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Abstract: Extracting relevant data from real-world experiments is often challenging with intrinsic
materials and device property dispersion, such as in organic electronics. However, multivariate
data analysis can often be a mean to circumvent this and to extract more information when larger
datasets are used with learning algorithms instead of physical models. Here, we report on identifying
relevant information descriptors for organic electrochemical transistors (OECTs) to classify aqueous
electrolytes by ionic composition. Applying periodical gate pulses at different voltage magnitudes,
we extracted a reduced number of nonredundant descriptors from the rich drain-current dynamics,
which provide enough information to cluster electrochemical data by principal component analysis
between Ca2+-, K+-, and Na+-rich electrolytes. With six current values obtained at the appropriate
time domain of the device charge/discharge transient, one can identify the cationic identity of a
locally probed transient current with only a single micrometric device. Applied to OECT-based neural
sensors, this analysis demonstrates the capability for a single nonselective device to retrieve the rich
ionic identity of neural activity at the scale of each neuron individually when learning algorithms are
applied to the device physics.

Keywords: organic electrochemical transistor; principal component analysis; neural network; ion sensing;
dynamic analysis

1. Introduction

Recent machine-learning (ML) applications aim to interface sensing devices with data
analysis programs and algorithms [1–5]. Merging both sensing hardware and ML software
concepts in a sensing paradigm has often underlined the necessity to define new sensing
figures of merit [6]. For as long as sensors have been developed, their well-defined stan-
dards have provided clear guidelines to engineering the subsequent sensing technologies.
As examples of figures of merit, “selectivity” and “sensitivity” remain universal from one
sensor technology to another [7]. As the complexity of media grows from the laboratory
to practical application in the real environments, so does the dimensionality of the infor-
mation space which should be characterized for optimal identification. Good examples
of high-complexity environments include biological media (such as neuro-sensing via
microelectrode arrays, for instance) [8,9], where the rich biochemistry easily interferes
multiparametrically with any chemo-sensing technology. Selectivity can be evaluated only
up to a certain extent, and sensitivity can only be assessed under “standard conditions”.
Even the concept of “standard conditions” is incomplete in a framework where the en-
vironment dimensionality cannot be evaluated due to the lack of a physically nontrivial
elementary vector basis characterizing the whole environment space (a relevant example of
such a physically nontrivial feature space with unknown dimensionality would be olfactory
spaces) [10–12].
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Sensors are well adapted to the monovariate analysis of controlled environments.
To identify multivariate information from real environments, sensing at higher orders re-
groups many strategies to increase the dimensionality of the output that sensing platforms
can deliver [13]. These strategies can be divided into two categories: the ones increasing
dimensionality by the number of sensing elements and the ones exploiting the multipara-
metricity of physical laws in the sensing elements’ response. Both strategies have limits:
For the first strategy, hardware limits the cointegration capabilities of a large number of
materials/sensing devices with an even larger number of interconnections. For the second
strategy, even if the emergence of data analysis techniques has eased the processing of
large-dimension vectors, one needs to identify relevant information descriptors in the
sensing element response, a priori, to decrease computational costs. This is particularly
essential for dynamic sensing applications.

In this framework, we propose a proof of concept for identifying the relevant descrip-
tors for an optimal ion recognition of the dynamic analysis of electrolyte blends using
organic electrochemical transistors (OECTs). OECTs are state-of-the-art technology for
both neuro-sensing and neuromorphic computing [14–16]. The two fields attest on the
challenges of complex environment interfacing and of recognizing physically nontrivial
information patterns, with OECTs potentially solving high interconnection-degree issues
thanks to electronic/electrolytic coupling. These ion-sensing transistors operate upon the
polarization of their three electrodes (namely the source S, the drain D and the gate G
electrodes as depicted in the schematic Figure 1) to promote ion accumulation in the bulk
of the PEDOT:PSS doped conducting polymer channel and modulate its conductance level
under a steady state regime [17]. The current response of the device is also ion sensitive
under a transient regime, such that the OECT’s drain current response is dominated by ionic
currents [17]. Both physical mechanisms being distinct, it has been shown by impedance
spectroscopy that both uncorrelated dependencies can be probed at different frequencies
to exploit the dynamic response of the OECT for biparametric sensing. As such, it allows
for the extraction of a cation-specific two-dimensional footprint from the single device
without chemical labelling [18]. The later modelling of the OECT impedimetric responses
under different conditions has revealed that the device gathers at least eight independent
ion-sensitive circuit elements, demonstrating further potential to be exploited for higher
order ion sensing [19].

As confirmed in this study, the six relevant descriptors we identified in the OECT
current transient allow for the classification of the ion response of different blends of salts
by their ionic contents. Consequently, feeding these currents to an artificial neural network
enabled the recognition of calcium, sodium and potassium ions in blends of different
relative concentrations even in the case when the ion identified was a minority one at
the molar level of 1/100. ANNs were previously used for recognizing the concentration
measurements with some success [20,21]. While overall performance of the ANNs was
good and scaled with training, the technique showed limitations in recognizing cations
depending on the fact they constitute the blends in a majority or in a minority. However,
the results clearly indicate that no selective materials have to be involved in recognizing
cations. Here, we show that descriptors obtained by OECT enable a universal recognition
of very different ionic concentration profiles without having to design the sensor to be
sensitive to a particular target. We propose redefining sensors’ figures of merits (sensitivity
and selectivity) for machine-learning supported multivariate analysis and revising the
mastering of the device’s physico-chemical properties to promote new application-specific
properties more relevant for optimal recognition.
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Figure 1. Working principle: an OECT device exposed to electrolytes of different compositions
records periodically transient currents, characteristics of the ions, and the applied voltages. From a
restricted number of current samples extracted at specific times in the characteristic transient, one
can access a specific signature of the electrolyte owing to the multiparametricity of the OECT as an
ion sensor. After projection of these descriptors in an artificial neural network with a single hidden
layer, it is possible to discriminate the samples according to their electrolytic composition without
particular chemical probe labelling.

2. Experimental Section
2.1. Device Operation

Details of the microfabrication of the PEDOT:PSS-based OECT device have been
published elsewhere [22]. The micrometric device (70 µm) has a concentric electrode
geometry with a central round platinum electrode as a drain, concentric to an outer annular
source electrode also made of platinum. Both electrodes are electrically connected together
via a thin layer (16 nm) of cation-sensitive conductive polymer, which is PEDOT:PSS.

2.2. Electrical Characterization

Transient currents were recorded using an Agilent B1500 Parameter Analyzer, and
voltage inputs were addressed with Agilent B1530A waveform generators. Operated as an
electrolyte-gated field-effect transistor, a macroscopic wire was used as a gate electrode,
and an aqueous solution drop of metal chloride salts was used as the electrolyte (the
concentration of metal ions for all experiments was fixed at 0.1 M). For each electrolyte
tested, the OECT was stressed for a total duration of 200 ms with 100 periods of gate voltage
(VG) stepped-frequency waveform (waveform period: 2 ms). The elementary waveform
period contained two voltage-stepped levels of VG = 350 mV and 100 mV separated
from the resting steps at VG = 0 V (duty cycle = 50%; see Figure 2b for the waveform).
During operation, the drain electrode was steadily polarized at VD = −50 mV to promote
a drain current embedding both the time dependency of the electrolytic current from the
transient gate-drain polarization and the steady electronic conduction from the source-drain
polarization. The source electrode was grounded. Between each of the 25 experiments with
different electrolytes, the device and the gate were thoroughly rinsed with deionized water
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and tested in fresh deionized water with the same electrical protocol to verify the absence
of ions prior to exposure of the next electrolyte.

 

Figure 2. (a) Drain current signal acquisition (blue) upon a squared-voltage gate stimulation (green)
in 0.1 M of KCl(aq). (b) The 2 ms signal sampling which shows the stability of the drain current of a
single 200 ms measurement in 0.1 M of KCl(aq) (the 99 blue-shaded curves are characteristic of the
sequenced periods of drain currents, and the black curve corresponds to the averaging of the 99 drain
current curves). (c) Statistic distributions of the 12 characteristic values taken from the drain current
signal of a single 200 ms measurement in 0.1 M of KCl(aq).

2.3. Data Analysis

Data were analyzed as generated from the parameter analyzer without electronic or
digital prefiltering. All data analyses (PCA and ANN) were performed a posteriori the
acquisition. Principal component analysis (PCA) was performed using the open-access
online tool ClustVis, scaled to unit variance and using the singular-value-decomposition
method [23]. After this, we created an artificial neural network (ANN) in order to test the
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recognizability of the electrolyte composition. We analyzed a number of architectures and
found that ANN that consists of 77 nodes in the hidden layer, and training with scaled
conjugate gradient backpropagation provided the best results. As seen in Figure 3, the
environments were reasonably well separated, and we used 99 different realizations of the
same environment. During training, we chose 70% of the data as a training set, 15% as a
validation set, and 15% as a testing set. We performed two different sampling methods. In
the first one, we sampled training, validation, and testing sets completely randomly from all
the data sets. In the second, we sampled the same ratios from each individual environment.
We found that the error and error percentage were similar in both sampling methods,
although the second sampling scenario was a percentage or two percentage points better.
We also performed different tasks. In the first one, we considered the precise categorization
of the environment with ANN; therefore, we had 25 output nodes related to each of the
25 different environments. In the second task, we evaluated whether we had categorized
correctly when the data set contained more than x% of certain ionic concentration. The
receiver operating characteristic (ROC) curves and confusion matrices were generated from
the descriptor analysis via an artificial neural network.
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Figure 3. Ternary diagrams representing the mean drain current modulations ∆I at the steady
states (a,d), the transients (b,e), and the spikes (c,f) for the 100 mV (a–c) and the 350 mV (d–f) gate
modulations for the 25 different electrolyte environments of various KCl(aq), NaCl(aq), and CaCl2(aq)

compositions (details of the 25 different compositions as supporting information are provided in
Table S1).

3. Results and Discussion
3.1. OECT Data Sequencing

Many concerns were taken into account to generate a sufficient amount of data from
the electrolyte-dependent organic electrochemical transistor. First, we used a single device
for this analysis to exclude systematic deviations in the data coming from the intrinsic
device performance variabilities (for instance, from different conductivities of PEDOT:PSS
formulations or inherent reproducibility dispersion associated with the device microfab-
rication process) [24]. Second, all data were acquired in a single time period to eliminate
deviations due to device aging. While both measures were taken to reduce systematic
errors for the sake of the analysis quality, the applicability of this strategy is not limited for
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treating data from multiple devices simultaneously nor during longer acquisition, at the
condition of providing a substantially higher amount of data to the analytic system.

We dynamically analyzed the drain current of the OECT sampled as a relevant infor-
mation carrier to analyze the electrolyte recognition. To embed both steady and transient
information from the OECT, we applied a gate–voltage waveform, optimized for the drain
current to gather a high multiparametricity of ionic information (a period higher than all
the ion-specific OECT time constants) [18]. This elementary sequence used two voltage
stimulations at VG = 100 mV and VG = 350 mV, which stimulated the OECT under two
different regimes (as a transistor is a nonlinear element for the voltage, the two ion-specific
data sets are not necessarily linearly correlated). The two voltage steps were separated
by resting times (VG = 0) of equal duration to collect the ion-specific transient current
of a charge and a discharge at a specific stress (as the anions and cations have different
charge accumulation modes in the OECT, the asymmetry in the transient might gather a
higher-order information). The duration of the voltage steps was set at 0.5 ms to collect the
complete transient dynamics of the OECT charge and discharge, from which the character-
istic current gathered both high-frequency and low-frequency impedance information. It
has been observed that the characteristic time of the current transient could allow further
downscaling of the elementary period, so such an elementary period was set below 1 ms,
which was shorter than was the neural action potentials observed in neuro-sensing.

The recording of the drain current under such a gate-voltage stimulation appeared to
be rather stable over time, as no current drift over time was observed for a given 100-period
series (see Figure 2a). A sequence 200 ms in duration allowed us to collect 100 periods
(minus the first one which was altered by the drain voltage turn-on) of an elementary
stimulation (see Figure 2b). At the timescale of these elementary stimulations, it appeared
that the drain current also showed very low dispersion over the whole period. Within the
stimulation period, one can distinguish the dynamics of the drain current with respect to
the gate-voltage transitions: the drain current exponentially increases and converges to
a plateau at the beginning of a positive gate voltage polarization and decays to another
plateau after the end of the positive gate-voltage polarizations (related to the behavior of a
depletion mode p-type OECT characteristic from PEDOT:PSS).

For each of the four current modulations within a period, we sampled currents at
three specific times delayed from the gate-voltage modulations: 1, 50, and 500 µs after
each gate-voltage modulation. These were respectively characterized by four spikes, the
four transients and the four steady-state plateaus of the current. Again, when focused
at these 12 specific current values, we observed a very narrow relative dispersion over
the 99 samples for one 200 ms sequence for each electrolyte (see Figure 2c). While some
dispersions were very distinct from the others (particularly the spike currents for the
highest voltage stimulation Id4 and Id7, representative of the largest current transitions
in absolute value), some dispersions overlapped with one another (as current Id3 and
Id9 which are both representative of the steady current at VG = 0 V characteristic of the
pristine conductivity of PEDOT:PSS). Moreover, when looking at the dispersion of the 12 Id
populations, one can observe their symmetry centered on a mean value, suggesting that
their variance over the 99 samples was not induced by a drift of the voltage over time
(one can observe in Figure 2b that the individual currents are rather noisy but centered
on an average). The fact that each measurement sequence lasts for only 200 ms (which in
practice is not long enough to qualify the stability of an integral OECT signal for a practical
sensing application) shows that this method collects, in a rather short time, a significantly
high number of drain-current samples, the analysis of which is not temporally biased.

3.2. Data Descriptor Comparison

As previous studies have compared modulations of currents [22] or impedances [18],
in order to compare the effect of the electrolyte composition on the OECT electrical perfor-
mances, we reduced the number of descriptors down to six current modulations using the
12 Id currents previously collected, as follows:
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- ∆Istd
100 = Id3 − Id12 as the steady-state drain current modulation at VG = 100 mV;

- ∆Itrs
100 = Id2 − Id11 as the 50-µs transient drain current modulation at VG = 100 mV;

- ∆Ispk
100 = Id1 − Id10 as the 1-µs spike drain current modulation at VG = 100 mV;

- ∆Istd
350 = Id9 − Id6 as the steady-state drain current modulation at VG = 350 mV;

- ∆Itrs
350 = Id8 − Id5 as the 50-µs transient drain current modulation at VG = 350 mV;

- ∆Ispk
350 = Id7 − Id4 as the 1-µs spike drain current modulation at VG = 350 mV.

Observing previously that the 12 Id current series of 99 samples characterizing a single
electrolyte measurement had the dispersion centered on a characteristic mean value, this
applied also for the six ∆I descriptors. We studied the mean values of the six ∆I descriptors
iteratively for the 25 different electrolytes (see Figure 3a–f). From these studies, we observed
that each descriptor had an ion-specific fingerprint displaying a current-modulation map
in the ternary diagrams different from one descriptor to another. For both gate voltages,
we observed that the lower current modulations obtained for ∆Istd and ∆Itrs generated a
systematically higher variability than that for ∆Ispk: for both VG = 100 mV and 350 mV,
one can better see a linear gradient in the current modulations over the ternary diagram
of ∆Ispk than for ∆Itrs and ∆Istd. These results are in line with previous impedimetric
studies on pure electrolytes showing that the variability in the impedance modulation of
OECTs at a low frequency is higher than that at a high frequency [18]. Practically speaking,
this suggests that if such an OECT were used as monoparametric ion sensors, one would
obtain fewer systemic errors by exploiting the capacitive coupling between the polymer
and the gate (as done in microelectrode arrays for neural interfacing) compared to the use
of ion-dependent conductance of the channel. On the ∆Ispk diagrams, one can clearly notice
higher modulations for the divalent cation than for the monovalent ones (which agrees
with previous studies) [18]. On the other hand, data related to ∆Itrs and ∆Istd appear to
have a higher voltage dependency than do those related to ∆Ispk [18]. Although current
modulations differ with the gate voltage, their trend with the electrolyte composition of
∆Ispk.at VG = 100 mV and 350 mV appears to be very similar, which might question the
relevance of using both parameters as descriptors, as this may pose a risk of increasing the
analysis complexity without benefits. However, in the cases of ∆Itrs and ∆Istd, their voltage-
dependency suggests that recording these data for different VG introduces additional ionic
information which could be used for the electrolyte recognition (the voltage dependency
of these modulation is associated with the gate-voltage dependency of the PEDOT:PSS
dedoping) [18].

3.3. Data Separability by Electrolyte Composition

Independently of the quality of the relative concentration trends and their dependency
with VG, we performed the following multivariate data analysis with all six current modu-
lation descriptors. Principal component analysis (PCA) was performed on 25 electrolytes
with a series of 99 vectors of six components (the following approach consisted of clus-
tering the 2475 vectors of R6 by projecting the data in the relevant subspace maximizing
the variance). Prior to singular value decomposition, current modulation descriptors were
unit-variance scaled by default. It is worth highlighting the fact that this data preprocessing
stage conditions the data to compare current modulations of OECT relative to an average
at a given time and does not treat each value nominally as a value with a specific unit.
Therefore, one can extrapolate that such analysis treated in parallel with many OECTs with
different conductance and transconductance values might not under- or overweight the
contributions of the OECTs according to their physical property dispersion. This can be
compared to a microelectrode array for neuro-sensing, for which statistical thresholding
for spike detection is associated to a relative value for a specific sensing electrode, which
is less affected by the impedance dispersion over the population of sensing electrodes.
The PCA using singular-value decomposition showed that the actual dimensionality of
all data can be reduced to five since the variance of the PC6 was significantly lower than
were all the others (<0.3%; see Table 1). The composition of the PC6 being almost the
sum of both ∆Ispk

100 and ∆Ispk
350 confirms the irrelevance of measuring ∆Ispk at the two
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different voltages VG = 100 mV and 350 mV (we also noticed that their contributions in
all six principal components were almost identical; blue font in Table 1), although each of
them had a nonnegligible and equal relevance for data separation (as the main contribution
of PC1). When looking at the first two principal components, we observed that 57.9% of the
total variance can be projected on the (PC1;PC2) plane. PC1 (38% of total variance) largely
composed of both spike descriptors ∆Ispk

100 and ∆Ispk
350 (with a minor contribution of

the other 350 mV parameters ∆Itrs
350 and ∆Istd

350) while PC2 (19.9% of total variance) is
composed of the four other parameters ∆Istd

100, ∆Istd
350, ∆Itrs

100, and ∆Itrs
350. This shows

that all six descriptors have a contribution in the data projection on the (PC1; PC2) plane,
such that a 3D projection is not required to appreciate the six-descriptor contributions on
the data separability (see Figure 4a–e).

Table 1. Factor loading matrix for the PCA exploiting the six different current descriptors.

PC1 PC2 PC3 PC4 PC5 PC6

Variance 38.0% 19.9% 16.2% 14.4% 11.3% <0.3%

∆Istd
100 0.08 −0.31 0.93 −0.18 0.03 −0.00

∆Istd
350

−0.26 −0.46 0.02 0.74 −0.42 0.01
∆Itrs

100 0.00 −0.67 −0.33 −0.59 −0.33 0.00
∆Itrs

350 0.33 −0.49 −0.17 0.24 0.74 −0.01
∆Ispk

100 0.64 0.06 −0.01 0.10 −0.29 −0.70
∆Ispk

350 0.64 0.05 −0.01 0.10 −0.27 0.71
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Figure 4. Two-principal-component projections of the 99 vectors for each of the 25 electrolyte
compositions. Color gradients according to the relative concentration of KCl(aq), NaCl(aq), and
CaCl2(aq) in 0.1 M (the bottom-left triangle displays the 3-color shade encoding the electrolytes’
composition). The graph shows the data separability, according to the nature of the cation, into five
different domains representative of the electrolyte composition.

As these projections show, the PCA successfully clusters the electrolyte data by com-
positions into five different sectors (see Figure 4d). The main separation in electrolyte
composition occurs on the PC1 dimension, showing that the spike data have the highest
importance for segregating the clusters to discriminate the electrolytes by their cation
composition. Because various electrolyte compositions were used in these experiments,
the five domains had strong overlaps, indicating that a linear data classifier will hardly
lead to a perfect cation recognition (although we noticed that the three data series of pure
salts were easily separable into ellipsoids with no overlap). In the case of these 25 mixed
electrolytes, one can clearly distinguish calcium-rich, a potassium-rich, and sodium-rich do-
mains. Considering the (PC1; PC2) projections, the potassium-rich domain being between
the calcium-rich and sodium-rich domains suggests a higher difficulty in recognizing potas-
sium compared to sodium or calcium. The relative distance of the calcium domain relative
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to potassium being longer than that to the sodium one suggests that Ca2+ variations might
be the easiest to detect. This is of a particular relevance for Ca2+

(aq) sensing in an extracellu-
lar medium composed mainly of Na+

(aq) and Cl−(aq) for a total concentration in the 0.1 M
range (calcium flows being particularly important in neural activity) [25,26]. Furthermore,
we distinguished two other subdomains between the calcium-rich and the potassium-rich
domains which correspond to the data for Na+

(aq)/Ca2+
(aq) (1:1) and K+

(aq)/Ca2+
(aq) (1:1).

The separation of both domains also supports the possibility of specifically detecting
Ca2+

(aq) when blended with K+
(aq) and Na+

(aq) and vice versa, confirming its relevance
when applied to the sensing of physiological fluids.

PCA performed with a reduced number of descriptors demonstrated the degree of
relevance for the different descriptors in the data separation specific to the clustering
by ionic composition (all detailed PCA data are available as supplementary information
in Figure S1). Qualitatively, it was revealed that the transient points do not contribute
significantly to the data separation. Moreover, performing the PCA without considering the
350 mV data or the steady-state data increases the separability due to systematic variations
from measurement to measurement. Finally, PCA omitting the spike data seems to be very
inefficient for cation recognition. In light of these different elements, it appears necessary
to consider all six descriptors to identify cations.

3.4. Environment Recognition via an Artificial Neural Network

Based on the aforementioned analysis, we created artificial neural networks (ANNs)
in order to test the recognizability of the electrolyte composition based on the sequential
sampling of the six values of drain current modulations that were shown by PCA to embed
five independent descriptors relevant for cation recognition. We analyzed a number of
architectures and found that an ANN consisting of 77 nodes in the hidden single-layer,
trained with scaled conjugate gradient backpropagation and sigmoid activation function
provided the best results as indicated by the average positive classification rate in repeated
learning scenarios [27,28]. We also used a stochastic gradient with similar performance
but a longer training time and linear activation, which was less accurate in convergence
and ReLU (rectified linear unit), which had very similar behavior to the sigmoid activation
function. During the testing of different networks, we used 1-, 2-,and 3-layered architectures
with a number of nodes ranging from 25 to 200. To test the architecture that we would
adopt for the tasks, we sampled each class, trained the network, and computed the total
success rate. We have then used mean success rates for each of the 25 classes to find the
mean success rate over all the samples and chose the architecture that had the maximal
rate. We found that a simple architecture of one layer with 77 nodes performed similarly to
more complicated architectures within the margin of error and was the simplest within the
architectures that had similar performance. We also employed the method described by
Stathakis [29] but we found that it slowed the calculation further without improving the
results within the subset of architectures we tested with this method. In supplementary
information 4, we provide the standard MATLAB script used in testing the individual
architectures. In essence, the ANN had a feedforward network architecture with the default
tan–sigmoid transfer function in the hidden layer and a softmax transfer function in the
output layer as the standards for most pattern recognition tasks. We used MATLAB R2011b
with the Neural Network Toolbox.

As seen in Figure 3, environments were reasonably well separated into 25 different
electrolyte compositions with various Ca2+

(aq), Na+
(aq), and K+

(aq) contents and 99 different
realizations for each electrolytic environment. To test the different ANN architectures, data
were separated into three sets: The first set was used to train the ANN, which consisted of
70% of randomly picked measurements of each electrolyte environment. The second set
was used as a validation, which consisted of 15% of each environment. The last set was the
test set, which consisted of the last 15% of the data.

The ANN was used in two specific classifier tasks. The first task was to recognize to
which of the 25 different patterns the data belonged to. The second task was set to classify
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the ionic concentration of the certain type of cation to be greater/less than a given threshold.
The settlement of both tasks was made for clear biological relevance in the perspective
of neuro-sensing applications, such that the first one could be applied for the statistical
identification of unknown-cation activity in electrogenic cells while the second triggered the
identification of specific ions (comparable to electrical calcium imaging) without chemically
labelling the OECT materials.

The results of the first task are shown on Figure 5 in which we present the receiver
operating characteristic (ROC) curves of our learning task. Curves that are well placed
in the upper left corner signify excellent classification, and this is independent from the
electrolyte composition. We opted for this type of graphical presentation since we have
25 different environments and more detailed presentations, such as those for confusion
matrices, would be too complicated to draw. In the appendix, we have nevertheless
provided the results of the confusion matrices for the whole task (see Table S2). For only
two classes out of 25, we had a sensitivity below 95% of the random models. Both of these
classes were mixed with classes of very similar ionic concentrations. The precision of the
method was very good for all classes.
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Figure 5. ROC curve for the electrolyte classification with the ANN (details on the class definition are
available as a supplementary material in Table S1).
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The second task is presented in Figure 6, with confusion matrices in Figures 7 and 8
(respectively for Ca2+

(aq) and Na+
(aq)). These confusion matrices represent the best and

the worst result of the classification tasks. Figure 5 shows the correct classification total
sampled over 100 different instances of learning to evaluate the variance of the expected
outcome. One can immediately observe in Figure 6 that tasks involving Ca2+

(aq) classifica-
tion were substantially better than those involving Na+

(aq) and K+
(aq) for the whole range

of concentration (except 0.9). This confirms the highest separability yielded from the PCA,
presumably due to different ion valence, which impacts the high-frequency response [18].
We also noticed that the ANN algorithm better classified the majority ions (opened circles
in Figure 6) or equimolar blends (opened squares in Figure 6) with recognition rates over
85%, while minority ion detections (opened triangles in Figure 6) were between 70% and
85% successful. Although cases of minority ion detections are more challenging to classify
due to measurement perturbations which are more prevalent than for majority ions, we
observed that recognition rates were higher than the those that would be expected from a
purely random classification, confirming the applicability of the method for identifying
Ca2+

(aq) in physiological solutions. In the confusion matrices, target Class represents the
true value of the sample (in Figure 7, it is 1 when the concentration of Ca2+

(aq) is equal
or greater than 0.33), while the Output Class represents the output value that the ANN
produced. While most of the classifications correctly predicted more than 90% in the
best-case scenarios, as the one presented in Figure 7, we achieved recognition of 100%. This
is a success rate which suggests that even without additional fine-tuning and research,
OECTs can be used in these recognition tasks. In Figure 8, we present the classification
task if the data were collected from an environment which has concentration of Na+

(aq)
larger or equal to 0.1. The method correctly classified 74.1% of cases in the test set due to
the dominance of the measurement perturbation of the majority ions. One can also notice
that the error is more often assigned to concentrations of sodium smaller than 0.1 while it is
in fact equal or greater. This suggests that descriptors distinguishing large concentrations
of potassium and calcium ions mask the descriptors that distinguish small concentrations
of sodium ions. A similar pattern can be observed in all of the tasks of distinguishing the
small concentrations.
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Figure 6. True recognition rate for the thresholding task. One can observe that Ca2+
(aq) is systemati-

cally better recognized than are other ions as predicted by the PCA results. Increased standard errors
for the tasks Na+

(aq) > 0.5 (50 mM) and K+
(aq) > 0.9 (90 mM) are related to two different minima in

the learning task. Excluding these minima, errors become comparable to those of the other tasks.
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Figure 7. Confusion matrices to verify if the level of Ca2+
(aq) is larger than 0.33 (33.3 mM). In the

upper left panel, the confusion matrix of the training data set is presented. In the upper right panel,
the confusion matrix of the validation data set is presented. In the lower left figure, the confusion
matrix of the test dataset is presented. In the lower right corner, the confusion matrix of the whole
dataset is presented. 0 on the axis represents false and 1 represents true. The target class is the proper
classification of the dataset, while the output class is the inferred classification of data. The variability
of the confusion matrix entries is consistent across all the datasets.

 

Figure 8. Confusion matrices to verify if the level of Na+
(aq) is larger than 0.1 (10.0 mM). In the

upper left panel, the confusion matrix of the training data set is presented. In the upper right panel,
the confusion matrix of the validation data set is presented. In the lower left figure, the confusion
matrix of the test dataset is presented. In the lower right corner, the confusion matrix of the whole
dataset is presented. 0 on the axis represents false and 1 represents true. The target class is the proper
classification of the dataset, while the output class is the inferred classification of data. The variability
of the confusion matrix entries is consistent across all the data sets.
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4. Conclusions

By exploiting the ion-specific dynamics of OECTs, we successfully designed a kHz gate–
voltage pulse protocol suitable for modulating its drain current response, with a regime
for which the multi-parametric dynamics allows extracting sufficiently high-dimensional
information to retrieve the ionic content of an electrolyte with a suitable ANN. At the
rate of 12 current-data-points/2 ms, sampled at specific delays in the current transient,
we identified six relevant descriptors for the ANN inputs (with 77-neuron single hidden
layer architectures) to recognize Na+

(aq)-, K+
(aq)-, and Ca2+

(aq)-rich electrolytes at the 0.1 M
level. Furthermore, principal component analysis of the six current modulation descriptors
showed that the total variance of the 2475 drain-current 6-dimensional vectors was gathered
in the first five principal components. This not only validates the multiparametric and
nonlinear physics of OECTs’ ion-dependency [19] but also demonstrates the relevance
of gate-voltage multilevel-addressing for OECT arrays to recognize local ionic contents.
Furthermore, the assessed capability to better recognize Ca2+

(aq) in Na+
(aq)- and K+

(aq)-rich
blends at concentrations comparable to extracellular physiology suggests considerable
potential for neuro-sensing to identify the ionic identity of local transient signals for kHz-
dynamic analysis.

Moreover, this study shows that by adapting experimental protocols to physical mod-
els, one can optimize the device data collection to ease/promote advanced data analysis
that can provide technological added values (ion-sensing specificity for instance) without
increasing the hardware complexity by adding physical functionalities in its fabrication,
such as molecular functionalization to enhance sensors’ selectivity. Reciprocally, it suggests
that by increasing the hardware complexity without necessarily knowing the physical
model, one might succeed in efficiently classifying high-dimensional patterns with the
help of an appropriate external stimulation protocol in a sufficiently rich dynamical sys-
tem: such reservoir-computing machine-learning concepts applied to high-dimensional
environments are a new sensing paradigm complementary to “sensors”, with the aim to
provide a probabilistic answer to complex environment classification tasks as opposed to
quantifying physical components obeying a model defined in idealized “standard condi-
tions” (characterized as low-dimensional subspace groups with well-defined boundaries).
With this multivariate approach, the next neuromorphic sensing challenge will be to gather
all the computational resources within the reservoir to recognize physically nontrivial
environment information.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/electronicmat4020007/s1. The following files are avail-
able free of charge. Supporting Information.pdf: Compositions of the 25 different electrolytes with
precision/sensitivity values for the ANN recognition (Table S1), five PCA datasets with a reduced
number of descriptors (Figure S1), and all the data of the 25 ROCs for each of the electrolytes
(Table S2).
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