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Algebraic Product Is the Only “And-like”
Operation for Which Normalized Intersection Is
Associative: A Proof

Thierry Denœux and Vladik Kreinovich

Abstract For normalized fuzzy sets, intersection is, in general, not normalized. So,
if we want to limit ourselves to normalized fuzzy sets, we need to normalize the
intersection. It is known that for algebraic product, the normalized intersection is
associative, and that for many other “and”-operations (t-norms), normalized inter-
section is not associative. In this paper, we prove that algebraic product is the only
“and”-operation for which normalized intersection is associative.

1 Formulation of the Problem

Fuzzy sets and normalized fuzzy sets: a brief reminder. A fuzzy set on a uni-
versal set X is a function µ(x) that assigns, to each element x ∈ X , a number from
the interval [0,1]; see, e.g., [1, 3, 4, 5, 6, 7]. Fuzzy sets were invented to describe
imprecise (“fuzzy”) natural-language properties such as “small”; the value µ(x) is
then a degree to which, according to the user, the object x has the desired property
(e.g., is small).

• The degree 1 means that x definitely has the property.
• The degree 0 means that x definitely does not have this property.
• Intermediate value µ(x) correspond to x having the property “to some degree”.
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Usually, an additional condition is imposed that the fuzzy set should be normal-
ized, i.e., that sup

x∈X
µ(x) = 1.

“And”-operations (t-norms): a brief reminder. In many cases, we know the de-
grees a and b to which the properties A and B are satisfied, and we want to use
this information to estimate the degree to which the property “A and B” is satisfied.
The function f&(a,b) that generates the resulting estimate is known as an “and”-
operation, or, for historical reason, a t-norm.

This function have several natural properties. For example, since A&B means
the same as B&A, the corresponding estimates for A&B and B&A should coincide,
i.e., we should have f&(a,b) = f&(b,a) (i.e., in mathematical terms, the “and”-
operation should be commutative). Similarly, since (A&B)&C means the same as
A&(B&C). we should always have f&( f&(a,b),c) = f&(a, f&(b,c)) (i.e., in math-
ematical terms, the “and”-operation should be associative).

Also, intuitively, if A is absolutely true. i.e., if a = 1, then our degree of con-
fidence in A&B is equal to our degree of confidence in B. In precise terms, this
means that we should have f&(1,b) = b for all b. Due to commutativity, we also
have f&(a,1) = a for all a.

Intersection and normalized intersection of fuzzy sets. In general, if we have two
properties – as described by the sets S1 and S2 of all the elements that satisfy the
corresponding property, then the set of all the objects that satisfy the first property
and satisfy the second property is called the intersection S1∩S2 of the two sets. In
the fuzzy case, by the meaning of the fuzzy set, the degrees to which an object x
satisfies each of the properties are equal to µ1(x) and µ2(x). Thus, by the meaning
of the “and”-operation, the degree to which the first property is satisfied and the
second property is satisfied is equal to f&(µ1(x),µ2(x)) for an appropriate “and”-
operation f&(a,b). So, it is reasonable to define the intersection of two fuzzy sets
as

µ(x) def
= f&(µ1(x),µ2(x)). (1)

The problem with this definition is that if we, as usual, limit ourselves to normal-
ized sets, then the above definition may lead to a non-normalized sets. For example,
if some a < 1, on the universal set X = {1,2}, we consider two functions

f1(1) = a, f1(2) = 1, f2(1) = 1, f2(2) = a,

then, in view of the fact that f&(a,1) = f&(1,a) = a, we get µ(1) = µ(2) = a < 1,
so max(µ(x)) = a< 1. If want the intersection to be a normalized fuzzy set, we must
normalize the expression (1), i.e., divide it by the supremum of this expression:

(µ1 & µ2)(x) =
f&(µ1(x),µ2(x))

sup
y∈X

f&(µ1(y),µ2(y))
. (2)

It is reasonable to call the operation (2) normalized intersection.

Comment. The intersection is only defined when the denominator is not equal to 0.
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When is normalized intersection associative? By definition (2), normalized in-
tersection operation (2) is commutative. It is known that for algebraic product
f&(a,b) = a · b, operation (2) is associative [2]. For many other “and”-operations,
normalized intersection is not associative. So, a natural conjecture emerged that the
algebraic product is the only “and”-operation for which the normalized intersection
is associative.

What we do in this paper. In this paper, we prove that the algebraic product is
indeed the only “and”-operation for which the normalized intersection is associative.
Moreover, we prove it not only for all “and”-operations, but also for more general
binary operations that are not necessarily commutative or associative.

2 Main Result

Definition 1. By an “and”-like operation, we mean a function t : [0,1]× [0,1] 7→
[0,1] for which t(a,1) = t(1,a) = a for all a ∈ [0,1].

Comment. This definition is weaker than that of a t-norm. In particular, we do not
require monotonicity, or even associativity.

Definition 2. For each “and”-like operation t(a,b), the corresponding normalized
intersection operation transforms two fuzzy sets µ1(x) and µ2(x) into a new fuzzy
set

(µ1 & µ2)(x) =
t(µ1(x),µ2(x))

sup
y∈X

t(µ1(y),µ2(y))
. (3)

Comment. The intersection is only defined when the denominator of the formula (3)
is different from 0.

Proposition. For each “and”-like operation t(a,b), the following two conditions
are equivalent:

• t(a,b) is the algebraic product, i.e., t(a,b) = a ·b;
• The normalized intersection operation corresponding to t(a,v) is associative,

i.e., for all possible normalized fuzzy sets µ1, µ2, and µ3:

– the fuzzy sets (µ1∩µ2)∩µ3 and µ1∩(µ2∩µ3) are either both defined or both
undefined, and

– if they are both defined, then (µ1∩µ2)∩µ3 = µ1∩ (µ2∩µ3).

Discussion. In this formulation, we only use two properties from many usual prop-
erties of the “and”-operation (t-norm):

• that for every a, we have t(1,a) = a, and
• that for every a, we have t(a,1) = a.
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From the mathematical viewpoint, a natural question is: can we go even further, keep
only one of these properties, and still keep our result? The following two simple
examples show that both above properties are needed, one is not enough to conclude
that t(a,b) = a ·b:

• The function t(a,b) = b has the property that t(1,a) = a for all a. For this func-
tion, as one can easily check, the normalized intersection of µ1 and µ2 is simply
µ2: µ1∩µ2 = µ2, thus (µ1∩µ2)∩µ3 = µ1∩ (µ2∩µ3) = µ3.

• The function t(a,b) = a has the property that t(a,1) = a for all a. For this func-
tion, as one can easily check, the normalized intersection of µ1 and µ2 is simply
µ1: µ1∩µ2 = µ1, thus (µ1∩µ2)∩µ3 = µ1∩ (µ2∩µ3) = µ1.

Proof of the Proposition.

1◦. It is known that the normalized intersection operation corresponding to algebraic
product is associative. So, to complete the proof, it is sufficient to prove that for
each “and”-like operation t(a,b), if the corresponding normalized intersection is
associative, then t(a,b) = a ·b.

2◦. Indeed, assume that for an “and”-like operation t(a,b), the corresponding nor-
malized intersection is associative. Let us prove that in this case, t(a,b) = a ·b.

3◦. If b = 1, then, by definition of the “and”-like operation, we have t(a,b) =
t(a,1) = a and a ·b= a ·1= a, so in this case indeed t(a,b) = a ·b. Thus, to complete
the proof, it is sufficient to consider the case when b < 1.

4◦. For every two numbers a,b∈ [0,1] for which b < 1, let us consider the following
three normalized fuzzy sets on the universal set X = {1,2}:

µ1(1) = a, µ1(2) = 1, µ2(1) = 1, µ2(2) = a, µ3(1) = 1, µ3(2) = b.

Let us use associativity to prove that t(a,b) = a ·b.

4.1◦. Let us first compute (µ1∩µ2)∩µ3. First, for µ1∩µ2, by the definition of the
“and”-like operation, we get

t(µ1(1),µ2(1)) = t(a,1) = a, t(µ1(2),µ2(2)) = t(1,a) = a,

thus
max(t(µ1(1),µ2(1)), t(µ1(2),µ2(2)) = max(a,a) = a.

In this case, if a > 0, then, by the formula (2), we get

(µ1∩µ2)(1) = (µ1∩µ2)(2) =
a
a
= 1.

(The case when a = 0 is considered in Part 5 of this proof.) Then, for (µ1∩µ2)∩µ3,
by the same definition of the “and”-like operator, we get

t((µ1∩µ2)(1),µ3(1)) = t(1,1) = 1, t((µ1∩µ2)(2),µ3(2)) = t(1,b) = b.
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Thus,
max(t((µ1∩µ2)(1), t((µ1∩µ2)(2)) = max(1,b) = 1

and therefore, by the formula (3), we have

((µ1∩µ2)∩µ3)(1) =
1
1
= 1, ((µ1∩µ2)∩µ3)(2) =

b
1
= 1. (4)

4.2◦. Let us now compute µ1∩ (µ2∩µ3). First, from the definition of the “and”-like
operation, we get

t(µ2(1),µ3(1)) = t(1,1) = 1, t(µ2(2),µ3(2)) = t(a,b).

Here, t(a,b) ≤ 1 – since all the values of the function t are from the interval [0,1].
Thus:

max(t(µ2(1),µ3(1)), t(µ2(2),µ2(2))) = max(1, t(a,b)) = 1

and therefore, by the formula (2),

(µ2∩µ3)(1) =
1
1
= 1, (µ2∩µ3)(2) =

t(a,b)
1

= t(a,b).

Now, from the definition of the “and”-like operation, we get

t(µ1(1), t(µ2(1),µ3(1))) = t(a,1) = a,

t(µ1(2), t(µ2(2),µ3(2))) = t(1, t(a,b)) = t(a,b). (5)

According to the formula (3), to find the values of the fuzzy set µ1∩ (µ2∩µ3), we
need to find the maximum of the two values (5). The value of this maximum depends
on which of the two values (5) is larger. Let us consider both possible cases.

4.2.1◦. If a≤ t(a,b), then

max(t(µ1(1), t(µ2(1),µ3(1))), t(µ1(2), t(µ2(2),µ3(2))) = max(a, t(a,b)) = t(a,b)

and thus, by the formula (3), we get

(µ1∩ (µ2∩µ3))(1) =
a

t(a,b)
, (µ1∩ (µ2∩µ3))(2) =

t(a,b)
t(a,b)

= 1.

By associativity, these values should be equal to the values (4). By comparing the
values of these two fuzzy sets for x = 2, we conclude that b = 1 which contradicts
to our assumption that b < 1. Thus, this case is impossible.

4.2.2◦. Since, as we have proven, we cannot have a≤ t(a,b), we must have t(a,b)<
a. In this case,

max(t(µ1(1), t(µ2(1),µ3(1))), t(µ1(2), t(µ2(2),µ3(2)))) = max(a, t(a,b)) = a
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and thus, by the formula (3), we get

(µ1∩ (µ2∩µ3))(1) =
a
a
= 1, (µ1∩ (µ2∩µ3))(2) =

t(a,b)
a

.

By associativity, these values should be equal to the values (4). By comparing the
values of these two fuzzy sets for x = 2, we conclude that

t(a,b)
a

= b,

hence t(a,b) = a ·b.
For the values a > 0, the proposition is proven.

5◦. Let us now consider the case when a = 0. In this case, by the formulas from Part
4.1 of this proof, the normalized intersection µ1∩µ2 is undefined, and, thus, the set
(µ1 ∩ µ2)∩ µ3 is undefined as well. Thus, by associativity, the set µ1 ∩ (µ2 ∩ µ3)
should also be undefined. According to the formulas from Part 4.2 of this proof, we
get

(µ2∩µ3)(1) = 1, (µ2∩µ3)(2) = t(0,b).

Now, from the definition of the “and”-like operation, we get

t(µ1(1), t(µ2(1),µ3(1))) = t(0,1),

t(µ1(2), t(µ2(2),µ3(2))) = t(1, t(0,b)) = t(0,b). (6)

The fact that the fuzzy set µ1∩ (µ2∩µ3) is undefined means that the corresponding
denominator is equal to 0:

max(t(µ1(1), t(µ2(1),µ3(1))), t(µ1(2), t(µ2(2),µ3(2))) = max(t(0,1), t(0,b)) = 0.

Thus,
0≤ t(0,b)≤max(t(0,1), t(0,b)) = 0,

so indeed t(0,b) = 0 ·b.
So, the proposition is also proven for the remaining case a = 0.

Comment. In our proof, the only assumption that we made about the operation t(a,b)
is that t(a,1) = t(1,a) = a for all a. If we additionally assumed that t(a,b) is a t-
norm, then the proof would be much shorter; indeed:

• for a t-norm we always have t(a,b)≤ a, so there is no need to consider the case
t(a,b)> a, and

• we always have t(0,b) = 0, so there is no need to prove this formula.
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