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Abstract

We consider k-dimensional discrete-time systems of the form xn+1 = F (xn, . . . , xn−k+1)

in which the map F is continuous and monotonic in each one of its arguments. We define a

partial order on R2k
+ , compatible with the monotonicity of F , and then use it to embed the

k-dimensional system into a 2k-dimensional system that is monotonic with respect to this poset

structure. An analogous construction is given for periodic systems. Using the characteristics of

the higher-dimensional monotonic system, global stability results are obtained for the original

system. Our results apply to a large class of difference equations that are pertinent in a variety

of contexts. As an application of the developed theory, we provide two examples that cover a

wide class of difference equations, and in a subsequent paper, we provide additional applications

of general interest.

AMS Subject Classification: 39A30, 39A60, 37N25.

Keywords: Embedding; global stability; local stability; periodic solutions; rational difference

equations; Ricker model.

1 Introduction

We begin by providing a motivational and fundamental example of a one-dimensional map that

illustrates the notion we aim to generalize in this paper. Let f be a continuous decreasing function

that maps an interval I ⊂ R into itself. We write f(↓), with the arrow indicating the monotonicity.

When f has no cycles of period two, a sequence of iterates of f (i.e., solutions of xn+1 = f(xn))

spirals in and converges to a fixed point of f as shown in Fig. 1. This figure depicts a fundamen-

tal principle, which encompasses the core concepts that we aim to generalize and transform into

practical mechanisms.

Define on R2
+ the so-called south-east partial ordering (≤λ)

(x1, x2) ≤λ (y1, y2) ⇐⇒ x1 ≤ y1 and y2 ≤ x2. (1.1)

*Corresponding author: zsharawi@aus.edu. This work was done while the first author was on sabbatical leave
from the American University of Sharjah.
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Figure 1: The “Cobweb convergence” of a sequence xn+1 = f(xn), with f decreasing. The sequence is embedded
along the diagonal in the form (xn, xn). When f has no cycles of length two, the converging spiral illustrates “box
convergence”, which we develop for higher-dimensional maps (see §2).

Then define the two dimensional map G : R2
+ → R2

+ by

G(x, y) = (f(y), f(x)). (1.2)

Because the function f is decreasing, the function G is non-decreasing with respect to ≤λ, i.e.

for X,Y ∈ R2
+, X ≤λ Y =⇒ G(X) ≤λ G(Y ). In other words, if X = (x1, y1), Y = (x2, y2), with

x1 ≤ x2 and y1 ≥ y2, then f(x1) ≥ f(x2), and f(y1) ≤ f(y2). Now, choose a < b, P = (a, b) and

Q = P t = (b, a) such that

P <λ G(P ) <λ G(Q) <λ Q

(note that G(P ) <λ G(Q) is automatic since P <τ Q). We call this a trapping box (see §2.1). Pick

X0 = (x0, x0) in [a, b]2 so that P ≤λ X0 ≤λ Q. Let x0 be an initial condition of xn+1 = f(xn), and

iterate the map G on the points P,Q and X0 = (x0, x0) to obtain

P ≤ Gn(P ) ≤ Gn(x0, x0) = (xn, xn) ≤ Gn(Q) ≤ Q , n ≥ 1.

The nested red spiral path illustrates this in Fig. 1. If G has a unique fixed point and, both

sequences {Gn(P )}n≥0 and {Gn(Q)}n≥0 are converging to the same point, it follows that the se-

quence (xn, xn), and thus xn, is converging as well.

The notion of transitioning to a higher-dimensional system and employing partial ordering to

ensure convergence, as seen above, is not new; for instance, see [1–4] and the references therein.

However, it is neither sufficiently developed nor optimally exploited. So we aim to remedy this

deficiency and develop a general theory that applies to any difference equations of the form

xn+1 = F (xn, xn−1, . . . , xn−k+1), k ≥ 1, where F : V → R+. (1.3)

Also, F is monotonic in each one of its components (increasing or decreasing) and V can be any
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closed subset of R (in our case, we work with V = R,R+ or [a, b]). Our approach hinges on

associating to each monotonicity pattern ↑τ of F a partial ordering ≤τ on V k as in (1.1), and a

suitable “diagonal” extension of (1.3) to V k × V k, as in (1.2). This extended system is monotonic

with respect to ≤τ , therefore enjoying convergence properties under mild conditions (existence of

trapping boxes and uniqueness of fixed points). As usual, X ≤τ Y means X <τ Y or X = Y. These

ideas are generalizable to p-periodic difference equations

xn+1 = Fn(xn, xn−1, . . . , xn−k+1), k ≥ 1, where Fn : Rk
+ → R+. (1.4)

Note that the case k = 2 is well-treated in the literature [2–5], and it was the motivation for this

paper.

The origin of the embedding approach and the idea of decomposing an operator into two

monotonic components goes back to numerical analysis. This can be traced back to a paper by

Schröder [6] and a book by Collatz [7], see [1–3] and the references therein for a good account of

history citation. The approach has been effectively utilized across different research areas [4,5,8,9].

The novelty in the embedding notion resides in defining a suitable partial order and an appropri-

ate extension. A known partial order is to consider a convex closed cone V, and define X <λ Y

whenever Y − X ∈ V. For instance, this is found to be effective when the map F of Eq. (1.3) is

non-decreasing in each one of its arguments [10]. However, it fails to address the issue of mixed

monotonicity. In the subsequent sections, we extensively elaborate on the aforementioned concepts

and provide results in the most inclusive manner feasible.

The structure of this paper is as follows: In Section 2, we define a general partial order compat-

ible with the monotonicity of the k-dimensional map F, then embed the dynamical system into a

higher dimensional dynamical system by constructing an extension of F to a 2k-dimensional map

that is non-decreasing under the new partial order (Proposition 2.7). We give results on global

stability that extend the scope of some previously established results for dimension two (Theorem

2.5 and Theorem 2.11). In Section 3, we extend the results of section two to periodic monotonic

systems (Theorem 3.3). In Section 4, we demonstrate the significance of our developed theory

through some applications that span a wide class of difference equations. In the last section, we

give a conclusion that summarizes the main findings of this paper.

2 Embedding discrete-time systems

Let (V,≤) be a partially ordered metric space, in which V can be R+ or [a, b]. A recursive sequence

in V , with delay k, is any sequence defined by

αF : xn+1 = F (xn, . . . , xn−k+1), k ≥ 1, (2.1)

where F : V k → V is a continuous function and X0 := (x0, x−1, . . . , x−k+1) is a given initial condi-

tion in V . We write S(V ) to denote the set of all recursive sequences in V . Different functions F

can give rise to the same recursive sequence (2.1), so the pair (F,X0) does not uniquely determine

the system in general; only the sequence does.
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An injection Ψ : S(V1) ↪→ S(V2) that sends convergent sequences to convergent sequences is

called an embedding. In general, for an embedding Ψ : S(V1) → S(V2), the convergence of Ψ(α)

does not imply the convergence of α. When it does, we call it a strong embedding. Our approach

now consists in finding a suitable embedding Ψ : S(V ) ↪→ S(V n), for some n, so that the conver-

gence of Ψ(α) can shed light on the convergence of α. We shall describe a specific construction

to accomplish this objective by employing diagonal embeddings and partial orderings. We vastly

expand on known ideas and state certain results as generally as possible.

Rewrite the system (2.1) in vector form as βT : Xn+1 = T (Xn) and

T (Xn) = (F (Xn), xn, . . . , xn−k+2) , where Xn = (xn, . . . , xn−k+1) (2.2)

with an initial condition X0 := (x0, x−1, . . . , x−k+1). Associating to αF the sequence βT gives a

strong embedding S(V ) ↪→ S(V k), meaning again that βT converges if and only if αF does.

Definition 2.1. Let T : V k → V k be as in Eq. (2.2) and r ≥ 2. A “diagonal embedding” of T is

a map G : (V k)r → (V k)r such that the restriction of G to the diagonal is (T, . . . , T ) (r-times).

In this paper, we confine ourselves to r = 2 and G : V k×V k → V k×V k. Now, we build partial

orderings on this product starting from a partial order ≤ on V . We write (V,≤) when we want to

stress that V is equipped with ≤, otherwise, we write V (≤ being implicitly understood).

Definition 2.2. (Monotonic orderings). Let (V,≤) be a partially ordered set (a poset). For any

map τ : {1, 2, . . . , k} → {−1, 1}, we define a partial ordering ≤τ on V k by

(x1, . . . , xk) ≤τ (y1, . . . , yk) ⇐⇒ ∀i,

xi ≤ yi , if τ(i) = 1

xi ≥ yi , if τ(i) = −1.

If τ is a map as above, we write τ∨ its dual defined by τ∨ = −τ . The “duality” simply reflects the

following fact: if X,Y ∈ V k, then X ≤τ Y if and only if Y ≤τ∨ X. We will write interchangeably

(V k,≤τ ) or (V k, τ) to denote the product V k endowed with the ordering ≤τ . Writing X <τ Y

means X ≤τ Y, but X ̸= Y.

The simplest examples of a monotonic ordering are the south-east ordering on V 2, given by (1.1),

and its dual the north-west ordering. The south-east ordering corresponds to τ : {1, 2} → {−1, 1},
τ(1) = 1 and τ(2) = −1. As we explain shortly, this ordering is associated with maps of the form

F (↑, ↓). Similarly, when k = 3, the map τ(1) = 1, τ(2) = −1 and τ(3) = 1 corresponds to the

ordering

(x, y, z) ≤τ (u, v, w) ⇐⇒ x ≤ u , y ≥ v , z ≤ w.

This ordering is associated with maps of the form F (↑, ↓, ↑).

With the partial order τ on V k, we can turn V k ×V k into a poset with the south-east ordering

λ defined as in (1.1), i.e.,

(X1, U1) ≤λ (X2, U2) ⇐⇒ X1 ≤τ X2 and U2 ≤τ U1.
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This poset structure on V k × V k = V 2k is given by the poset product with ordering τ × τ∨. For

convenience, we may write V k×λV
k to indicate the pair (V k×V k, τ×τ∨). Based on our southeast

order λ, we can write λ = τ × τ∨ in general.

2.1 Trapping box

The monotone convergence theorem applies to (V k, τ) when V is a closed subspace of R. This

implies some useful squeeze-type results that are fundamental when applying our technique.

Lemma 2.3. (Monotone Convergence) Let V be a closed subset of R (eg. V = R,R+ or V =

[a, b]), and consider on V k any monotone ordering τ . Suppose G is increasing (resp. decreasing)

with respect to the partial order τ and is bounded above (resp. below) in τ . Define the sequence

ζG : xn+1 = G(xn), n ≥ 0, then ζG converges to a fixed point of G.

Proof. By projecting the sequence onto the i-th factor, we obtain a sequence ζiG in V that is

monotonic and bounded. By the monotone sequence theorem valid for V ⊆ R, this i-th sequence

must converge to yi ∈ V . It follows that ζG converges to (y1, . . . , yk), and this must be a fixed point

of G.

Lemma 2.4. (Squeeze Lemma) Let (V k, τ) as in Lemma 2.3 and ζG : xn+1 = G(xn), n ≥ 0, with

x0 an initial point in V k. Assume we have a “trapping box”, that is there are two points p, q in V k

such that p ≤τ x0 ≤τ q, and p ≤τ G(p), G(q) ≤τ q.

(a) Suppose G is increasing with respect to the partial order ≤τ . If G has a unique fixed point, then

the sequence ζG converges to that unique fixed point.

(b) Suppose G is decreasing with respect to ≤τ . If G has no 2-cycles, then the sequence ζG either

converges to a fixed point of G, or it is eventually bounded between two fixed points of G.

Proof. (a) If G is increasing, p ≤τ Gn(p) ≤τ Gn(x0) ≤τ Gn(q) ≤τ q, ∀n ≥ 1. The sequence

{Gn(p)}n≥0 is increasing, and the sequence {Gn(q)}n≥0 is decreasing, so both converge to the

unique fixed point, which must also be the limit of ζG = {Gn(x0)}n≥0. (b) By induction, we obtain

two bounded decreasing sequences, namely {G2n(q)} and {G2n+1(p)}, and we obtain two bounded

increasing sequences, namely {G2n(p)} and {G2n+1(q)}. Furthermore, the sequence {Gn(x0)} is

squeezed between {Gn(p)} and {Gn(q)}. In particular,

G2n(p) ≤τ G2n(x0) ≤τ G2n(q) and G2n+1(q) ≤τ G2n+1(x0) ≤τ G2n+1(p).

Therefore, we must have {Gn(p)} → {p̄1, p̄2} and {Gn(q)} → {q̄1, q̄2}. Since G has no 2-cycles, we

must have p̄1 = p̄2 = p̄ and q̄1 = q̄2 = q̄. Now, if p̄ = q̄, then ζG converges to p̄; otherwise, ζG is

eventually bounded between p̄ and q̄, i.e., p̄ ≤τ lim inf ζG ≤τ lim sup ζG ≤τ q̄.

We now arrive at the following main statement about the convergence of our original discrete

system (2.1). Recall that x is a fixed point of F if F (x, . . . , x) = x, and if an orbit of system (2.1)

converges to x, then x must be a fixed point of F .

Theorem 2.5. (Nested Box Convergence) Let αF and βT as in Eqs. (2.1) and (2.2). Suppose

G is a diagonal extension of T to V k × V k, and there is a partial ordering τ on V k so that G is

increasing on V k ×λ V
k. Assume there is P,Q ∈ V k ×λ V

k so that P ≤ G(P ), G(Q) ≤ Q. If G has
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a unique fixed point in [P,Q], then Gn(Y0) converges for all Y0 = (X0, X0) that satisfy P ≤ Y0 ≤ Q.

In that case, (2.1) converges to a fixed point of F .

Proof. This is a direct application of Part (a) in Lemma 2.4 to the sequence ζG = {Gn(X0, X0)})n≥0

in (V k × V k, τ × τ∨). For the initial value Y0 = (X0, X0), the sequence Gn(Y0) corresponds to the

sequence βT × βT . This sequence converges iff βT converges iff αF converges.

2.2 Monotonic sequences under the new partial orders

To achieve convergence for the given αF with delay k, the game plan is to construct a partial order

τ and an extension Gτ as described in Theorem 2.5. This will lead to creating an appropriate

trapping box for the discrete dynamical system mentioned in Eq. (2.1). Let (V,≤) and (W,⪯) be

two partially ordered sets, and let f : V → W be a function. We say that f is increasing with

respect to the given partial orders if x ≤ y =⇒ f(x) ⪯ f(y). In particular, for (V,≤), when τ is a

chosen partial ordering on V k, then F : V k → V is an increasing function with respect to τ if for

X,Y ∈ V k,

X ≤τ Y =⇒ F (X) ≤ F (Y ). (2.3)

Such a function is denoted by F (↑τ ). If τ is the south-east order, that is, τ(1) = 1 and τ(2) = −1,

then F (↑τ ), which is denoted F (↑, ↓) in the literature [4, 11].

Given a monotone function F : V k → V as above and its “vector-form” T as given in Eq. (2.2),

we define a higher-dimensional system (and call it an embedding of the original system) as follows:

Definition 2.6. (Diagonal Embedding). Assume F (↑τ ) on (V k, τ), and letX = (x1, x2, . . . , xk), U =

(u1, u2, . . . , uk) ∈ V k. Define Gτ : V k × V k → V k × V k as follows:

1. If τ(1) = 1, then Gτ (X,U) = (F (X), y2, . . . , yk, F (U), z2, . . . zk),

where for 1 ≤ i ≤ k − 1 ,

yi+1 = xi and zi+1 = ui if τ(i)τ(i+ 1) = 1

yi+1 = ui and zi+1 = xi if τ(i)τ(i+ 1) = −1.

2. If τ(1) = −1, then Gτ (X,U) = (F (U), y2, . . . , yk, F (X), z2, . . . zk), where the entries 2 to k

are chosen similarly as in the first case. In other words, one switches x’s and u’s when the

function at that coordinate i changes monotonicity.

Remark 2.1. It is an immediate observation that the diagonal of V 2k is invariant under Gτ , for

any choice of τ . In particular, Gτ is a diagonal extension of T in the sense that

Gτ (x1, x2, . . . , xk, x1, x2, . . . , xk) = (T (x1, x2, . . . , xk), T (x1, x2, . . . , xk)).

The main reason for introducing the diagonal extension Gτ is the following proposition, which

shows that Gτ is a suitable choice of extension to which Theorem 2.5 applies perfectly well.

Proposition 2.7. If F (↑τ ), then Gτ is increasing with respect to the λ = τ × τ∨ partial ordering.

Before giving the proof, we illustrate and further clarify the construction of Gτ .

Example 2.8. Below are examples of the map F (↑τ ) and its associated extension Gτ .
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(i) Consider F (↑, ↓). Then τ : {1, 2} → {−1, 1} is such that τ(1) = 1 and τ(2) = −1 (the southeast

ordering again), and

Gτ (x1, x2, u1, u2) = (F (x1, x2), u1, F (u1, u2), x1).

Notice the interchange between u1 and x1 because τ(1)τ(2) = −1.

(ii) Consider F (↑, ↓, ↑). Then τ : {1, 2, 3} → {−1, 1} is such that τ(1) = 1, τ(2) = −1 and τ(3) = 1,

and

Gτ (x1, x2, x3, u1, u2, u3) = (F (x1, x2, x3), u1, u2, F (u1, u2, u3), x1, x2).

We switched entries between the block of x’s and the block of u’s twice because τ changed

monotonicity twice (at those entries).

(iii) Consider F (↓, ↓, ↑). Define τ : {1, 2, 3} → {−1, 1} such that τ(1) = −1, τ(2) = −1 and

τ(3) = 1. Then

Gτ (x1, x2, x3, u1, u2, u3) = (F (u1, u2, u3), x1, u2, F (x1, x2, x3), u1, x2).

(iv) Consider F (↑, ↑, ↓). Define τ : {1, 2, 3} → {−1, 1} such that τ(1) = 1, τ(2) = 1 and τ(3) = −1.

Then

Gτ (x1, x2, x3, u1, u2, u3) = (F (x1, x2, x3), x1, u2, F (u1, u2, u3), u1, x2).

Proof. (of Proposition 2.7). Let X,U, Y, V ∈ V k, and assume (X,U) ≤λ (Y, V ). The claim we

must establish is that G(X,U) ≤λ G(Y, V ). We write X = (x1, . . . , xk), Y = (y1, . . . , yk), U =

(u1, . . . , uk) and V = (v1, . . . , vk). We start by unraveling the first inequality: (X,U) ≤λ (Y, V )

means that X ≤τ Y and V ≤τ U , and thus more explicitlyxi ≤ yi and vi ≤ ui, if τ(i) = 1

xi ≥ yi and vi ≥ ui, if τ(i) = −1.
(2.4)

Notice that xi ≤ yi ⇐⇒ ui ≥ vi. What we need to show is that G(X,U) ≤λ G(Y, V ). Based on

Definition 2.6, there are two cases to consider.

Case one: τ(1) = 1. In that case, we write

G(X,U) = (F (x1, . . . , xk), a2, . . . , ak, F (u1, . . . , uk), a
′
2, . . . , a

′
k)

G(Y, V ) = (F (y1, . . . , yk), b2, . . . , bk, F (v1, . . . , vk), b
′
2, . . . , b

′
k) (2.5)

with entries as specified in Definition 2.6. The inequality G(X,U) ≤λ G(Y, V ) breaks down into

two inequalities that we must check. We start with the first

(F (x1, . . . , xk), a2, . . . , ak) ≤τ (F (y1, . . . , yk), b2, . . . , bk). (2.6)

Since X ≤τ Y , then F (X) ≤ F (Y ) by (2.3) and this is compatible with τ(1) = 1. We have to verify

7



next that ai ≤ bi if τ(i) = 1 and ai ≥ bi if τ(i) = −1. We know that these entries are of the form

(i) (ai, bi) = (xi−1, yi−1) or (ii) (ai, bi) = (ui−1, vi−1).

depending on the alternation in the sign of τ .

Subcase 1: Suppose τ(i) = 1. Then either (ai, bi) = (xi−1, yi−1) when τ(i−1) = 1 (by the definition

of G), in which case ai ≤ bi since xi−1 ≤ yi−1, or τ(i− 1) = −1 and (ai, bi) = (ui−1, vi−1), in

which case also ai ≤ bi since xi−1 ≥ yi−1 and thus ui−1 ≤ vi−1 according to (2.4).

Subcase 2: Suppose τ(i) = −1, then also from the construction of G, we must make sure that

ai ≥ bi. Here too, two cases can occur : if τ(i − 1) = −1, then (ai, bi) = (xi−1, yi−1) and

xi−1 ≥ yi−1 as desired, or (ii) τ(i−1) = 1, and (ai, bi) = (ui−1, vi−1), in which case ui−1 ≥ vi−1

according to (2.4), and so ai ≥ bi as well.

Hence, we established the inequality in (2.6). We need to show next that for the second block in

(2.5), the ordering is also satisfied, i.e.

(F (v1, . . . , vk), b
′
2, . . . , b

′
k) ≤τ (F (u1, . . . , uk), a

′
2, . . . , a

′
k). (2.7)

Here, τ(1) = 1 as we set out from the beginning, so we need to make sure that F (U) ≥ F (V ). But

this is ensured by (2.3) since U ≥ V . Checking the other entries is similar and thus omitted.

Case two: τ(1) = −1. This case proceeds in the same manner as case one.

2.3 Fixed points and global attractors

We clarify the fixed points of G and their relationship with F. As before, F : V k → V is increasing

with respect to τ : {1, 2 . . . , k} → {−1, 1} as in Definition 2.2, and αF : xn+1 = F (xn, . . . , xn−k+1).

Define the point (depending on x, y)

Pτ = (x1, . . . , xk) such that xi =

x, if τ(i) = 1

y, if τ(i) = −1,
(2.8)

and define P t
τ its “dual” obtained by replacing x’s by y’s. Notice that, by construction, if x < y

then Pτ <τ P t
τ .

Lemma 2.9. The fixed points of Gτ are the points Pτ × P t
τ satisfyingF (Pτ ) = x , F (P t

τ ) = y , if τ(1) = 1

F (Pτ ) = y , F (P t
τ ) = x , if τ(1) = −1.

(2.9)

Proof. Write ξ = (x1, . . . , xk, u1, . . . , uk) ∈ V k × V k. We solve for G(ξ) = ξ. The argument will

show that Pτ = (x1, . . . , xk) and P t
τ = (u1, . . . , uk). As before, the proof breaks down into two

cases: τ(1) = 1 and τ(1) = −1. We can first assume that τ(1) = 1. In this case, G(ξ) = ξ equates

to

(F (x1, . . . , xk), y2, . . . , yk, F (u1, . . . , uk), z2 . . . , zk) = (x1, . . . , xk, u1, . . . , uk) (2.10)
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where yi is either xi−1 or ui−1, and zj is either xj−1 or uj−1, as stipulated in Definition 2.6.

We set x = x1 and y = u1. The point of the proof is that (2.10) will produce two sequences

x = c2 = · · · = ck−1, where ci is either xi or ui, and a complementary sequence y = d1 = · · · = dk−1,

where similarly, di is either xi or ui. The point Pτ = (x1, . . . , xk) is obtained by replacing all of its

entries in terms of x or y. Moreover, the fact that the sequences (ci) and (di) are complementary,

meaning that if ci = xi then di = ui, and vice-versa, implies that (u1, . . . , uk) = P t
τ . It follows that

ξ = (Pτ , P
t
τ ), and (F (Pτ ), F (P t

τ )) = (x, y) which is what we wanted to prove. The case τ(1) = −1

is similar.

Remark 2.2. (Pseudo fixed points). If (Pτ , P
t
τ ) is a fixed point of G, then so is (P t

τ , Pτ ). If x = y,

Pτ = (x, . . . , x) and the fixed points of G are situated along the diagonal of V 2k. In this case, x is

a fixed point of F. Fixed points (Pτ , P
t
τ ) and (P t

τ , Pτ ) for x ̸= y, are called pseudo or artificial fixed

points of F. Those points come in pairs. In particular, if G has a unique fixed point, then x = y

and x is a fixed point of F .

Finding the fixed points of the extension map G consistently necessitates solving two equations

with two unknowns, as seen in the subsequent example.

Example 2.10. We consider some diagonal extensions Gτ and describe their fixed points.

� Assume that F (↑, ↑, ↓). Then Pτ = (x, x, y) and solving (F (Pτ ), F (P t
τ )) = (x, y) is equivalent

to solving the system (F (x, x, y), F (y, y, x)) = (x, y) in x and y. If x = y, then we obtain the

fixed points of F ; otherwise, we obtain the pseudo-fixed points of F.

� Let F (↓, ↑, ↑, ↓). In this case, we have Pτ (y, x, x, y), and we find the fixed points of G by

solving (F (y, x, x, y), F (x, y, y, x)) = (y, x).

Recall that the set of limit points of an orbit O+
F (X0) = {xn}n≥−k is called the omega limit set

of X0, and we denote it by ω(X0). We now state a stability result that gives a unified and general

statement of various known results in the literature [2–4, 12]. This should be viewed as a special

case of Theorem 2.5.

Theorem 2.11. Consider Eq. (1.3) in which V = [a, b]. Define τ so that F is increasing with

respect to τ. If F has no pseudo-fixed points, then for each X0 ∈ V k, ω(X0) is a fixed point of F.

In particular, if F has a unique fixed point x, then x is a global attractor.

Proof. Endow V k with the order ≤τ and let Gτ be the diagonal extension (we will drop the lower

index τ from notation for simplicity). Define mτ and Mτ ∈ V k as follows: The i-th entry of mτ

is a if τ(i) = 1, and it is b otherwise. The point Mτ is the “dual” of mτ obtained by switching

the a’s and b’s. These points are the extreme points for the order τ , that is, for every ζ ∈ V k,

mτ ≤ ζ ≤ Mτ . As a result, the pairs (mτ ,Mτ ) and (Mτ ,mτ ) are extreme points for the order λ on

V k × V k, and necessarily

(mτ ,Mτ ) ≤λ G(mτ ,Mτ ) ≤λ G(Mτ ,mτ ) ≤λ (Mτ ,mτ )

so we always get a trapping box in V k×V k. Since G is increasing with respect to λ by Proposition

2.7, we can apply Theorem 2.5 to obtain that Gn(ζ) converges to a fixed point of G, say ζ̄. For

X0 ∈ V k, set ζ = (X0, X0). The assumption that F has no pseudo-fixed points leaves G with fixed
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points ζ̄ = (x, . . . , x) that are coming from fixed points of F. Therefore, ω(X0) is a fixed point of

F . If this fixed point is unique, it must be globally attracting.

If V = R+, the statement of Theorem 2.11 can be rephrased in the following corollary:

Corollary 2.12. Let V = R+, F : V k → V with F (↑τ ) and Pτ as defined in (2.8). Suppose that F

has no pseudo-fixed points. If for each X0 ∈ V k, there exist x < y such that Pτ <τ X0 <τ P t
τ and

(x, y) <λ (F (Pτ ), F (P t
τ )), then ω(X0) is a fixed point of F. In particular, if F has a unique fixed

point, then it is a global attractor.

Proof. The proof is analogous to that of Theorem 2.11 with the following new ingredients: Firstly,

x < y implies that Pτ <τ P t
τ (2.8). Secondly, (x, y) <λ (F (Pτ ), F (P t

τ )) implies, by construction of

the diagonal extension G, that (Pτ , P
t
τ ) <λ G(Pτ , P

t
τ ) and G(P t

τ , Pτ ) <λ (P t
τ , Pτ ) so that the pairs

(Pτ , P
t
τ ) and (P t

τ , Pτ ) provide the data of a trapping box. We can now apply Theorem 2.5 to obtain

the fixed point globally attracting with respect to the trapping box. Since this process can be done

for each X0 ∈ V k, we obtain the fixed point globally attracting with respect to V.

3 Embedding periodic systems

In this section, we generalize the results of the previous section to non-autonomous p-periodic

difference equations of the form

α : xn+1 = Fn(xn, xn−1, . . . , xn−k+1), k ≥ 1, x0, . . . x1−k ∈ R+, (3.1)

where each map Fj is continuous and monotonic in each one of its arguments, Fn+p = Fn for all

n = 0, 1, . . . and p is the minimal positive integer. Also, Xn+1 = Tn(Xn) can be used to represent

the vector form of Eq. (3.1), with Tn defined as in Eq. (2.2). To stress the role of the individual

maps in the system, we can represent this periodic system by [F0, F1, . . . , Fp−1] or [T0, T1, . . . , Tp−1].

F ix([F0, F1, . . . , Fp−1]) denotes the fixed points of Eq. (3.1) and Per([F0, F1, . . . , Fp−1]) denotes

the periodic solutions. Also, for convenience, we can write Ti,j = Tj ◦ · · · ◦ Ti for all i < j. As

before, based on the monotonicity in the maps Fj , we define the ≤τ partial order, then define the

associated extension Gj for each Fj . So, we obtain a p-periodic system

ξn+1 = Gn(ξn), Gn+p = Gn and Gn : Rk
+ × Rk

+ → Rk
+ × Rk

+. (3.2)

The case p = 2 was considered in [4] when k = 2. Define Φi,j := Gj ◦ · · · ◦Gi, i < j then the fixed

points of Φ0,p−1, i.e., Φ0,p−1(ξ) = ξ play a crucial role in determining the attractors of Eq. (3.2).

As in the one-dimensional case, define Ap,1 to be the divisors of p. Then a fixed point of Φ0,p−1

gives a q-cycle of Eq. (3.2), for some q ∈ Ap,1. A q-cycle of (3.2) that is not a q-cycle of α0,p−1

is called a pseudo (or artificial) q-cycle of Eq. (3.1). However, if the solution of Φ0,p−1(ξ) = ξ is

unique, then it must give a q-cycle of Eq. (3.1) for some q ∈ Ap,1 as we clarify next.

Lemma 3.1. For i = 0, . . . , p − 1, let Ti : U → U and Gi : V → V be continuous maps.

Assume ϕ : U → V is an injective map that satisfies ϕ ◦ Ti = Gi ◦ ϕ, then each of the following

holds true:

(i) If [u0, u1, . . . , uq−1] is a q-cycle of [T0, . . . , Tp−1], then [ϕ(u0), ϕ(u1), . . . , ϕ(uq−1)] is a q-cycle

of [G0, . . . , Gp−1].
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(ii) If [v0, v1, . . . , vq−1] is a q-cycle of [G0, . . . , Gp−1] and there exists a point u0 ∈ U such that

ϕ(u0) = v0, then the iteration of u0 in [T0, . . . , Tp−1] gives a q-cycle.

Proof. Part (i) is straightforward because ϕ is an injective. So, we verify Part (ii). Assume

[v0, v1, . . . , vq−1] is a q-cycle of [G0, . . . , Gp−1], and there exists u0 ∈ U such that ϕ(u0) = v0.

Now, the fact that

Gn ◦ · · · ◦G0(v0) =Gn ◦ · · · ◦G0(ϕ(u0)) = ϕ(Tn ◦ · · · ◦ T0(u0))

and the injective nature of ϕ forces the iterates of u0 under [T0, . . . , Tp−1] to form a q-cycle.

Proposition 3.2. For each j = 0, . . . , p−1, let Gj be the extension of Fj , and let Φi,j = Gj◦· · ·◦Gi.

Each of the following holds true:

(i) If Eq. (3.1) has a q-cycle for some q ∈ Ap,1, then Φ0,p−1 has a fixed point.

(ii) If Φ0,p−1 has a unique fixed point, then Eq. (3.1) has a unique q-cycle for some q ∈ Ap,1.

Proof. The proof depends on Lemma 3.1. There is a q-cycle [x0, . . . , xq−1] of Eq. (3.1) iff there is

a q-cycle [u0, . . . , uq−1] of Xn+1 = Tn(Xn). Note that we have the following relationship between

the maps:

Rk
+ Rk

+

Rk
+ × Rk

+ Rk
+ × Rk

+

Ti

ϕ ϕ

Gi

where the injective map ϕ is defined by ϕ(X) = (X,X). By Part (i) of Lemma 3.1, [ϕ(u0), . . . , ϕ(uq)]

is a q-cycle of ξn+1 = Gn(ξn). Since q divides p, ϕ(u0) is a fixed point of Φ0,p−1. To verify Part

(ii), suppose ξ̄ is a unique fixed point of Φ0,p−1. If ξ̄ is not along the diagonal of Rk
+ × Rk

+, then ξ̄t

must be another fixed point, which contradicts uniqueness. Therefore, ξ̄t belongs to the diagonal,

and the iterates of ξ̄t under ξn+1 = Gn(ξn) give a q-cycle for some q that divides p. Now, consider

the pre-image of this q-cyle under ϕ. We obtain a q-cycle of Xn+1 = Tn(Xn). Hence, we obtain a

q-cycle of Eq. (3.1). The uniqueness of the cycle is obvious, and the proof is complete.

Now, we are ready to give the analog of Theorem 2.11 for periodic systems.

Theorem 3.3. Consider the p-periodic system in Eq. (3.1), where Fj : Rk
+ → R+ and Fj(↑τ )

for each j. Let Pτ as defined in Eq. (2.8), and suppose that Eq. (3.1) has a unique q-cycle

with no pseudo-cycles. If for each X0 ∈ Rk
+, there exists x < y such that Pτ <τ X0 <τ P t

τ and

(x, y) <λ (F (Pτ ), F (P t
τ )), then ω(X0) = Per([F0, . . . , Fp−1]). In particular, Eq. (3.1) has a global

attracting q-cycle for some q ∈ Ap,1.

Proof. Embed the p-periodic system in Eq. (3.1) into a p-periodic 2k-dimensional system ξn+1 =

Gn(ξn) as in Eq. (3.2), where each extension Gn is defined as in Definition 2.6. The map Φ0,p−1 =

Gp−1 ◦· · ·◦G0 maps the closed interval [(Pτ , P
t
τ ), (P

t
τ , Pτ )] (in the λ ordering of Rk

+×Rk
+) into itself,

and consequently, it has a fixed point in that interval. This fixed point contributes to a q-cycle of

the p-periodic system [G0, . . . , Gp−1], and q must be a divisor of p as clarified in Proposition 3.2.

The uniqueness assumption on the q-cycle of Eq. (3.1) and the absence of pseudo cycles make the

q-cycle of [G0, . . . , Gp−1] unique. Some elements of this q-cycle serve as fixed points of Φ0,p−1, and
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consequently, each orbit of Φ0,p−1 converges to a fixed point. Therefore, the q-cycle of [G0, . . . , Gp−1]

is a global attractor, which leads to the q-cycle of Eq. (3.1) being a global attractor.

Our next example illustrates the relationship between cycles of Eq. (3.2) and Eq. (3.1).

Example 3.4. (i) Consider the 2-periodic system

xn+1 = Fn(xn, xn−1, xn−2) =
bxn

1 + xn−2
+ hn mod 2, n = 0, 1, . . .

where h0 = 1, h1 = 3 and b = 4. Define Tj(x, y, z) = (Fj(x, y, z), x, y), then solve T1(T0(X)) = X =

(x, y, z). In this case, we obtain the 2-periodic solution {x̄, ȳ}, where x̄ = 3+ 4
√
6

3 and ȳ = 2+
√
6.

On the other hand, the equation ξn+1 = Gn(ξn) has the unique 2-cycle {η̄1, η̄2}, where η̄1 = (X̄, X̄),

η̄2 = (Ȳ , Ȳ ) and X̄ = (x̄, ȳ, x̄) and Ȳ = (ȳ, x̄, ȳ).

(ii) consider the 2-periodic system

xn+1 = Fn(xn, xn−1, xn−2) =
bxn

1 + x2n−2

+ hn mod 2, n = 0, 1, . . . (3.3)

where h0 = 1.8, h1 = 2.3 and b = 4. Then consider the embedded system

ξn+1 = Gn(ξn), Gj(x1, x2, x3, u1, u2, u3) = (Fj(x1, x2, x3), x1, u2, Fj(u1, u2, u3), u1, x2). (3.4)

Let x̄ ≈ 3.55 and ȳ ≈ 2.84. Eq. (3.3) has the 2-cycle {x̄, ȳ}, which contributes to the 2-cycle

{(X̄1, X̄1), (Ȳ1, Ȳ1)}, X̄1 = (x̄, ȳ, x̄) and Ȳ1 = X̄t
1

of Eq. (3.4). However, Eq. (3.4) has two more 2-cycles, namely {ξ̄, G0(ξ̄)} and {η̄, G[0](η̄)}, where
ξ̄ = (a1, a2, b1, b1, b2, a1), a1 ≈ 2.82, b1 ≈ 4.99, a2 = ba1

1+b21
+ h0 ≈ 2.24, b2 = bb1

1+a21
+ h0 ≈ 4.03 and

η̄ = (b1, b2, a1, a1, a2, b1).

4 Applications

In this section, we provide two illustrative examples that demonstrate the effectiveness of our con-

structed theoretical framework in addressing global stability. The first example is a mathematical

model, while the second covers a broad class of rational difference equations.

4.1 The Ricker model with delays and stocking

Consider the Ricker model with delays in recruitment and constant stocking

xn+1 = F (xn, xn−1, . . . , xn−k+1) = xn exp(r − xn−k) + h, r, h > 0, x0, x−1, . . . , x−k+1 ≥ 0. (4.1)

This equation has a unique positive equilibrium x̄h, which must be larger than h. This model was

previously investigated in [5], specifically with k set to 1. In this example, we aim to examine

the general options for the delay k, apply our established theoretical framework to attain global

stability, and then compare the results with local stability. As observed in the sequel, demonstrating

12



local stability for k > 2 presents a challenging task. We begin by the well-known case k = 0, we

obtain local and global stability when

r < r0 :=x̄h + ln

(
1− h

x̄h

)
=
1

2

(
2 + h+

√
h2 + 4

)
− ln

(
2− h+

√
h2 + 4

2 + h+
√
h2 + 4

)
. (4.2)

When k = 1, we obtain local stability [5] when

r < r1 := h+ 1− ln(h+ 1). (4.3)

When k = 2, the characteristic polynomials is

p(t) = t3 −
(
1− h

x̄

)
t2 + x̄− h.

From the Jury’s necessary conditions, we need p(0) = x̄−h < 1, p(1) > 0 and −p(−1) > 0. p(0) < 1

gives us Condition (4.3) that we obtain when k = 1. The condition p(1) > 0 is valid by default.

The condition −p(−1) > 0 implies −x̄2h + (h+ 2)x̄h − h > 0, and consequently

x̄h < 1 +
h

2
+

1

2

√
h2 + 4).

This condition is, in fact, the same as r < r0 in (4.2). From the Jury’s sufficient conditions, we

need

p(x̄h) = x̄h(x̄h − h+ 1)(x̄h − h− 1)− (x̄h − h)2 > 0.

Since p(−2) = h2 + 4h+ 2 > 0, p(0) = −h2 < 0 and p(h) = h, the intermediate value theorem tells

us there are three real roots, and only one of them is larger than h. Therefore, x̄h loses its stability

when it reaches the largest zero of p(x). This value can be found explicitly; however, we avoid its

formidable expression here and present the curve in Fig. 2. When k = 3, we do the computations

numerically and again give the curve in Fig. 2. As the value of k increases, the task of proving

local stability becomes increasingly difficult.

Next, we turn our attention to global stability based on Theorem 2.11. We have F (x1, . . . , xk) =

x1e
r−xk + h, and consequentially, we consider F (↑, ↑, · · · , ↑, ↓). Therefore, solving F (x1, . . . , xk) =

x1e
r−xk + h leads to solving F (x, x, . . . , x, y) = x. Define ≤τ and G as in Definition 2.6. First, we

investigate the solution of ξ = G(ξ). This gives us

F (x, . . . , x, y) = xer−y + h = x and F (y, . . . , y, x) = yer−x + h = y.

Therefore, we obtain the same result as in the case k = 1 [5]. In particular, the equilibrium solution

(x, y) = (x̄h, x̄h) is the unique solution as long as

r < r∞ :=
1

2

(
h+

√
4h+ h2

)
+ ln

(
1− 2h

h+
√
4h+ h2

)
. (4.4)
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Again, we plot the curve r = r∞ in Fig. 2. At r = r∞, two new solutions emerge, which are

denoted by pseudo-fixed points. We give the conclusion in the following result:

Corollary 4.1. Consider Eq. (4.1) with h > 0, and let r∞ as defined in Eq. (4.4). If r < r∞, then

the equilibrium x̄h is a global attractor for any finite delay k.

Proof. When r < r∞, the equation G(ξ) = ξ has a unique solution. Let a < b and consider

A = (a, . . . , a, b) while B has the components of A switched, i.e., a ↔ b. We have (A,B) <λ G(A,B)

iff

a < aer−b + h and ber−a + h < b.

Let the set of feasible solutions be Ω. Ω is not empty when r < r∞ (cf. [5]). Furthermore, for each

initial condition X0 = (x0, . . . , x−k) there exists (a, b) ∈ Ω such that (A,B) <λ (X0, X0) <λ (B,A)

and (A,B) <λ G(A,B). By Theorem 2.11, x̄h is a global attractor of Eq. (4.1).
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Figure 2: This figure shows the stability regions in the (h, r)−plane for several choices of the delay. The main curve
is the bottom red curve representing r = r∞, which shows the global stability region obtained by our theory. The
curves from top to bottom are as follows: The curve r = r0 represents the boundary of the local and global stability
regions when no delay is involved in the model, i.e., k = 0. The curve r = r1 represents the boundary of the local
stability region when the delay is k = 1. The curve r = r2 represents the boundary of the local stability region when
the delay is k = 2. The curve r = r2 can be found explicitly. The curve r = r3 represents the boundary of the local
stability region when the delay is k = 3. This curve is found numerically. The curve r = r∞ represents the boundary
of the global stability region that is found based on our theory for any finite value of k.

4.2 Rational difference equations

Consider the rational difference equation

xn+1 = F (xn, . . . , xn−k+1) =
a0 +

∑k−1
j=0 aj+1xn−j

b0 +
∑k−1

j=0 bj+1xn−j

, (4.5)
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where a0 = b0 = 1 and, the initial conditions and the coefficients are all nonnegative real numbers.

Here, we have F : Rk
+ → R+. Eq. (4.5) covers a wide spectrum of rational difference equations

[13–15]. Define

A :=
k∑

j=1

aj and B :=
k∑

j=1

bj .

To avoid the trivial case, we consider that not all coefficients are identically zero. Also, the linear

case (i.e., B = 0) is an interesting case that we consider elsewhere. Here, we assume B ̸= 0. Next,

we investigate the equilibrium solutions of Eq. (4.5). The equilibrium solutions are fixed points of

the function

y = L(x) =
1 +Ax

1 +Bx
, (4.6)

which are the zeros of

p(x) = 1 + (A− 1)x−Bx2. (4.7)

We have a unique positive equilibrium solution, as shown by

ȳ =
A− 1 +

√
(A− 1)2 + 4B

2B
, where B ̸= 0.

Now, we proceed to guarantee that F is monotonic in each component. Define

Di,j := det

([
ai aj mod k

bi bj mod k

])
. (4.8)

The subsequent facts summarize possible scenarios that are needed in the sequel and are straight-

forward to verify.

Proposition 4.2. Consider Eq. (4.5), and let Di,j be defined as in Eq. (4.8). If Di,j ≥ 0 for

each j = 1, 2, . . . , k, then F is non-decreasing in its ith component. Similarly, if Di,j < 0 for each

j = 1, 2, . . . , k, then F is non-increasing in its ith component.

Observe that Di,j = −Dj,i, which forces a certain relationship between the coefficients. For

instance, to have F increasing in its ith and i∗th arguments, then the vectors v1 = (ai, bi) and

v2 = (ai∗ , bi∗) must be linearly dependent. We give the following example to show some viable

monotonicity options:

Example 4.3. Consider Eq. (4.5) with delay 3 and B ̸= 0.

(i) F (x, y, z) = 1
1+x+y+z is decreasing in all arguments

(ii) F (x, y, z) = 1+3x+6y+z
1+2x+4y+30z satisfied F (↑, ↑, ↓)

(iii) F (x, y, z) = 1+3x+6y+6z
1+2x+4y+4z is increasing in all arguments

(iv) F (x, y, z) = 1+3x
1+2x+4y+2z satisfies F (↑, ↓, ↓)

(v) F (x, y, z) = 1+3x+3z
1+2x+4y+2z satisfies F (↑, ↓, ↑).

It is clear now that all monotonicity options are possible, and based on this, we proceed to give

our global stability result. Define

Γj = {i : (−1)jF is increasing in its ith argument}. (4.9)
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Proposition 4.4. Define the partial order: ≤τ as given in Definition 2.2 to be compatible with the

monotonicity of F. Let G : Rk
+ × Rk

+ → Rk
+ × Rk

+ be the diagonal extension of F. If Γ0 or Γ1 is

empty, then the only fixed point of G is ξ̄ = (ȳ, . . . , ȳ).

Proof. If Di,j ≥ 0 for all i and j, then G(ξ) = ξ leads to solving the equations

x =
1 + xA

1 + xB
and y =

1 + yA

1 + yB
.

The only solution is x = y = ȳ. If Di,j ≤ 0 for all i and j, then G(ξ) = ξ leads to solving the

equations
1 +Ax

1 +Bx
= y and x =

1 +Ay

1 +By
.

Again, here, the only solution is x = y = ȳ.

Proposition 4.5. Suppose neither Γ0 nor Γ1 is empty. Let Ai :=
∑

i∈Γi
ai, Bi :=

∑
i∈Γi

bi,

Â := A0 −A1 − 1, B̃ = B0 −B1, β = Â
2B0

and B∗ := B0(4B0+4A1Â+Â2)

Â2
. Define the partial order <τ

as given in Definition 2.2 to be compatible with the monotonicity of F . Let G : Rk
+×Rk

+ → Rk
+×Rk

+

be the extension of F. Each of the following holds true:

(I) G has a unique fixed point if one of the following is satisfied:

(i) B1 ≤ B0

(ii) B1 > B0 and Â ≤ 0

(iii) B1 > B0, Â > 0 and B1 ≤ B∗.

(II) If B1 > B0, Â > 0 and B1 > B∗, then G has three fixed points (Pτ , P
t
τ ), where Pτ as defined

in Eq. (2.8) for (x, y) ∈ (ȳ, ȳ), (t0, t1), (t1, t0) and

ti = β − (−1)i
√

1

B̃

(
B̃β2 + 2βA1 + 1

)
.

Proof. Suppose that for all values of j, Di,j ≥ 0 for some values of i while Di,j ≤ 0 for other values

of i. In this case, G(ξ) = ξ leads to solving

x =
1 +A0x+A1y

1 +B0x+B1y
and y =

1 +A0y +A1x

1 +B0y +B1x
,

or equivalently

(A1 −B1x)y = B0x
2 + (1−A0)x− 1 and (A1 −B1y)x = B0y

2 + (1−A0)y − 1. (4.10)

Obviously, the two equations represent hyperbolas unless ȳ = A1
B1

. In this particular scenario, the

two equations can be simplified to x = y = ȳ. Also, x = y = ȳ is a solution regardless of the value

of ȳ. Therefore, we proceed assuming that x ̸= y and the curves of Eqs. (4.10) are hyperbolas. We

begin by considering the case B1 = B0. Substitute and re-write Eqs. (4.10) asy = −x+ Â
B0

+ A1Â+B0
B0(B0x−A1)

x = −y + Â
B0

+ A1Â+B0
B0(B0y−A1)

.
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By subtracting the two equations, we observe that x cannot be different from y. Next, consider the

case B1 < B0. In this case, x and y must be positive zeros of the quadratic polynomial

q(x) = B0(B1 −B0)x
2 − (B1 −B0)Âx+A1Â+B0.

Based on the coefficients’ signs, we use Descart’s rule of signs to conclude that it is impossible

to have both zeros of p positive. Next, assume B1 > B0. If Â ≤ 0, then q(x) − q(y) = 0 gives

x + y = Â
B0

≤ 0. So, the two zeros of q cannot be positive. Thus, we proceed with the Â > 0

case. Based on the signs of the coefficients of q, we obtain two positive zeros or none. Indeed, two

positive zeros bifurcate from ȳ when B1 = B∗. Therefore, we obtain Part (iii) of Case (I) when

B1 ≤ B∗ and Case (II) when B > B∗. It is a computational matter to find the explicit form of the

fixed points, and we omit it.

Note that Part (ii) of Example 4.3 can be used to illustrate Case (II) of Proposition 4.5. Indeed,

we have A0 = 9, B0 = 6, A1 = 1 and B1 = 30. This gives us ȳ = 1
3 , and the other two solutions are(

1
12 ,

13
12

)
and

(
13
12 , 112

)
. Before we give the global stability result, we find it convenient to re-write

Eqs. (4.10) differently. Define

q2(t) =
B0t

2 + (1−A0)t− 1

A1 −B1t
, t ̸= A1

B1
(4.11)

=− B0

B1
t+

∆

B2
1

− 1−
p
(
A1
B1

)
A1 −B1t

,

where ∆ = A0B1 − A1B0 and p is the polynomial defined in Eq. (4.7). This makes the geometric

representation of the hyperbolas in Eqs. (4.10) possible based on whether the equilibrium is larger

or smaller than A1
B1

. However, we show that ȳ < A1
B1

is an invalid option.

Lemma 4.6. Let Γ0 and Γ1 be nonempty, and consider ∆ = B1A0 − A1B0. Suppose B0B1 ̸= 0.

Each of the following holds true:

(i) A0
B0

≥ A
B ≥ A1

B1

(ii) ∆ ≥ 0

(iii) A0 ≥ B0 and A1 ≤ B1

(iv) ȳ > A1
B1

.

Proof. For i ∈ Γ0, we have a1bj ≥ biaj for all j ̸= i. This gives us

ai
∑
j ̸=i

bj ≥ bi
∑
j ̸=i

aj ⇔ aiB ≥ biA.

Sum over all i ∈ Γ0 to obtain A0B ≥ B0A. Similarly, A1B ≤ B1A. This clarifies Part (i) and Part

(ii). Part (iii) is obvious. Finally, to prove Part (iv), observe that Part (iv) is valid if and only if

p
(
A1
B1

)
≥ 0. Since A1 ≤ B1 and ∆ ≥ 0, we obtain

B1(A1 −B1) ≤ A1∆,
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which is equivalent to

p

(
A1

B1

)
=

A1

B2
1

(∆−B1) + 1 ≥ 0.

Next, assume ȳ = A1
B1

. Since p is decreasing on the positive real numbers, we obtain

A1

B1
≤ A

B
≤ A0

B0
⇒ p

(
A1

B1

)
≥ p

(
A

B

)
≥ p

(
A0

B0

)
.

Because p
(
A1
B1

)
= 0 and p

(
A
B

)
= 1 − A

B , we obtain A ≥ B. But the curve of Eq. (4.6) has 1

as y-intercept and y = A
B as the horizontal asymptote. The action converts the function into a

constant value, which we intentionally avoided during the preliminary phase.

Theorem 4.7. Consider Eq. (4.5), and let Γi as defined in Eq. (4.9). Also, consider Ai, Bi, Â and

B∗ as defined in Proposition 4.5. Each of the following holds true:

(I) If Γ0 or Γ1 is empty, then ȳ is a global attractor.

(II) Suppose neither Γ0 nor Γ1 is empty. Then ȳ is a global attractor if one of the following

conditions is satisfied:

(i) B1 ≤ B0

(ii) B1 > B0 and Â ≤ 0

(iii) B1 > B0, Â > 0 and B1 ≤ B∗.

Proof. (I) Suppose Γ1 is empty, or equivalently, Di,j ≥ 0 for all i and j. This means F is non-

decreasing in each one of its components. Let a < b and ξ = (X,Y ), where X and Y are

composed of k arguments with a in each argument of X and b in each argument of Y. Define

the order ≤τ to be compatible with the monotonicity of F as in Definition 2.2 and G(ξ) =

(F (X), a, . . . , a, F (Y ), b, . . . , b). From Proposition 4.5, G has a unique fixed point. Now, ξ <λ G(ξ)

gives us

a <
1 + aA

1 + aB
and b >

1 + bA

1 + bB
.

The feasible set of solutions for these inequalities is {(a, b) : 0 < a < ȳ, b > ȳ}. Therefore, for

each initial condition X0 = (x0, x−1, . . . , x−k+1), there exists a < b such that ξ <λ (X0, X0) <λ ξt.

By Theorem 2.11, Gn(ξ) and Gn(ξt) converge to ξ̄ = (ȳ, . . . , ȳ). Therefore, the orbits of Eq. (4.5)

converge to ȳ. Suppose Γ1 is empty, or equivalently, Suppose Di,j ≤ 0 for all i and j. This means

F is non-increasing in each component. As before, let a < b and ξ = (X,Y ), where X and Y are

composed of k arguments with b in each argument ofX and a in each argument of Y.Define the order

≤τ to be compatible with the monotonicity of F, and define G(ξ) = (F (Y ), b, . . . , b, F (X), a, . . . , a).

Again here, Proposition 4.5 shows that G has a unique fixed. Now, ξ ≤λ G(ξ) gives us

1

1 + aB
≤ b and a ≤ 1

1 + bB
.

The feasible set of solutions for these inequalities is unbounded, and for each initial condition

X0 = (x0, x−1, . . . , x−k+1), there exists a < b such that ξ <λ (X0, X0) <λ ξt. By Theorem 2.11,

Gn(ξ) and Gn(ξt) converge to ξ̄ = (ȳ, . . . , ȳ). Therefore, the orbits of Eq. (4.5) converge to ȳ.
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(II) Suppose neither Γ0 nor Γ1 is empty. Define the order ≤τ to be compatible with the

monotonicity of F. Let x < y and define X = (x1, . . . , xk), where xi = x if F is increasing in its ith

component while xi = y if F is decreasing in the ith component. Let Y = Xt, i.e., switch x ↔ y in

X to obtain Y. Let ξ = (X,Y ) and define G as in Definition 2.6. We obtain ξ ≤τ G(ξ) if x ≤ F (X)

and F (Y ) ≤ y. This implies

x ≤ 1 +A0x+A1y

1 +B0x+B1y
and y ≥ 1 +A0y +A1x

1 +B0y +B1x
.

Therefore, we need to solve the system of inequalities x < y and(A1 −B1x)y > B0x
2 + (1−A0)x− 1

(A1 −B1y)x < B0y
2 + (1−A0)y − 1.

(4.12)

Based on Lemma 4.6, we need to focus on ȳ > A1
B1

. The feasible region of the inequalities is

determined by the boundary curves, which are two hyperbolas. Furthermore, Conditions (i), (ii) or

(iii) ensure the intersection takes place at the unique equilibrium point. Therefore, the asymptotes

of the two hyperbolas are sufficient to determine an unbounded feasible region. Based on the

function q2 of Eq. (4.11), the asymptotes are

x =
A1

B1
, y = −B0

B1
x+

∆

B2
1

− 1

and

y =
A1

B1
, x = −B0

B1
y +

∆

B2
1

− 1.

Figure 3 illustrates the feasible region in this case. Therefore, for any initial condition (x0, . . . , x1−k),

we can find a point (a, b) in the feasible region such that x0, . . . , x1−k ∈ [a, b]. The rest of the proof

is the same as in Part (I).

x

y

α0

α0

y = L(x)

x = q2(y)

y
=

q
2 (x

)

α0 = A1
B1

Figure 3: This figure shows the feasible region of the inequalities in (4.12) when x < y. The functions L and q2 are
given in Eq. (4.6) and Eq. (4.11), respectively.
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5 Conclusion

In this paper, we considered k-dimensional maps of mixed monotonicity and introduced compat-

ible partial orders. Then, we embedded the k-dimensional system into monotonic 2k-dimensional

system. The orbits of the embedded system are used to squeeze the orbits of the original system.

Subsequently, bounded monotonic sequences and their convergence are utilized to establish global

stability. This conclusion was generalized to periodic difference equations of the form

xn+1 = Fn(xn, xn−1, . . . , xn−k+1).

The novelty of our theory lies in its generality to tackle k-dimensional systems for any k. As an

application of our developed theory, we discussed the global stability of the k-dimensional Ricker

model

xn+1 = xne
r−xn−k + h, r, h > 0

and the rational difference equation

xn+1 = F (xn, . . . , xn−k+1) =
1 +

∑k−1
j=0 aj+1xn−j

1 +
∑k−1

j=0 bj+1xn−j

,

where the initial conditions and the coefficients are all nonnegative real numbers. Additionally,

constraints have been imposed on the coefficients to ensure monotonicity in each argument. In

the given case of the Ricker model, sufficient conditions that ensure global stability were derived.

Finding necessary and sufficient conditions for global stability for the general case is an open prob-

lem. The obtained sufficient conditions surprisingly do not rely on the delay value k. This finding

is of paramount significance since it challenges the prevailing notion that delay has a destabilizing

effect. Indeed, the observed effect on local stability seems to diminish as the magnitude of the

delay increases. In the example of a rational equation, we established the existence of a global

attractor by imposing certain constraints on the present coefficients. This outcome encompasses a

broad range of rational difference equations that appear in the literature.
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