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Abstract

We consider the Ricker model with delay and constant or periodic stocking. We found

that the high stocking density tends to neutralize the delay effect on stability. Conditions are

established on the parameters in order to ensure the global stability of the equilibrium solution

in the case of constant stocking, as well as the global stability of the 2-periodic solution in the

case of 2-periodic stocking. Our approach extensively relies on the utilization of the embedding

technique. Whether constant stocking or periodic stocking, the mode has the potential to

undergo a Neimark-Sacker bifurcation in both cases. However, the Neimark-Sacker bifurcation

in the 2-periodic case results in the emergence of two invariant curves that collectively function

as a single attractor. Finally, we pose open questions in the form of conjectures about global

stability for certain choices of the parameters.

AMS Subject Classification: 39A10, 39A30, 92D25
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1 Introduction

As an early attempt to model a population of a single species with non-overlapping generations,

Moran (1950) [1] proposed using a one-hump map that increases to a maximum and then decreases

asymptotically to a non-negative value. Along this line of thought and based on experimental data,

Ricker introduced a density-dependent model that became known in the scientific literature as the

Ricker model [2]

xn+1 = xnf(xn) = xne
r(1−xn

K ), K, r > 0 and x0 ∈ R+ = [0,+∞). (1.1)

In this model, the parameters K and r represent the carrying capacity and the intrinsic growth

rate, respectively. To learn more about the origin and significance of Ricker’s model, and Ricker’s

pivotal contribution in the field of quantitative fishery science, we refer the reader to [3]. Rescaling

can reduce the model to yn+1 = yn exp(r − yn). This model enjoyed a boost of success after the

publication of the two studies by May [4,5], and a third study by May and Oster [6], in which the

model’s intriguing dynamics were investigated, and the global stability of its positive equilibrium
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for 0 < r < 2 was observed. A rigorous proof of the global stability for 0 < r ≤ 2 was developed

later using various techniques such as Lyapunov functions [7], Singer’s theorem [8] and envelop-

ing [9].

While implicit time lags are embedded in discrete systems, explicit time lags caused by signif-

icant recruitment delays must be accounted for in the density-dependent function f. Time delays

are necessary to accommodate the recruitment to the adult stage, which may vary based on the

type of species [10–12]. This mechanism requires that a mathematical model be considered with a

certain time lag N. As a result, Eq. (1.1) becomes

yn+1 = ynf(yn−N ) = yne
r−yn−N . (1.2)

Due to implicit delays, solutions of discrete models are observed to overshoot and undershoot their

equilibrium level and generate oscillations, periodic solutions, or chaos. This tendency is typically

aggravated when explicit delays are incorporated into the system [10, 11, 13]. When a population

exhibits convergence to its equilibrium regardless of its initial density, the phenomenon is called

global stability. Proving mathematically that the equilibrium solution is globally stable becomes a

challenging task when time delays are involved. Under general settings of the density-dependent

map f, Liz et al. [14] found sufficient conditions to obtain global stability when 0 < r < 3
2(N+1) .

This implies 0 < r < 3
4 when N = 1. In a lengthy and technical paper that included computer-

assisted proofs, Bartha et al. [15] established global stability when N = 1 and 0 < r < 1.

Stocking or harvesting can be used as a management tool to achieve various goals, including

chaos reversal and re-stabilization of an equilibrium level [16, 17]. According to [18], constant

rate harvesting is observed to transform contest competition into scramble competition. On the

other hand, constant stocking slows the fluctuation and has a stabilizing effect on equilibrium

solutions [19]. When constant stocking is applied to the Ricker model with delay, Eq. (1.2)

becomes

yn+1 = ynf(yn−1) + h = yne
r−yn−1 + h = F (yn, yn−1), h > 0. (1.3)

It is also worthwhile to consider this equation in terms of perturbation, as was done in [20] in the

absence of time delay. However, Eq. (1.3) becomes intriguing because it includes two significant

factors, namely delay and stocking. The individual impact of delay and stocking on stability

is known to reflect opposing effect, which motivates investigating the interaction between these

factors and their influence on overall stability. Equations of the form yn+1 = ynf(yn−1) + h have

been considered in [18] under the assumption that tf(t) is increasing; however, Eq. (1.3) does not

belong to this category. If the stocking is done through seasonal quotas, the constant h is replaced

by a sequence {hn}, which we assume to be p-periodic. Therefore, Eq. (1.3) becomes

yn+1 = ynf(yn−1) + hn = yne
r−yn−1 + hn = Fn(yn, yn−1), (1.4)

where hn ≥ 0 is a p-periodic sequence and F is defined on the positive orthant R2
+. We continue to

write f(y) instead of er−y whenever we find it convenient. Unlike Eq. (1.1), which has two equi-

librium points x = 0 and x = r, Eq. (1.3) has a unique non-negative equilibrium, which bifurcates

into a p-periodic solution when periodicity is introduced in Eq. (1.4).

Our primary objective is to investigate the global stability of the equilibrium solution in Eq.
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(1.3) and the p-periodic solution in Eq. (1.4). Our method, when it applies, provides a clear geo-

metric understanding for the reason why stability (local or global) holds. This paper is structured

as follows: In Section Two, preliminary findings pertaining to the utilization of the embedding

technique in both autonomous and periodic cases are presented. In the third section, we leverage

the outcomes from Section Two to apply them to Equation (1.3). This section delineates sufficient

conditions on the variable h that ensure global stability in the autonomous case. We determine

“almost completely” the regions of local and global stability in the (h, r) plane, modulo a well-

identified restricted region of uncertainty. In Section Four, we turn our attention to Equation (1.4)

and employ the embedding technique to investigate the 2-periodic case, ultimately establishing

the global stability of the 2-periodic solution under certain sufficient conditions. This paper closes

with a conclusion section that not only summarizes our key findings but also raises pertinent open

questions for further exploration.

2 The embedding technique

Embedding a dynamical system in general into a higher dimensional dynamical system that can

be utilized to classify certain characteristics of the original system is a known approach [21–23].

However, the challenge arises when it comes to the technical details of the approach, particularly

with the partial order in the embedded system. In this section, we build the basic machinery needed

in the sequel. Let V denote a partially ordered metric space, specifically the positive orthant, as

defined for the purposes of this discussion, Rn
+ or [a, b]n for some n. A recursive sequence in V ,

with delay k, is any sequence defined by

αF : xn+1 = F (xn, . . . , xn−k+1), k ≥ −1, (2.1)

where F : V k → V is a continuous function and the initial terms x0, x−1, . . . , x−k+1 are given in

V . These initial terms, together with F , determine the sequence uniquely. We write S(V ), the set

of all recursive sequences in V . This can be topologized as a subspace of V w, the infinite direct

product of V . Notice that different functions F can give rise to the same recursive sequence (2.1),

so only the sequence uniquely determines the system.

Definition 2.1. A continuous injection Ψ : S(V1) ↪→ S(V2), which sends convergent sequences to

convergent sequences, is called an “embedding”. If V1 is a subspace of V2, then there is a canonical

inclusion S(V1) ⊂ S(V2).

It is pertinent to note that, generally, the convergence of Ψ(α) does not entail the convergence

of α for a given embedding Ψ : S(V1) → S(V2).

2.1 Embedding in the autonomous case

Consider the two-dimensional difference equation αF : xn+1 = F (xn, xn−1), where F : R2
+ → R is

any continuous function. We define T (x, y) = (F (x, y), x), so that T (xn, xn−1) = (xn+1, xn) and

its iterations produce a sequence in the plane

(Xn) : (x0, x1), (x1, x0), . . . , Xn := (xn, xn−1),

which entirely describes the dynamics of the system. We refer to T as the “vector form” of the

system αF . The system T has a global attractor means of course that the sequence (Xn) con-

verges, independently of the choice of the initial value within the given domain. The assignment
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(xn) 7→ (Xn) gives an embedding Ψ : S(R) ↪→ S(R2). This is a strong embedding in the sense that

Ψ(α) is convergent if and only if α is convergent.

Next, we write V = R2
+. For every sequence αF ∈ S(V ), we define a 4-dimensional se-

quence ζF ∈ S(V 4) with general term ζn = (Xn, Xn) = (xn, xn−1, xn, xn−1), and initial term

ζ0 = (x0, x−1, x0, x−1). This is the image of (Xn) under the diagonal embedding V 2 → V 2 × V 2,

(x, y) 7→ (x, y, x, y). This is a strong embedding as well S(V ) ↪→ S(V 4), which we refer to as the

“diagonal embedding”. Because this is a strong embedding, a good way to establish convergence

of ζF will help us obtain convergence in our initial system.

Let us write ζF in recursive form as follows. Define the self-map of V 4 as

G(x, y, u, v) = (F (x, y), u, F (u, v), x). (2.2)

Starting with ζ0, we see that ζn = Gn(ζ0). The advantage of introducing the map G is to obtain a

form of monotonicity [22,23]. Introduce the “southeast partial ordering” on V × V by (x1, y1) ≤se

(x2, y2) if and only if x1 ≤ x2 and y1 ≥ y2. Using the southeast partial ordering on V 2 × V 2 means

using ≤se on W ×W with W = V 2. A key observation now is that if F is non-decreasing in its first

component and non-increasing in its second one, i.e., F (↑, ↓), then the sequence G is monotonic

with respect to the ≤se partial ordering on V 2 × V 2. More precisely, rewrite G : V 4 → V 4 as a

map G : V 2 × V 2 → V 2 × V 2, (X,U) 7−→ G(X,U). Then

(X1, U1) ≤se (X2, U2) =⇒ G(X1, U1) ≤se G(X2, U2).

This monotonicity gives a handy way of studying the convergence of the diagonal sequence ζF :

ζn = Gn(ζ0), and thus ultimately that of αF . We develop this approach next.

Definition 2.2. Write A = (a, b) and B = (b, a). We say that X = (x, y) is inside a box with

vertices A and B in V 2 if a ≤ b and A ≤se X ≤se B. Equivalently, if in V 4 we have

(A,B) ≤se (X,X) ≤se (B,A)

Suppose that for a choice of the map F and the points A and B, the map G in Eq. (2.2)

has the property that (A,B) ≤se G(A,B) and G(B,A) ≤se (B,A). This happens if (a, b) ≤se

(F (a, b), F (b, a)). Then, if X0 (resp. some Xk = T k(X0) for some k ≥ 0) is inside a box with

vertices A,B, we can see immediately that for positive n,

(A,B) ≤se G
n(A,B) ≤se G

n(X0, X0) ≤se G
n(B,A) ≤se (B,A), (2.3)

which means that our sequence ζF is eventually caught between the orbits of G through (A,B) and

(B,A). The sequences Gn(A,B) and Gn(B,A), being bounded and monotonic in the southeast

ordering, converge to fixed points of G. A fixed point of G must be of the form

x̄ = (x, y, y, x), where x = F (x, y) and y = F (y, x).

Such fixed points come in pairs if x ̸= y, and so if (F (x, y), F (y, x)) = (x, y) has a unique solution,

then x = y = x̄ is a fixed point of F . If x ̸= y, then (x, y) and (y, x) are dubbed as pseudo fixed

points of F (these were called “artificial fixed points” in [24]). The above discussion leads us to the

following result [22,23].
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Proposition 2.3. Let F : V 2 → V , where F (↑, ↓) and consider the system xn+1 = F (xn, xn−1)

with an initial condition X0 = (x0, x−1) ∈ V 2. Suppose there is (a, b) ∈ V 2 such that (a, b) ≤se

(F (a, b), F (b, a)) and (a, b) ≤se (xk, xk−1) ≤se (b, a) for some k ≥ 0. If (F (x, y), F (y, x)) = (x, y)

has a unique solution in V 2, then ζF converges to a global attractor in V 4 and αF converges to a

global attractor in V 2. If (F (x, y), F (y, x)) = (x, y) has three solutions (x∗, y∗), (ȳ, ȳ) and (y∗, x∗),

x∗ < y∗, then

x∗ ≤ lim inf αF ≤ lim supαF ≤ y∗.

A convenient way of stating this result is as follows: Recall that Xn = Tn(x0, x−1) = (xn, xn−1).

Suppose F (↑, ↓) and (a, b) ≤se (F (a, b), F (b, a)). Suppose that the sequence (Xn) is eventually in

the box with vertices A = (a, b) and B = (b, a). If G : V 4 → V 4 has a unique fixed point, then it

must be of the form (x, x, x, x) and αF must converge to x. Alternatively, the system T has the

global attractor (x, x) in that box.

A q-cycle Cq := {ξ0, ξ1, . . . , ξq−1} of the map G in Eq. (2.2) is a periodic solution of the system

ξn+1 = G(ξn) with minimal period q. Note that Cq could be driven by a q-cycle {x0, x1, . . . , xq−1}
of F, where

ξ0 = (x0, xq−1, x0, xq−1) and ξj = (xj , xj−1, xj , xj−1), j = 1, . . . , q − 1.

Otherwise, we say that F has a pseudo q-cycle. This notion has been introduced and classified

in [24].

2.2 Periodic systems

We consider in this section dynamical systems of the form

α : xn+1 = Fn(xn, xn−1) , (x0, x−1) ∈ V 2, (2.4)

where we assume Fn+p = Fn, ∀n ≥ 0, and p ≥ 1 is the minimal positive integer with such a

property. We refer to such a sequence as being “p-periodic”. These sequences are treated in [24],

and we give a general overview next. We stress that the starting time n = n0 is crucial in non-

autonomous systems because it dictates certain synchronization between time and space. In this

paper, we consider n0 = 0 throughout. The sequence α := {(xn)}n≥0 in V gives rise to the

sequence (Xn) := {(xn, xn−1)}n≥0 in V 2 as before. To stress the role of the individual maps in

the system (2.4), we denote it by [F0, F1, . . . , Fp−1] and its vector form by [T0, T1, . . . , Tp−1], where

Tn(xn, xn−1) := (Fn(x, y), x) , n ≥ 0. Considering first the period two case, let us write T01 = T0◦T1

and T10 = T1 ◦ T0 the compositions whose associated sequences in V 2 are given by

(X2n+1) : (x2n+1, x2n) = T01(x2n−1, x2n−2) and (X2n) : (x2n, x2n−1) = T10(x2n−2, x2n−3)

with initial values (x0, x−1) and (x1, x0) respectively. These two sequences are interlocked as in

Figure 1.

Decomposing the 2-periodic recursive sequence (Xn) into these two subsequences give an em-

bedding S(V ) → S(V 2) × S(V 2) whose image is (X2n+1, X2n). Concatenating these sequences

side-by-side produces a recursive sequence ζ = Ψ(α) in S(V 4) given by the general term

ζn := (x2n+1, x2n, x2n, x2n−1) where ζ0 = (x1, x0, x0, x−1).

The above is not a strong embedding in general since a convergence of a pair of subsequences
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(x1, x0) (x3, x2)

(x0, x−1) (x2, x1)

T01

T10 T10

T0 T1 T0

Figure 1

implies convergence of the original sequence unless they both converge to the same limit. In all

cases, this construction extends in an obvious manner to p-periodic recursive sequences of finite

delay and gives an embedding of the subset of recursive p-periodic sequences of delay N into S(V N ).

Starting with Eq. (2.4), p = 2, the system in vector form is written [T0, T1], and it breaks into

the two “folded” systems T10 and T01 as already indicated. We will relate the k-cycles of T10 and

T01 to the 2k-cycles of [T0, T1]. Note that this process is known as folding and unfolding, and it

has been characterized for one-dimensional maps [25].

Lemma 2.4. Define α : xn+1 = Fn(xn, xn−1), (x0, x−1) ∈ V 2 which is 2-periodic. Let Ck(T01) ⊂
(V 2)k (resp. Ck(T10)) describe the set of k-cycles of T01 (resp. T10). Then T0 maps Ck(T01)

bijectively onto Ck(T10), with inverse T1. If these sets are disjointed, their union is a 2k-cycle of

[T0, T1]. In particular, [T0, T1] has a unique 2-cycle if and only if T01 and T10 have unique fixed

points which are distinct.

Proof. This is an immediate consequence of the identities T1◦T01 = T10◦T1, and T0◦T10 = T01◦T0.

The final claim is a consequence of the fact that the fixed points of α correspond to its one cycle.

In the next two illustrative examples, we ignore monotonicity, and focus on the structure of

cycles.

Example 2.5. Let p = k = 2. Here’s an example where the 2-cycles for T01 and T10 are different.

Define α as in Eq. (2.4) with F0(x, y) = y + x2 − 1 and F1(x, y) = −y. Then

T0(x, y) = (y + x2 − 1, x) and T1(x, y) = (−y, x).

We can check that {(1, y), (−1, y)} is the unique 2-cycle of T10 = T1T0, while {(y, 1), (y,−1)} is the

unique 2-cycle of T01 = T0T1. Clearly, T0(1, y) = (y, 1) and T1(y, 1) = (−1, y). The system [T0, T1]

has a 4-cycle.

Example 2.6. Define α as in (2.4) with F0(x, y) = xy and F1(x, y) =
x
y . This is 2-periodic, with

subsequences in vector form induced from T0(x, y) = (xy, x) and T1(x, y) = (xy , x). A calculation

shows that both systems T10 and T01 have each a unique three cycle that is common to both

{(−1,−1), (1,−1), (−1, 1)} = C3(T10) = C3(T01).

This is also the same 3-cycle for each individual map Tj and for the 2-periodic system [T0, T1]. This

is due to the fact that the periodicity of the system 2 and the periodicity of the cycle 3 are coprime

numbers.

Similarly, treating the p-periodic case for any p ≥ 2 is possible. In that case, the sequence α in

(2.4) gives rise to p sequences in V 2, indexed by the action of the cyclic group Zp with generator

σ acting on the ordered tuple (p − 1, p − 2, . . . , 1, 0) by cyclic permutations of coordinates. Here
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σi(p − 1, p − 2, . . . , 1, 0) = (i − 1, i − 2 . . . , 0, . . . , i). To this corresponds the sequence Xσi with

general recursive term

(xn+1, xn) = Tσi(xn, xn−1) where Tσi = Ti−1Ti−2 · · ·T0 · · ·Ti, (2.5)

Ti(x, y) = (Fi(x, y), x), with initial term Ti−1 · · ·T0(x0, x−1). The sequences Xσi partition (Xn).

They are mirror copies of each other in the sense that either all converge simultaneously or diverge.

If some sequence Xσi has a k-cycle, then all other sequences have k-cycles. If some sequence has

a global attractor, so do all other sequences (see [25], Lemma 2.1). It is of potential interest to

understand the way in which k-cycles of the Tσis’ produce q-cycles of [T0, T1, . . . , Tp−1]. The k-

cycles in Ck(Tσi), for different i, may overlap or even be equal as illustrated in Example 2.5 and

Example 2.6. Note for example that if the Fi’s are injective, then a fixed point of Tσi gives rise to a

p-cycle of [T0, T1, . . . , Tp−1]. This notion is a straightforward generalization of the one-dimensional

case in [25].

2.3 Embedding in the periodic case

In the autonomous case (Subsection 2.1), we extended a one dimensional system αF as given in

Eq. (2.1) into a a four dimensional recursive system ζF : ζn+1 = G(ζn), where G is a self map of

V 4. When working in a box (see Definition 2.2), if G had a unique fixed point, then αF converged

to a unique fixed point as well. We seek an analogous result in the periodic case, i.e., Eq. (2.4).

It turns out in this case that a unique fixed point of some corresponding embedded system in V 4

leads to the existence of a globally attracting cycle of [T0, T1] (and αF ). We will restrict below to

the 2-periodic case, i.e., p = 2.

Starting with (2.4), F0, F1, F1 ̸= F0 and Fi(↑, ↓), define similarly

G0(x, y, u, v) = (F0(x, y), u, F0(u, v), x) , G1(x, y, u, v) = (F1(x, y), u, F1(u, v), x).

We write G01 = G0 ◦ G1 and G10 = G1 ◦ G0. The four dimensional embedded system [G0, G1] is

defined by ζn+1 = Gn mod 2(ζn). Again, the restriction of [G0, G1] to the diagonal subset in V 2×V 2

is the “diagonal system” ([T0, T1], [T0, T1]). The following is a direct check.

Lemma 2.7. Assume that Fi(↑, ↓) are strictly monotonic in each component. Then both G0 and

G1 are one-to-one.

A fixed point of the system [G0, G1] must be a fixed point of all the Gi’s. In other words, if

ζ̄ ∈ V 4 is a fixed point of [G0, G1], then

ζ̄ = (x̄, ȳ, ȳ, x̄), where Fj(x̄, ȳ) = x̄ and Fj(ȳ, x̄) = ȳ, j = 0, 1. (2.6)

Note that a fixed point of [G0, G1] is necessarily a fixed point of both G01 and G10. The converse is

not always true. It could happen that G01 and G01 have different fixed points that form a 2 cycle

of [G0, G1]. The relationship between the cycles of [F0, F1] and [G0, G1] turns out to be interesting.

It has been characterized in [24], but for the sake of clarity and completeness, we illustrate it here.

A 2-cycle {x0, x1} of [F0, F1] must satisfy

F0(x1, x0) = x0 and F1(x0, x1) = x1, x1 ̸= x0. (2.7)

A 2-cycle of [G0, G1] is of the form {ζ0, ζ1} ∈ V 4 × V 4 such that G0(ζ0) = ζ1 and G1(ζ1) = ζ0,
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ζ0 ̸= ζ1. Let ζ = (x̄, ȳ, ū, v̄) be a fixed point of G10, that is G1(G0(ζ)) = ζ. Then we must have

(ū, v̄) = (F1(ȳ, x̄), F0(x̄, ȳ)) and (x̄, ȳ) = (F1(v̄, ū), F0(ū, v̄)). (2.8)

Note that if ζ = (x̄, ȳ, ū, v̄) is a fixed point of G10, then ζ ′ = (ū, v̄, x̄, ȳ) is also a fixed point. A

unique fixed point of G10 is therefore of the form (x̄, x̄, x̄, x̄) or (x̄, ȳ, x̄, ȳ), x̄ ̸= ȳ and satisfying the

conditions (2.8). We discuss next the various implications of the existence of the fixed points of

G10 on the cycles of [G0, G1] and [F0, F1]. Assume ξ0 = (x̄, ȳ, ū, v̄) satisfies the system of equations

in (2.8).

(i) Let x̄ = ȳ. We have the following scenarios:

� ξ̄0 = (x̄, x̄, x̄, x̄) and x̄ is a common fixed point for each individual map Fj . Obviously, x̄

will be a fixed point of [F0, F1].

� ξ̄0 = (x̄, x̄, ū, ū), and G0(ξ̄0) = ξ̄1 = (ū, ū, x̄, x̄), where x̄ ̸= ū. In this case, {ξ̄0, ξ̄1} is

a 2-cycle of [G0, G1] and {x̄, ū} is a 2-cycle of the one dimensional 2-periodic system

[f0, f1], where f0(t) = F0(t, t) and f1(t) = F1(t, t). {(x̄, x̄), (ū, ū)} is dubbed as a pseudo

2-cycle of [F0, F1].

(ii) Let x̄ ̸= ȳ. We have the following scenarios:

� ξ̄0 = (x̄, ȳ, ȳ, x̄), where ξ̄0 is a common fixed point of each individual map Gj . In this

case, (x̄, ȳ) and (ȳ, x̄) are dubbed as two pseudo common fixed points of each individual

map Fj .

� ξ̄0 = (x̄, ȳ, x̄, ȳ) and G0(ξ̄0) = ξ̄1 = (ȳ, x̄, ȳ, x̄). In this case, {ξ̄0, ξ̄1} is a 2-cycle of [G0, G1]

and {ȳ, x̄} is a 2-cycle of [F0, F1].

� ξ̄0 = (x̄, ȳ, ū, v̄) and ξ̄1 = (v̄, ū, ȳ, x̄), where (ū, v̄) is neither (x̄, ȳ) nor (ȳ, x̄). In this

case, (ū, v̄) = (F1(ȳ, x̄), F0(x̄, ȳ)) and C2 := {ξ̄0, ξ̄1} is a 2-cycle of [G1, G0], while

{(x̄, ȳ), (v̄, ū)}, {(ū, v̄), (ȳ, x̄)} are dubbed as pseudo 2-cycles of [F0, F1].

Next, we need to focus on stability. Given a unique fixed point of G01, and provided we are

working “in a box”, we deduce that T01 also has a unique fixed point. Similarly for T10. By Lemma

2.4, [T0, T1] has a 2-cycle if the fixed point is not common. This must be a globally attracting

cycle [24], and we extract the needed result below.

Proposition 2.8. Let Fj : R2
+ → R+, where Fj(↑, ↓) for each j = 0, 1. Consider the system

[F0, F1] with initial conditions X0 = (x0, x−1) ∈ R2
+. Suppose there exists (a, b) ∈ R2

+ such that

a < b, (a, b) ≤se (xk, xk−1) ≤se (b, a) for some k ≥ 0 and

a < min{F0(a, b), F1(F0(a, b), b)}, b > max{F0(b, a), F1(F0(b, a), a)}. (2.9)

If G10 = G1 ◦ G0 has a unique fixed point in R4
+, then the 2-periodic system [F0, F1] has a global

attractor, which can be an equilibrium solution or a 2-cycle.

Proof. The condition (a, b) ≤se (xk, xk−1) ≤se (b, a) means that the sequence (Xn) is eventually

trapped in the box [a, b]2. The condition (2.9) gives us (A,B) < G10(A,B), where A = (a, b) and

B = (b, a). Since G10 is monotonic with respect to ≤se, we can use our formalism directly (Section

2.1, inequalities (2.3)) to infer that the sequence Gn
10(X0, X0) converges to the unique fixed point of

G10 in [a, b]4. If the unique fixed point of G10 is of the form ξ̄ = (x̄, x̄, x̄, x̄), then x̄ is an equilibrium
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point of [F0, F1] and both {x2n}, {x2n−1} converge to x̄. On the other hand, if the unique fixed

point of G10 is of the form ξ̄ = (x̄, ȳ, x̄, ȳ), x̄ ̸= ȳ then {x̄, ȳ} is a 2-cycle of [F0, F1], and the even

terms of the orbit {xn} converge to one branch of the 2-cycle, while the odd terms converge to the

other branch. Hence, whether the system [F0, F1] has an equilibrium or a 2-cycle, it serves as a

global attractor.

We remark that the inequalities (2.9) can be replaced by the more simple inequalities (a, b) <se

(Fj(a, b), Fj(b, a)), j = 0, 1. However, simplicity here comes at the expense of generalization.

3 Stability under constant stocking

Since h > 0, all solutions of Eq. (1.3) must satisfy yn > h for all n. Furthermore, an equilibrium

solution ȳ satisfies
(
1− h

ȳ

)
= er−ȳ, and it is obvious that we obtain a unique equilibrium solution.

To stress the role of the parameter h in our analysis, we denote the positive equilibrium solution

by ȳh. The Jacobian matrix at ȳh is given by

J(ȳh, ȳh) =

[
er−ȳh −ȳhe

r−ȳh

1 0

]
=

[
1− h

ȳh
h− ȳh

1 0

]
.

Let the trace of the Jacobian matrix be T and the determinant be D, then 0 < T = 1 − h
ȳh

< 1

and D = ȳh − h > 0. Furthermore, we have

D − T = ȳh − h+
h

ȳh
− 1 > −1.

Based on the Jury conditions for stability, the eigenvalues of J are within the unit disk when

|T | < 1+D < 2, and consequently, the equilibrium ȳh is locally asymptotically stable (LAS) when

D < 1, i.e., ȳh < 1 + h. Since

0 < er−ȳh = 1− h

ȳh
< 1,

we obtain ȳh > h and ȳh > r. In fact, ȳ0 = r. The next lemma is relevant in the sequel and describes

the behavior of the fixed point in terms of r and h.

Lemma 3.1. The fixed point ȳh of Eq. (1.3) is increasing in both h and r.

Proof. This is an immediate consequence of implicitly differentiating

(
1− h

ȳh

)
=

d

dh
er−ȳh with

respect to both h and r. In the first case, we obtain(
ȳh − h+

h

ȳh

)
dȳh
dh

= 1.

So that
dȳh
dh

> 0. Similarly,
dȳh
dr

> 0 and ȳh is increasing in r.

Now, the question is: can ȳh reach h + 1 and lose its stability? If yes, then we must have

h+ 1 = eh+1−r. This is possible when

r = r1 := h+ 1− ln(h+ 1). (3.1)

Lemma 3.2. Consider Eq. (1.3) with h > 0, and let r1 be as defined in Eq. (3.1). Each of the

following holds true:
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(i) Eq. (1.3) has a unique non-negative equilibrium solution ȳh and ȳh > max{r, h}.

(ii) If 0 < r < r1, then ȳh is LAS, while if r > r1, then ȳh is unstable.

Proof. Part (i) is clear. It remains to clarify Part (ii). Recall that ȳh is LAS if and only if ȳh < h+1;

in turn, we claim this happens iff r < r1. But h + 1 is the value of ȳh when r = r1, and so the

claim is a consequence of the fact that ȳh is increasing in r. When r = r1, the claim, and its proof

are standard.

When r = r1, Eq. (1.3) has the potential to go through a Neimark-Sacker bifurcation (see Fig.

2). Note that since r1 is increasing in h, 0 < r < r0 = 1 gives LAS regardless of the value of h. Our

next example illustrates the validity of Part (ii) of Lemma (3.2). Also, Fig. 5 shows the stability

region in the (h, r)-plane.

Example 3.3. Let h = e−1 and r = 2. Then r1 = e−1 < 2 = r. In this case, we obtain ȳh ≈ 2.898,

and the eigenvalues of the Jacobian matrix are λ ≈ 0.204±1.067i. They are out of the unit disk, and

consequently, the equilibrium is unstable. On the other hand, if we consider h = e − 1 and r = 3
2 ,

then r1 = e− 1 > r, ȳh ≈ 2.589 and, the eigenvalues of the Jacobian matrix are λ ≈ 0.168± 0.918i.

The eigenvalues are located within the unit disk, and consequently, the equilibrium is LAS.

Figure 2: Let r = r1. This figure shows the equilibrium solution yh (solid green circle) undergoes a Neimark-Sacker
bifurcation at h = 1.0. The red color represents the even terms in the orbits, while the blue represents the odd terms.
The horizontal axis is for xn, and the vertical axis is for xn−1.

Next, we define the 4-dimensional map

G : R4
+ → R4

+, where G(x, y, u, v) = (xf(y) + h, u, uf(v) + h, x).

Again here, f(y) = er−y. We solve G(ξ) = ξ to find the fixed points of G. We obtain ξ =

(x∗, y∗, y∗, x∗), where x∗ = x∗f(y∗) + h and y∗ = y∗f(x∗) + h, with x∗ ≤ y∗. The case x∗ = y∗ is

when both are equal ȳh, and we write the symmetric solution ξ̄ = ξ̄h = (ȳh, ȳh, ȳh, ȳh).
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Let L1 and L2 denote the curves of y = yf(x) + h and x = xf(y) + h, respectively. We discuss

how these curves intersect since the intersection points (i.e. the “solutions”) correspond to the fixed

points of G. The fixed point (ȳh, ȳh) is always a solution. Clearly, L1 has a vertical asymptote at

x = r and a horizontal asymptote at y = h, whereas L2 has a vertical asymptote at x = h and

a horizontal asymptote at y = r. A variation of h makes asymmetric solutions bifurcate from the

symmetric ones. The slope
dy

dx
of L1 at ȳh is 1

h ȳh(h − ȳh), and the reciprocal of this expression is

the slope of L2. Since the slope is negative and ȳh > h, we consider the solution of ȳh(ȳh − h) = h

to be

H∗ :=
1

2

(
h+

√
h2 + 4h

)
. (3.2)

In this case,

r = r2 := H∗ + ln(H∗ − h)− ln(H∗), (and ȳh = H∗). (3.3)

Notice that we always have (we skip the computation) that

r2 < r1 and r1 < h if h > e− 1. (3.4)

To recapitulate, for a given h, and for r = r2, the fixed point of Eq. (1.3) is ȳh = H∗, and at the

solution x = y = H∗, both curves have slope −1. The number of solutions of L1 ∩ L2 depends

on whether ȳh is larger or smaller than H∗, but this also depends on whether h < r or h > r.

From a combinatorial standpoint, there are four options; however, (h,H∗) <se (r, ȳh) is not viable

according to the following result.

Lemma 3.4. If h ≤ r, then H∗ ≤ ȳh.

Proof. Because 1 + t ≤ et for all t ∈ R, then 1 + h − ȳh ≤ eh−ȳh . Since h ≤ r, we obtain that

1 + h− ȳh ≤ er−ȳh , and consequently,

1− er−ȳh ≤ ȳh − h ⇐⇒ ȳh(1− er−ȳh) ≤ ȳh(ȳh − h).

From the fact that ȳh is an equilibrium point, we obtain h = ȳh(1 − er−ȳh), and therefore, h ≤
ȳh(ȳh − h), which gives us ȳh ≥ H∗.

The next lemma summarizes and settles all cases.

Lemma 3.5. Consider r2 as defined in Eq. (3.3). Let L1 and L2 denote the curves of y = F (y, x) =

yf(x) + h and x = F (x, y) = xf(y) + h, respectively. Each of the following holds true:

(i) If h < r, then H∗ < ȳh and L1 and L2 intersect at the unique point (ȳh, ȳh).

(ii) If r < r2 < h, then ȳh < H∗ and L1 and L2 intersect at the unique point (ȳh, ȳh).

(iii) If r2 < r < h, then H∗ < ȳh and L1 and L2 intersect at three points denoted by (ȳh, ȳh), (x
∗, y∗)

and (y∗, x∗), where x∗ ̸= y∗.

Proof. (i) The two curves L1 and L2 always intersect at the point (ȳh, ȳh) along the diagonal. Since

the curves are symmetric images of one another with respect to the y = x axis, we can confine

ourselves to the case x > ȳh > max{r, h} and investigate other intersection points. Express y

explicitly for both L1 and L2 to find, respectively, that

y1 =
h

1− er−x
and y2 = r − ln

(
1− h

x

)
.
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We show y2 − y1 > 0 for all x > ȳh when h < r. For a fixed value of x, we show that y2 − y1 is

positive and minimum at h = r. We have

d

dh
(y2 − y1) =

−1

1− er−x
+

1

x− h

and er−x > 1 + r − x, for all x > r. Therefore, 1
1−er−x > 1

x−r , and since h < r < ȳ2 < x, we obtain

d

dh
(y2 − y1) <

−1

x− r
+

1

x− h
< 0.

So y2 − y1 is decreasing and takes its minimum at h = r. At h = r,

y2 − y1 =
−r

1− er−x
+ r − ln

(
1− r

x

)
> 0.

Hence, the minimum of y2 − y1 is strictly positive, and y2 ̸= y1. This shows that L1 and L2 cannot

intersect again for x > ȳh > max{r, h}, and also by symmetry, for x < ȳh. This completes the

proof of Part (i).

To show (ii) and (iii), we have shown in Lemma 3.1 that the fixed point ȳh is an increasing

function of r. Therefore if r < r2 < h, then necessarily ȳh < H∗, since H∗ is the fixed point when

r = r2. This establishes the first part of the claims in (ii) and (iii). The second part in each case

follows along the same outline as in (i).

Figures 3 and 4 illustrate all three possible scenarios in Lemma 3.5.

x

y

L2

L1

r

h

(i) r = 2, h = 0.7
x

y

L2

L1

r

h

(ii) r = 2, h = 3.0

Figure 3: Part (i) of this figure shows the curves of L1 and L2 when H∗ ≤ ȳh and h < r. The unique intersection
point is (ȳh, ȳh). Part (ii) shows the unique intersection point (ȳh, ȳh) but when ȳh ≤ H∗ and h > r. The shaded
region in Part (ii) represents the solution of (x, y) ≤se (F (x, y), F (y, x)) in which x ≤ y.

Remark 3.1. The inequalities (x, y) ≤se (F (x, y), F (y, x)) and x ≤ y have a feasible solution in

case (ii) and case (iii) of Lemma 3.5, that is when h > r. This is essential for applying the embedding

technique. Concerning the intersections between the curves L1 and L2, let g1(t) =
h0

1−f(t) , t > r. The

function g1 is decreasing in t. Since an intersection point (a, b) must satisfy (a, b) = (g1(b), g1(a)),

the fixed point of g1 is the fixed point of F, and the 2-cycles of g1 form the pseudo fixed points

of F. Since a period doubling bifurcation occurs when the fixed point of g1 loses its stability, the

existence of pseudo fixed points can be investigated through the local stability of the fixed point of

g1.
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x

y

r
h

L2

L1

(i) r = 2, h = 2.6

Figure 4: This figure shows the curves of L1 and L2 when H∗ ≤ ȳh and r < h. The three intersection points are
emphasized, and for the given choice of our parameters, they are (2.741, 4.969), (3.424, 3.424) and (4.969, 2.741). The
shaded region represents the solution of (x, y) ≤se (F (x, y), F (y, x)) in which x ≤ y.

After establishing the needed machinery and lemmas, we can present one of our first main

results. Recall that the fixed points of the embedded map G are associated with the intersection

points of L1 and L2. In particular, G has a unique fixed point given by ξ = ξ̄h when cases (i) and

(ii) of Lemma 3.5 are satisfied, and G has three fixed points in case (iii) of that Lemma. As done

earlier, we denote the asymmetric fixed points of G by ξ̄1 = (x∗, y∗, y∗, x∗) and ξ̄2 = (y∗, x∗, x∗, y∗)

where x∗ < y∗. In other words, (x∗, y∗) and (y∗, x∗) are the pseudo fixed points of F.

Theorem 3.6. Consider r2 as given in Eq. (3.3). Each of the following holds true for Eq. (1.3):

(i) If r ≤ r2, then ȳh is globally asymptotically stable.

(ii) If r2 < r < h, then the compact box [x∗, y∗]2 forms an absorbing region. In particular,

x∗ ≤ lim inf{xn} ≤ lim sup{xn} ≤ y∗.

Proof. (i) Since r ≤ r2, Lemma 3.5 guarantees a unique intersection between L1 and L2, and

consequently, the embedding G has a unique fixed point, which we denoted by ξ̄h = (ȳh, ȳh, ȳh, ȳh).

Since r2 < r1, ȳh is LAS by Lemma 3.2. To show global stability, notice that the inequalities

(a, b) ≤se (F (a, b), F (b, a)) and a < b have a feasible region (as illustrated in Part (ii) of Fig. 3 and

Remark 3.1). For any initial condition (x0, x−1) of Eq. (1.3), there is (a, b) in the feasible region

such that Proposition 2.3 is applicable. This implies that for all ξ0 = (y0, y−1, y0, y−1) such that

ξ = (a, b, b, a) ≤se ξ0 ≤se (b, a, a, b) = ξt, (3.5)

Gn(ξ0) converges to ξ̄h and Eq. (1.3) with the initial condition (y0, y−1) converges to ȳh. This

verifies Part (i). Part (ii) is similar and refers to Part (iii) of Lemma 3.5 to obtain the three fixed

points of G denoted by ξ̄1, ξ̄2 and ξ̄h. We have the same scenario as in Condition (3.5) for initial

conditions (x0, x−1) and the existence of (a, b) in the feasible region as above so that Gn(ξ0) must

converge to a fixed point of G, and by the embedding result, the orbit of Eq. (1.3) that starts
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at (y0, y−1) will be eventually squeezed between x∗ and y∗ (Proposition 2.3). This completes the

proof.

It is worth stressing that r2 < r1 always, and 0 < r < r1 guarantees the local stability of

ȳh. However, when r2 < r < min{h, r1}, we obtain the pseudo fixed points, which cripple the

embedding technique. Nevertheless, an absorbing region was obtained as given in Part (ii) of

Theorem 3.6. Finally, when h < r < r1, ȳh is LAS. However, the absence of a feasible solution for

the system (x, y) ≤se (F (x, y), F (y, x)) and x ≤ y led to the unsuccessful outcome of our embedding

approach for addressing global stability. Figure 5 illustrates and summarizes our stability results

in the parameter space.
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Figure 5: This figure shows the stability regions in the (h, r)−plane. The red curve is r = r1, which represents the
solution of ȳh = 1 + h, while the blue curve is r = r2, which represents the solution of H∗ = H∗f(H∗) + h. We
have local stability in the region below r = r1, but the embedding technique fails to address global stability when
r2 < r < h. However, we conjecture that we also obtain global stability when r2 < r < r1. Observe that global
stability in the green part of the r-axis, i.e., h = 0 and 0 < r < 1 has been addressed in [15].

4 Stability under periodic stocking

In this section, we consider the Ricker model with delay and p-periodic stocking as given in Eq.

(1.4), i.e., the minimal period of the stocking sequence is p. Recall that we give ourselves the

liberty to use f(x) instead of exp(r − x) for convenience of our writing. Define the sequence of

2-dimensional maps {Tj},

Tj : R2
+ → R2

+ as Tj(x, y) = (xf(y) + hj , x).

The equation Xn+1 = Tn mod p(Xn) is just a vector form of Eq. (1.4). Since

yn+2 =ynf(yn)f(yn−1) + h0f(yn) + h1

≤(er + h0)e
r + h1,

the composition operator T̃ := Tp−1◦Tp−2◦· · ·◦T0 maps a nonempty convex compact set into itself.

Therefore, T̃ has a fixed point in that domain. Because Ti(x, y) = Tj(x, y) if and only if i = j,

then a fixed point of T̃ must form a p-periodic solution of Xn+1 = Tn mod p(Xn), which reflects a

p-periodic solution of Eq. (1.4). We are interested in the global stability of the obtained p-periodic

solution, and we focus on the case p = 2. The existing 2-periodic solution is in fact the 2-cycle of
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the system [F0, F1], and we denote it by {z̄0 = z̄0(h0, h1), z̄1 = z̄1(h0, h1)}, where

z̄0 = z̄1f(z̄0) + h1 and z̄1 = z̄0f(z̄1) + h0. (4.1)

Observe that z̄0 > h1 and z̄1 > h0. Furthermore, z̄0 and z̄1 contribute to the formation of two fixed

points of T̃ = T1 ◦ T0, namely X̄0 := (z̄0, z̄1) and X̄1 := (z̄1, z̄0). Now, we give the following fact:

Proposition 4.1. h0 > h1 if and only if z̄1 > z̄0.

Proof. From Eqs. (4.1), we obtain

z̄1 − z̄0 = z̄0(f(z̄1))− z̄1f(z̄0) + h0 − h1.

This gives us
h0 − h1
z̄1 − z̄0

= 1− z̄0
f(z̄1)− f(z̄0)

z̄1 − z̄0
+ f(z̄0) > 0.

Hence, sign(h0 − h1) = sign(z̄1 − z̄0), which completes the proof.

Remark 4.1. Since h0 < h1 and h1 < h0 give similar behaviour, we focus on the case h1 < h0. In

this case, we have h1 < z̄0 < z̄1.

To investigate the stability of the 2-cycle, it is enough to investigate the stability of the fixed

point X̄0 = (z̄0, z̄1) under T̃ = T1 ◦ T0. Since

T̃ (x, y) =

[
(xf(y) + h0)f(x) + h1

xf(y) + h0

]
,

the Jacobian matrix at X̄0 is

J(X̄0) =

[
z̄1f

′(z̄0) + f(z̄0)f(z̄1) z̄0f(z̄0)f
′(z̄1)

f(z̄1) z̄0f
′(z̄1)

]
.

The trace and determinant here are given by

Tr = z̄1f
′(z̄0) + z̄0f

′(z̄1) + f(z̄0)f(z̄1) and Det = z̄0z̄1f
′(z̄1)f

′(z̄0).

We re-write the two expressions as

Tr =(h1 − z̄0) + (h0 − z̄1) +

(
1− h0

z̄1

)(
1− h1

z̄0

)
, (4.2)

Det =(z̄1 − h0)(z̄0 − h1). (4.3)

Obviously, Det > 0 and, Det < 1 when (z̄1 − h0)(z̄0 − h1) < 1. It turns out that this condition is

sufficient for the local stability of the 2-cycle as the following result shows.

Lemma 4.2. Let h0 ̸= h1 and both are non-negative. The 2-cycle of [F0, F1] (i.e., {z̄0, z̄1}) is LAS
stable if (z̄1 − h0)(z̄0 − h1) < 1.

Proof. We check the Jury conditions here. We have 0 < Det < 1. It remains to show that

Det− Tr > −1 and Det+ Tr > −1.

15



The first inequality is satisfied because

Det− Tr + 1 = (z̄1 − h0 + 1)(z̄0 − h1 + 1)−
(
1− h0

z̄1

)(
1− h1

z̄0

)
> 0. (4.4)

Now, we use this fact to write

(z̄1 − h0 + 1)(z̄0 − h1 + 1) >

(
1− h0

z̄1

)(
1− h1

z̄0

)
,

or equivalently,

z̄1

(
1− 1

z̄1 − h0

)
z̄0

(
1− 1

z̄0 − h1

)
> 1.

Next, write

Det+ Tr + 1 =(z̄0 − h1 − 1)(z̄1 − h0 − 1) +

(
1− h1

z0

)(
1− h0

z1

)
=

(
1− h1

z0

)(
1− h0

z1

)[
z̄1

(
1− 1

z̄1 − h0

)
z̄0

(
1− 1

z̄0 − h1

)
+ 1

]
,

which is positive. This completes the proof.

Note that the condition (z̄1 − h0)(z̄0 − h1) < 1 can be replaced by the more simple (but

unnecessary) condition r ≤ 1. Also, the simple conditions z̄j ≤ hj+1 + 1 for j = 0, 1 are sufficient

to make Det < 1. For the reader’s convenience, we summarize some special cases in the following

corollalry:

Corollary 4.3. Each of the following cases is valid:

(i) If r ≤ 1, then Det < 1.

(ii) If z̄j ≤ hj+1 + 1 for all j = 0, 1, then the 2-cycle is LAS.

(iii) If z̄j > hj+1 + 1 for all j = 0, 1, then the 2-cycle is unstable.

Now, we provide some examples that illustrate the validity of Lemma 4.2.

Example 4.4. Consider Eq. (1.4) in each one of the following cases:

(i) Let h0 = 2.0, h1 = 6.444 and r = 3.0. We obtain z̄0 ≈ 6.635 and z̄1 ≈ 7.237. In this case,

the condition of Lemma 4.2 is not satisfied. Furthermore, Det ≈ 1.000 and Tr ≈ −5.407.

This makes Det+ Tr + 1 < 0, and consquently, the 2-cycle {z̄0, z̄1} of the system [F0, F1] is

unstable. In fact, we obtain the 4-cycle

{7.049, 19.611, 6.479, 2.000}.

(ii) Let r = 2.0, h0 = 2.156 and h1 = 2.720. We obtain z̄0 ≈ 3.462 and z̄1 ≈ 3.199. In this case,

Lemma 4.2 is satisfied, and the 2-cycle {z̄0, z̄1} of the system [F0, F1] is LAS. Furthermore,

Det ≈ 0.774, T r ≈ −1.715 and Det + Tr + 1 ≈ 0.059 > 0, and consquenlty, the eigenvalues

are ≈ −0.858± 0.196i, which are within the unit disk.

(iii) Let h0 = 0.820 and h1 = 1.800. We let r = 1.5 to obtain z̄0 ≈ 2.552 and z̄1 ≈ 2.151. In this

case, the condition of Lemma 4.2 is not satisfied. However, by considering r as a bifurcation
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parameter, a Neimark-Sacker bifurcation occurs near r = 1.5. Indeed, the 2-cycle bifurcates

into two invariant curves that serve as one attractor. Fig. 6 illustrates this scenario.

Based on Lemma 4.2, The 2-cycle of Eq. (1.4) has the potential to lose its stability after going

through a Neimark-Sacker bifurcation. The period-doubling observed in Part (i) of Example 4.4

comes after the 2-cycle exits the stability region through the Neimark-Sacker bifurcations. Figure

6 Shows an illustrative case of the Neimark-Sacker bifurcation that occurs.

Figure 6: Let h0 = 0.820 and h1 = 1.800. When r = 1.5, the 2-cycle bifurcates into two curves through a Neimark-
Sacker bifurcation. The two curves serve as one attractor. The red represents the even terms in the orbit, while the
blue represents the odd terms. The green solid circles represent the 2-cycle. The horizontal axis is for xn, and the
vertical axis is for xn−1.

Next, we proceed to find conditions under which we obtain global stability. Recall Fj(x, y) =

xf(y) + hj for j = 0, 1. First, we investigate the existence of pseudo 2-cycles. Solving the equation

G1(G0(ξ)) = ξ, where ξ = (x, y, u, v) gives us (see Subsection 2.3)

(x, y) = (F1(v, u), F0(u, v)) and (u, v) = (F1(y, x), F0(x, y)).

Since each value of (x, y) determines a unique value of (u, v), it is enough to focus on the equations{
x− h1 = (xf(y) + h0)f(yf(x) + h1)

y − h0 = (yf(x) + h1)f(xf(y) + h0).
(4.5)

Observe that the 2-cycle {z̄0, z̄1} (see Eq. (4.1)) satisfies System (4.5). For other solutions, our best

bargain here is to investigate the various scenarios based on the curves of the two equations. Let

ℓ1 and ℓ2 be the curves of the first and second equations in System 4.5, respectively. The ℓ1-curve

has a horizontal asymptote at y = 2r − h1 and a vertical asymptote at x = h1. Similarly, the

ℓ2-curve has a horizontal asymptote at y = h0 and a vertical asymptote at x = 2r − h0. Multiple

intersections between ℓ1 and ℓ2 guarantee the existence of artificial cycles, and in this case, the
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embedding technique fails to help us establish global stability. Thus, a unique intersection between

ℓ1 and ℓ2 is crucial to our embedding strategy. Next, we appeal to the results of Subsection 2.3

and Proposition 2.8 in particular. Our primary objective is to identify values for (a, b) such that

a < b and the condition (2.9) of Proposition 2.8 are satisfied. By Part (ii) and Part (iii) of Lemma

3.5, and the consequent Remark 3.1, the inequalities (a, b) <se (F0(a, b), F0(b, a)) have a feasible

region when h0 > r. However, we need the feasible region to overlap with the feasible region of the

inequalities

a ≤ F1(F0(a, b), b) and b ≥ F1(F0(b, a), a). (4.6)

A quick observation here is that if (a, b) <se (Fj(a, b), Fj(b, a)) for each j, then the inequalities in

(4.6) have a feasible region; however, we can avoid this strong constraint. Before we proceed, we

give some illustrative computational examples.

Example 4.5. (i) Consider r = 1.0, h0 = 2.0 and h1 = 1.5. The 2-cycle is {z̄0, z̄1} ≈ {2.230, 2.498}.
From Eqs. (4.2) and (4.3), we obtain Tr ≈ −1.163, and Det ≈ 0.364. The eigenvalues are

≈ −0.582 ± 0.161i, which are within the unit disk. Thus, the 2-cycle {z̄0, z̄1} of the system

[F0, F1] is locally asymptotically stable. The curves ℓ1 and ℓ2 are given in Part (i) of Fig. 7.

(ii) When r = 1.0, h0 = 2.0 and h1 = 1.0, we obtain the 2-cycle [z̄0, z̄1] ≈ [2.455, 1.950] of the

system [F0, F1]. The trace and determinant from Eqs. (4.2) and (4.3) are given by Tr ≈ −1.42

and Det ≈ −0.0732. The eigenvalues are ≈ −1.470 and 0.050. Obviously, the 2-cycle of the

system [F0, F1] is unstable. Next, we investigate the solution of the system G1(G0(ξ)) = ξ.

As clarified in Subsection 2.3, we explore the following scenarios:

� G1(ξ) = G0(ξ) = ξ, where ξ = (x, y, y, x). x = y leads to an equilibrium solution of Eq.

(1.4), while x ̸= y leads to an artificial equilibrium solution. Both scenarios are not

possible since h0 ̸= h1.

� ξ0 = (x, x, y, y), x ̸= y,G0(ξ0) = ξ1 = (y, y, x, x) and G1(ξ1) = ξ0. This means {x, y}
is a 2-cycle for each one of the one-dimensional maps fj(x) = Fj(x, x), j = 0, 1. Again,

this is not possible since h0 ̸= h1.

� ξ0 = (x, y, x, y), x ̸= y,G0(ξ0) = ξ1 = (y, x, y, x) and G1(ξ1) = ξ0. This means {ξ0, ξ1} is

a 2-cycle of [G0, G1] and {x, y} is a 2-cycle of [F0, F1]. This is always possible in our sys-

tem since we verified the existence of a p-cycle for the p-periodic system [F0, F1, . . . , Fp−1].

For the specific choice of our parameters, we already computed the 2-cycle above.

� ξ̄0 = (x̄, ȳ, ū, v̄), x̄ ̸= ȳ, (x̄, ȳ) ̸= (ū, v̄), G0(ξ̄0) = ξ̄1 = (v̄, ū, ȳ, x̄) and G1(ξ̄1) = ξ̄0. This

scenario is possible under certain choices of the parameters, and it leads to what we called

artificial cycles. Indeed, when r = 1.0, h0 = 2.0, and h1 = 1.0, we obtain the following:

The fixed points of G10 = G1 ◦G0 are ξ̄0 = (x̄, ȳ, ū, v̄) and ξ̄1 = (ū, v̄, x̄, ȳ), where

x̄ ≈ 1.109, ȳ ≈ 3.306, ū ≈ 3.966 and v̄ ≈ 2.110.

On the other hand, the fixed points of G01 = G0 ◦ G1 are η̄0 = (v̄, ū, ȳ, x̄) and η̄1 =

(ȳ, x̄, v̄, ū). Therefore, [G0, G1] has two 2-cycles that are not generated by 2-cycles of

[F0, F1], namely {ξ̄0, η̄0} and {ξ̄1, η̄1}. Those cycles lead to what we called artificial cy-

cles of [F0, F1], namely {(x̄, ȳ), (v̄, ū)} and {(ū, v̄), (ȳ, x̄)}. In this case, the embedding

technique fails to tackle global stability in the system [F0, F1]. However, we can even-

tually squeeze the orbits of G10 between ξ̄0 and ξ̄1 (with respect to ≤se). Similarly, the

orbits of G01 can be eventually squeezed between η̄0 and η̄1 (again with respect to ≤se).
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When it comes to the system [F0, F1], the even terms of the orbits are eventually squeezes

between x̄ and ū, while the odd terms of the orbits are eventually squeezed between v̄ and

ȳ.

x

y

ℓ2 ℓ1

h0

2r − h1

(i) r = 1.0, h0 = 2.0 and h1 = 1.5

x

y

ℓ1

ℓ2

2r − h1

h0

(ii) r = 1.0, h0 = 2.0 and h1 = 1.0

Figure 7: Part (i) of this figure shows the curves ℓ1 and ℓ2 of the first and second equations in System (4.5),
respectively. The unique intersection is the 2-cycle {z̄0, z̄1} of the system [F0, F1], where z̄0 ≈ 2.498 and z̄1 ≈ 2.230.
The shaded thin region represents the points (a, b) that satisfy (a, b, b, a) <se G1(G0(a, b, b, a)) and a < b. Part (ii)
shows the same curves but when h1 is changed to 1.0. The three intersections between the curves represent the
2-cycle {z̄0 ≈ 2.455, z̄1 ≈ 1.950} of the system [F0, F1] and two other artificial cycles generated from the intersections
(1.109, 3.306) and (3.966, 2.110).

Now, we revisit the system of inequalities in (4.6), and re-write them as{
a(1− (f(b)))2 ≤ h0f(b) + h1

b(1− (f(a)))2 ≤ h0f(a) + h1.

For a, b > r, the factors on the left hand side are positive, which motivate us to define the map

g2(t) = h0f(t)+h1

1−(f(t))2
, t > r. Also, recall from Remark 3.1 that we defined the map g1(t) = h0

1−f(t) .

Both g1 and g2 are decreasing in t. The inequalities in (4.6) become a ≤ g2(b) and b ≥ g2(a). It is

straightforward to check the following result.

Lemma 4.6. Assume h0 > r. There exists an unbounded set of points (a, b), a < b that satisfy

a ≤ g1(b) < g2(b) < g2(a) whenever h0 < h1

and

b ≥ g1(a) > g2(a) > g2(b) whenever h0 > h1.

Finally, we arrive at the main result of this section, which provides a generalization of Part (i)

of Theorem 3.6.

Theorem 4.7. Consider Eq. (1.4) with h0 ̸= h1. If both h0, h1 > r and the solution of System

(4.5) is unique, then the 2-cycle {z̄0, z̄1} is global asymptotically stable.

Proof. For each initial condition (x0, x−1) of Eq. (1.4), we need to find a point (a, b) that makes

Proposition 2.8 applicable. Without loss of generality, we can consider the initial conditions to be

(x2, x1). In this case, we guarantee that x1 > h0 > r and x2 > h1 > r. If h0 > h1, we consider (a, b)
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such that a < b, b = g1(a) and a is sufficiently small so that r < a < h1. In this case and based on

Lemma 4.6, we obtain

b ≥ g1(a) > g2(a) > g2(b) > h1 > a.

If h0 < h1, we consider (a, b) such that a < b, a = g1(b) and b is sufficiently large so that g2(h0) < b.

In this case and based on Lemma 4.6, we obtain

a ≤ g1(b) < g2(b) < g2(a) = g2(g1(b)) < g2(h0) < b.

Observe that this choice of (a, b) can be done to have (x2, x1) ∈ [a, b]2. All the hypotheses of

Proposition 2.8 are satisfied, and we invoke the Lemma to obtain the result.

The uniqueness condition in Theorem 4.7 is to guarantee that the global attractor is the 2-

cycle of [F0, F1]. However, if we just require h0, h1 > r, then the theorem gives us either a globally

attracting 2-cycle or a trapping box in which its boundaries are determined by two artificial 2-cycles

of [F0, F1].

5 Conclusion

We investigated two systems in this paper: the Ricker model with a time delay and constant

stocking xn+1 = F (xn, xn−1) = xn exp(r − xn−1) + h, and the system involving periodic stocking

xn+1 = Fn(xn, xn−1) = xn exp(r − xn−1) + hn. In both cases, we embedded the 2-dimensional

system into a 4-dimensional system that is monotonic with respect to a partially ordered set. In

the first system, a unique positive equilibrium exists, which we denote by ȳh. The equilibrium ȳh
transitions into a cycle in the second system, and the cycle has the same period as the system. We

utilized the embedding technique to analyze global stability in both systems.

In the constant stocking case, we obtained local stability when ȳh < 1 + h, which leads to the

condition 0 < r < r1 = h+ 1− ln(h+ 1). On the other hand, we proved global stability under the

constraint

ȳh <
1

2

(
h+

√
h2 + 4h

)
,

which leads to the constraint

0 < r < r2 =
1

2

(
h+

√
h2 + 4h

)
+ ln

(
1− 2h

h+
√
h2 + 4h

)
.

It’s worth noting that the global stability condition we established is more stringent than the local

stability condition, i.e., r2 < r1. Therefore, the common assertion that “local stability implies global

stability” is still an open problem for for all values of r between r1 and r2 as we illustrated in Fig. 5.

For the 2-periodic system xn+1 = Fn mod 2(xn, xn−1), we established conditions that ensure

both local and global stability of the existing 2-cycle. We illustrated a scenario in which the 2-cycle

undergoes a Neimark-Sacker bifurcation, leading to the emergence of two invariant curves that

act as a unified attractor. Finding the explicit form of the cycle is not possible, but we provided

illustrative numerical examples that clarify various possible scenarios. As in the constant stocking

case, sufficient conditions for the global stability of the 2-cycle is obtained in the 2-periodic case.

Nonetheless, identifying necessary and sufficient conditions remains an open problem. We also

conjecture here that local stability of the 2-cycle is sufficient to ensure its global stability.
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