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I Introduction 1.1 Law of Laplace and equation of Young-Laplace (1804)

In 1804, Pierre-Simon Laplace 1 took up the observations of Thomas Young and published his 'Theory of capillary action' where he presented a mathematical analysis of the average curvature of a surface, which makes it possible to calculate the pressure difference in a drop of water or a bubble with respect to the atmosphere. The pressure difference is greater as the drop or bubble is smaller and it is proportional to the surface tension 'γ' according to the so-called equation of Young-Laplace :

ΔP = (1) 
Where : ΔP : is the pressure difference at the interface [N/m 2 ] R : is the radius of the spherical drop [m] γ : is the surface tension [N/m] or [J/m 2 ]

The Young-Laplace's equation is obtained by dividing the projection of the surface tension ' ' along the perimeter '2R' by the surface of the median plane 'R [START_REF] Jurin | An account of some new experiments, relating to the action of glass tubes upon water and quicksilver[END_REF] ', that is : P = (2 /R).

Surface tension 'γ' can be considered either as a force per unit length in [N/m] or as an energy per unit area in [J/m 2 ] : a) as force per unit length, 'γ' is seen as the force required in Newtons to increase the diameter of the interface by one meter b) as energy per unit area, 'γ' is seen as the energy required in Joules to increase the interface area by one square meter

The main limitation of the Young-Laplace's equation comes from the fact that the pressure theoretically tends towards infinity when the radius is zero.

To date, this equation is still widely used to calculate the effects of capillarity, as for example in the case of the rise of a fluid in a capillary tube, according to the so-called Jurin's law [START_REF] Jurin | An account of some new experiments, relating to the action of glass tubes upon water and quicksilver[END_REF] , case that will be examined later.

Energy aspect

P-G. de Genes et al. [START_REF] De Gennes | Wetting : Statics and dynamics[END_REF] consider that surface tension is a physicochemical phenomenon related to the increase of energy at the interface between two fluids or at the fluid/air interface.

In a liquid, the interaction forces between molecules are in equilibrium and their resultant is zero. At the liquid-air interface, equilibrium cannot be maintained and surface molecules are attracted inwards, creating a force known as « surface tension ».

Considering that molecules on the surface have fewer interactions with their neighbors than in volume and taking into account the Brownian effect of molecular agitation [START_REF] Bouquet | INTERFACES[END_REF] , they estimate that if 'U' is the cohesion energy per molecule in volume, the energy at the surface should be in the order of 'U/2'. If 'a' is the size of a molecule, 'a 2 ' is the area exposed to the surface, and it can be therefore considered that the surface tension 'γ', which measures the loss of energy at the surface, is worth 'γ ≈ U/2a 2 '. For common liquids, Van der Waals interactions are predominant and the thermal energy is calculated as ' U k B .T ' where 'k B ' is the Boltzmann constant, which gives a value of '' close to 20 mJ/m 2 at 25°C [START_REF] Bouquet | INTERFACES[END_REF] . In the case of water, where a greater surface tension is measured ( ≈ 0.072 N/m), it is explain that the surface tension measured is greater because hydrogen bonds are predominant.

Comment on the thermodynamic vision of interface

According to the theoretical laws of Laplace and Young-Dupré, capillarity phenomena are expressed purely in terms of surface energy. From a thermodynamic point of view, all the energy is considered to be concentrated at the interface, on a mathematical surface without thickness. Thus, the surface tension '' is defined as an increase in free enthalpy 'dG' per unit increase in surface area 'dA' such as :  ∂G/∂A Regarding the question of the thickness of the molecular layer on the surface of the fluid, there are two schools of thought :

(i) J. W. Gibbs considers the surface as a mathematical surface without thickness (ii) J. D. Van der Waals and H. Bakker assigned a thickness of the size of the Van Der Waals interactions [START_REF] Bouquet | INTERFACES[END_REF] . This vision of an energy defined on the surface is certainly elegant, but we think in this paper that the effects of surface tension are not limited to the surface and we will make here the hypothesis of a gradient under the surface.

Reminder of the Young-Dupré equation (1805)

With regard to the shape of the meniscus and that of a drop of water on a plane, one generally refers to the theoretical law of Young-Dupré [START_REF] Young | An essay on the cohesion of fluids[END_REF] . As described in Figure 1, according to this law, the three surface tensions associated with the three interfaces must be in equilibrium for the triple line to be stopped. The vector sum of the three projected surface tensions is therefore in principle zero as described in the equation :

γ LV cos(θ) = γ SV -γ SL (2) Where :

θ : is the contact angle of the drop or meniscus γ LV : is the liquid-vapor surface tension γ SL : is the solid-liquid surface tension γ SV : is the solid-vapor surface tension

Figure 1 -The Young-Dupré Equation

To solve this equilibrium equation with three unknowns, experimenters generally measure the contact angle ' ' at the triple point air-liquid-solid, they use the value of the liquid-vapor surface tension 'γ LV ' measured using a tensiometer and calculate the solid-liquid surface tension by extrapolation using the Zisman and Fox method 6 .

In principle, this equation should also be used in the case of the meniscus which also has three interfaces, but as will be seen in the examples of the capillary tube and the Wilhelmy blade, most experimenters usually only take into account the liquid-vapor surface tension.

II Definition of a reorganization energy (or tensioactivity) gradient per unit volume

In this paper, we formulate the hypothesis that beyond the near molecular interface where Van Der Waalstype forces act, and after a relatively short time, a stationary process of reorganization is established, which propagates far from the interface over a millimetric distance and not a nanometric one.

We will therefore study the hypothesis of a calculation in terms of reorganization energy per unit volume.

To do this, we will define a surface energy gradient per unit volume whose action dimension is millimetric.

For this purpose, we will define here a tensioactivity force gradient per unit area as opposed to the classical tensor of surface tension '' representing a force per unit length.

Preamble on boundary conditions for meniscus

We chose the case of the meniscus because it is ideal for two reasons : (i) The meniscus profile can extend horizontally until it is damped on the surface of the liquid and it can climb to its maximum along the solid vertical wall as shown schematically in Figure 2. Indeed, the surface of the liquid and that of the solid are very large compared to the dimensions of the meniscus and they can be considered 'almost infinite'. Therefore, there are no horizontal or vertical limits imposed by the volume of the liquid or the dimensions of the solid. We will see later that this is not the case for a drop of water, whether isolated or deposited on a solid.

In the case of the meniscus, we can therefore make the assumption, as in the Young-Dupré equation, that the different forces are in equilibrium.

More precisely, we will write here the equilibrium equation of the tensioactivity energy gradient per unit volume with the gravity potential energy density per unit volume (ii) In the meniscus case, the final deformation profile 'Z(x)' is superimposed on that of the final stress gradient. We will see further that this is no longer true in the case of drops.

Hypothesis of a molecular reorganization at the meniscus wall-liquid interface

Let's take the case of the meniscus that can be seen in a glass of water, as depicted in Figure 2.

The shape of the meniscus comes from the combination of tensioactivity forces at the wall-water interface (solid-liquid) and tensioactivity forces at the air-water interface (liquid-vapor).

We can start by examining the tensioactivity forces at the solid-liquid interface while neglecting for the moment the contribution of the tensioactivity forces at the liquid-vapor interface (we'll come back to it later).

It is generally considered that the molecular interactions at the interface are of the Van Der Waals type that act within a thickness of a few molecular distances. However, Van Der Waals forces alone cannot explain the millimetric dimensions observed in the case of a real meniscus, namely of the order of 1 to 2 millimeters in height and more than 5 millimeters in attenuation length 'W m ', according to the authors [START_REF] Shimizu | Three Kinds of Expressions for Meniscus at Flat Wall[END_REF][START_REF] Soligno | Roij -The equilibrium shape of fluid-fluid interfaces: Derivation and a new numerical method for Young's and Young-Laplace equations[END_REF] .

Figure 2 -Meniscus in a glass of water : profile dimension is in millimeter scale

Therefore, in this paper, we formulate the hypothesis that in equilibrium and in stationary state, a reorganization occurs at the interface, reorganization that spreads far from the wall, over a millimeter distance and not a nanometer distance.

Energy, order and disorder

-Hypothesis 1: The energy of molecular organization is of the same order of magnitude as the surface energy classically defined at the interface, but according to our hypothesis, it is maximum at the interface and decreases until reaching, at a distance of millimetric order, the standard Brownian disorder in the bulk [START_REF] Einstein | Investigations on the Theory of the Brownian Movement[END_REF][START_REF] Lavaud | Confined Brownian Motion[END_REF] . In water, such an organization could, for instance, be done through the construction of short-lived structures using hydrogen bonds in a creation/destruction process in a stationary mode. The exchange process respecting the principle of energy conservation. Another possibility, which will be evaluated superficially later, since it is not our purpose here, could be the creation/destruction of 'cluster' type structures in a stationary mode.

-Hypothesis 2: The organizing process is faster than the Brownian diffusion mechanism. This hypothesis is based on the observation that the equilibrium state of the meniscus is reached after a few tenths of a second, while the diffusion mechanism is very slow (a water molecule moves on average about 0,3 mm per minute with a Brownian Diffusion coefficient close to 10 -9 [m 2 s-1 ]).

-Hypothesis 3: The organization gradient is maintained in a stationary state, because even if the lifetime of organized molecules is very short, they are quickly replaced by others according to a phenomenon of nucleation/propagation type.

-Hypothesis 4: The process of organization and propagation follows a law similar to that of Avrami [START_REF] Avrami | [END_REF]13 .

The organization starts at the wall where 'N' nucleation sites per unit area organize nearby water molecules. The organization propagates perpendicular to the interface creating 'G' structures according to a decreasing gradient from the wall to a given distance that will be noted as 'W', where we find the Brownian disorder of the bulk. The Avrami equation describes the phenomena of nucleation and propagation as follows :

 = 1 -exp (-K t n ) (3) 
Where :

 : is the volume fraction of organized molecules (1-) : is the volume fraction of 'bulk' molecules t : is the time n : is a parameter depending on the degree of freedom K : is a constant depending on and N : is the number of nucleation sites G : is the degree of propagation growth Let us remember that the Avrami equation generally describes the kinetics of crystallization or phase changes in materials and chemical reaction rates. In this case, the 'K' constant is usually determined experimentally from the measurement of crystal growth and propagation rates or chemical reaction rates. In the hypothetical case described here, i.e. molecular reorganization of structures with a very short lifespan, it seems difficult to make such measurement and therefore 'K' cannot be determined. Moreover, according to our assumptions, we can take 'n = 1' because the phenomenon is linear and stationary (growth perpendicular to the wall and hydrogen bonds creation/destruction process).

We can therefore keep a simplified version of equation ( 3) such as :

 = 1 - (4) 
Where 'K' depends on the meniscus formation kinetic parameters.

Reorganization energy

The volume fraction of organized molecules as a function of time is given by Avrami equation. Once the stationary state is reached, their distribution in space as a function of the distance from the wall is maximum at the interface and decreases according to a gradient from the surface to the bulk.

-Hypothesis 5 : We assume that the exchange between the molecules at the interface and those in the bulk follows a law similar to the Fick's law of diffusion [START_REF] Fick | ber Diffusion[END_REF] and the Fourier's law of heat exchange [START_REF] Fourier | Théorie analytique de la chaleur, 1822 -Édouard Leroy, Sur l'intégration des équations de la chaleur[END_REF] :

d 2 U/dx 2 = D (5) 
where :

U : is the molecular organization energy t : is the time x : is the diffusion/ exchange distance D : is a diffusivity coefficient A classic solution to this equation uses decomposition in two functions, one of distance and the other of time ' U(x, t) = f(x).g(t)' such as : U(x, t) = U 0 e -K t e -J x (6) where : U : is the molecular organization energy or 'tensioactivity energy gradient' U 0 : is its value at x=0 K : is an Avrami constant depending on the kinetic parameters of meniscus formation J : is a spatial attenuation constant t : is the time x : is the distance of diffusion and exchange of energy By transferring equation ( 6) to ( 5), we obtain : J 2 = D K and ( 6) can be rewrite as :

U(x, t) = U 0 e -K t (7) 
In practice, the stationary state of meniscus equilibrium is quickly reached , i.e. after a few tenths of a second [START_REF] Delannoy | Les surprises de la montée capillaire[END_REF][START_REF] De Gennes | Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves[END_REF] . The literature often mentions a relaxation time close to the inverse of 'K'. NB: We will not analyze the kinetic aspect in this paper.

Stationary state hypothesis

Now, let us focus on the stationary state in which the meniscus is once formed. After a time 't' also called 'relaxation time' (t >> 1/K), a stationary state is reached and we can rewrite equation ( 7) as (8), which represents the reorganization energy (or tensioactivity energy) as a function of the distance from the surface :

U(x) U 0 (8) 
To simplify, we replaced ' ' by 'A' that can be considered here as an attenuation constant. Indeed, as mentioned above, 'K' is a very difficult kinetic parameter to measure in the case of molecular reorganization of structures whose lifespan is very short, and we can do without it because the constant 'A' depends on the wall material, the liquid and the temperature. In fact, we will see later that 'A' can be determined according to the meniscus geometric parameters.

Organization energy and gravity potential energy

-Hypothesis 6 : In the gravity field and in stationary state, the tensioactivity energy gradient 'U(x)' balances with potential gravity energy 'E p (x)', classically written as : E p (x) = m g Z(x). NB : We will come back to this hypothesis later because, if it is possible to do it in the meniscus case, it is no longer possible for a water drop.

By rewriting these energies per unit volume, we can now define a gravity potential energy density per unit volume 'E pp ' such as :

E pp (x) =  g Z(x) (9) where : 
E pp : is the potential gravity energy per unit volume or more simply the pressure gradient in [kg m -1 s -2 ], [Jm -3 ] or [Nm -2 ]  : is the density in [Kg m -3 ] g : is the intensity of gravity in [m s -2 ] or [N/kg] Z(x) : is the meniscus observed profile in [m] NB : Whereas hydrostatic pressure is generally defined as 'p =  g h', what we call here potential gravity energy per unit volume 'E pp (x)' is in fact a pressure gradient. Nevertheless, we will keep the 'E pp ' notation here to avoid any confusion with the global pressure.

By equalizing equations ( 8) and ( 9), we obtain :  g Z(x) u 0 (10) Where this time, 'u 0 ' is the tensioactivity energy gradient per unit volume at 'x=0'.

Depending on the boundary conditions along the wall, when 'x = 0', we have : Z(0) = B and : u 0  g B where : 'B' is the meniscus height at the wall [m]

We thus obtain the expression of the tensioactivity energy gradient per unit volume 'u(x)':

u(x)  g B (11) 
As mentioned above, in the meniscus case the final deformation profile 'Z(x)' has the same shape as the final stress gradient. It can be simply written as :

Z(x) = B ( 12 
)
It should be noted that these energies per unit volume have the dimension of a pressure ([Nm -2 ]) or a stress, that is, of a force per unit area.

Equation (11) will be rewritten as follows :

 R (x)  g B (13) where :

 R (x) : is the resulting stress gradient [Nm -2 ] or [Jm -3 ]. B : is the meniscus height [m] A : is an attenuation constant [m -1 ] W m : is the meniscus attenuation length [m]
Therefore, the stress gradient ' R ' can be considered as a force gradient per unit area in [Nm -2 ] or as an energy gradient per unit volume [Jm -3 ].

Thermodynamic vision

As seen in paragraph 1.3, the surface tension '' can be defined as an increase in free enthalpy 'dG' per unit increase in surface area 'dA' such as :  ∂G/∂A.

In the same way, the tensioactivity gradient ' R ' can be defined as an increase in free enthalpy 'dG' per unit increase in volume 'dV' such as :  R  ∂G/∂V.

Stress gradient in the meniscus

For the moment, let us assume that the stress gradient ' R (x)' is the resultant of two gradients : the one linked to the tensioactivity forces at the solid-liquid interface and the other linked to the tensioactivity forces at the liquid-vapor interface. As defined above, this gradient is in equilibrium with the potential gravity energy per unit volume . We therefore have two components :

 SL (x) : a solid-liquid interface stress gradient or tensioactivity stress gradient at the solid-liquid interface  LV (x) : a liquid-vapor interface stress gradient or tensioactivity stress gradient at the liquid-vapor interface Thus, the resulting gradient ' R (x)' is a function of ' SL (x)', ' LV (x)' and 'E pp (x)', relationship that will be determined below. Finally, it should be noted that in the meniscus case, the deformation induced by the resultant stress has the same profile as the resultant stress gradient. We will see further that this is no longer true in the case of drops.

Molecular reorganization and solid-liquid interface stress gradient

Assuming a molecular reorganization at the solid-liquid interface, the solid-liquid interface stress gradient is due to attraction of liquid molecules towards the solid wall. According to our hypothesis, this reorganization propagates far from the wall over a millimeter distance. The reorganization gradient is exerted perpendicular to the surface of the solid and decreases from the wall towards the bulk, but the stress/deformation gradient is parallel to the wall. By adopting the same notation convention as for the classic surface tension tensors ' SL ' and ' LV ', we can write the solid-liquid interface stress gradient as follows :

 SL (x) =  g  (14) where :

 SL (x) : is the solid-liquid interface stress gradient in [Nm -2 ] or [Jm -3 ]  : is a length of action parallel to the wall in [m]  : is an attenuation constant [m -1 ] W m : is the meniscus attenuation length [m] Let us now analyze the case of the tensioactivity forces at the liquid-vapor interface.

Molecular reorganization and liquid-vapor interface stress gradient

As for the solid-liquid interface, we assume a molecular reorganization at the liquid-vapor interface (i.e. water-air). This reorganization propagates far from the surface down to a millimeter distance. We keep hypotheses 1 to 6. In contrast, this time the reorganization is due to a repulsion of molecules from the surface towards the bulk. We will see further that in the case of a water drop, these forces tend to bend the surface to form a sphere. The gradient is therefore radial when the surface is curved. Equivalently to (14) and adopting the same notation conventions, the liquid-vapor repulsion interface stress gradient is written as :

 LV (x) = - g  (15)
where :

 LV (x) : is the liquid-vapor interface stress gradient in

[Nm -2 ] or [Jm -3 ]  : is a characteristic length of curvature in [m]  : is an attenuation constant [m -1 ]
At this stage, we have :

(i) a solid-liquid interface stress/deformation gradient ' SL (x)', exerted parallel to the wall and whose action decreases from the wall to the bulk (ii) a liquid-vapor interface stress gradient due to repulsion ' LV (x)', exerted perpendicularly to the surface of the liquid and whose action decreases from the surface to the bulk All we need now is the equivalent of the surface tension tensor ' SV ' at the solid-vapor interface, i.e. on the solid wall just above the meniscus.

Molecular reorganization and solid-vapor interface stress gradient

Let us now analyze the tensioactivity forces at the solid-vapor interface and let us define a solid-vapor interface stress gradient . This time, we no longer talk about molecular reorganization within the liquid, but rather about the organization of vapor molecules, coming from the liquid, which would condense/ adhere on the wall. Thus, we formulate the hypothesis that an organization operates above the solid-liquid-vapor triple point, by condensation/ sticking on the wall.

As for solid-liquid interaction, this organization strongly depends on the affinity of the liquid molecules for the solid surface and there can be either attraction or repulsion. Then, we can guess that the surface state of the solid could be predominant in the nucleation mechanism mentioned in Hypothesis 4.

Following Hypothesis 4, it is assumed that the organization process follows an Avrami-like law [START_REF] Avrami | [END_REF]13 , and that a stress gradient can be defined in the same way as (11) and (12).

However, we have to set a new hypothesis about this organizational process.

-Hypothesis 7: A molecular organization takes place on the wall above the triple point by attraction and condensation of vapor molecules coming from the liquid. NB : we will see, when analyzing the case of an hemispheric drop deposited on a solid surface, that there is what observers call a 'precursor film', a film having a thickness of less than 100 nanometers and extending beyond the base of the drop. According to Hypothesis 4, we assume that there are 'N' nucleation sites per unit surface on the wall, inducing an organization of nearby vapor molecules. The organization propagates perpendicular to the wall creating 'G' structures. In the present case, the available molecules are very few and the deposited film should be very thin. On the other hand, it should become increasingly thinner as we move away from the triple point because the concentration of available vapor molecules decreases.

Let us recall once again that Avrami's equation generally applies to the kinetic description of crystallization and phase changes. Therefore, instead of trying to describe the nucleation and propagation phenomena at stake, we will merely make the assumption that the solid-vapor interface stress gradient, noted ' SV (x)', has the same form as equations ( 11) and (12), that is to say :

 SV (x) =  g  (16)
where :

 SV (x) : is the solid-vapor interface stress gradient in [Nm -2 ] or [Jm -3 ]  : is a parameter linked to the film height [m]  : is an attenuation constant [m -1 ]
We will come back to the solid-vapor interface stress gradient ' SV (x)', when analyzing the case of drops deposited on a solid surface. Regarding the meniscus, we will temporarily simplify the problem by taking into account only the two gradients at liquid-solid and liquid -vapor interfaces to already validate the meniscus shape. We will discuss later and theoretically the hypothesis of a precursor film.

The meniscus equation

According to our hypotheses, the observable shape of the meniscus comes from the interaction of the tensioactivity forces at the solid-liquid interface (linked to gradient ' SL (x)') and at the liquid-vapor interface (linked to gradient ' LV (x)'), that are in equilibrium with the gravity forces. The resulting stress gradient ' R (x)' is obtained by adding the solid-liquid stress gradient ' SL (x)' and the projection of the liquid-vapor stress gradient '- LV (x)' on the initial meniscus profile 'Z SL (x)', as follows :

 R (x) =  SL (x) - LV (x)* Z SL '(x) (17) 
Where the derivative of the initial profile is : Z SL '(x) = - Assuming that the general form of the resulting stress is ' R (x) = g B ', one can rewrite equation ( 17) as :

 R (x) = g B = g  + g   (18) 
where :

 SL (x) : is the solid-liquid interface stress gradient in

[Nm -2 ] or [Jm -3 ]
 LV (x) : is the liquid-vapor interface stress gradient in

[Nm -2 ] or [Jm -3 ]
E pp : is the potential gravity energy per unit volume or more simply the pressure gradient in

[kg m -1 s -2 ], [Jm -3 ] or [Nm -2 ]  : is the density in [Kg m -3 ] g : is the intensity of gravity in [m s -2 ] or [N/kg] Z(x) : is the meniscus observed profile in [m]
Note that since the meniscus profile 'Z SL (x)' is known, it is simpler to use its derivative than to measure the cosine of an angle as usually done with surface tension vectors .

The forces at stake have been schematized in Figures 3a and3b :  The stress gradient ' SL (x)' comes from attraction forces that cause a vertical deformation and draw the meniscus  The stress gradient '- LV (x)' comes from repulsion forces, exerted orthogonally to the curve created by ' SL (x)' and tending to flatten it. And the meniscus profile is simply :

Z(x) = B =  +   ( 19 
)
To plot the profile of the meniscus according to equation ( 19), all following parameters are obviously needed : 'B', 'A', '', '', '' and ''.

Using the boundary conditions and the measurable value of the meniscus height 'B', these many parameters can be linked. For example, along the wall, at 'x = 0' and with the measurement of 'B', '' value can be calculated as : . These parameters will be determined further in the case of water, using measured values provided by the literature and through the analysis of particular cases such as : the capillary tube, the Wilhelmy plate (measurement of '' and '') and drop calculation ('' and '').

As an example, Figure 4 represents the water meniscus profile using numerical values shown below. Figure 4 shows that the resulting profile of equation ( 12) is very close to the one of equation (19). NB : In the following applications and for practical reasons, we will rather use the resultant ' R (x) =  g B ' because it is easier to handle.

Complete meniscus equation with solid-vapor gradient

Despite not having all the parameters values yet, equation (18) and Figure 4 can still be modified using the solid-vapor interface stress gradient expression from equation ( 16) to obtain : Note that equation (20) and Figure 4bis may seem to be of no use in the case of water since we are unable to see any precursor film above the meniscus. In fact, this is due to its very low theoretical thickness and due to transparency of the water. Therefore, to check the existence of a precursor film, we will instead examine the example of mercury that, due its non-transparency, can reveal such a film.

 R (x) =  g   g  +  g   ( 

Application of our approach to the case of convex meniscus of mercury

To validate our approach, equation (20) has been applied to mercury since it presents a convex meniscus due to its repulsion to glass. The values below are indicative, since they have been estimated from values of surface tension known for mercury (namely:  LV 0,500 [Nm -1 ] and  SL 0,400 [Nm -1 ]).

Using equation (20) where density is : = 13,546 10 3 [kg m -3 ] and arbitrarily setting the values of '' and '', we can plot the resulting ratio '(x)/g' as depicted in Figure 5a : 

III Application to some practical cases

Regardless of the hypothetical nature of our thinking experience, we will use the equations defined above and check their relevance in practical cases such as Wilhelmy plate tensiometer, capillary tube case (Jurin's law) and also by calculating the pressure in a drop as in Laplace's law.

The Wilhelmy plate tensiometer

Wilhelmy [START_REF] Wilhelmy | Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers[END_REF][START_REF] Nf En | Agents de surface -Détermination de la tension interfaciale des solutions d'agents de surface par la méthode à l'anneau ou l'étrier[END_REF][START_REF] Yuan Yuehua | Randall Lee -Contact Angle and Wetting Properties -Surface Science Techniques[END_REF] plate tensiometer is a device for measuring the surface tension of a liquid at equilibrium. The device uses a thin plate connected to a microbalance as in Figure 6. The plate is perpendicular to the airliquid interface and the force exerted on this plate is measured. According to Wilhelmy, the force measured by the tensiometer 'F mes ' is the vertical component of the surface tension force ' F TS = γ L', such as : F TS = F mes /cos(θ). The surface tension 'γ' can be calculated as follows : In the literature, the surface tension 'γ' calculated using this device is generally considered as the liquidvapor surface tension 'γ LV '. The measured force being equal to the meniscus weight, it can be written as :

F mes =  g L (22) 
Where : F mes : is the force measured by the balance [Kg] L : is the plate perimeter [m]  : is the meniscus height at the wall [m]  : is an attenuation constant to determine [m -1 ] Note that no 'cos(θ)' factor is used here, since we consider that the force 'F mes ' comes from the meniscus weight and knowing that the meniscus is the result of the stress gradient solid-liquid ' SL (x)' and liquidvapor ' LV (x)' as in equation (18). Thus, with the value of 'F mes ' measured by the tensiometer, the attenuation constant 'A' can be calculated as:

A =  g L B / F mes (23) 
Furthermore, if we compare Wilhelmy equation of surface tension (21) to our equation ( 22), we can temporarily define a term ' max ', equivalent to surface tension, such as :

 max  g B/A ( 24 
)
Where :  : is the density [Kg m -3 ] g : is the intensity of gravity [m s -2 ] or [N/kg] B : is the meniscus height

[m] A : is the attenuation constant [m -1 ]
The term ' max ' is equivalent to the surface tension 'γ LV cos(θ)' calculated using Wilhelmy method.

We will come back later on the definition of the term ' max '.

In the meantime, equation ( 24) allows us to calculate 'A' knowing the value of 'γ LV ' given in the literature and the meniscus height 'B' as : A=  g B/  max .

In the case of water, with a given surface tension in the literature of : γ LV ≈ 72. 10 -3 [N m -1 ] and with an angle 'θ' of about thirty degrees, one gets :  max = γ LV cos(θ) ≈ 62. 10 -3 [N m -1 ]. Thus, with the following parameters : g = 9.81[N Kg -1 ] , =10 3 [Kg m -3 ] and B = 2.10 -3 [m], the following value of the depreciation constant is obtained :

A = 316 [m -1 ].
Note that these are the values used in Figure 4.

The capillary tube case (Jurin's law)

The phenomenon of capillary ascension has been described by James Jurin 2 in 1718.

According to Jurin, the height of the fluid in a capillary tube is inversely proportional to the radius of the tube. This phenomenon, schematized in Figure 7, was put into equation using the hydrostatic law in the tube (p =  g h) and the Young-Laplace equation (p = 2  cos(θ) / r), where '' has been replaced by ' cos(θ)' in the Laplace equation ( 1), since the radius of curvature at the air-liquid interface is equal to : r/ cos(θ). Thus, the Jurin's law is expressed as:

h = (25)
Where : h : is the height of fluid in the capillary tube [m] γ LV : is the liquid-vapor surface tension [N m -1 ] θ : is the contact angle between plate and liquid  : is the density [Kg m -3 ] g : is the intensity of gravity [m s -2 ] or [N/kg] r : is the capillary tube radius [m] r/ cos(θ) : is the radius of curvature at the liquid-vapor interface The Jurin's law is limited to the case of capillary tubes whose radius 'r' is significantly smaller than the length 'L c ', called 'capillary length', according to inequation : r < L c where : L c = . 

Application of our approach to the capillary tube case

According to our approach, when the capillary tube radius is smaller than the meniscus width 'W m ', the meniscal ring that forms on the inner edge of the tube becomes a disc and the solid-liquid pressure gradient moves the meniscal volume up until the balance of forces.

In fact, the case of the capillary tube can be compared to the case of two parallel plates spaced a distance equal to the diameter of the tube. Thus, hydrostatic pressure (p =  g h) can be equalized to the pressure calculated according to our approach as the sum of the forces divided by the surface, as follows : P = g h =  Forces / Surface. The sum of the forces is obtained from the integral of the gradient ' R (x)' along the perimeter 'L', such as :

g h = (L/S) ρg B  (26) 
Knowing that in the case of a tube, we have : S = r 2 and : L = 2r, we can write :

g h = 2g (B/Ar)            (27) 
From which we get 'h' such as :

h = 2B   /Ar (28) 
Using the tension surface equivalent ' max ' from equation (24), equation ( 28) can be compared to that of Jurin (25) as :

h  2  max / g r) (29) 
By defining a more generic term '' that will be detailed in paragraph VI, we come up with an equation similar to Jurin's, such as :

h 2 / g r ( 30 
)
Where the generic term '' is :  g B/A)   

In the case of water, using following value of the meniscus height : B = 1,58.10 -3 [m],the value of surface tension : γ LV ≈ 72. 10 -3 [Nm -1 ], giving :  ≈ 62. 10 -3 [N m -1 ]' and with an hypothetical angle of about thirty degrees, the curves corresponding to (25) and ( 29) have been drawn in Figure 8.

We may observe that the result is consistent with the literature [START_REF]Capillary Tubes -An overview[END_REF] . In the literature, the value of 'L c ' is sometimes considered as the critical radius of the drop. We will see below that our definition of the critical radius 'R c ' is significantly different.

Application of our approach to the spherical drop case

In the theoretical case of an isolated spherical drop, as there is no contact with any solid surface, the only forces at the surface are those located at the liquid-vapor interface and they create a radial compression. As stated in paragraph 2.9, these forces come from the reorganization taking place at the liquid-vapor interface and propagate below the surface according to a degree of organization decreasing from the surface to the bulk.

As the liquid-vapor interface stress gradient ' LV ' defined in equation ( 15) is radial, it can be rewritten along the 'z' axis (from the surface where : z=0) as :

 LV (z) = - g  (31) where : 
 LV (z) : is the liquid-vapor interface stress gradient in

[Nm -2 ] or [Jm -3 ]  : is a characteristic length of curvature in [m]  : is an attenuation constant [m -1 ] W g : is an attenuation length defined below [m]
As in the meniscus case with 'W m ', we can now define a theoretical attenuation length 'W g ', corresponding to the theoretical maximum action distance of the liquid-vapor interface forces. However, unlike 'W m ', 'W g ' cannot be observed on earth due to the fact that gravity forces are preponderant and dislocate the drop beyond a critical radius of a few millimeters as pointed below.

Boundary conditions :

On the one hand, observers reported that the drop cohesion depends on its size, namely when the drop radius reaches a critical radius 'R c ', gravity forces are preponderant and dislocate the drop, as represented in Figure 9a. On the other hand, we can no longer consider as in the meniscus case, that the liquid surface is significantly larger than the action distance of tensioactivity forces and then, we can no longer consider that the set of forces is in equilibrium. This means, among other things, that the liquid-vapor interface stress gradient ' LV (z)' is maximum at the drop surface (when : z=0), but it is not equal to zero in drop center (when : z=R), as represented in Figure 9b because the critical radius is smaller than the attenuation length 'W g '. -A drop is formed when the radius is smaller than the critical radius 'R c ' -When the drop radius exceeds the critical radius 'R c ', gravity forces are preponderant and the drop breaks up -For a very large area of water, the liquid-vapor interface forces cannot curve the surface because it has an almost infinite dimension -When the drop radius is equal to the critical radius 'R c ', gravity forces are in equilibrium with liquidvapor interface forces. This will further allow us to write the equilibrium equation between the drop weight and the integral of the liquid-vapor interface stress gradient.

As the liquid-vapor interface stress gradient is radial, it can also be represented along the x-axis, as represented in Figure 9b where the drop center is placed this time at the origin of a coordinate system 'x0z'. This formalism will be used later to analyze other shapes of drops like hemispheres or semi-ellipsoids deposited on a horizontal surface. We can rewrite ' LV (x)' as : The liquid-vapor stress gradient '  LV (x)' is radial and it is negative because the drop is in compression.

 LV (R-x) = - g           ( 
The gradient is maximum at the drop surface and decreases to its center :

-At the surface of the drop we have :  LV (x=R) - g  -At the center of the drop, the gradient value is not zero :

 LV (x=0) - g  
As pointed before, the gradient value is not zero at the drop center because the radius is smaller than the attenuation length (R c < W g ). Indeed, according to our equations, the liquid-vapor stress gradient should be zero at attenuation distance 'W g '. However, as mentioned before, it cannot be observed in the case of a drop in field of gravity, because gravity forces dislocate the drop when drop radius exceeds the critical radius 'R c '. We will see later that this is no longer the case in weightlessness.

When the critical radius 'R c ' is reached, we can write the equation of equilibrium between the critical weight 'P c = ρ g (4/3) R c 3 ' and the sum of the forces exerted by the gradient on the drop perimeter '2R c ' as :

 Forces = -2 R c dx (33) 
Which leads to equation ( 34) :

R c 2 = Ɛ           (34)
This equation enables us to calculate the characteristic length of curvature '' :  R c 2 Ɛ .

Thus, for critical radius values such as : R c = 3 to 4 mm 23 and :  = 409 [m -1 ], we get characteristic length value such as : = 3,5 to 5 mm. NB : Further, we will take :  = 4 mm and R c = 3,3 mm.

As seen in Figure 9a, when the drop radius is smaller than the critical radius 'R c ', equation (34) becomes an inequation such as :

2 < Ɛ           (35) 
We therefore verify that the drop is in compression as long as : R R c .

The pressure is calculated in the following paragraph.

Calculation of the pressure drop and Laplace's law

As for Young-Laplace equation, we get the drop pressure variation 'P' in the median plane of the sphere by calculating the sum of the forces exerted on its perimeter '2R' and dividing it by the surface of the median plane 'R 2 ' as :

P =  Forces / R 2
The sum of the forces is obtained by integration of the liquid-vapor interface stress gradient ' LV (r)' along the perimeter '2R' using equation (33) as :

 Forces = -2R ρ g  dx ( 36 
)
That is :

P = (2/R) ρ g (1 - ) (37) 
That can be rewritten as :

P = 2 ρgλ {(1- )/(ƐR)} (38) 
The expression between brackets '{(1-)/(ƐR)}' is interesting because it tends towards unity when 'R' tends towards zero and then 'P' tends towards : 2 ρgλ. In addition, by using the term '' as defined above, equation (38) can be rewritten into (39), by analogy with Young-Laplace equation :

ΔP = (39)

Where : '' is equivalent to surface tension. Here, its value is :  ρ g (λ/Ɛ) (1 -) [Nm -1 ] NB : The term '' will be discussed in more detail in paragraph VI.

Let us compare equations ( 38) and (1) as a function of 'R' in Figure 10 : We may observe that when 'R' tends towards zero, the pressure in equation ( 1) tends towards infinity, while in equation (38), pressure tends towards a finite value : ΔP(R=0) = 2 ρgλ. It should be noted that the theoretical pressure in a 1 micron diameter drop should be about 2,8 bars according equation ( 1), whereas it should be only of 87.10 -5 bars according to equation (39), value that seems more reasonable to us. 

Maximum size of a drop and critical radius

According to most authors, the critical radius 'R c ' is about 3 mm for water, although, according to H. R. Pruppacher and J. D. Klett [START_REF] Pruppacher | Microphysics of Clouds and Precipitation -Manfred Wendisch[END_REF] , water drops 8 mm in diameter (R c = 4 mm) have been observed and measured. NB : in this paper, we arbitrarily fixed the value of the characteristic length of curvature in Figures 4,4bis, 10 and following, as :  = 4 mm. This corresponds to a critical radius 'R c ' of about 3,3 mm.

It should be noted that until today, the critical radius has not really been the focus of researchers, probably because it was useless in previous formulations (equations of Young-Laplace and Young-Dupré). In contrast, within the framework of our approach, the measurement of 'R c ' is much more important because it allows us to calculate ''. Regarding the theoretical attenuation length 'W g ', that cannot be observed on earth due to gravity forces, it will be discussed in the following paragraph.

Maximum size of a drop of water in weightlessness.

On earth, we know that gravity forces are preponderant and dislocate drops beyond the critical radius 'R c ' as pointed before. However, in weightlessness, according to our equations, water drops with a much greater radius should be observed. This is what cosmonauts were able to observe during experiments carried out in weightlessness, since they obviously handled water drops of more than ten centimeters in diameter [25][START_REF]Comportement de l'eau en apesanteur -Agence spatiale canadienne[END_REF][START_REF]Essorage à bord de l'ISS[END_REF] . Thus, despite the fact that there is no information on such a measurement to date, it could be assumed that the theoretical attenuation length 'W g ' in weightlessness should be greater than the meniscus attenuation length 'W m ' observed on Earth.

Let us remember that in equations (8-11), the tensioactivity energy per unit volume 'u(x)' has been balanced with the potential gravity energy per unit volume 'E pp (x)' and the constant 'u 0 ' has been calculated as a function of intensity of gravity.

In weightlessness, gravity is zero and we should theoretically restart from the expression : u(x) = u 0 . Anyway, it can be assumed that the pressure in the weightless drop can be expressed in terms of stress gradient as the one in gravity. According to this hypothesis, we can keep the expression (39) of drop pressure and consider the parameter '' as independent of gravity : ΔP = .

Moreover, considering that there is no longer critical radius in weightlessness, we can also keep the parameter '' and calculate the theoretical pressure in the drop using equation (37). Then, we can plot the theoretical pressure variation beyond 'R c ' as in Figure 11 and extrapolate a hypothetical value of 'W g ' that should be around 10 centimeters.

According to (39), the drop should theoretically remain in compression, even if the pressure variation is very small. Note that the calculated pressure variation is really small compared to the atmospheric pressure that is carried out in a space capsule for the survival of astronauts.

It is also very small in comparison with the pressure of human breath, i.e. around 0,1 bars or 10 4 [Nm -2 ]. This means that the drop should be easily deformed or dissociated by a slight breath…

Figure 11 -Theoretical pressure variation in a drop in weightlessness

Although there is no information yet about attenuation length measurement, about meniscus height or about the maximum curvature radius in weightlessness, our hypothesis remains plausible and consistent with the observation by cosmonauts of water drops of more than ten centimeters in diameter 25-27 in weightlessness.

V Case of a drop deposited on a solid surface

The equation of Young-Dupré

In the theoretical case of a deposited drop on a solid surface, the Young-Dupré 5 equation is generally used. According to equation ( 2) and as described in Figure 1, the following three projected surface tensions are supposed to equilibrate as : γ LV cos(θ) = γ SV -γ SL .

Thus, for a given set of values ' LV ', ' SL 'and ' SV ', there should be only one value of the angle ''. Therefore, the contact angle should be considered as a constant and there should be only one possible shape of drop whatever its volume.

However, if we observe a set of different-sized water droplets deposited on the same surface like those in Figure 12, we see droplets of variable shapes. More precisely, we may observe that the small drops seem to have a shape ranging from a pseudo-sphere to a hemisphere, whereas the very large drops seem to rather have a semi-ellipsoid shape. Despite the fact that the liquid and the substrate are the same, it seems that the contact angle '' is not constant.

To explain this drift, many authors generally consider that if the contact angle varies from one drop to another, this is due to surface roughness and impurities that cause a deviation of the contact angle predicted by the Young-Dupré equation. Some authors do not agree with this proposition : in his study of advancing or receding drops, Rafael Tadmor [START_REF]Rafael Tadmor -Line energy and the relation between advancing, receding, and young contact angles[END_REF] recognizes that the contact angle depends on the volume, while on its side, Lasse Makkonen [START_REF] Makkonen | A thermodynamic model of contact angle hysteresis[END_REF] considers that the contact angle does not depend on roughness or impurities, but that upon sliding of a drop, the solid-vapor interface disappears and a solid-liquid interface forms at the advancing contact line.

Correspondingly, the solid-liquid interface disappears and a solid-vapor surface is formed at the receding contact line.

Figure 12 -Photos of water drops of varying sizes

In this paper, instead of attempting to interpret the Young-Dupré equation, we will rather try to model different drop shapes using our equations. We will first apply our approach to the case of a theoretically hemispherical drop and afterwards, we will apply it to other geometric shapes such as 'semi-ellipsoids' and 'pseudo-spheres'.

Preamble to the application of our approach to the case of drops deposited on a solid surface

Boundary conditions :

Let us recall that in the meniscus case studied in paragraph 2.1, we could consider that tensioactivity and gravity forces are in equilibrium because the liquid surface is large compared to the meniscus dimensions.

In the spherical drop case analyzed in paragraph 4.1, it has been seen that the liquid surface can no longer be considered large in relation to the drop dimensions and we can no longer consider that the forces are in equilibrium.

Likewise, in the case of a drop deposited on a solid surface, neither the liquid surface nor the solid contact surface can be considered large, and it is not possible to assume that the forces are in balance.

In fact, a balance of forces can only be achieved when the radius is equal to the critical radius, that is, when the drop weight is equal to the sum of the tensioactivity forces.

As in the spherical drop case, the drop is always in compression and it is precisely this compression that keeps it in its shape. Therefore, we will write here, not equations but inequations and we will consider that equilibrium is reached only when the drop radius reaches its critical value, noted here as 'R ch '. Note on the value of 'R ch ': Literature provides little information on the critical radius value of a hemispherical drop, probably because authors generally use Young-Dupré equation.

In contrast, in our approach, the critical radius value is of importance because it is related to the solid-liquid interface gradient parameters. Finally, we must note that in the case of a hemispherical drop, when the radius is greater than the critical radius, it seems that gravity does not dislocate the drop as in the case of a spherical drop, but rather causes its transformation into a larger non hemispherical drop .

Application of our approach to the case of a hemispherical drop deposited on a solid surface

Let us start with the theoretical analysis of a perfectly hemispherical drop. Two types of interaction forces are considered in Figure 13 : the liquid-vapor interaction forces at the drop surface, and the solid-liquid interaction forces at the liquid-solid contact interface (we will talk about the precursor film later). The resultant of tensioactivity forces is opposed to gravity forces : -As long as the radius is smaller than the critical radius 'R ch ', tensioactivity forces are greater than gravity forces -When the radius is equal to the critical radius, tensioactivity forces balance gravity forces -When the radius is greater than the critical radius, gravity transforms the hemispherical drop into a larger drop, for example hemi-ellipsoid. According to our approach and unlike the Young-Dupré equation, we consider here that the liquid-vapor interface forces are opposed to both gravity and solid-liquid interface forces and that they are large enough to maintain the fluid within the hemisphere's volume. Before calculating the forces components, let us first analyze the stress gradients.

The liquid-vapor interface stress gradient

The liquid-vapor interface stress gradient ' LV (x)' is radial and, as in the spherical drop case, it defines the drop shape. As it is radial, it can be written according to 'x' or according to 'z' as below :

 LV (z) = - g            (40)
The gradient has a negative value because the drop in compression.

Horizontally and as schematized in Figure 14a, the liquid-vapor interface forces bring the drop edges towards its center. These forces are opposed to the solid-liquid interface forces that tend to spread the drop. Boundary values :

The horizontal component of the gradient is maximum at the drop edge, that is :  LV (z=0 ; x=R) =  g  In the center, its value is minimal but not zero :  LV (z=R ; x=0) =  g  .

The solid-liquid interface stress gradient

As stated in the boundary conditions of paragraph 5.2, the solid-liquid stress gradient of a hemispherical drop deposited on a solid surface is different from that observed in the meniscus case.

In the meniscus case, the stress gradient ' SL (x)' represents a gradient of vertical deformation forces parallel to the wall (along 'z' axis). The stress gradient is opposed to gravity and decreases along 'x-axis' from the wall to the 'bulk'. In contrast, in the hemispherical drop case, the solid-liquid stress gradient is linked to horizontal deformation forces parallel to the support plane (along 'x' axis).

The solid-liquid stress gradient can be written as in equation ( 41), where we can keep the attenuation constant '' of equation ( 15), but where we assume a maximum stress parameter '' different from that of the meniscus ''. The solid-liquid stress gradient is limited by the drop edges and it theoretically tends to distort the hemisphere created by the tensioactivity liquid-vapor forces. As schematized in Figure 14a, the deformation forces are parallel to the support and the gradient can be written as a function of 'z' or as a function of '(R-x)' as :

 SL (z) =  g  (41) 
where :

 SL (x) : is the solid-liquid interface stress gradient [Nm -2 ] or [Jm -3 ] x : is the axis parallel to the support [m] z : is the axis perpendicular to the support [m]  : is the maximum stress parameter

[m]  : is an attenuation constant [m -1 ] W h : is the exponential attenuation length [m]
Limit values : Horizontal solid-liquid forces are maximum at the solid surface level (z=0) and minimum at the drop top.

The solid-liquid stress gradient ' SL (z)' is also maximum at the solid surface level :

 SL (z=0 ; x=R) =  g  In contrast, at the drop top, the solid-liquid stress gradient is minimal but not zero :   SL (z=R ; x=0) =  g  . As indicated above, tensioactivity liquid-vapor forces are compressive and large enough to force the drop to take a hemispherical shape, whereas solid-liquid forces and gravity forces tend to spread it. Hence, we can assume that the solid-liquid spreading forces of a hemispherical drop deposited on a solid surface are weaker than those observed in the meniscus case.

We will see later that the solid-liquid stress parameter of the hemispherical drop '' is indeed weaker than the stress parameter '' of the meniscus. NB: regarding the mathematical limit of the drop edge, it should be remembered that a number of experimenters observed a deformation of the foot drop, due to the 'precursor film' phenomenon [START_REF] Elie | étalement des gouttes sur une surface plane : loi de Tanner[END_REF][START_REF] Popescu | Cazabat -Precursor films in wetting phenomena[END_REF][START_REF] Pirouz | An Interferometric Study of Spreading Liquid Films -MIT[END_REF] . We will analyze this specific phenomenon later.

Stress gradients resultant in the hemispherical drop

As represented in Figure 14b, the horizontal stress resultant in hemispherical drop can be written as :

 H Res (z) = - LV (z) +  SL (z) + g z .z'(x) (42) 
Where the component of gravity gradient is obtained by projection on the drop profile and where : Knowing that the equation of the circle is : z(x) = and that its derivative is : z'(x) = x/z(x), we can rewrite (42) as : Note that the stress gradient graph has no use in calculating the parameters, because equilibrium cannot be calculated at the level of gradients but at the level of forces. Indeed, it is the balance of forces, calculated by integrating gradients, that will allow us to calculate the solid-liquid parameter '', knowing the hemisphere critical radius 'R ch '.

  LV (
 H Res (z) = -g  + g  + g x(z) (43) 

Balance of horizontal forces in the hemispherical drop

Tensioactivity horizontal forces are calculated by integrating the above gradients.

In the hemispherical drop case, the following inequation can be written as :

R-g  + Rg  + R 2  ρg x(z) 0 (44) 
Where : 'R 2  ρg x(z)' is the hemispherical drop weight, that is : ρg (2/3) R [START_REF] De Gennes | Wetting : Statics and dynamics[END_REF] . NB : Note that even if we have a half-sphere, the total pressure is calculated by integration on the perimeter '2R' as in the case of the sphere, because there is a substrate response that balances the vertical compressive forces.

After integration, we obtain :

  -  (1/3) R 2 (45) 
Thus, when the 'R' radius remains lower than the critical radius 'R ch ', the drop theoretically remains hemispherical.

When 'R' is greater than 'R ch ', the hemispherical drop transforms into a greater non-hemispherical drop, for example of semi-ellipsoidal shape.

When the radius is equal to the critical radius (R = R ch ), inequality (45) becomes an equality.

Estimation of '' and of the critical radius 'R ch '

By analogy with what we did in the spherical drop case with equation ( 34), we should be able to calculate '' knowing the value of 'R ch '. However, as there is no information on the value of the critical radius for a hemispherical drop, it can only be estimated by setting the value of '' and writing the balance between tensioactivity forces and drop weight as in equation (46) represented Figure 15 : ], we got : R c = 3,3 mm. These parameters could be determined more accurately through experimental measurements.

  -  (1/3) R ch 2 (46)

Pressure calculation in the hemispherical drop

The pressure in the hemispherical drop is calculated as :

P = g {R- + R } / R 2 (47) 
Either, after integration :

P = (2g/R) {(1 - ) - (1 - )} (48) 
This equation can be compared to that of the pressure in the sphere (38, 39), that is close to that of Young-Laplace.

Let us now consider the case of an ellipsoid-shaped drop.

Application of our approach to the semi-ellipsoid drop case

The semi-ellipsoid drop case is often mentioned in literature to describe a wetting drop, i.e. a flattened drop that spreads more or less widely due to its size or to a high solid-liquid surface tension, such as the semiellipsoid drop schematized Figure 16. We will study here the hypothesis of a semi-ellipsoid drop of circular base, called ellipsoid of revolution.

The standard equation of a semi-ellipsoid of revolution of diameter '2L' and of height 'H' is the following :

x 2 /L 2 + z 2 /L 2 + y 2 /H 2 = 1.
And its volume is given by : V se = 2/3  HL [START_REF] Jurin | An account of some new experiments, relating to the action of glass tubes upon water and quicksilver[END_REF] .

Boundary conditions :  The height 'H' of an ellipsoid is by definition lower than the base radius 'L' : H < L.  Note that when 'H > L', we move to a pseudo-spherical shape model (that will be studied below)  The maximum drop height should not exceed a critical height that will be noted 'H c '.

Concept of critical height in the case of a semi-ellipsoid drop

Whereas an ellipsoid of revolution has two dimensions, height and base radius, one may wonder whether there is a critical radius or a critical height. Note that the literature mentions semi-ellipsoid drops of about 10 to 15 mm in diameter. Authors talk about dimensions beyond 'capillary length', such as those measured by Frederic Elie [START_REF] Elie | Etalement des gouttes sur une surface plane : loi de Tanner[END_REF][START_REF] Lellah | [END_REF] . Thus, it can be assumed that the critical radius of a semi-ellipsoid drop should be greater than 5 mm. In fact, one can observe Figure 12 that there are large semi-ellipsoid drops looking a bit like puddles, and that these drops are not destroyed beyond a given radius in contrast to what is observed in the case of a spherical drop (the case of a rain drop for example). However, it can be seen that these drops have a height limit, suggesting that if there is no critical radius, there is nevertheless a critical height 'H c '. We will see further that this is what our equations lead to.

Stress gradients resultant in the semi-ellipsoid drop

The horizontal stress gradients resultant in the semi-ellipsoid drop is :

 H Res (x) = - LV (x) +  SL (x) + g z(x) (49) 
Where this time, 'z(x)' is the semi-ellipsoid drop profile. The theoretical ellipsoid profile in a plan 'x0z' is given by : x 2 /L 2 + z 2 /H 2 = 1

The semi-ellipsoid drop profile can be written as : z(x) = (H/L) As previously, 'R 2  ρg x(z)' is the semi-ellipsoid drop weight, i.e. : ρg 2/3  HL 2 .

The resultant horizontal stress gradient in the semi-ellipsoid drop can be written as :

 H Res (x) = -g  + g   g (H/L) (50)
Where the tensioactivity liquid -vapor ' LV (x)' and solid-liquid ' SL (x)' stress gradients are written as a function of 'L' and 'H'.

NB : we will not trace here the stress gradients as we did for hemisphere because such a graph has no use in the calculation of parameters, knowing that the equilibrium is not calculated at the level of gradients but at the level of the forces.

Balance of forces in the semi-ellipsoid drop

As indicated in Figure 16, horizontal forces are exerted on the perimeter '2L' and we can write :

L {-g  +g  } + ρg 2/3  HL 2 0 (51) 
NB : It should be noted that, as in the case of hemisphere, the integration is done on the semi-ellipsoid drop perimeter '2L', because there is a substrate response that balances vertical compressive forces.

Inequation (51) gives, after integration:

H 3/L {(  -        (52) 
The particular case of hemisphere (L=H ) : When : L=H, we find again equation (45) that we obtained for hemisphere by replacing the base radius 'L' and the height 'H' with the hemisphere radius 'R'. This is consistent with the fact that when the hemispheric drop radius is greater than the critical radius 'R ch ', it turns into a larger drop, for example a semi-ellipsoid drop.

In Figure 17, we drew a diagram of equation (52). As mentioned above, there seems to be no critical radius, but rather a critical drop height 'H c '. The drawn line represents the critical drop height value 'H c ' as a function of the semi-ellipsoid drop base radius 'L'. It corresponds to the balance of the tensioactivity forces with the weight, that is to say :

H c = 3/L {(  -  (53)
Where 'H c ' is the critical drop height.

Remarks :

 The curve of equation (53) stops at 'H=L', where we find again the hemisphere equation with a critical radius of around 3,8 mm.  We have drawn in dotted lines the area where : 'H>L', as it is related to the pseudo-sphere case that will be analyzed later.  Inequation (52) corresponds to the hatched area under the curve of equation (53). For a given value of the base radius 'L', inequation (52) corresponds to any value of 'H H c ', in the hatched area under the curve. In this diagram, the hemispherical drop is represented by the straight line 'H=L' that stops at : L= Rc.

Pressure calculation in the semi-ellipsoid drop

The semi-ellipsoid drop pressure is calculated on the surface 'L 2 ' as :

P = g { L -g  + L g  } / L 2 (54) 
Namely :

P = 2g/L {(  -        (55)
This equation can be compared to that of the pressure in the sphere (38) and in the hemisphere .

To clearly identify the theoretical values authorized by our model, we must now trace the other drop shape, namely the pseudo-spherical drop. The volume of a pseudo-spherical drop 'V ps ' is calculated as that of a sphere from which a spherical dome of height '2R-H' has been removed, namely : V ps = (4/3)R [START_REF] De Gennes | Wetting : Statics and dynamics[END_REF] -(2R-H) 2 (R+H)/3. As for the hemisphere and for the hemi-ellipsoid, horizontal forces in the pseudo-sphere are calculated by integrating gradients ' LV (z)'et ' SL (z).

Application of our approach to the case of a pseudo-spherical drop

Resultant stress gradients in the pseudo-spherical drop

Preliminary assumption : we suppose that the substrate response to vertical compressive forces is equal and opposite to the contribution of the spherical dome. Horizontal stress gradients in the pseudo-spherical drop are calculated as follows :

  SL (z) : is the solid-liquid interface stress gradient o It integrates from z=0 to z=H on the perimeter section '2R b '   LV (z) : is the liquid-vapor interface stress gradient, negative because in compression o It integrates from z=0 to z=R on the perimeter '2R' as a whole sphere from which we subtract the contribution of a spherical dome   ca LV (z) : is the stress gradient of the spherical dome. It subtracts from the liquid-vapor interface stress gradient and it is calculated on the perimeter section '2R b '  R(z) : is the delta response of the substrate to vertical compressive forces. It is negative and it also integrates on the perimeter section '2R b '. It opposes the stress gradient of the spherical dome and it will therefore cancel it.  E pp : is the hydrostatic pressure gradient (or potential gravity energy per unit volume)

o It is exerted vertically and its horizontal component is obtained as before o By integration we can calculate the weight as: P gps = ρg {(4/3)R [START_REF] De Gennes | Wetting : Statics and dynamics[END_REF] -(2R-H) 2 (R+H)/3} NB : As for hemisphere and for hemi-ellipsoid cases, it is useless to draw the stress gradients graph since the equilibrium is not calculated at the level of gradients but at the level of the forces.

Balance of forces in the pseudo-spherical drop

The resultant of forces is calculated by integrating : the liquid-vapor stress gradient on the drop perimeter at the equator (2R), the solid-liquid stress gradient and the spherical dome stress gradient on the base (2R b ), as in the following inequality : Regarding the drop shapes, we know by definition that for a spherical drop, radius is limited by 'R c ' and that for a hemispherical drop, radius is limited by 'R ch '. It means that for drops of radius 'L' greater than 'R ch ', we should have ellipsoids.

In contrast, nothing prevents a small drop from having an ellipsoid shape.

So, according to our equations, we should theoretically observe small drops of any shape but we should not theoretically observe big hemispherical drops neither big pseudo-spherical drops when radius is greater than 'R ch '. Meanwhile, according to photos seen in the literature, it would appear that small and medium-sized drops have often a pseudo-spherical shape or other, while the larger ones have often a semi-ellipsoid shape.

Analysis of the precursor film around the drop edge

Let us recall that in the area surrounding liquid drops deposited on a solid surface, some researchers [START_REF] Elie | étalement des gouttes sur une surface plane : loi de Tanner[END_REF][START_REF] Popescu | Cazabat -Precursor films in wetting phenomena[END_REF][START_REF] Pirouz | An Interferometric Study of Spreading Liquid Films -MIT[END_REF] have in many cases detected the presence of a precursor film.

In previous paragraphs, we have examined different drop shapes without taking into account this precursor film because it was by definition beyond the theoretical limits we set (x>R or x> L).

In the meniscus case, in paragraph 2.10, we hypothesized that liquid vapor molecules could condense on the wall and we postulated that the precursor film profile stopped by definition on contact with the liquid since we go from a gaseous medium to a liquid medium.

In the case of a drop deposited on a solid surface, this hypothesis is clearly wrong since the researchers who studied the precursor film speak of a modification of the drop foot.

We will nevertheless keep this hypothesis in our modeling of drops deposited on a solid surface and define a theoretical solid-vapor interface gradient of the same formalism that one defined in equation ( 16) for meniscus.

In the meniscus case, the solid-vapor stress gradient equation allowed us to represent the precursor film as a function of the horizontal axis 'x' in Figure 4bis. The calculated precursor film height is of a few millimeters whereas its thickness is very thin, because the horizontal attenuation distance is of only a few hundred nanometers.

In contrast, in the case of a drop deposited on a solid surface, forces are horizontal and the solid-vapor stress gradient is expressed as a function of the vertical axis 'z' as :

 SV (z)  g  (60) 
where :

z : is the orthogonal direction to the substrate  SV (z) : is the solid-vapor interface gradient in [Nm -2 ] or [Jm -3 ]  : is a parameter related to the precursor film width [m] : is an attenuation constant [m -1 ]

In the same way, we assume that the precursor film profile can be written as: The figure indicates that if the precursor film width is a few millimeters, its thickness is very thin due to a vertical attenuation distance of only a few hundred nanometers.

X(z)  (61) 
The figure also shows that the parameter '' can be compared to the width of the film, since when 'z=0' we have 'X='.

NB: We supposed here that the precursor film stops at the drop edge (when x=R), which means that the width of the film should be theoretically independent of the drop size. In fact, in the absence of experimental measurements, we do not know if the width of the film remains constant or if it depends on the drop size. Theoretically, it can be assumed that the thickness of the film is measured at 'x 0', when the curve is close to the axis. As in the meniscus case, the attenuation distance is very short and the precursor thickness is then very small in comparison with the drop radius. With parameters used in Figure 20, we can calculate a maximum precursor film thickness of around 100 nm and a width of about 5 mm, values close to those measured by H. P. Kavehpour et al. [START_REF] Pirouz | An Interferometric Study of Spreading Liquid Films -MIT[END_REF] .

One can also ask oneself what effect the precursor film can have on the drop cohesion.

With the parameters values for '' and '' in Figure 20 and integrating equation (61) over the film width, we can calculate, as will be seen below, an equivalent term solid-vapor ' V ' of the order of 10 -6 [N]. This value is much lower than that of the liquid-vapor surface tension, which is of the order of 10 -1 [N]. So, according to our equations, the precursor film should have a very little influence on the drop cohesion forces. This is not entirely realistic given that some researchers [START_REF] Elie | étalement des gouttes sur une surface plane : loi de Tanner[END_REF][START_REF] Popescu | Cazabat -Precursor films in wetting phenomena[END_REF][START_REF] Pirouz | An Interferometric Study of Spreading Liquid Films -MIT[END_REF] are talking about a modification of the drop foot.

In the case of the precursor film, our equations remain very theoretical and the parameters should be measured experimentally by varying the nature of the support, pressure conditions, temperature, drops size, etc. Anyway, this formulation has the merit of prompting us to think about nature of the parameter ''. According to our hypotheses, the width of the precursor film should be independent of the drop size. However, if we assume a film formation according to an Avrami-like nucleation process [START_REF] Avrami | [END_REF]13 , it might be considered that the film is formed by condensation of vapors of the liquid from the drop. This means that if the drop is too small, there will be too little matter to evaporate and therefore too little matter to condense. Therefore, the width of the precursor film should grow with drop size, until the drop reaches a minimum size from which the precursor film no longer grows. We have to acknowledge in this case that there are many things to check by experience and that it is beyond the scope of this paper, namely that of an experience of thought.

VI Link between the tensioactivity gradient '(x)' and the surface tension '' : definition of an equivalent term ''

Of course, the question inevitably arises whether we can link our modeling and more specifically the previously defined term '' to the classical surface tension ''.

So, we are going to try to make a connection between our equations that use a force gradient per unit area, and the equations of the classic surface tension expressed in terms of force per unit length.

P = (2/R) { L -S } (71) 
Where :

 L = g ((1 -)  S = g ( (1 -) We can also use these terms to rewrite the balance of forces in the hemispherical drop of equation ( 51) :

(L - S ) (1/3) ρg R 2 (72)

Here we have reached a point where the two theories diverge: it is clear that our equation (72) cannot be compared to that of Young-Dupré (2), because the two approaches are really different.

(v) Regarding the equivalent solid-vapor term ' V ', we have calculated in paragraph 5.7 on the precursor a value of the order of 10 -6 [Nm -1 ] for water. This value is very small compared to the equivalent liquid-vapor term ' L ' that is of the order of 10 -1 [Nm -1 ]. According to our equations, this means that the solid-vapor surface tension should have a very little influence on the meniscus and drop cohesion, except for drop foot formation.

After observing a convergence in the first three cases, we observe a strong divergence in the last two. We are going to interpret this discrepancy from a phenomenological point of view in the next paragraph.

Phenomenological interpretation

From a phenomenological point of view, the manifestations of tensioactivity (surface tension) are caused by forces, pressure forces that can create a meniscus, cause a capillary rise or form drops and bubbles. We will therefore analyze the points of discrepancy between the force gradient per unit surface (or pressure gradient) used in this paper and the classically defined surface tension, expressed in terms of force per unit length by looking at the pressure forces at the interfaces. In the case of a hemispherical drop as shown in Figures 13 and14a, we consider in this paper essentially two types of interaction forces : the liquid-vapor interaction forces normal to the drop surface (compressive forces) and the solid-liquid interaction forces that cause spreading of the drop. The resultant of these forces is opposed to gravity force that also spreads the drop. In It can be seen that the horizontal projection of liquid-vapor interaction forces are both directed towards the drop center in the two visions (' L ' and ' LV '). However, it is not the same for horizontal projection of solidliquid interaction forces that are oriented from center to edge in our vision (' SL '), while the ' SL ' vector is oriented towards the drop center in the Young-Dupré vision.

Two other discrepancies appear :

 The Young-Dupré equation takes into account a ' SV ' vector, whereas we consider in this paper that the equivalent solid-vapor term ' V ' is too weak to influence the overall drop shape.  The Young-Dupré equation doesn't take into account the gravity effect, whereas we consider that gravity has a significant impact on the drop cohesion (notion of critical radius).

These discrepancies are actually found in other cases : -In the meniscus case, according to Young-Dupré, the ' SV ' vector should be turned down as in Figure 1, whereas we consider in this paper that tensioactivity forces create an upward-facing vertical deformation. It is the same for gravity, which we believe limits the meniscus rise, whereas it is not considered into Young-Dupré equation. -In the spherical isolated drop case of Figure 9b, the calculation of pressure according to our equations is consistent with that of Laplace equation (1). However, we consider that the term 'L', which is calculated by integrating the normal compression gradient, is therefore radial, whereas the surface tension ' SL ' is considered as tangential.

What about dimensional similarity of terms '' and ''

Even if there is a discrepancy between our vision and that of Young-Dupré, we have seen that the terms '' and '' have sometimes the same value. One can therefore wonder where this similarity comes from .The answer is dimensional. However, in the case of a drop, the surface tension ' LV ' is defined as tangential to the surface : it can be written as a tangential force per unit length  [F t /L]. Whereas, according to our equations, the normal forces gradient integral ' v ' is a pressure multiplied by a unit length, i.e. a normal force per unit length : [F n /L].

The similarity therefore comes from the fact that, when calculating the total system pressure (as in Laplace law) or when calculating the forces balance (with Wilhelmy plate or Jurin's law), we obtain the same result regardless of the equations.

The discrepancies appear when we try to compare our equations to that of Young-Dupré.

Conclusion

We have seen that although the equivalent term ' v ' coming from the pressure gradient integration and the surface tension '' have the same dimension and close values when calculating the balance of systems, the approaches are radically different.

It must be concluded that the definition of equivalent terms to compare our equations to the classical ones using in particular the equation of Young-Dupré doesn't seem to us really useful.
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 3a Figure 3a -Scheme of theoretical attraction (solid-liquid) and repulsion (liquid-vapor) forces at the interfaces of meniscus (short range) Figure 3b -Scheme of reorganization gradient in meniscus according to equation (11) (long distance)

Figure 4 -

 4 Figure 4 -Calculated meniscus profiles in a glass of water using following parameters : { B=1,5.10 -3 [m]; A=235 [m-1]; 1.10-3 m;  =167 [m -1 ]; .10 -3 [m]; =409 [m -1 ] }

20 )

 20 Thus, by arbitrarily fixing the values of '' and '', the theoretical curves of the Figure4biscan be drawn.

Figure 4bis -

 4bis Figure 4bis -Calculated meniscus profiles in a glass of water using following parameters: { B=1,5.10 -3 [m]; A=235 [m-1]; 1.10-3 m;  =167 [m -1 ]; .10 -3 [m]; =409 [m -1 ]; 5.10 -3 m; =5.10 4 [m -1 ] }

Figure 5a -

 5a Figure 5a -Calculated meniscus profiles for mercury using following parameters : {.10 -3 m; =850 [m -1 ]; =1.10 -3 [m]; =650 [m -1 ]; .10 -3 m; =.10 4 [m -1 ]} Figure 5b -Overview of mercury meniscus in a glass tube showing the existence of a precursor film

  the measured surface tension [N/m] F mes : is the force measured by the microbalance [Kg] L : is the plate perimeter (L= 2w+2d) [m] w : is the plate length [m] d : is the plate thickness [m] θ : is the contact angle between the plate and the liquid
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 6 Figure 6 -Wilhelmy plate : The capillary force is proportional to the plate perimeter and to the surface tension 'γ LV '

Figure 7 -

 7 Figure 7 -Capillary rise of liquid in a capillary tube

Figure 8 -

 8 Figure 8 -Compared curves of the capillary rise of liquid in a capillary tube using following parameters : { B=1,58.10 -3 [m]; A=235 [m-1]; γ LV ≈ 72. 10 -3 [N m -1 ] ;  ≈ 62. 10 -3 [N m -1 ] }

Figure 9a -

 9a Figure 9a -Liquid-vapor interface stress gradient effect at the liquid-vapor interface of a drop and at the surface of a liquid

Figure 9b -

 9b Figure 9b -Compression gradient ' LV (x)' in a spherical drop of water due to compression forces. The gradient is maximum at the surface and decreases towards the center.

Figure 10 -

 10 Figure 10 -Equation of pressure variation in a drop : comparison of (38) with the equation of Young-Laplace (1) {using following parameters :  =4.10 -3 [m];  = 409 [m -1 ]}

Figure 13 -

 13 Figure 13-Hemispheric drop on a solid surface. Drawing of compressive forces at the liquid-vapor interface and of spreading forces at solid-liquid interface

  z) : is the liquid-vapor interface stress gradient, negative because in compression o It radially applies around the perimeter '2R' and on an arch of height 'R' in the case of hemisphere o In absolute value, it is maximum at : z=0 and minimum at : z=R   SL (z) : is the solid-liquid interface stress gradient o It applies around the perimeter '2R' and on an arch of height 'R' in the case of hemisphere o It is maximum at : z=0 and minimum at : z=R  E pp : is the pressure gradient (or potential gravity energy per unit volume) o It vertically applies on the support surface 'R 2 ' and its horizontal component is obtained by projection on the drop profile, that is : E pp =g z . z'(x) o The pressure gradient is maximum at : x=0 (z=R) and minimum at : x=R (z=0) o Its integral allows to calculate the weight as : P gh = R 2 ρg z(x) = ρg (2/3) R 3

Figure 14a -

 14a Figure 14a -Scheme of gradients of horizontal compression and dilatation forces in hemispheric dropFigure 14b -Graph of resultant gradient : (z) =  LV (z) +  SL (z) + g x(z) Using following parameters : R= 1 mm ;  = 4 mm,  = 409 [m -1 ],  = 167 [m -1 ],  = 1 mm

Figure 15 -

 15 Figure 15 -Graph of equation (46) using following parameters : = 4 mm, = 409 [m -1 ], = 167 [m -1 ]. By fixing : = 1 mm, we get : R ch = 3,84 mm.
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 16 Figure 16 -Figure 16 -Scheme of horizontal stress gradients in a semi-ellipsoid drop

Figure 17 -

 17 Figure 17 -Graph of the semi-ellipsoid critical height 'H c ' as a function of basic radius 'L' following equation (53). For a given 'L' radius, 'H' values are smaller than 'H c '.

Figure 18 -

 18 Figure 18 -Scheme of horizontal stress gradients in a pseudo-spherical drop

5. 6

 6 Diagram of various types of liquid drops deposited on a solid surface In summary, we can now gather the inequations of the various drop types studied in this paper. Keep in mind that our equations correspond to theoretically perfect drop shapes. Critical height diagram : Figure 19 is a height diagram of various drop shapes deposited on a solid surface by merging inequalities (35, 45, 52 and 57). The height 'H' has been plotted as a function of semi-ellipsoid drops radius 'L' and as a function of pseudo-spheres base radius 'R b '.

Figure 19 -

 19 Figure 19 -Height diagram of various drop shapes as a function of semi-ellipsoid drops base radius 'L' following (52) and as a function of pseudo-spherical drops base radius 'R b ' following (57)

Figure 20

 20 Figure20 draws equation (61) using arbitrary values for parameters '' and ''. The figure indicates that if the precursor film width is a few millimeters, its thickness is very thin due to a vertical attenuation distance of only a few hundred nanometers. The figure also shows that the parameter '' can be compared to the width of the film, since when 'z=0' we have 'X='.

Figure 20 -

 20 Figure 20 -Calculated film profile according to equation (61) using parameters : { 5.10 -3 m; =5.10 7 [m -1 ] }

Figure 20 ,

 20 our vision of Figure 14a has been compared to the one of Young-Dupré described Figure 1.

Figure 20 -

 20 Figure 20 -Comparison of force vector schemes in a hemispherical drop according to Young-Dupré Equation and to this paper

  Indeed, from a dimensional point of view, the pressure gradient [P] being a force gradient per unit area [F/S], its integral has the dimension of a pressure multiplied by a unit length : [P.L] or [(F/S).L], i.e. a force per unit length [F/L]. The terms '' have then the same dimension as the classic surface tensions '' : [F/L].

  

Using a gradient of forces per unit area, we have rewritten the equations of tensioactivity in terms of force per unit surface or energy per unit volume, whereas they are classically written in terms of force per unit length or energy per unit surface. Such writing in terms of force gradient per unit surface allowed us to reinterpret the previous equations, to provide in particular an improved expression of the Laplace's law, to interpret the behavior of water in zero gravity and to model the formation of semi-ellipsoidal and pseudo-spherical drops.

Note that the contribution of the stress gradient of the spherical cap was cancelled by assuming that the substrate response to the compression forces is equal and opposite to this contribution (leading to elimination of the terms in brackets '{}' in (56)).

In fact, this hypothesis can be easily verified by applying the following two special cases to equation (57), i.e. the case of a spherical drop (when : R b =0) and the case of a hemispherical drop (when : R b =H) :  Particular case of a spherical drop (R b =0) When : R b =0, we get : H=2R and equation (57) yields equations (34, 35) obtained for the sphere, where the balance of resulting forces with weight is reached when the radius is equal to the critical radius 'R c '.

 Particular case of a hemispherical drop (R b =H) When : R b =H, we get : H=R and equation (57) yields equation ( 46) obtained for the hemisphere where the balance of resulting forces leads to inequality. Let us recall that in the case of the hemispherical drop, the balance is reached when the radius is equal to the critical radius 'R ch '. When the radius is greater than the critical radius, the hemispherical drop transforms into a greater drop, for example of semi-ellipsoid shape. Now, as depicted in Figure 19, inequality (57) enables the drawing of the height diagram 'H' as a function of the base radius 'R b ' for the pseudo-spherical drop . Inequality (57) has been merged with inequality (52) that traces the semi-ellipsoidal drop height as a function of the radius 'L'. We can take advantage of it to represent the cases of sphere (zero contact) and hemisphere and draw the diagram of the different types of drops deposited on a substrate. The interpretation of this diagram has been reported in paragraph 5.6.

Pressure calculation in the pseudo-spherical drop

The pseudo-spherical drop pressure can be calculated on the surface 'R 2 ' using (56) as :

with : R b =  Namely :

We may observe that this equation differs slightly from the one of the semi-ellipsoid to the factor '(R b /R)'.

Definitions

In paragraph 3.2, we previously defined '' as an equivalent term to the classically defined surface tension '', both terms having the same dimension in [Nm -1 ]. The term '' is obtained by integration of the stress gradient in the normal direction to the surface and, as the gradient is expressed as a force per unit area, its integral is then expressed as a force per unit length.

Depending on the type of interface, the following terms : ' S ', ' L ' and ' V ' can be defined :

 An equivalent solid-liquid term ' S ' corresponding to the solid-liquid surface tension ' SL ' such as :

 An equivalent liquid-vapor term ' L ' corresponding to liquid-vapor surface tension ' LV ' such as :

 An equivalent solid-vapor term ' V ' corresponding to solid-vapor surface tension ' SV ' such as :

First, let us see if we can link the terms '' defined above to the classically defined surface tensions '' through the following cases.

Comparison of equivalent terms '' to surface tensions ''

Let us compare the terms '' and '' in the following five cases.

(i) Let us start with the generic case of an extended water surface, case that allows the equivalent term ' L ' obtained by integrating the stress gradient ' LV (z)'to be compared to generic term ' LV '.

In the case of an extended water surface as shown in the right part of the Figure 9a, tensioactivity forces cannot bend the surface because the volume is large. The equivalent term ' L ' is then obtained by integrating the tensioactivity gradient ' LV (z) over an interval ranging from zero to infinity (at a distance greater than the attenuation distance 'W') as :

The integration of ' LV (z)' in the normal direction at the surface gives a force per unit length (or an energy per unit area) ' L ' dimensionally and numerically comparable to surface tension ''. With the previously estimated values of the parameters '' and '' for water, a generic value of ' L ' of 72.10 -3 [Nm -1 ], identical to that classically given in the literature for surface tension ' LV ', is obtained. Thus, the calculated generic term ' L ' has a value equal to the generic value of the surface tension ' LV '

(ii) In the meniscus case as represented in Figure 3a, we consider that the meniscus shape is due to the conjunction of solid-liquid and liquid-vapor tensioactivity forces. Using equations ( 24) and ( 29), the resulting term ' R ' can be linked to the resulting stress gradient ' R (x)' such as :

Considering that the meniscus is free to extend to attenuation distance 'W m ', integration gives :

In paragraph 3.2, it has been noted '' and linked to the product ' LV .cos(θ)' generally measured by experimenters. Here, the term ' R ' must be considered as a combination of ' S ' and ' L '. This resulting term is the one obtained in the measurements made using the Wilhelmy tensiometer and in the capillary tube case (Jurin's law).

With the values of parameters 'A' and 'B' previously estimated for water (A = 316 [m -1 ] and B = 2.10 -3

[m]), a value ' L ' of 62.10 -3 [Nm -1 ] is obtained. This value corresponds to the value usually assigned to water surface tension (72.10 -3 [Nm -1 ]) with a 30 degrees angle.

(iii)

In the case of a spherical isolated drop as shown in Figure 9a, tensioactivity forces bend the surface because the volume is small compared to the attenuation distance 'W g '. In this case, only liquid-vapor interaction forces are at stake and the equivalent term ' L ' can be calculated by integration of the liquid-vapor stress gradient ' SL (r)' through equation ( 31) as :

In the gravity field, integration gives :

Where the drop radius 'R' is by definition smaller than the critical radius 'R c ' and much smaller than 'W g '.

The equivalent term ' L ' can be related to the classical surface tension ' LV ' by calculating the drop pressure as in equation (39), than can be compared to Laplace's equation (ΔP = ) such as :

Where ' L ' is equivalent to 'γ LV ' and can be written as :

. With the values of parameters '' and '' previously estimated for water and a maximum radius of 4 mm, a value ' L ' of 77.10 -3 [Nm -1 ] is obtained, close enough to the values given for ' LV '.

In contrast, in weightlessness, we have seen in equation ( 37) that the maximum drop radius is larger than in gravitational field and can tend towards 'W g ' as in the case of equation (67) :  L ρ g λ/Ɛ. In this case, the generic value of ' L ' is also obtained, i.e.: 72.10 -3 [Nm -1 ], value identical to that classically given in the literature for surface tension ' LV '.

(iv)

In the case of drops deposited on a plane surface as shown in Figures 13, 16 and 18, the conjunction of solid-liquid and liquid-vapor tensioactivity forces leads to the formation of drops whose shape varies from a semi-ellipsoid (wetting drop) to a pseudo-sphere (non wetting drop).

In the hemispheric drop case of Figure 13, ' S ' and ' L ' terms can be calculated and introduced in the pressure equation (51) that can be rewritten as :

VII DISCUSSION

Some questions arise regarding our thinking experience, especially in the construction of the model. We have the opportunity to discuss some of these issues here.

In this paper, we formulate the hypothesis that, at the liquid interfaces, there is a tensioactivity gradient per volume unit, gradient that acts at millimeter distances.

To support our thinking experience, we hypothesize that the molecules at the liquid-air and solid-liquid interfaces are reorganized according to a stationary process of creation-destruction, in such a manner that the degree of molecular organization decreases in a gradient from the interface to the bulk, where the molecules return to Brownian disorder.

(1) Regarding the stationary state, one may question whether Brownian disorder could prevent the reorganization achieved by the tensioactivity energy gradient. Our hypothesis 2 is based on the observation that the meniscus stationary state is reached after only a few tenths of a second [START_REF] Delannoy | Les surprises de la montée capillaire[END_REF][START_REF] Soligno | Roij -The equilibrium shape of fluid-fluid interfaces: Derivation and a new numerical method for Young's and Young-Laplace equations[END_REF][START_REF] De Gennes | Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves[END_REF] in water, whereas the Brownian diffusion mechanism is very slow (indeed, a water molecule moves in average about 0,3 mm per minute with a Brownian diffusion coefficient close to 10 -9 [m 2 s-1 ]). Thus, as mentioned earlier, the organization process is faster than the diffusion mechanism of Brownian disorder.

(2) Concerning the molecular reorganization process by creation-destruction of cluster-type structures built using short-lived bonds such as hydrogen bonds, one may wonder whether hydrogen bonds are strong enough, i.e. if their binding energy is greater than that of Brownian movement. Knowing that hydrogen bonds enthalpy is of the order of 1-4 [kcal/mol], i.e. close to that of Van der Waals' forces in the case of water [START_REF] Steiner | The Hydrogen Bond in the Solid State[END_REF] , their binding energy is therefore greater than the amount of energy used in Brownian movement (around 0,88 [kcal/mol]). NB: note that hydrogen bonds certainly have a very short lifespan (around 2.10 -13 s) [START_REF] Smith | Unified description of temperature-dependent hydrogen bond rearrangements in liquid water[END_REF] , but their importance is paramount in the structure and nature of water, since they are for example effective enough to allow water to boil at 100 degrees, while its boiling temperature should theoretically be around -80°C if hydrogen bonds didn't exist.

(3) On the other hand, one may wonder whether the cluster stabilization energy is not too high compared to the one of hydrogen bonds. Concerning water clusters '(H 2 O) n ', their stabilization energy has been calculated by several authors [START_REF] Maheshwary | Narayanasami Sathyamurthy -Structure and Stability of Water Clusters (H2O)n, n ) 8-20: An Ab Initio Investigation -Department of Chemistry[END_REF][START_REF] Russoa | Water-like anomalies as a function of tetrahedrality[END_REF] Note that the water clusters phenomenon is still poorly understood and that it is currently considered as one of the unresolved problems of chemistry [START_REF]Rafael Tadmor -Line energy and the relation between advancing, receding, and young contact angles[END_REF] . Nevertheless, the hypothesis of maintaining these structures in their stationary state is plausible since Brownian disorder cannot kinetically prevent their construction thanks to hydrogen bonds.

VIII CONCLUSION

In this paper, we used a thought experiment to reformulate the classical surface tension equations. Our hypothesis is that beyond the forces acting at molecular distances, there is at the interfaces a tensioactivity energy gradient per unit volume acting at millimeter distances. This gradient could result from a molecular reorganization at the liquid interfaces, according to a stationary process of creation/ destruction. In the case of water, such an organization could be achieved through the construction of short-lived structures using hydrogen bonds.