical examples demonstrate possible applications. The first one deals
with the upscaling of stochastic fractured media and the second one reproduces the permeability history of a
fractured chalk sample submitted to depletion and extension.
1. Introduction

Fractures can have a significant impact on the behavior of rock
masses by serving as preferential paths or barriers for fluid flow, acting
as planes of weakness and affecting compressibility, for example. The
strongly coupled and non-linear hydromechanical behavior of fractures
has been verified in pioneering experimental works (e.g., Barton et al.,
1985) and is of important consideration to activities such as oil and
gas extraction, geothermal energy exploitation, nuclear waste disposal,
among others (Rutqvist and Stephansson, 2003).

The assessment of the poromechanical behavior of fractured rock
masses heavily relies on numerical modeling, which has been applied
to coupled hydromechanical problems such as fault reactivation (e.g,
Rutqvist et al., 2013), hydraulic fracturing (Chen et al., 2022), and
fluid production in fractured reservoirs (e.g., Tao et al., 2011; Gan
and Elsworth, 2016). Apart from these large-scale problems, numerical
modeling of fractured media is also used to evaluate the behavior of
fractured samples. Frequently, these simulations aim to extrapolate
information to large-scale problems, in which considering the impact of
small-scale fractures is crucial but the computational cost of explicitly
representing all of them is prohibitive. Techniques such as numerical
homogenization (e.g., Massart and Selvadurai, 2012; Khoei et al., 2023)
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and numerical upscaling (e.g., Pouya and Ghoreychi, 2001; Pouya and
Fouché, 2009; Castro et al., 2023) can be employed for this purpose.

Numerical upscaling, specifically, is widely used in various types
of heterogeneous media. Although the term upscaling may refer to
different techniques for transferring information between scales, we use
it here as a synonym of computing equivalent constitutive properties by
submitting a sample with a given microstructure to a set of constraints
that can be either Dirichlet, Neumann or periodic boundary conditions.
It is well-established that the choice of boundary conditions influences
the upscaled properties’ values, with Dirichlet and Neumann conditions
providing upper and lower limits, respectively (Chalon et al., 2004;
Pouya and Fouché, 2009) while periodic conditions return intermedi-
ary values. In numerical homogenization studies, periodic boundary
conditions are often preferred due to their reported requirement of
smaller sample sizes to converge to the final constitutive properties
values (Terada et al., 2000; Miehe, 2003). However, imposing such
boundary conditions on non-symmetrical domains is not straightfor-
ward and has been the focus of various works that developed new
methods for this purpose (e.g., Larsson et al., 2011; Nguyen et al., 2012;
Reis and Andrade Pires, 2014).
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In summary, the numerical modeling of fractured media hinges on
key factors such as the constitutive laws for fractures, hydromechanical
coupling, and scale-transfer issues. Addressing these aspects requires
the implementation of experimentally verified constitutive laws and
on the use of thoroughly validated computational tools. On this last
matter, there is a variety of softwares applicable to fractured media
studies, including commercial ones like Abaqus (e.g JianPing et al.,
2015) and UDEC (e.g Esmaieli et al., 2010), and open-source codes,
with notable examples being OpenGeoSys (Bilke et al., 2022) and
DuMux (Koch et al., 2020).

Open-source codes have significant potential for fast development
due to the collaborative work fostered by the principles of free and
open-source software. DuMux, in particular, is a C++ code well-
equipped to solve multi-compositional, multi-phase and multi-physics
flow and transport in porous media with different finite-volume dis-
cretization schemes. The computation of flow in fractured media is
supported in its module for multi-domains, where fractures are rep-
resented as interface elements, and has been verified in benchmark
studies (Flemisch et al., 2018; Berre et al., 2021).

However, DuMux has certain limitations when applied for mechan-
ical problems. The geomechanics module, for instance, supports only
linear elasticity and does not function with interface elements. Al-
though there is an external module dedicated to deformable elastic frac-
tured media (Gläser, 2020), its approach, centered on contact problems,
overlooks crucial aspects of fracture mechanics, such as fracture stiff-
ness and its non-linear character (Goodman et al., 1968; Bandis, 1980).

In this work, we introduce a new DuMux module called DuMux Fr-
acLab https://gitlab.com/navier-fraclab/dumux-fraclab, which signifi-
cantly extends the original code by making it capable of solving history-
dependent poromechanical problems on elastoplastic fractured media
using the Box method with interface elements. Proposed by Helmig
(1997), the Box method combines the mesh flexibility given by the
shape functions of the Finite Element Method (FEM) with the local
fluid mass conservation assured by Finite Volume Methods (FVM).
Thus, it is efficient for solving flow and transport problems in complex
geometries. In DuMux FracLab, the Box method is employed for the first
time in elastoplastic analyses with the Mohr–Coulomb criterion, other
plastic models being easily implementable.

DuMux FracLab is also conceived to facilitate the upscaling and
homogenization of fractured media. It contains methods for computing
volume averages and upscaled constitutive tensor with different bound-
ary conditions, including the mortar periodic boundary conditions
proposed by Reis and Andrade Pires (2014) for general meshes, which
we adapted in this work to meshes that contain triple-nodded interface
elements. Also, the computation of the volume averages employs the
formulation by Pouya and Fouché (2009), who corrected previous
errors in the classical formulation by Long et al. (1982) to compute
the homogenized fluid velocity. This is a combination of methods that
makes DuMux FracLab current and unique in handling the upscaling of
fractured porous media.

Considering its functionalities, DuMux FracLab is useful for the
broad community that is interested in numerical uspscaling or in cou-
pled poromechanical models for fractured media. Also, it provides
an open-source environment for the development and adaptation of
problems that use interface elements for the discretization of fractures,
whose current popularity is greatly due to new formulations (Segura
and Carol, 2008b; Pouya, 2015; Cerfontaine et al., 2015; Martínez et al.,
2022; Cui et al., 2019; Liaudat et al., 2023) that made the original
interface by Goodman et al. (1968) applicable to a variety of coupled
problems.

The following sections present the theoretical basis, the code struc-
ture, and applications of DuMux FracLab. Section 2 introduces the for-
mulation of the poromechanical problem, the implemented constitutive
laws, and the methods employed for discretization, homogenization,
and the imposition of periodic boundary conditions on general meshes

x
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with interface elements. Section 3 presents the framework of a DuMu c
problem, the main extensions added in DuMux FracLab, and its design
principles. Section 4 presents the validation tests made for the new
implementations, and Section 5 presents two numerical examples. The
first example demonstrates the potential use of DuMux FracLab to study
the size effects and the influence of the chosen boundary conditions
on the upscaled constitutive tensors of stochastic fractured media. The
second example demonstrates how DuMux FracLab can be used to
assess permeability changes due to fracture deformation by reproducing
the laboratory experiments by Teufel et al. (1993) on a fractured chalk
sample. Finally, Section 6 presents concluding remarks and discusses
current limitations and perspectives.

2. Mathematical description and methods

We consider the problem of one-phase fluid flow coupled with
mechanics in a fractured porous domain 𝛺 = 𝛺𝑚 ∪𝛺𝑓 , where 𝛺𝑚 ∈ R𝑑
s the porous matrix domain, 𝑑 is the problem’s spatial dimension and
𝑓 ∈ R𝑑−1 is the lower-dimensional fracture domain, formed by a

et of fracture surfaces 𝛤𝑗 with sides 𝛤+
𝑗 ∈ 𝛺+

𝑓 and 𝛤−
𝑗 ∈ 𝛺−

𝑓 . In
his scenario, the formulation of the hydromechanical boundary value
roblem (BVP), assuming small deformations, comprises the following
quations for linear momentum balance and for the mass conservation
f fluid in the porous matrix and in the fractures:
′
𝑖𝑗,𝑗 − 𝑏𝑝,𝑖 + 𝑏𝑖 = 0 in 𝛺𝑚 (1)

1
𝑀
�̇� + 𝑏�̇�𝑣 + 𝑣𝑖,𝑖 + 𝑞 = 0 in 𝛺𝑚 (2)

𝑤
𝑀𝑓 �̇�

𝑓 + 𝑏𝑓 �̇� + 𝑣𝑖,𝑖𝑤 − 𝑞𝑡+ − 𝑞𝑡− = 0 in 𝛺𝑓 (3)

On the internal boundaries of 𝛺𝑚 that coincide with fractures, (1)
is subjected to:

𝑅𝑖𝑗 (𝑡′𝑗 − 𝑏
𝑓 𝑝𝑓𝑚𝑗 ) on 𝛺𝑚 ∩𝛺𝑓 (4)

and, considering the domains 𝛺+
𝑓 ∋ 𝛤+

𝑗 and 𝛺−
𝑓 ∋ 𝛤−

𝑗 , with 𝛺𝑓 =
+
𝑓 ∪𝛺−

𝑓 , Eq. (2) is subjected to:

𝑡+ on 𝛺𝑚 ∩𝛺+
𝑓

𝑡− on 𝛺𝑚 ∩𝛺−
𝑓

(5)

Here, 𝝈′ is the effective stress tensor in the porous matrix and 𝒕′ is
the effective stress vector in the fractures planes. The components of
vector 𝒕′ are written according to the local coordinate system (𝒏 𝒕𝟏 𝒕𝟐)
defined by the fracture surface (Fig. 1), its first element being the
normal stress 𝜎𝑛 so that 𝒎 = {1 0 0}𝑇 . The rotation matrix 𝑹 trans-
forms the fracture’s local coordinate system to the problem’s global
coordinate system, and is implemented according to the formulation
by Cerfontaine et al. (2015). Also, 𝐯 is the fluid’s velocity vector, 𝑝 is
the fluid pressure, 𝑏 and 𝑀 are the Biot coefficient and Biot modu-
lus, respectively. When these variables appear with the superscript 𝑓 ,
they refer to the fracture domain. Moreover, 𝜀𝑣 is the porous matrix
volumetric strain, 𝑤 is effective fracture aperture, 𝑞 is an external flux
source and 𝑞𝑡+ and 𝑞𝑡− are the exchange fluxes between the matrix and
the fracture, computed at sides 𝛤+

𝑗 and 𝛤−
𝑗 of the fracture surface as:

𝑞𝑡+ = 𝐾𝑡(𝑝𝑓 − 𝑝+)

𝑞𝑡− = 𝐾𝑡(𝑝𝑓 − 𝑝−)
(6)

where 𝐾𝑡 is the fracture’s transversal conductivity, and 𝑝+ and 𝑝− are
the porous matrix fluid pressures on 𝛺𝑚∩𝛺+

𝑓 and 𝛺𝑚∩𝛺−
𝑓 , respectively.

2.1. Constitutive laws

We present hereinafter the main constitutive laws available in Du-
Mux and implemented in DuMux FracLab for the modeling of porome-

hanical problems.

https://gitlab.com/navier-fraclab/dumux-fraclab
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Fig. 1. Local coordinate system (𝒏 𝒕𝟏 𝒕𝟐) of a fracture 𝛤𝑗 inside a domain 𝛺𝑚 defined
with a global coordinate system (𝑬𝟏 𝑬𝟐 𝑬𝟑).

The default constitutive law for fluid flow in porous media is Darcy’s
law:

𝑣𝑖 =
𝑘
𝜇
(𝑝,𝑖 − 𝜌𝑔𝑖) (7)

where 𝑘 is the medium’s intrinsic permeability, 𝜇 and 𝜌 are the viscosity
and density of the fluid, respectively and 𝒈 is the gravity vector.

When in the elastic regime, the effective stresses in the porous
matrix are a function of the matrix deformation tensor 𝜀𝑖𝑗 :

𝜎′𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑖𝑗 + 2𝐺𝜀𝑖𝑗 (8)

where 𝜆 is Lamé’s first parameter and 𝐺 is the elastic shear modulus.
At the fractures, the effective stress vector 𝒕′ is defined as a function of
the displacement jumps [[𝒖]] across their plane as:

𝒕′𝑇 = {𝜎′𝑛 𝜎𝑡1 𝜎𝑡2} = 𝑪𝑓 [[𝒖]] =
⎡

⎢

⎢

⎣

𝐾𝑛 𝐾𝑛𝑡 𝐾𝑛𝑡
𝐾𝑛𝑡 𝐾𝑡1 0
𝐾𝑛𝑡 0 𝐾𝑡2

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

[[𝑢𝑛]]
[[𝑢𝑡1]]
[[𝑢𝑡2]]

⎫

⎪

⎬

⎪

⎭

(9)

where 𝑪𝑓 is the fracture stiffness matrix, formed by the fracture’s
normal stiffness 𝐾𝑛, the elastic dilatant stiffness 𝐾𝑛𝑡 and the tangential
stiffnesses 𝐾𝑡1 and 𝐾𝑡2. These fracture stiffnesses and the elastic moduli
of the porous matrix can be state-dependent. In the case of the fractures,
their normal stiffness is acknowledged to be highly dependent on their
current state and is well-represented by non-linear functions such as
the classical Barton-Bandis law (Bandis, 1980; Barton et al., 1985),
by which the normal stiffness of a closing fracture is a function of its
aperture.

If the material is elastoplastic, the yield surface provides a border
for the stresses estimated in (8) and (9). In DuMux FracLab, the Mohr–
Coulomb criterion is available for both the porous matrix and the
fractures. For the porous matrix, we use the formulation by Nayak and
Zienkiewicz (1972) written in terms of stress invariants:

𝑝′ sin(𝜙) +
√

𝐽2

(

cos(𝜃) − 1
√

(3)
sin(𝜃) sin(𝜙)

)

− 𝑐 cos(𝜙) = 0 (10)

where 𝑐 and 𝜙 are the porous matrix cohesion and friction angle,
respectively. The invariant 𝑝′ of the effective stress tensor 𝜎′𝑖𝑗 is:

𝑝′ = 1
3
𝜎′𝑖𝑖 (11)

and the Lode angle 𝜃 is defined by

−30◦ ≤ 𝜃 = 1
3
arcsin

(

−3
√

3 𝐽3
2𝐽 3∕2

2

)

≤ 30◦ (12)

where 𝐽2 and 𝐽3 are invariants of the deviatoric stress tensor 𝑠𝑖𝑗 :

𝑠𝑖𝑗 = 𝜎𝑖𝑗 −
𝜎𝑘𝑘
3
𝛿𝑖𝑗 (13)

𝐽2 =
1
2
𝑠𝑖𝑗𝑠𝑖𝑗 (14)

𝐽 = det(𝒔) (15)
3

3

Fig. 2. The box discretization method: definition of a control volume of a node 𝑖 of
a primary finite element mesh. The hatched area represents a sub-control volume and
the dashed lines are faces. The faces connect the centroid of the element edges (red
circles) and of the sub-control volumes (green diamonds).

At the fracture planes, the Mohr–Coulomb criterion reads:

|𝜏| − 𝜎′𝑛 tan(𝜙𝑓 ) − 𝑐𝑓 = 0 (16)

where 𝜙𝑓 and 𝑐𝑓 are the fracture’s friction angle and cohesion, respec-
tively and the shear stress 𝜏 =

√

𝜎2𝑡1 + 𝜎
2
𝑡2.

DuMux FracLab implements a non-associative strain-hardening
Mohr–Coulomb, in which cohesion, friction angle and dilation angle
can be a function of a user-specified hardening variable.

2.2. Discretization

The discretization of both the mechanical and the flow problems is
made with the Box method Helmig (1997), which consists of building
control volumes around the nodes of a primary finite element mesh
(Fig. 2). Stresses and fluxes are computed at the edges of the control
volumes, called faces. The storage term is computed at the centroids of
the sub-control volumes.

For the discretization of the fractures, we use the triple-nodded
lower-dimension interface elements illustrated in Fig. 3. Note that the
middle lower dimension element is only used by the flow problem to
compute the fluid pressure in the fracture, while the edge nodes are
used to compute pressures and displacements in the porous matrix. For
the flow problem, the edge nodes are coupled to the middle ones by
the exchange flux in (6).

2.3. Fixed-stress split

DuMux FracLab handles the hydromechanical coupling of the prob-
lem described in (1)–(3) with a sequential coupling scheme called the
fixed-stress split. The use of a sequential coupling scheme allowed us
to better respect the modularity of the original code and is more conve-
nient for the future implementation of new solution methods specific to
one of the coupled models. The comparative study by Kim et al. (2011)
showed that the fixed-stress split is an interesting alternative to full-
coupling since it offers unconditional stability, faster convergence, and
more accurate results than other sequential coupling schemes.

In the fixed-stress split, the flow and mechanical problems are
solved sequentially, in this order, until a criterion of convergence 𝜀𝑡𝑜𝑙 is
reached. During the resolution of the flow equation at a given iteration
𝑘 of a time step 𝑡, the displacements and the strains are not known
because the mechanical equation has not yet been solved. As a solution,
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Fig. 3. Example of triple-nodded interface elements for 2D (left) and 3D (right) hydromechanical problems. The fracture pressure 𝑝𝑓 is evaluated at the middle nodes and the
fluid pressure 𝑝 and displacements 𝒖 in the porous matrix are evaluated at the edge nodes.
the volume strain and aperture variations are replaced by the following
estimators:

𝑑�̂�𝑘𝑣 = 𝑑𝜀𝑘−1𝑣 + 𝑏2

𝐾𝑑𝑟
(𝑝𝑘,𝑡 − 𝑝𝑘−1,𝑡) (17)

𝑑�̂�𝑘 = 𝑑𝑤𝑘−1𝑣 +
𝑏2𝑓
𝐾𝑓

(𝑝𝑘,𝑡𝑓 − 𝑝𝑘−1,𝑡𝑓 ) (18)

where 𝐾𝑑𝑟 and 𝐾𝑓 are the bulk modulus of the porous matrix and
the fracture. Selecting the adequate value for these moduli is highly
important for convergence and a proper estimation depends on the
dimensions of the problem and on the elastic or elastoplastic parame-
ters. We adopt for 𝐾𝑑𝑟 the values suggested by Castelletto et al. (2015)
and Kim et al. (2011) for elastic and elastoplastic 2D and 3D problems
to obtain optimal convergence. For the fractures, 𝐾𝑓 is equal to their
normal stiffness.

We present below the essential steps of the algorithm for a time step
𝑡 and iteration 𝑘:

1. Solve the flow Eqs. (2) and (3) using the estimators (17) and
(18).

2. With the updated fluid pressure values, solve the mechanical
equilibrium Eq. (1) and compute the actual values of 𝑑𝜀𝑘𝑣 and
𝑑𝑤𝑘:

𝑑𝜀𝑘𝑣 = 𝑢𝑖,𝑖 (19)

𝑑𝑤𝑘 = [[𝑢𝑛]] (20)

where 𝑢𝑖 denotes the computed displacement increment vectors
and [[𝑢𝑛]] denotes the normal displacement jump across the
fractures planes.

3. Proceed to the next time step if:

‖𝒑𝑘,𝑡 − 𝒑𝑘−1,𝑡‖
‖𝒑𝑘,𝑡‖

≤ 𝜀𝑡𝑜𝑙

‖𝒖𝑘,𝑡 − 𝒖𝑘−1,𝑡‖
‖𝒖𝑘,𝑡‖

≤ 𝜀𝑡𝑜𝑙

(21)

Otherwise, begin a new iteration.

2.4. Numerical upscaling

The upscaled mechanical constitutive tensor 𝑪 and permeability
tensor 𝑲 of a heterogeneous domain can be obtained by solving linearly
independent systems of the type:

⟨𝜎′𝑖𝑗⟩ = 𝐶𝑖𝑗𝑘𝑙⟨𝜀𝑘𝑙⟩ =
1
2
𝐶𝑖𝑗𝑘𝑙(⟨𝑢𝑘,𝑙⟩ + ⟨𝑢𝑙,𝑘⟩) (22)

⟨𝑣𝑖⟩ = 𝐾𝑖𝑗 ∶ ⟨𝑝,𝑗⟩ (23)

where ⟨⋅⟩ = 1
𝑉 ∫𝑉 ⋅𝑑𝑉 and 𝑉 is the volume of the domain. Using the

divergence theorem, the volume integrals of displacement and pressure
gradients can be converted to surface integrals as :

𝑎,𝑖𝑑𝑉 = 𝑎𝑛𝑖 𝑑𝜕𝑉 (24)
4

∫𝑉 ∫𝜕𝑉
where the variable 𝑎 is a general representation of either fluid pressure
𝑝 or a directional component 𝑢𝑘 of the displacement vector.

To compute the integral ∫𝑉 𝑣𝑖𝑑𝑉 of the fluid velocity vector we use
the following formulation by Pouya and Fouché (2009):

∫𝑉
𝑣𝑖𝑑𝑉 = ∫𝜕𝑉

(𝑣𝑗𝑛𝑗 )𝑥𝑖 𝑑𝜕𝑉 +
∑

𝑘∈𝜕𝛺𝑓

𝑞(𝑘)𝑥(𝑘)𝑖 (25)

where 𝒙 is a position vector on 𝜕𝑉 , 𝜕𝛺𝑓 is the domain of fracture traces
at the boundaries of 𝑉 , i.e., the points (for 2D) or lines (for 3D) formed
by the intersection of the fracture domain and the boundary 𝜕𝑉 ; 𝑞(𝑘) is
the flow rate at trace 𝑘 and 𝒙(𝑘)𝒊 is the position vector of trace 𝑘.

Considering the classical Hill–Mandel principle for homogeniza-
tion (Hill, 1972), in which body forces are neglected, this methodology
can also be applied to compute ∫𝑉 𝜎

′
𝑖𝑗𝑑𝑉 as:

∫𝑉
𝜎′𝑖𝑗𝑑𝑉 = ∫𝜕𝑉

(𝑡𝑖𝑛𝑖)𝑥𝑗 𝑑𝜕𝑉 + ∫𝑉
𝑏𝑝𝛿𝑖𝑗 𝑑𝑉 (26)

where 𝒕 is the vector of boundary tractions. Note that there are cases
where it is important to consider inertia, body forces or dynamic effects
when computing homogenized stresses. DuMux FracLab does not yet
include this possibility, but the interested reader is referred to de
Souza Neto et al. (2015) and Khoei and Hajiabadi (2018) for extended
theories that consider these effects.

Numerical upscaling consists of imposing sets of linearly inde-
pendent boundary conditions to solve several BVPs and compute the
upscaled (apparent) constitutive tensors for a given microstructure.
The boundary conditions types can be Neumann (stresses and fluxes),
Dirichlet (displacement and pressures) or periodic.

The most common Neumann boundary conditions are the so-called
constant traction and flux boundary conditions for mechanics and fluid
flow, which set each component ⟨𝜎𝑖𝑗⟩ and ⟨𝑣𝑖⟩ to be non-zero at a time.
And common Dirichlet boundary conditions are linear pressure and
linear displacement boundary conditions, which set a configuration of
the primary variables such that each gradient component ⟨𝑝,𝑖⟩ and ⟨𝑢𝑖,𝑗⟩
is non-zero at a time.

Periodic conditions also impose pressure and displacement gradi-
ents, but this must be done respecting the constraint of periodicity for
pressures and displacements:

𝑝(𝒙+) = 𝑝(𝒙−) + 𝑝,𝑖(𝑥+𝑖 − 𝑥−𝑖 ) (27)

𝑢𝑖(𝒙+) = 𝑢𝑖(𝒙−) + 𝑢𝑖,𝑗 (𝑥+𝑗 − 𝑥−𝑗 ) (28)

where 𝒙+ and 𝒙− are coordinates of a pair of symmetric opposite
boundary points (Fig. 4), 𝑢𝑖,𝑗 and 𝑝,𝑖 are the imposed displacement and
pressure gradients. Also, it is necessary to respect the constraint of
anti-periodicity of flow rates 𝑄 and surface forces 𝑻 :

𝑄(𝒙+) = −𝑄(𝒙−) (29)

𝑻 (𝒙+) = −𝑻 (𝒙−) (30)
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Fig. 4. Examples of pairs of opposite and symmetric boundary points in a two-
dimensional domain. The conditions of periodicity and anti-periodicity are imposed
on each of these pairs.

2.5. Mortar periodic boundary conditions

For the imposition of periodic boundary conditions on general
2D meshes with interface elements, DuMux FracLab uses and adapts
the methodology proposed by Reis and Andrade Pires (2014). The
essentials of this methodology will be presented below, with more
information available in Reis and Andrade Pires (2014) and Rodrigues
Lopes et al. (2021).

The boundaries of the domain are divided into a mortar (indepen-
dent) and a non-mortar (dependent) side, which will be hereinafter
indicated by the superscripts 𝑚 and 𝑛, respectively. The main idea of
the method is to enforce weakly the periodicity constraint (27)–(28) by
solving:

∫𝛤𝑖
(𝜋𝑛(𝑎𝑛) − 𝜋𝑚(𝑎𝑚))𝜓𝑛𝑑𝛤𝑖 = 𝑎,𝑗 (𝑥𝑛𝑗 − 𝑥

𝑚
𝑖 ) (31)

Here, 𝑎 is a general denotation for a primary variable 𝑢𝑖 or 𝑝, 𝑎,𝑗 is
its imposed gradient, and 𝒙 is the position vector of a boundary point.
The domain 𝛤𝑖 is a ‘‘virtual integration line’’ built from the projection
of the boundary nodes (Fig. 5). The functions 𝜋𝑚 and 𝜋𝑛 interpolate
the variables at mortar and non-mortar nodes on 𝑑𝛤𝑖 using the finite
element shape functions. And the test functions 𝜓𝑛 are the Lagrange
multipliers proposed by Rodrigues Lopes et al. (2021).

The solution of (31) leads to a relationship of the following form:

𝑎𝑛𝑖 − 𝐴𝑖𝑗𝑎
𝑚
𝑗 = 𝑎,𝑘(𝑥𝑛𝑘 − 𝑥

𝑚
𝑘 ) (32)

where 𝑘 = 1...2, 𝑖 and 𝑗 are indexes of boundary nodes. Matrix 𝑨 stores
coefficients that determine the dependency of the non-mortar nodes on
the mortar nodes that share common segments of the virtual integration
line. A similar procedure to impose the anti-periodicity conditions (29)
and (30) leads to:

𝑓 𝑛𝑗 + 𝐴𝑇𝑖𝑗𝑓
𝑚
𝑗 = 0 (33)

where 𝒇 denotes, generally, the vectors of forces and flow rates at the
nodes and the superscript 𝑇 denotes the transpose of a matrix.

Eqs. (32) and (33) introduce additional relationships that ensure
the determinancy of the systems constituting the hydromechanical
problem. Explicit enforcement of pressure and displacement boundary
conditions is only required at one of the corners. Typically, in the me-
chanical problem, this corner is assigned zero displacements to prevent
rigid body motion. In the flow problem, the corner can be constrained
to a fluid pressure that appropriately represents the sample’s state, if
the problem is state-dependent.

This method can be readily applied to our mechanical problem with
interface elements. In this case, the virtual line exhibits ‘‘discontinu-
ities’’ that result in distinct dependency relationships for nodes along
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the same interface (Fig. 5). Consequently, there can be displacement
discontinuities across interface boundary nodes, which removes the
overstiffness associated with Dirichlet boundary conditions (Svenning
et al., 2016). However, the flow problem requires additional constraints
because it uses an additional domain of middle interface elements to
compute fracture pressures (Fig. 3).

To address this, we propose an adaptation to enforce the periodicity
conditions on this lower-dimensional domain. In this adaptation, the
middle nodes at the boundaries become dependent on their correspon-
dent nodes at the edges of the interface. If these middle nodes are
located on the non-mortar side, they inherit the dependency of their
coupled edge nodes, becoming indirectly dependent on the same mortar
nodes.

Consider a fracture lower-dimensional domain 𝛺𝑓 of boundary 𝛤𝑓 =
𝛤𝑚𝑓 ∪ 𝛤 𝑛𝑓 . For a fracture node 𝑖 ∈ 𝛤𝑓 that overlaps with a set of matrix
nodes 𝐶𝑚(𝑖) located at the edges of the interface element, the periodicity
condition becomes:

𝑝
𝛤𝑓
𝑖 − 𝛼𝑖𝑗𝑝𝑚𝑗 − 𝑝,𝑘(𝑥

𝛤𝑓
𝑘 − 𝑥𝑚𝑘 ) = 0 (34)

And the modified anti-periodicity constraint for the flow rate is:

𝑞𝑚𝑗 + 𝐴𝑇𝑖𝑗𝑞
𝑛
𝑗 + 𝛼

𝑇
𝑖𝑗𝑞

𝛤𝑓
𝑗 = 0 (35)

where

𝛼𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1
2 , if 𝑖 ∈ 𝛤𝑚𝑓 and 𝑗 ∈ 𝐶𝑚(𝑖)
1
2
∑

𝑗∈𝐶𝑚(𝑖) 𝑨𝑗𝑘, if 𝑖 ∈ 𝛤 𝑛𝑓 and 𝑗 ∈ 𝐶𝑚(𝑖)

0, otherwise
(36)

Note that (34)–(36) enforces the pressure at the middle node 𝑖 to
be equal to the average of the pressures of its correspondent edge
nodes. Segura and Carol (2004) proposed the same enforcement to be
able to capture pressure drops across the fracture without the need for
triple-nodded interfaces. They demonstrated that this assumption holds
well, except in cases where the fracture’s permeability is significantly
lower than that of the matrix. As we employ this assumption only at
the boundaries, we anticipate that the impact of blocking fractures will
still be captured within the domain’s interior.

3. Code design

This section presents the general structure and the design principles
of a DuMux simulation and describes the main extensions that form the
new module DuMux FracLab.

3.1. Framework

The main components of a DuMux simulation can be identified in
Fig. 6, which presents a general framework to build a new problem for
flow in fractured media.

Tags are C++ structures used in DuMux to define several properties
at compile time. To set the main properties of the new problem, the user
must create a tag that inherits the properties of pre-existing DuMux tags
(step 1). For example, a problem to solve fluid flow in fractured media
can inherit from the tag BoxFacetModel, which sets a discretization with
the Box method and triple-nodded interface elements, and from the tag
OneP, which defines properties for one-phase flow problems.

The Problem and Spatial Parameters classes (steps 2 and 3) require
the users to overload methods that define problem and material related
features, such as initial and boundary conditions and constitutive prop-
erties, which can be space and solution-dependent. New classes can be
used to define properties that do not have default types or redefine
default types (step 4).

The Coupling Mapper class (step 7) is called and instantiated after
building the finite-volume grid to create the triple-nodded interfaces
and to map the matrix and fracture nodes that are coupled.

The Grid Variables classes are used to set, map and store the prob-
lem variables at the proper grid entities (nodes, sub-control volumes
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Fig. 5. Virtual integration lines built with the projection of the boundary nodes for the imposition of mortar periodic boundary conditions with the methodology proposed by Reis
and Andrade Pires (2014). The periodicity constraints are integrated over these lines by mapping, with the finite element shape functions, their integration points on the mortar
and non-mortar sides. In the figure, the non-mortar nodes 𝑁2 and 𝑁3 have equal coordinates because they belong to opposite sides of an interface elements. Despite of that, they
have different dependencies because they create a discontinuity in the virtual integration line: while segment 𝛤1 establishes a constraint relationship between nodes N1, N2, M1
and M2, the adjacent segment 𝛤2 establishes a relationship between nodes N3, N4, M2 and M3.
Fig. 6. Framework to define a problem of flow in fractured media in DuMux.

or faces). The grid variables should be initialized to set an initial
state (step 8). Before solving the system, it is also necessary to set
the Coupling Manager (step 9), which will handle the coupling of the
fracture and the matrix domains by computing the exchange flux in (6).

The selected assembler (step 10) sets the residual vector and the
tangent matrix with the perturbation method. To this end, it computes
fluxes and forces at the grid entities using a tag-defined constitutive
law, which is Darcy’s law for problems derived from the tag OneP and
6

Hooke’s law for problems defined with the tags Elastic or PoroElastic.
After solving the system (step 11), the grid variables are updated (step
12) to proceed to a new time step or to write the output in VTK format
(step 13).

3.2. New implementations

DuMux FracLab is a new module that extends DuMux to handle
the solution of hydromechanical problems on elastic and elastoplas-
tic fractured media and facilitates the upscaling of hydromechanical
properties. We present here the main new features that were im-
plemented to achieve these objectives. Note that DuMux FracLab is
composed of several more additions that can be consulted in the
Doxygen documentation available in the Git repository.

The extensions in DuMux FracLab do not change the core framework
in Fig. 6. Instead, they add new classes to be used in the steps of this
framework. Most of these classes are already defined as default types in
six new pre-defined tags: Elastoplastic, Poroelastoplastic, InterfaceElastic,
InterfacePoroelastic, InterfaceElastoplastic and InterfacePoroelastoplastic,
which are used for elastic and elastoplastic problems in media without
or with interface elements.

In the assembly of the system (step 11) of mechanical problems,
DuMux calls methods to compute stresses on all faces of each control
volume. Previously, there were methods to compute stresses in bulk
elements with Hooke’s law (Eq. (8)) only. In DuMux FracLab there are
new methods to compute stresses on faces that coincide with interfaces,
using the elastic law in (9).

Also, there are new classes for stress computation in elastoplastic
bulk elements and interfaces. They use an elastic law to compute
the elastic trial, which by default is Hooke’s law (8) for bulk ele-
ments and the law in (9) for interfaces. If this trial surpasses the
yield surface, a user-defined class for the return algorithm is called
to correct the stresses. In DuMux FracLab the only available plastic
models are non-associated perfectly plastic and strain-hardening Mohr–
Coulomb criteria, for which the two-vector return algorithm proposed
by Crisfield (1987) is implemented.
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When defining the properties of an elastoplastic problem, the user

must define the new properties called ReturnAlgorithm and Interfac-
eReturnAlgorithm, if plastic interfaces exist. Thanks to this property,
the classes for plastic correction are flexible to deal with any type of
elastoplastic model without the need for internal changes.

To implement a new plastic model, it suffices to create two new
classes: one for the constitutive law that defines yield, flow and hard-
ening functions, and one for the return algorithm. Then, it would be
necessary to define the return algorithm property as illustrated below.

template <class TypeTag>
struct ReturnAlgorithm <TypeTag,

MyProblemTag >
{ using type = MyReturnClass;};

// if there are interfaces , also define
return for them

template <class TypeTag>
struct InterfaceReturnAlgorithm <TypeTag,

MyProblemTag >
{ using type = MyInterfaceReturnClass;};

Code Sample 1: Adding a new return algorithm property

DuMux FracLab also added to DuMux new Grid Variables classes
hat allow for the storage and update of stress and state-variables (steps
and 12), which was not possible before. Thanks to that, DuMux now

upports an incremental formulation and can handle history-dependent
echanical problems.

Apart from the existing coupling manager (step 9) that couples the
orous matrix to the fracture domain in flow problems, DuMux FracLab
as three new types of coupling managers: (i) a coupling manager for
echanical problems in fracture media, which couples bulk elements

hat share an interface and compute their displacement jumps (ii)
ydromechanical coupling managers that couple flow and mechanical
roblems with the fixed-stress split and (iii) coupling managers for the
mposition of mortar periodic boundary conditions, which couple the
ortar and non-mortar sides of the domain by building the mapping
atrices (𝑨 and 𝜶 in (32) and (34)).

Finally, the new functionalities for homogenization and upscaling
re introduced in a new sub-module called Homogenization, which
ontains classes that implement Eqs. (24)–(26) to compute the volume
veraging of the gradients of primary variables, stresses and veloci-
ies. Also, there are new classes dedicated to the computation of the
pscaled permeability and elastic compliance/stiffness tensors with
irichlet, Neumann or mortar periodic (for 2D domains) boundary
onditions. One needs to initialize these upscaling classes with the
eometry of the domain to easily get upscaled properties using the
ollowing methods:

// get Upscaled properties. Boundary
condition type is the argument

const auto perm = permUpscaling ->
getUpscaledPermeability( " Dirichlet " );

const auto comp = elasticUpscaling ->
getUpscaledComplianceTensor( " Periodic " )
;

Code Sample 2: A simple way of getting upscaled permeability and
elastic tensors with a given type of boundary condition.

4. Validation tests

The new extensions in DuMux FracLab were validated by a series of
umerical tests, which are all available in the Git repository. Five tests
ere conceived to validate the new implementations. They are:
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Table 1
Validation test 1: Elastic properties adopted for the porous matrix and for the fractures

Matrix Fracture

𝐸 (MPa) 𝜈 𝐾𝑛 (MPa/m) 𝐾𝑡 (MPa/m) 𝐾𝑛𝑡 (MPa/m)

50 0.25 50 10–50 0

• Test 1: Validates the implementation of the elastic laws for frac-
tured media and of the homogenization functions.

• Test 2: Validates the implementation of the plastic correction and
of the Mohr–Coulomb return algorithms for the porous matrix and
the interfaces.

• Tests 3 and 4: Validate the implementation of the fixed-stress split
for the porous matrix and the interfaces, respectively.

• Test 5: Verifies the implementation of the mortar periodic bound-
ary conditions.

4.1. Test 1: Upscaling of elastic properties of fractured media

To validate the implementation of elastic stress–strain laws for inter-
faces and of the homogenization methods, we computed the upscaled
elastic properties of the idealized fractured domain described in Fig. 7,
which contains persistent and regularly spaced sets of perpendicular
fractures. Duncan and Goodman (1968) presented an analytical solu-
tion for the elastic compliance tensor of this fractured domain, and
showed how the properties of different fracture orientations 𝛽 can be
obtained with tensor rotation.

In the numerical tests with DuMux FracLab, we upscaled the elastic
compliance tensor with constant traction boundary conditions, which
better represent the conditions of the analytical solution. We tested
different values of 𝛽 and of the fractures tangent stiffness 𝐾𝑡. Table 1
presents the adopted elastic properties for the porous matrix and the
fractures.

Fig. 7 compares the analytical and numerical results. There is a good
match between them, with a maximum observed error of 1.5%.

4.2. Test 2: Plastic correction and Mohr–Coulomb return

To validate the implementation of the return algorithm for the
Mohr–Coulomb criterion, we performed numerical compression tests on
3D samples crossed by one fracture plane, such as the one illustrated
in Fig. 8. Based on the Single Weakness Plane Theory (SWPT), Jaeger
(1960) presented an analytical solution for the compression strength of
this domain for different angles 𝛼 between the fracture and the vertical
direction. Both the fractures and the porous matrix follow a perfectly
plastic Mohr–Coulomb criterion.

In the numerical model, an initial confinement stress is applied
followed by displacement-controlled axial loading. The compression
strength is considered to be the final homogenized axial stresses, which
occurs when this value stabilizes. The criterion used for stabilization
was a relative shift of less than 2% with respect to the initial axial stress
variation that occurs in the elastic regime.

Fig. 8 exemplifies the geometry and the mesh for 𝛼 = 55◦. We tested
several values of 𝛼 for a confinement stress 𝜎3 of 5 MPa and in uniaxial
compression tests (𝜎3 = 0). Table 2 presents the adopted strength
parameters and Fig. 9 compares the compression strengths obtained
with the analytical solution and with the model in DuMux FracLab. The
numerical model could capture exactly the analytical strength for all
tests cases. Note that depending on 𝛼 and on the confinement stress,
the compression strength can be dictated by the fracture or the rock
matrix; thus, Test 2 validates the return algorithm for both the bulk
and the interface elements.
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Fig. 7. Validation test 1: comparison between the analytical (lines) and numerical (dots) solutions of 𝐸∕𝐸𝑟, where 𝐸 is the upscaled Young modulus of the fractured rock mass

and 𝐸𝑟 is the Young modulus of the intact rock.
Fig. 8. Validation test 2: design of the sample crossed by one plane fracture of
orientation 𝛼 (left) and its mesh (right).

Table 2
Validation test 2: Elastic and Mohr–Coulomb parameters adopted for the porous matrix
and for the fractures.

Matrix Fracture

𝐸 (MPa) 𝜈 𝑐 (MPa) 𝜙 (◦) 𝐾𝑛 (MPa/m) 𝐾𝑡 (MPa/m) 𝑐𝑓 (MPa) 𝜙𝑓 (◦)

50 0.25 5 30 50 10 1.5 25

4.3. Tests 3 and 4: Hydromechanical coupling

The implementation of the fixed-stress split algorithm was validated
for the bulk domain and the interfaces separately by reproducing Man-
del’s problem (Mandel, 1953) and the consolidation problem proposed
by Segura and Carol (2008a). In both cases, we set the convergence
criterion for the fixed-stress split (21) to 𝜀 = 0.001.
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𝑡𝑜𝑙
Fig. 9. Validation test 2: Comparison of the analytical and numerical compression
strengths when applying a confinement stress 𝜎3 of zero (uniaxial compression test)
and of 5 MPa. The plots for the analytical solution indicate whether failure occurs in
the rock matrix or in the fracture.

Mandel’s problem consists of a rectangular domain compressed both
at the top and bottom boundaries by a load 𝑞, with drainage allowed to
occur at the sides (Fig. 10). The initial pore pressure is 𝑃0 = − 1

3 𝑞(1+𝜈𝑢),
where 𝜈𝑢 is the undrained Poisson’s ratio. We adopt the same problem
definitions used by Preisig and Prevost (2011): the domain is a 2m-side
square, the load 𝑞 is equal to 10 kPa and the material properties are
those described in Table 3. Due to the symmetry of the problem, only
a quarter of the domain needs to be simulated. The mesh has 400 linear
squared elements and the total time of the simulation is 1 s, which is
divided in 200 steps.
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Fig. 10. Validation test 3 (Mandel’s problem): On the left, the dimensions and boundary conditions of the problem. On the right, the comparison between the analytical (lines)
and numerical (dots) solutions for pore pressures and displacements at different times 𝑇 .
Table 3
Validation test 3 (Mandel’s problem): Poroelastic parameters of the porous matrix.
𝐸 (kPa) 𝜈 𝜈𝑢 𝑘𝑚 (m/s) 𝑏 𝑀 (kPa)

1.0 0.0 0.5 1.0 1.0 ∞

Convergence was attained within two to three iterations per time
step, resulting in a total of 439 iterations. Fig. 10 compares the ana-
lytical and numerical solutions for the distribution of the pressure and
horizontal displacements along the line 𝑦 = 0.5 m at different times. A
maximum error of 3.9% was observed for these data.

Test 4 is the consolidation problem proposed by Segura and Carol
(2008a) of a porous medium containing a permeable vertical fracture
(Fig. 11). They used this test to verify their algorithm for sequential
and full coupling one against the other. In this problem, the domain is
initially at a constant pore pressure of 10 kPa because of a vertical load-
ing of the same magnitude. Like in a classical Terzaghi consolidation
problem, the top boundary is restrained to zero pressures, the bottom
boundary to zero vertical displacements, and the lateral boundaries
to zero horizontal displacements. The mesh contains 400 triangular
bulk elements and 10 lower-dimensional linear elements to represent
the fracture. A time step of 0.5 s was adopted. The parameters of the
problem are described in Table 4.

Fig. 11 compares the pore pressure distribution for different times
along the fracture obtained in DuMux FracLab and by Segura and Carol
(2008a) using the two coupling approaches. Note that while we use
triple-nodded interfaces, they employed two-nodded interfaces with
the enforcement of the fractures pressure to be the average of the
pressures at the matrix nodes. This latter assumption is supposed to
work well for permeable fractures, as is the case here. Indeed, there
is a good correspondence with the results obtained in DuMux FracLab.
The effect of the fracture on the speed of consolidation can be verified
by comparing this solution with the one for a classical Terzaghi’s
consolidation, which was also verified by Segura and Carol (2008a) and
is available as an extra validation test in the DuMux FracLab repository.

4.4. Test 5: Mortar periodic boundary conditions

Periodic boundary conditions are expected to return the true effec-
tive properties of periodic domains with the homogenization of one unit
cell only, while Dirichlet and Neumann boundary conditions require a
number of unit cells to converge to the true effective properties.

Test 5 verifies if the adaptation made to the mortar periodic bound-
ary conditions for triple-nodded elements returns the expected prop-
erties. For that, we upscaled the permeability tensor of the fractured
periodic domain in Fig. 12, which is composed of a fractured unit cell
that repeats itself. We tested domains that contain a grid of 1 x 1 cell to
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Table 4
Validation test 4: poroelastic parameters of the porous matrix and the fracture.

Matrix
𝐸 (MPa) 𝜈 𝑘𝑚 (m/s) 𝑏 𝑀 (MPa)

1.0 0.25 1.16 × 10−5 1.0 ∞

Fracture
𝐾𝑛 (MPa/m) 𝑤0 (mm) 𝑘𝑓 (m/s) 𝑏𝑓 𝑀𝑓 (MPa)

20.0 1.0 1.0 1.0 ∞

40 x 40 cells using linear pressure, flux, and mortar periodic boundary
conditions. The fracture intrinsic permeability is 3.5 × 10−10 m2, while
the matrix permeability is 1.0 × 10−15 m2.

Fig. 13 presents the upscaled components of the permeability ten-
sors as a function of the number of cells. Indeed, the periodic boundary
conditions require only one unit cell to yield the final properties. As also
theoretically expected, linear pressure (Dirichlet) and flux (Neumann)
boundary conditions provide upper and lower bounds for the upscaled
properties, respectively.

Fig. 14 presents a comparison of the pore pressure fields of the unit
cells submitted to a gradient in the 𝑥-direction using the three types
of boundary conditions. In the periodic case, there is a zone of high-
pressure gradient at the top right portion of the domain. It is due to the
anti-periodicity constraint (29), which imposes the flux at the fracture
node F1 to be equal to the flux at its opposite matrix node. Indeed,
if this cell is repeated periodically, the tip of a permeable fracture
is expected to have this effect, since it creates a zone of localized
flow that rapidly drains the fluid pressure of the surrounding porous
matrix. The other boundary conditions, however, cannot capture this
interaction between adjacent fracture and matrix nodes with one unit
cell only. They impose similar fluid pressures for the fracture nodes F1
and F2, which have different connectivities when considering the whole
periodic structure.

5. Numerical examples

This section presents two examples of the type of study that can
be conducted with DuMux FracLab, both being available in the Git
repository. To highlight the functionalities added to facilitate homog-
enization, both examples focused on the assessment of the equivalent
properties and of the hydromechanical behavior of fractured samples,
but the code can be used to many other types of hydromechanical
analyses of fractured media.

5.1. Example 1: Upscaling of stochastic fractured media

DuMux FracLab can be used to compare different upscaling bound-
ary conditions and perform sample size studies to select the Represen-
tative Elementary Volume (REV).
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Fig. 11. Validation test 4: Consolidation problem conceived by Segura and Carol (2008a) on a squared domain containing a permeable vertical fracture (left) and comparison of
their numerical results with a staggered and a fully coupled scheme with those obtained in DuMux FracLab with the fixed-stress split (right).
Fig. 12. Validation Test 5: On the left, the fractured unit cell that forms the periodic
domain, and its adopted mesh. On the right, an example of a periodic domain formed
by a grid containing 5 × 5 unit cells.

Table 5
Statistical parameters for Network 1, from Yang et al. (2014).

Dip orientation Length Density

Type Mean(◦) Std. Dev.(◦) Type Mean(m) Std. Dev. (m) (1/m2)

Set 1 Normal 150 10.0 Normal 4 1 0.16
Set 2 Normal 50 7.0 Normal 3 0.7 0.25

To exemplify this potential, we used DuMux FracLab to upscale the
elastic properties and the permeability of the fractured rock mass pre-
sented by Yang et al. (2014) using Dirichlet (linear displacement/linear
pressure), Neumann (constant tractions/flux) and periodic boundary
conditions. Table 5 describes the statistical properties of the fracture
Network and Fig. 15 shows an example of a sample and the adopted
finite element mesh. We generated 100 different random fractured
rock masses that respect these statistical distributions, and for each
generation sample sizes from 4 m x 4 m to 20 m x 20 m were tested. The
process for generating the samples is described in Loyola et al. (2021).
Table 6 presents the elastic parameter and permeabilities adopted for
the intact rock and the fractures.

Figs. 16 and 17 present the average smallest and the largest eigen-
values of the permeability and the elastic compliance tensor as a
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Table 6
Elastic properties and permeability for the intact rock and the fractures used to compare
linear Dirichlet, Neumann and periodic boundary conditions.

Intact rock Fracture

𝐸 (GPa) 𝜈 𝑘𝑚(𝑚2) 𝐾𝑛 (GPa/m) 𝐾𝑡 (GPa/m) 𝑘𝑓 (m2)

50.0 0.25 1.0 × 10−14 50.0 10.0 3.5 × 10−10

function of sample size. The Dirichlet, Neumann and periodic bound-
ary conditions continue to return highest, lowest and intermediary
values for the average properties. However, it is not evident which
boundary condition returns the fastest convergence of the properties
with sample size, as is the case for true periodic media. Also, the
three types of boundary condition return quite similar Coefficient of
Variations (COVs) for the properties (Figs. 18 and 19), which suggests
that they would require similar REV sizes when using variability-based
criteria (e.g., Min and Jing, 2003; Farahmand et al., 2018; Loyola et al.,
2021).

5.2. Example 2: Permeability history of a fractured sample submitted to
depletion and triaxial extension

The poromechanical behavior of fractures impacts activities such
as the exploitation of naturally fractured reservoirs, where continual
effective stress changes provoked by depletion or injection can induce
fracture deformation and, consequently, permeability changes.

To exemplify this, we simulate the experimental program conducted
by Teufel et al. (1993) on fractured core samples of the chalk in the
Ekofisk reservoir. Their samples were crossed by one unfilled sub-
vertical fracture that is typical of the shear fractures in the Ekofisk.
The samples were initially loaded to a confinement lateral stress of
55 MPa and an axial stress of 72 MPa and had an initial pore pressure
of 48 MPa. After the confinement, the samples were subjected to
depletion combined with triaxial extension. To induce depletion, the
pore pressure was reduced by 3.45 MPa every 2 h. Simultaneously,
the lateral confinement stress was decreased in such a way that the
effective stress path would follow a certain 𝐾 ratio given by:

𝐾 =
𝛥𝜎′ℎ
𝛥𝜎′𝑣

=
𝛥𝑝

𝛥𝑝 + 𝛥𝜎ℎ
(37)

where 𝛥𝜎′ℎ and 𝛥𝜎′ℎ are the variations of lateral and vertical effective
stresses, respectively, 𝛥𝑝 is the pore pressure increment of −3.45 MPa
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Fig. 13. Validation Test 5: Comparison of the upscaled components of the permeability tensors when using linear pressure, flux and mortar periodic boundary conditions.
Fig. 14. Comparison of the pressure fields inside the unit cell of Fig. 12 when using linear pressure (left), mortar periodic (center), and flux (right) boundary conditions to impose
a pressure gradient of 1kPa/m or flux of 8.33 × 10−6 m∕s (for the flux) in the 𝑥-direction. For the periodic case, the master corner is the lower right one and it was imposed to a
pressure of 0.7 kPa.
Fig. 15. Numerical example 1: example of one of the generated fracture networks and the adopted mesh.
and 𝛥𝜎ℎ is the total lateral stress variation that needs to be applied to
follow the desired 𝐾 ratio. Three values of 𝐾 were tested: 1.0, 0.5 and
0.2. After each pore pressure decrement, Teufel et al. (1993) waited for
a stabilization period and then conducted permeability tests to obtain
the history of apparent axial permeability history.

To reproduce this problem in DuMux, we used a sample similar to
the one of Validation Test 2 (Fig. 8) where the fracture makes an angle
𝛼 of 17◦ with the axial direction, which was the orientation reported
by Teufel et al. (1993) for their samples. The simulation is composed
of two stages: the first one is a confinement stage, where the sample
is loaded to the initial stress state of the lab experiments; and the
second one is the depletion and triaxial extension phase, where the
pore pressure and lateral stress variations are applied. By the end of the
confinement phase and of each pore pressure decrement of 3.5 MPa,
11
the permeability upscaling method in the Homogenization module of
DuMux FracLab is called to compute the equivalent permeability of the
sample with linear pressure boundary conditions.

In the numerical model, the intrinsic permeability 𝑘𝑓 of the fracture
is described by the cubic law:

𝑘𝑓 = 𝑤2

12
(38)

where 𝑤 is the fracture’s aperture. And the fracture’s normal stiffness
𝐾𝑛 is described as a function of the normal displacement jump [[𝑢𝑛]] by
the Barton-Bandis law (Barton et al., 1985), according to which:

𝐾𝑛 =
𝐾𝑛𝑖

(

1 + 𝑢𝑛
)2

(39)
𝑢𝑚𝑎𝑥
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Fig. 16. Numerical example 1: Average value of the eigenvalues of the equivalent permeability tensor 𝑲 when using linear pressure, periodic and flux conditions.
Fig. 17. Numerical example 1: Average value of the eigenvalues of the equivalent stiffness tensor 𝑪 when using linear displacements, periodic and constant traction boundary
conditions.
Fig. 18. Numerical example 1: COV of the eigenvalues of the equivalent permeability tensor 𝑲 when using linear pressure, periodic and flux conditions.
where 𝐾𝑛𝑖 is the initial normal stiffness, 𝑢𝑛 is the normal displacement
jump (here positive for traction or opening) and 𝑢𝑚𝑎𝑥 is the fractures
maximum closure.

Both the fractures and the matrix are described by a Mohr–Coulomb
criterion. Table 7 presents the material parameters. The matrix per-
meability is taken from the experimental measurements (Teufel et al.,
1993) and it is stress-dependent in the model. Following the measure-
ments by the authors, it varies from 1.2 mD to 0.5 mD from an effective
mean stress of 7 MPa to 55 MPa. All the other parameters, except for the
12
fracture’s strength parameters, were taken from Gutierrez et al. (1994),
who studied the mechanical behavior of samples of the same fractured
chalk. The porous matrix properties are those reported for a porosity
of 30% of porosity, which is the porosity of the rock matrix tested
by Teufel et al. (1993). The Mohr–Coulomb parameters of the fracture
were calibrated to fit the permeability evolution of the path 𝐾 = 0.2
(Fig. 20), which was the only one to present shear yielding. To avoid
matrix singularity problems that are typical of numerical models that
employ perfectly plastic models with stress boundary conditions, we
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Fig. 19. Numerical example 1: COV of the eigenvalues of the equivalent stiffness tensor 𝑪 when using linear displacements, periodic and constant traction boundary conditions.
Fig. 20. Numerical example 2: Comparison of the normalized permeability history obtained in the laboratory by Teufel et al. (1993) and in the numerical simulation with DuMux

FracLab for different values of stress ratio 𝐾.
Table 7
Numerical example 2: poroelastic parameters of the porous matrix and the fracture.

Matrix
𝐸 (GPa) 𝜈 𝑘𝑚 (mD) 𝑐 (GPa) 𝜙 (◦) 𝜓 (◦)

6.8 0.14 1.2 12.0 50 0

Fracture
𝐾𝑛𝑖 (GPa/m) 𝐾𝑡 (GPa/m) 𝐾𝑛𝑡 (GPa/m) 𝑤0 (mm) 𝑐𝑓 (GPa) 𝜙𝑓 (◦) 𝜓𝑓 (◦)

10 50 0 1.38 0.1 20 0.47

used the strain-hardening Mohr–Coulomb to apply a slight hardening.
For that, cohesion was set to be a linear function of the plastic shear
displacement jump at a rate of 0.01 GPa/m. Thus, this problem also
exemplifies how to set a new state variable to be stored in DuMux, and
also how to use it to update the strength parameters.

Fig. 20 presents the normalized permeability evolution obtained in
the numerical model and in the laboratory. The numerical model can
capture the initially steeper permeability decrease when 𝐾 = 1.0 and
0.5. This behavior is due to the Barton-Bandis model, which makes
fractures stiffer as they close and thus provoke smaller permeability
changes as depletion proceeds. The behavior of the sample when 𝐾 =
0.2 is also well captured: there is an initial permeability decrease, but
once the fracture yields it dilates under shear, which provokes a regain
of permeability. As in the numerical laboratory, this is the only sample
to shear during the triaxial extension and depletion tests.
13
In this model, due to the high initial aperture, the fractures remain
more permeable than the matrix at the end of the depletion. To better
demonstrate what could be the effect of significant fracture deforma-
tion on the hydraulic behavior of the sample, Fig. 21 presents the pore
pressure fields of a sample submitted to upwards flow rate when 𝑤0 =
0.1 mm and 𝐾 = 1. There is a clear change of behavior: while in the
beginning of depletion the fracture acts as a preferential path for flow
and induces anisotropy by provoking a visible pressure gradient in the
𝑥-direction, by the end of the depletion the pressure fields are close to
what would be expected for a homogeneous sample.

6. Conclusions, limitations and perspectives

We presented a code that successfully applies the Box method for
the first time in elastoplastic analyses of fractured media. Also, it
contains functionalities that are useful for the homogenization and
the upscaling of constitutive tensors of heterogeneous domains with
Dirichlet, Neumann and periodic boundary conditions. For these lat-
ter, we implemented a recent method that permits the imposition of
periodic boundary conditions on general meshes and modified it to
work with meshes with triple-nodded interfaces. The verification test
5 and the Numerical Example 1 demonstrate that, as theoretically
expected, Neumann, Dirichlet and periodic boundary return lower,
intermediary and upper values for the upscaled properties. Also, the
Numerical Example 2 demonstrates that the formulations available
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Fig. 21. Numerical example 2: Pore pressure fields of the fractured sample submitted to an upward flux at the start (left) and end (right) of depletion when 𝑤0 = 0.1 mm.
in DuMux FracLab, including the hydromechanical coupling, the non-
linear elasticity and the Mohr–Coulomb criterion for the fractures, are
useful to reproduce the behavior of real rock samples.

DuMux FracLab is an open source platform that users can hopefully
improve and extend. There are current limitations that can be addressed
to move towards making DuMux as robust for the simulation of coupled
elastoplastic problems as it is for the simulation of complex flow and
transport processes.

We did not make changes on the original way DuMux performs
system assembly with the perturbation method, but it has drawbacks.
Firstly, when it comes to elastoplastic problems, it can face efficiency
issues for requiring the return algorithm to be recalled for each pertur-
bation, when in the plastic regime. Second, there might be convergence
issues. The convergence of the simulations has showed to be very
sensitive to the selected perturbation in elastoplastic problems, so a
possible improvement would be to implement consistent tangent op-
erators (Simo and Taylor, 1985) that may employ the finite element
shape functions to compute derivatives or use perturbation methods
specifically idealized for inelasticity (e.g., Miehe, 1996).

The implementation of other constitutive plastic models than the
Mohr–Coulomb criterion would also be welcome. The design of the
plastic correction classes make this implementation easy, but more
complex models could also require further development in other areas,
such as the solution scheme. For example, when working with damage
mechanics and strain-softening, an efficient explicit scheme may be
desirable.

Another interesting perspective for DuMux FracLab is to add new
coupling managers that would handle the coupling of geomechanics
with other DuMux models. While the new module currently allows for
coupling with one-phase flow only, DuMux can deal with multi-phase
and multi-compositional flow, transport and thermal problems, all of
which can significantly interact with the mechanical behavior.
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