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Abstract: This paper investigates an FPGA architecture whose primary function is to accelerate
parallel computations involved in the rapid-exploring random tree (RRT) algorithm. The RRT
algorithm is inherently serial, while in each computing step there are many computations that can be
executed simultaneously. Nevertheless, how to carry out these parallel computations on an FPGA so
that a high degree of acceleration can be realized is the key issue. Membrane computing is a parallel
computing paradigm inspired from the structures and functions of eukaryotic cells. As a newly
proposed membrane computing model, the generalized numerical P system (GNPS) is intrinsically
parallel; so, it is a good candidate for modeling parallel computations in the RRT algorithm. Open
problems for the FPGA implementation of the RRT algorithm and GNPS include: (1) whether it
possible to model the RRT with GNPS; (2) if yes, how to design such an FPGA architecture to achieve
a better speedup; and (3) instead of implementing GNPSs with a fixed-point-number format, how to
devise a GNPS FPGA architecture working with a floating-point-number format. In this paper, we
modeled the RRT with a GNPS at first, showing that it is feasible to model the RRT with a GNPS.
An FPGA architecture was fabricated according to the GNPS-modeled RRT. In this architecture,
computations, which can be executed in parallel, are accommodated in different inner membranes of
the GNPS. These membranes are designed as Verilog modules in the register transfer level model. All
the computations within a membrane are triggered by the same clock impulse to implement parallel
computing. The proposed architecture is validated by implementing it on the Xilinx VC707 FPGA
evaluation board. Compared with the software simulation of the GNPS-modeled RRT, the FPGA
architecture achieves a speedup of a 104 order of magnitude. Although this speedup is obtained on a
small map, it reveals that this architecture promises to accelerate the RRT algorithm to a higher level
compared with the previously reported architectures.

Keywords: membrane computing; rapidly-exploring random tree (RRT) algorithm; generalized
numerical P system (GNPS); field programmable gate array (FPGA); bioinspired heterogeneous
computing

1. Introduction

Membrane computing is a branch of natural computing introduced by Păun in [1],
whose computing devices, called membrane systems or P systems, are inspired by the struc-
ture and functioning of the living cells. There are several variants or types of P systems,
numerical P systems (NPSs) being a special variant brought forward for potential applica-
tions in economics and the finance domain [2]. NPSs contain variables with real number
values and programs (also called rules, hereafter) consisting of a production function on
the left hand side and a repartition protocol on the right hand side. Once a variable is used
by a rule, its value is reset to zero. An extension of the NPS named the enzymatic numerical
P system (ENPS) is put forward in which an enzyme-like variable is introduced to control
the processing sequence of rules [3]. Another significant attribute of the ENPS is that the
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value of a variable can be used by multiple rules concurrently. The ENPS model suffers
from many drawbacks; the most important one is that only the maximum function can
be used for value comparisons. So, in [4], the model of generalized numerical P systems
(GNPSs) was proposed, allowing arbitrary Presburger predicates to guard rule applications.
This allows a more straightforward representation of a GNPS in FPGA hardware.

In general terms, the rapidly-exploring random tree (RRT) algorithm builds an explo-
ration tree for a motion planning problem, where the root is the initial state, and each node
in the tree represents a reachable state. Thus, each edge in the tree represents a motion
connecting two states. Leaf nodes represent final states; when a leaf node reaches the goal
area for the motion planning problem, then the trajectory can be generated by connecting
the motions (edges) from the root to the leaf node. As a randomized planning technique,
the RRT has several good qualities such as being biased to an unexplored state space, the
nodes (referred to as RRT points in this paper) being nearly uniformly distributed, only
nearest-neighbor queries being needed, etc. The RRT has been increasingly applied in path
planning since its establishment in 1998 [5,6]. To compute the (n + 1)th (n ≥ 2, initial point
is included) RRT point, there are n distances between RRT points and the random point to
be computed. The size of the subsequent compare logic determining the nearest distance
would also be large if n was a large number. In addition, its size would keep increasing
if more RRT points were required. This is a incremental process; so, the RRT belongs to
the category of incremental sampling-based motion planning algorithms. If m denotes
the number of obstacle points, in the verification process of each iteration, m distances
of obstacle points to the line segment (xn, yn)− (xnew, ynew) should be computed and the
nearest distance should be chosen, compared with the robot rotation radius ξ to determine
whether to discard or store the potential point (xnew, ynew). If the nearest distance is smaller
than ξ, when the robot walks along this line segment, it bumps into obstacles. So, only
when the nearest distance is larger than ξ can the potential RRT point be accepted.

The procedures of determining the nearest RRT point to a random point and the
verification process can be performed in parallel. The processing speed will be improved
to a large extent if these computations are executed in parallel hardware architecture. To
this aim, this research models the RRT algorithm in a GNPS and implements this model on
an FPGA. The IEEE 754 floating point number is selected as the real number format for its
large dynamic range and high precision. This format allows the future application of the
RRT into a large-scale map with a number of obstacle points.

The issues of the FPGA implementation of a GNPS consist of: (1) the mapping be-
tween the membrane structures and the hardware description language constructs; (2) the
manipulation of the sequential computing associated with different membranes; (3) the
realization of parallel computing within one membrane of a GNPS when implementing
it on an FPGA. The problems of the FPGA implementation of the RRT algorithm include:
(1) after the nth RRT point is generated, to compute the potential (n + 1)th RRT point,
there are n distances among RRT points and the (n + 1)th random point to calculate. Note
that this is an accumulating computation. Namely, the number of distance calculations
above accumulates along with the number of RRT points. How can such accumulating
computations be performed? (2) To evaluate the the potential (n + 1)th RRT point, the
distances between all the obstacle points and the potential RRT point should be calculated
concurrently. These computations are carried out in each round of computing RRT points.
In practice, the number of obstacle points is a large number (thousands of thousands). How
can these computations be executed properly? (3) It is comparatively easy to generate
pseudo random numbers based on a linear shift feedback register. However, if a floating
point format is used, generating a floating point number in the range of (0, 1) is not trivial.
A novel method should be proposed.

To address the issues mentioned above, we conceived corresponding solutions. For
issues of the FPGA implementation of a GNPS: (1) Membrane structures are mapped to
Verilog modules. The inclusion of membranes is identically transferred to associated mod-
ules; (2) The group of computations inside different membranes is triggered by sequential
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binary impulses; so, the sequential computing of the RRT algorithm is achieved; (3) The
group of computations inside the same membrane is triggered by one binary impulse; so,
the parallel computations take place correctly. For issues of the FPGA implementation of
the RRT algorithm: (1) If the n RRT point will be computed, n distance computing modules
(DCMs) are instantiated at first. However, only the right number of DCMs are activated and
under use to calculate the corresponding number of distances in a different round; (2) If the
number of obstacle points is m, then m DCMs are instantiated under the circumstance that
the FPGA hardware resources are sufficient. These DCMs are triggered at the same time
to perform parallel computing; (3) Two linear feedback shift registers (LFSR) are chained
in order to increase the randomness. These two LFSRs produce 27-bit random numbers.
The highest five bits ‘0_0111’ are concatenated at left to the 27-bit number to form a 32-bit
number in the range of (0, 1).

The proposed FPGA architecture for the RRT algorithm is a novel one because the
one membrane computing model, i.e., the GNPS, is utilized as the modeling framework to
rebuild this algorithm. Sequential computations are accommodated in different membranes
numbered from two (membrane one is the skin to hold all the inner membranes) to the last
one. Parallel computations triggered by the same binary impulse reside in one membrane.
The employment of the GNPS results in the RRT algorithm being structured and flattened:
the computations commence from membrane two sequentially, while the computations
within one membrane are carried out in parallel. The advantages of this reconstruction lie in
the following: (1) The modularization of the RRT algorithm is beneficial to understanding
how this complicated algorithm works; (2) It is quite favorable for FPGA implementation,
since the membrane structures are mapped to Verilog module interconnections; (3) This
architecture has good scalability. For different maps with different numbers of obstacles
and the number of RRT points to be computed, instantiating different numbers of distance
computing modules can meet specific requirements. The penalties of this architecture
consist of the following: (1) The basic knowledge of membrane computing is indispensable.
This precondition may be a barrier for applications of this architecture; (2) FPGA hard-
ware resource expenditure and power consumption are relatively higher for the use of a
floating point format. So, this architecture is not suitable for mobile applications powered
by batteries.

This architecture was validated in a map containing eight obstacle points, and two
RRT points were generated. Although the numbers of obstacle points and RRT points were
small, it is easy to scale this architecture by instantiating more or fewer distance computing
modules. Compared with the software simulation of this GNPS–RRT model, the GNPS–
RRT FPGA architecture achieved a speedup of 104 order. The speedup indicates that this
architecture has good performance, which can be used to accelerate the RRT algorithm.
Furthermore, this study shows that modeling computation intensive algorithms with a
GNPS is a feasible and favorable alternative. By means of this rebuilding and modeling of
algorithms, FPGA implementation-friendly models are obtained. This study may provide
a typical case for modeling with a GNPS and its FPGA implementation, which will expand
applications of membrane computing.

The contributions of this study consist of the following: (1) A GNPS is employed as
the modeling framework for the RRT algorithm, providing an alternative way to structure
computation intensive algorithms; (2) The GNPS–RRT model is desirable for devising a
new FPGA architecture, which exhibits feasibility and efficiency. This attempt expands
the hardware implementation research of a GNPS and its application; (3) The GNPS–RRT
FPGA architecture works with the IEEE 754 floating point format. An original method to
generate floating point numbers in the range of (0, 1) is proposed.

The paper is organized as follows. Section 2 gives a short introduction to the model
of generalized numerical P systems, to RRT algorithm functioning, and to floating point
numbers’ representation in hardware. In Section 3, the pros and cons of the existing
hardware implementations of the RRT algorithm are analyzed. Section 4 presents the GNPS
implementations of the RRT algorithm and its FPGA implementation. Section 5 gives
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the obtained experimental results and their analyses. Section 6 concludes this paper and
discusses the strong and weak points of the proposed implementation.

2. Preliminaries

In this section, the definition of a GNPS is given, and this computing device is repre-
sented in detail, so that readers outside membrane computing can understand it well. The
RRT algorithm is also explained to reveal the characteristics and computations involved.
A brief introduction to the IEEE 754 floating point format is presented at the end of this
section. Section 2.1 describes the GNPS, while Section 2.2 gives a detailed description of
the RRT algorithm. Section 2.3 displays the IEEE 754 format explicitly.

2.1. Generalized Numerical P Systems

The main model used in this paper is called a generalized numerical P system
(GNPS) [4]. It extends a simpler model called a numerical P system (NPS), introduced
in 2006 [2] to model economic processes. The model structure of a GNPS corresponds to
a graph where each node, called a cell or also a membrane, contains a set of real-valued
variables. Some variables are marked as input variables and are read-only (cannot be
updated by the rules of the system), while others are marked as output variables and are
write-only (cannot be read by the system). All other variables are called internal variables.
The model also contains a set of rules that allow updating the values of variables based
on their values at the previous discrete time step. The application of rules is guarded by
(recursive) predicates, and theoretically, they can perform any transformation. It should be
noted that a locality principle is used—any transformation may only consider values of
variables located in the same cell.

For implementation reasons, it is often interesting to use integer variables and linear
predicates and transformations. This allows achieving very high implementation speeds.
The basic variant of a GNPS corresponds to such a restriction, enriched with explicitly
mentioned nonlinear functions that can be additionally used.

We provide the formal definition of a GNPS as well as its semantics, as follows [4,7].

Definition 1. A generalized numerical P system is the following tuple

Π = (m, V, I, O, (Var1, Var1(0)), . . . , (Varm, Varm(0)), Pr),

where

• m > 0 is the number of cells/membranes,
• V is an alphabet of variables,
• I ⊆ V is the set of input variables, I ∩O = ∅,
• O ⊆ V is the set of output variables, I ∩O = ∅,
• Vari ⊆ V is the list of internal variables for cell i,
• Vari(0) is the vector of initial values for variables internal to cell i,
• Pr is the set of rules of the system (see the description below).

A rule (called also program) r ∈ Pr has the following form

P(x1i, . . . , xki; E1, . . . , El);

F(x1i, . . . , xki)→ c1|v1, . . . , cn|vn,
(1)

where

• {x1i, . . . , xki} ⊆ Vari for some i, 1 ≤ i ≤ m, are variables located altogether in the
same cell i,

• {E1, . . . , El} ∩Vari = ∅ are predicate variables located in cell i above,
• {v1, . . . , vn} ⊆ V are any variables of the system,
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• cj ∈ N, 1 ≤ j ≤ n are repartition coefficients that together with variables vj form the
repartition protocol,

• P is the applicability condition, which is a decidable predicate over the indicated variables,
• F is the production function, which is a computable function.

In the definition above, the values of the variables are considered to be real. Then, it is
clear that the predicate P should be decidable, and the function F should be computable
on real numbers. Since, from a theoretical point of view, most of the predicates on real
numbers are undecidable, in this paper we understand by “decidable on reals” any predi-
cate decidable on a chosen representation (approximation) of real numbers. Similarly, the
computability on real numbers refers to the computability using the chosen representation
of real numbers. In the case of an always true predicate, it can be omitted.

Since each variable has a unique cell to which it belongs, the rules in Pr can be
interpreted as the structural relation between cells to which the involved variables belong.
In the most general case, this relation induces a hypergraph; however, special cases of
graph and tree relations are of particular interest for membrane computing. In the latter
case, the system can be depicted graphically as a Venn diagram, where the variables and
rules are located in corresponding cells.

In order to apply a rule r as described above, first, its applicability condition is checked.
If predicate P is true, then the rule is called applicable, and it is applied as follows [2,4,7].
First the value of the production function is computed, based on the current values of the
variables. Second, each variable vj, 1 ≤ j ≤ n from the repartition protocol part receives the
fraction

cj

∑n
t=1 ct

of the computed production function value. If there are several applicable
rules, then all of them are applied. If several rules update the same variable, then the
corresponding amounts are added. Finally, the value of a variable at the beginning of each
new step is reset to 0 if it was used in a computation of some production function. The
value of an output variable is always kept to the previous value, unless updated. In this
case, the old value is replaced by the newly computed value.

The evolution of a GNPS can be described by the following discrete time series (we
suppose that r is described as in (2)):

xls(t + 1) = ∑
r∈Pr

F(x1i(t), . . . , xki(t))
cj

∑n
t=1 ct

+ x̄ls(t), (2)

where x̄ls(t) =


xls(t) if xls does not appear in any

production function F of an
applicable rule,

0 otherwise.
We recall that the initial values (at time 0) of variables from cell i are given by the set

Vari(0).

2.2. The Rapidly-Exploring Random Tree (RRT) Algorithm

The pseudo code of the RRT algorithm is given in Algorithm 1. In general terms, the
RRT algorithm builds an exploration tree for a motion planning problem, where the root is
the initial state, and each node in the tree represents a reachable state. Thus, each edge in the
tree represents a motion connecting two states. Leaf nodes represent the final states; when a
leaf node reaches the goal area for the motion planning problem, then the trajectory can be
generated by connecting the motions (edges) from the root to the leaf node (Figure 1).
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Algorithm 1 Pseudocode for the RRT algorithm.
Input: Initial position: X0 = (x0, y0), size of RRT: N, step: δ, radius: ξ, list of obstacle points: L
Output: RRT Graph: G

1 Add vertex X0 to G
2 for i = 1 to N do
3 Xrand ← random point on the map
4 Xnear ← nearest vertex from G to Xrand
5 Xnew ← point situated at distance δ from Xnear when moving towards Xrand
6 if ∃p ∈ L with the distance between p and XnearXnew < ξ, then
7 go to step 3
8 Add vertex Xnew to G
9 Add edge (Xnear , Xnew) to G

Figure 1. A Rapidly-exploring Random Tree covers the free-obstacle space. The tree is rooted on the
initial robot position in the center of the image; each node is an reachable position, and each leaf node
is a final position.

At the beginning of the RRT algorithm, the first random point (xrd1 , yrd1) is produced as
(p× rdm1, q× rdm2), where p and q are the x-axis length and y-axis height of the map. rdm1
and rdm2 are two random numbers in the range of (0, 1). The initial position of the robot,
which is also the root point of the RRT, is (x1, y1). On the line segment (x1, y1)− (xrd1 , yrd1),
a shorter one, whose starting point is (x1, y1) and length is δ, is computed. δ is called the
step length of the RRT path. If the distance of (x1, y1) − (xrd1 , yrd1) is less than that of δ,
then rdm1 and rdm2 are regenerated until |(x1, y1)− (xrd1 , yrd1)| ≥ δ. If we find such a line
segment whose length is δ, then the end point of this line segment (xnew1 , ynew1) is the first
potential RRT point. To verify this point, the distances among all obstacle points to the line
segment ((x1, y1)− (xnew1 , ynew1)) are calculated in parallel. Then, the minimum distance is
determined by comparing these distances pairwise. If the minimum distance is larger than
the robot rotation radius ξ, then (xnew1 , ynew1) is recognized as the second RRT point (x2, y2)
(note that the root RRT point, which is the initial position of the robot, is (x1, y1)). Otherwise,
(xnew1 , ynew1) is discarded, and (xrd1 , yrd1) is recomputed until (x1, y1) is obtained.

To acquire (x3, y3) is more complicated. Once the second random number (xrd2 , yrd2)
is computed, we should compare the length of line segment (x1, y1) − (xrd2 , yrd2) and
(x2, y2) − (xrd2 , yrd2), choosing the minimum one. Then, we calculate the line segment
whose length is δ on the minimum one if its length is equal or larger than δ. As mentioned
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above, the endpoint (xnew2 , ynew2 is the second potential RRT point. To confirm it, the
distances among all obstacle points to the line segment ((xsp1 , ysp1)− (xnew2 , ynew2)) are
calculated in parallel, where (xsp1 , ysp1) is (x1, y1) or (x2, y2). As can be seen, the process
computing an RRT point comprises two phases. In the first phase, there is an accumulating
distance calculation that determines the minimum distance to the random point. Specif-
ically, to compute the (n + 1)th RRT point ((x1, y1) is included), there are n distances to
compute; and the minimum one is selected by pairwise comparison. The second phase
is the verification involving the calculation of distances among all obstacle points to the
target line segment. This phase is static because the number of obstacle points is constant.

2.3. Real Number Representation

We would like to remark that the model of a GNPS considers real-valued variables.
Note that real numbers are represented by their approximation using bit arrays. There exist
two main possibilities for such a representation: fixed point and floating point formats.

The usage of fixed point encoding in the implementation presents many benefits;
however, it has a major drawback—its dynamic range is relatively small. This can be
penalizing for several types of applications, including the RRT algorithm. To increase
it, a larger number of bits for the representation should be considered, even if most of
the possible values would remain unused. If the limit values cannot be determined in
advance, then there is an important risk of overflow. The floating point representation of
(the approximation of) real numbers aims to deliver a large dynamic range, while trading
off the number precision. The most common format for such a representation is the IEEE 754
single precision floating point format, depicted in Figure 2. As can be seen, the total size
of the representation is 32 bits. Bits 0 to 22 store the mantissa, and bits 23 to 30 store the
exponent of the number. The last bit denotes the sign, 0 for positive and 1 for negative
values. The exponent is an 8-bit unsigned integer in a biased form: an exponent value of
127 actually represents 0. Additionally, the exponents range from −126 to +127 because the
exponents of −127 (all 0 s) and +128 (all 1 s) are reserved for special numbers.

Exponent: 8 bits Mantissa: 23 bitsSign: 1 bit

0223031 23
Figure 2. IEEE 754 single precision floating point representation. The value of the number is given by
the formula value = (−1)Sign2Exponent−127(1 + Mantissa

223 ).

3. Related Works

The development of robots able to act in real-world environments implies the study
and research of anytime algorithms, i.e., algorithms able to return a valid solution to a
problem even if they are interrupted. In the particular case of mobile robots, one crucial
problem to be solved by this type of algorithm is the motion planning problem. This problem
demands finding a sequence of commands that allow moving an agent from an initial state
(usually a position in a 2D plane) to a final one, while avoiding obstacles [8]. In [9], the
mentioned problem is demonstrated to be PSPACE-hard. Therefore, several approximated
solutions have been designed. One special case is the category of algorithms to build
Rapidly-exploring Random Trees (RRTs). They are based on a randomized exploration of
the obstacle-free configuration space by creating a data tree structure in which the nodes
represent reachable states and the edges represent transitions or movements between
states. Several variants of the main algorithm have been designed, in particular, the
RRT∗ algorithm [10] is able to create a tree whose branches asymptotically converge in
computation time to optimal solutions.

Attempts to speed up the execution of the RRT algorithm led to the investigation of its
parallelization strategies. While the main core of the RRT algorithm is iterative and, therefore,
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sequential, there are parts that have been successfully implemented on parallel hardware in
the obstacle collision detection [11,12]. Another possibility is to use an inherently parallel
model of computation such as membrane computing [1] to encode the algorithm. Then, a
parallel implementation of the corresponding model would result in a parallel RRT solution.

In recent years, several hardware implementations of the RRT algorithm have been
developed by using custom FPGA hardware [13,14], by using CUDA GPUs [15,16], and by
using the OpenMP platform [16]. In particular, in [13], a hierarchical FPGA architecture
was proposed to speed up the RRT algorithm. In this architecture, multiple RRT modules
were executed concurrently to obtain their results. These results were integrated to form the
path via a write-access mechanism. In detail, after a potential RRT point (called as ‘node’)
was calculated by a RRT module, this point was polled. If it was acknowledged as a node
by the polling module, it was transferred to generate the global path. Otherwise, a new
iteration began to compute the potential node. The polling module is a buffer stack storing
nodes. To preserve data integrity, all the nodes are transferred through a write-acknowledge
mechanism. A FIFO stack is configured to poll those polling modules in a chronological
sequence. Polling modules send data to the FIFOs after receiving the instant read access
request sent by the latter. There are several FIFO polling levels in which the higher levels
poll the lower ones. A global map module, located at the top of the polling tree, is updated
by its immediate lower FIFOs.

The benefits of this architecture consist of the following: (1) The polling tasks only come
from the immediate higher levels so that the data integrity is preserved. Consequently, zero
intra-level communication is achieved; (2) Data collision is avoided, where data scheduling
happens only among the immediate lower modules. As the result, the waiting time is reduced
to a large extent; (3) The number of each kind of modules can be adjusted, for the depth
of the hierarchical structure. However, the limitations include the following: (1) Except for
the global map module, most parts inside each module are reusable in different iterations.
Nevertheless, they are instantiated many times, consuming a lot of hardware resources. So
this strategy incurs more power consumption; (2) The map should be described by obstacle
points instead of the real map picture for an FPGA. So, the number of obstacle points of each
map should be determined. This number is important because it decides how many distance
computations are conducted in the polling process. If the number of the RRT module is lower
than the number of obstacle points, what will they do? Can they compute the distance in
several rounds, or there is another solution? (3) The relative performance proposed is not
suitable for evaluating the performance of this architecture. The absolute performance (the
concrete time elapsed to plan a path from initial position to destination) is more acceptable.
Another weak point is that the hardware resource consumption is not mentioned.

Compared with the existing FPGA implementations mentioned above, the FPGA archi-
tecture proposed in this paper has the following advantages: (1) Floating point arithmetic
units are instantiated in one instance to reduce the hardware expenditure and power con-
sumption; (2) A target map is described with obstacle points and the length × width. The
number of obstacle points is clear-cut and constant. This fact benefits the implementation
of the RRT; (3) The absolute performance is employed to evaluate our architecture. The
hardware expenditure and power consumption of our design are provided as well, which
are necessary to assess this architecture. The disadvantages of our architectures lie in the
following: (1) the floating point format consumes many more hardware resources than
the fixed point format, although the former has a much larger range and higher precision;
(2) For the limited hardware resources of an FPGA, it is almost impossible to instantiate
enough distance computing units to calculate the distances simultaneously. A mechanism
which arranges the distance computing in sequential batches is needed. This mechanism
will be investigated in the next phase.

4. Methods

In this section, the design and implementation of the FPGA architecture for the GNPS-
modeled RRT algorithm are elaborated. We describe the modeling of the RRT algorithm with
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a GNPS in Section 4.1. As a consequence, a GNPS computing RRT points is obtained. This
GNPS is used as the roadmap for the FPGA architecture design. In Section 4.2, the design of
the associated floating point arithmetic units working as functional parts of FPGA architecture
is described. In Section 4.3, the implementation of this architecture is presented.

4.1. GNPS Modeling of the RRT Algorithm

The modeling of the RRT algorithm using a GNPS closely follows Algorithm 1 and
performs parallel operations whenever possible. The state space corresponds to a rectangle
of a given size in the 2D plane. The maximum number of RRT points and the number of
obstacles are fixed in advance. These values can be changed if necessary. Each obstacle
and RRT point is represented by a couple of GNPS variables corresponding to their coordi-
nates. After obtaining the random point Xrand using a pseudo-random number generator,
distances from this point to all the available RRT points are computed in parallel. Then, the
minimum distance is found, the corresponding RRT point is selected as Xnear, and the new
candidate RRT point Xnew is computed. Then, the distances from each obstacle point to
the line segment XnearXnew are computed in parallel. If these distances are smaller than the
robot rotation radius ξ (there is a collision), the process is reiterated.

The GNPS modeling of the RRT is based on a functional group partition to the algo-
rithm. As a consequence, different functional groups are located in different membranes,
while these membranes are enclosed by a skin membrane, composing the GNPS as a whole.
From the coarse-grained point of view, procedures computing Xrand, Xnear, and Xnew can
be regarded as a functional group, contained in an internal membrane. Note that these
procedures are executed serially for the implicit sequence. The calculations of the distances
from the obstacles to XnearXnew can be conducted in parallel, although they have sequential
procedures. Such a calculation is treated as a functional group; so, they reside in multiple
membranes. The number of these membranes is equal to the number of obstacle points.
Finally, the process of choosing the minimum distance and verification is another functional
group split into fine-grained view to organize the distance comparison. The membrane
groups standing for these three functional groups execute serially to conform to the RRT
algorithm, while the applicable programs in all these membrane are performed in parallel.
An example of the translation is depicted in Figure 3, where the model is computing the
third RRT point in a map having three RRTs and eight obstacle points. The system was
built incrementally, first providing the rules for the high-level algorithm description and
then refining in subsequent steps by adding new or modifying existing rules.

4.2. Floating Point Arithmetic Module Design

For formulas operating fixed point numbers, Verilog operators can be used. However,
to perform arithmetic operations involving IEEE 754 numbers on an FPGA, one should use
floating point arithmetic units (FtPAUs) because the Verilog arithmetic operators are only
compatible for fixed point numbers. The execution of the arithmetic operations is inherently
sequential: operations with higher priorities, such as multiplication and division, should
be performed ahead of operations with lower priorities, such as addition and subtraction;
operations with the same priority are executed serially. Hence, to conduct a production
function of a GNPS program operating floating point numbers, several FtPAUs will be
chained in a specific order to form a FtPAU group to perform the calculation correctly. To
this end, a trigger signal is indispensable to fire the associated FtPAUs sequentially. On the
other hand, the FtPAU groups corresponding to all applicable programs should be triggered
simultaneously to comply with the parallelism, while the nonapplicable programs’ FtPAU
groups cannot be fired. Here, trigger signals are needed again.

For a GNPS working with fixed point numbers, predicates are translated to logical ex-
pressions and employed as the conditions of if–else statements of Verilog language. Production
functions comprised with Verilog arithmetic operators and variables reside in these state-
ments, acting in line with the results of these logical expressions. Nevertheless, in hardware
description language (HDL) development, instantiated FtPAU groups cannot be placed in
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such constructs. The treatment of predicates in a fixed point scenario should be changed
in a way that adapts to the new form of programs. In our research, the function of logical
expressions representing predicates is substituted by trigger signals with equivalent functions.
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Figure 3. Parts of the RRT-GNPS computing the third RRT point on a map containing eight obstacle
points. The rules are written on two lines connected by an open brace; the first line contains the
predicate and the second one the computation. Labels for membranes are indicated by integer
numbers beside at the lower right. Cell 1 computes a new random point Xrand, calculates the distance
between the initial position Xini to the Xrand, and then computes the Xnew point. Cells 2–9 compute
the distance from the corresponding obstacle point to the segment XiniXnew. Cells 10–17 perform
pairwise comparison in order to compute the minimal distance to an obstacle point.
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FPGA vendors provide basic FtPAU intellectual property (IP) cores: an adder, a mul-
tiplier, and a divider. These FtPAUs are triggered by the rising edge of the clock. This is
a general setting but not suitable for constructing complex computations such as the RRT
algorithm. FtPAUs that are triggered at different times and hold their values after computing
are more preferred. The main reason is that developers should schedule all the calculations to
implement the algorithm correctly. FtPAUs triggered at the clock rising edge actuate at the
same time, keeping developers from utilizing distinct FtPAUs, resulting in the chaotic timing
of computations. Following this idea, associated FtPAUs are developed to have different
trigger conditions. FtPAU IP cores are not used except for the normal divider, which is a
long time-latency and high resource-expenditure FtPAU. The following IEEE 754 compliant
arithmetic units were designed: an adder, a multiplier, and an inverse square root. The
comparator and pseudo-random number generator were also devised to fulfill the demand.

Our implementation of the FtPAUs triggered them sequentially for a single group of
operations. To implement this, it used input state and output control signals (wires/bit
variables). The first signal allowed the activation of the unit when the signal was asserted
high (equal to one). After the end of the computation (which may take several clock cycles),
the high control signal was asserted (during one clock cycle) indicating that the result was
computed. The control signal of an unit from a FtPAU chain was connected to the state
port of the next one to activate it. For each FtPAU, several implementations were designed
targeting different timing setups and computation conventions.

Addition and subtraction were realized by a single unit that takes as input two operands
and the operation to perform (+ or −). Since the IEEE 754 representation contains the number
sign, the operation of the unit should be handled with care (a subtraction can become an
addition, indeed). To reduce hardware resources and power consumption, IEEE 754 exceptions
were not taken into account except underflow. Truncation was selected as the rounding
mode [17] for the same reason. The design of the floating point multiplier was simpler than
the adder, as there was no need to ensure that both numbers had the same exponent.

It was trivial to compare to fixed point numbers since Verilog comparison operators are
at hand. However, to compare to floating point numbers was not as straightforward due to
the lack of comparison operators. The floating point comparator was designed to conduct
the comparison. Since floating point numbers consist of sign, exponent, and mantissa,
these parts were compared successively. The RRT algorithm involved the comparison of
numbers with the same sign. An absolute value comparison method, which combined the
exponent and mantissa was devised, as shown in Table 1. Note that the comparator output
the smaller number.

Table 1. Comparison of two FP numbers with the same signs.

Sign of a Sign of b abs Output

+ + |a| > |b| b
+ + |a| < |b| a
− − |a| > |b| a
− − |a| < |b| b

The RRT algorithm involves the inverse square root calculation for new RRT point
generation. Instead of attacking the problem directly by performing radication and division,
we used an ingenious solution for this problem, which first appeared in the source code
of the Quake3 3D game launched in the 1990s, see Figure 4. This solution is based on a
Newton approximation; however, it converges to a low error solution only after the first
iteration. We refer to [18] for more details and the analysis of this algorithm. We also used
the constant ‘5f37_5a86’ for better precision, as suggested in [18]. To translate this algorithm
to Verilog, one should bear in mind that a binary number, either in fixed or floating point
format, is treated as fixed point number, if the Verilog operators are exerted, while it is
considered as a floating point number, if it is input to a FtPAU. As mentioned above, for



Electronics 2023, 12, 2741 12 of 20

normal floating point number divisions that cannot be avoided, we used the corresponding
IP cores, which were optimized at time, and resource aspects, directly.

1 f l o a t InvSqrt ( f l o a t x )
2 {
3 f l o a t x h a l f = 0 . 5 f * x ;
4 i n t i = * ( i n t *)&x ; // get b i t s
5 i = 0 x5f3759df − ( i > >1); // i n i t i a l guess
6 x = * ( f l o a t *)& i ; // b i t s to f l o a t
7 x = x * ( 1 . 5 f − x h a l f * x * x ) ; // Newton step
8 return x ;
9 }

Figure 4. The C code for the computation of the inverse square root using the Quake3 method.

There are two types of random number generators that can be implemented in
FPGA: true random number generators (TRNG) and pseudo random number genera-
tors (PRNG) [19]. Since it is quite difficult to design a TRNG, we developed a PRNG
producing an IEEE 754 floating point number in the range of (0, 1). Its construction was
based on two chained linear feedback shift registers (LFSR) in order to increase the random-
ness. It functions in three steps as follows. (1) First a 27-bit seed number is selected. Then,
exclusive or (XOR) operations among some bits of this seed are performed yielding the first
random number; (2) Next, several exclusive or (XOR) operations among other bits of the
first pseudo random number are performed yielding the second pseudo random number;
(3) Finally, sequence ‘00111’ is concatenated at the left of the second pseudo random number
in order to transform it to a 32-bit IEEE 754 single precision floating number. Finally, the
exponent part of this resultant number (denoted by E) is adjusted to be less or equal than
‘01111111’, which is the exponent of the numbers in the range of (0, 1). The computation
algorithm is shown graphically in Figure 5.
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Concatenation

Figure 5. The LFSR based floating point PRNG, which generates a single precision IEEE 754 floating
point number in the range (0, 1). Integer numbers in circles at left side represent the three steps of
this method.

By wiring the corresponding Verilog modules, we can obtain the detailed FPGA ar-
chitecture of the GNPS-modeled RRT algorithm, which is illustrated in Figure 6. Two
random modules depicted at the right bottom provide pseudo random numbers. Module
co_rand1 calculates the random point Xrand. Module d1_1 computes the square distance
between initial position and Xrand after its generation. Fp_invsqrt1 module computes
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the inverse square root of this square distance. Two adders adjacent to Fp_invsqrt1 are
utilized to calculate the coordinate differences of the initial position and Xrand. coor_new1
is used to obtain the potential RRT point Xnew. Module dif_mul_sum, d_1, d_2, and
d_3 begin to work simultaneously to verify whether or not Xnew is an RRT point. Module
Fp_div is the instantiated divider IP core conducting normal floating point number divi-
sion. Module coor_p1 obtains the coordinates of the projection of an obstacle point on the
line segment. Module d_4 returns the square distance between an obstacle point and its
projection. Module Comp selects the proper distance between a point and a line segment
for the three distances according to their relative locations.
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Figure 6. The FPGA architecture of the GNPS-modeled RRT algorithm. It consists of 58 Verilog
modules performing floating point arithmetic operations, comparisons, and pseudo random num-
ber generation.
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The unified modeling language (UML) activity diagram depicted in Figure 7 details
the whole process of the FPGA architecture designed from the GNPS-modeled RRT. It
is highlighted that the distances between the obstacle points and the line segment are
computed in parallel so the performance will be improved to a large extent. A comparison
process is required to determine the minimum distance. This process can be implemented
by software.
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Figure 7. The whole process of the GNPS-modeled RRT algorithm RTL model characterized by a
UML activity diagram.

4.3. FPGA Implementation of GNPS

The FPGA implementation of the GNPS is similar to the method from [4]. First, the
target GNPS was rewritten in terms of a time series, as shown in Section 2.1. Next, the
obtained equations were translated to Verilog code, yielding an implementation, where
all the values of variables for the next step were computed in parallel. However, since the
variable values were represented in IEEE 754 format, this translation was not direct as in
the case of the fixed point encoding, considered in [4]. To perform the necessary operations,
each Verilog module corresponding to a cell/membrane instantiated a number of floating
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point arithmetic units, whose sequential application yielded the desired result. These units
were then wired between each other as well as to the corresponding variables and constants.
In order to reduce the latency, the computation was split into several independent parts
that were processed in parallel. An overview of the process for a single rule can be seen
in Figure 8. The overall computation speed is dependent on the number of independent
computational blocs that need to be synchronized [20].

1

z[0]

2

x[1], y[1]{
x > 2.1∧ 3z > 5
x + 2y −→ 2|x, 3|z

⇒

2

1

z = if x > 2.1∧ 3z > 5

then 3(x + 2y)/5

else z

x = if x > 2.1∧ 3z > 5

then 2(x + 2y)/5

else x

y = . . .

⇒

*
z3

>
5

>

2.1

x

AND

*
y2

*

/
5

* *

2 3
QD

QD

=0

=1

=0

=1

Figure 8. The translation of a rule from GNPS to Verilog. First, it is rewritten in terms of a time
series with nested “if" operators; then, it is further translated to Verilog (represented here in form of
an RTL diagram), where each individual operation is performed by floating point arithmetic units.
Independent computations are wired apart in order to increase the parallelism. The width of the
wires (except for multiplexer choice) is 32-bit.

After the design of the RTL model, the implementation phase commenced, which
included the following operations: behavioral simulation, synthesis, setting up the debug
cores, I/O pins planning, implementation, post-implementation simulation, place and
route, and hardware debug. The results computed by the FPGA were probed in the
hardware debug to show on screen, with the integrated logic analyzer (ILA) or oscilloscope.
In this research, the first one was used for its convenience. The implementation process is
diagrammatically shown in Figure 9.

Compared with the method introduced in [13], except for the floating point divider, all
the arithmetic modules in this paper were designed from scratch. The inverse square root
unit has good efficiency; so, the computation speed was lifted to a large extent. In addition,
the trigonometric functions involved were avoided by utilizing this kind of unit. Our paper
focuses on designing parallel floating point arithmetic units involved in the RRT algorithm.
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Figure 9. FPGA implementation process of the GNPS-modeled RRT algorithm. This process contains
4 steps indicated by integers enclosed in circles. Step 1, design RTL of corresponding GNPS. Step 2,
RTL model is transformed to Boolean expressions. Step 3, digital circuits are generated from those
expressions. Step 4, place and route those circuits on FPGA.

5. Experimental Results

To test the described methods, a Xilinx VC707 evaluation board featuring a Virtex-7
XC7VX485T-2FFG1761 FPGA [21] was used. The development and software benchmark tests
were performed on a host computer equipped with an Intel Core i7-7820HQ processor and
16 GB RAM. Xilinx Vivado 2019.1 was used as an FPGA integrated developing environment.

The size of the map was a square of 17.85 m, with eight obstacle points. A GNPS com-
puting three RRT points on this map was created and then translated manually to Verilog,
according to the procedure described in Section 4. The GNPS consisted of 34 membranes,
220 variables, and 210 rules. The initial position and obstacle points coordinates were read
from an external file and stored in the distributed memory of the FPGA. The output was
not directly exposed; instead, it was checked during hardware debug by the integrated
logic analyzer (ILA). An additional debug core was set together with the synthesized model
in order to use the ILA functionality.

To ensure that the RTL description of a GNPS-modeled RRT algorithm behaved
as expected, a testbench was designed, and a behavioral simulation of the design was
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performed. It confirmed the good functioning of the translation. After the synthesis and
the place and route step, we verified that the design met the timing constraints. The clock
speed was set to 40 ns (25 MHz) in order to meet them. Next, a post implementation timing
simulation was performed. This simulation was very similar to a behavioral simulation, but
it was time accurate; so, an estimation of the running time was obtained from it, as given
in Figure 10. After several post-simulation tests, we determined that it took an average
of 3059.01 ns to compute the three RRT points. Next, the design was run on the FPGA
hardware. By reading the results using ILA (directly on the hardware), we observed that
they corresponded exactly to the values obtained during the post-timing simulation, as
shown in Figure 11. Moreover, we would like to note that the obtained time corresponded
only to the raw time used by the device for the computation and did not take into account
the input/output latency, which is standard practice in the area of the FPGA design. Finally,
we remark that we used the same seed for the random number generator for the simulation
and the actual run; so, the obtained values were the same.

(a)

(b)

Figure 10. The stable value of the second RRT point appears at 1428.979 ns, while that of the third one
arises at 1630.027 ns. So, the total time is 1428.979 + 1630.027 = 3059.01 ns. (a) Post-implementation
timing simulation waveform of the second RRT point. (b) Post-implementation timing simulation
waveform of the third RRT point.

(a)

(b)

Figure 11. Hardware debug of the coordinates of the RRT points by ILA. The numbers are repre-
sented in hexadecimal. As can be validated, 411dc62f is the IEEE 754 format of decimal number
9.86088466644287. This result coincides with the post-implementation timing simulation result given
in Figure 10. (a) The hardware debug of the y coordinate of the second RRT point. (b) The hardware
debug of the x coordinate of the third RRT point.
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The software simulation of the same GNPS model was performed by the PeP NPS
simulator [22]. This is a straight simulator written in Python that does not use any particular
parallelization optimizations. The running time took an average of 0.097948 s to obtain the
same results, as shown in Figure 12. The results of the PeP saved two significant digits.
When we did the same to the FPGA outcomes, the same numbers were obtained. As in
the FPGA case, only the computation part was considered, ignoring the delays induced
by the input and the output. So, the obtained speedup was of the order 3.20195× 104. We
would like to note that by using the basic parallelization techniques, it would be possible
to have a faster execution of the PeP simulator; however, this would not change the order
of magnitude for the speedup.

(a)

(b)

Figure 12. PeP simulations of the RRT-GNPS. It calcuates 34 steps and costs 0.097948 s to obtain
the outcomes. Steps and the time elapsed to compute results are indicated in the first red box. The
second and third red box contains generated RRT points. (a) The PeP simulation results containing
the second RRT point (8.06, 9.86). (b) The PeP simulation results containing the third RRT point
(8.18, 9.78).

The resource utilization and power consumption of the RRT–GNPS are shown in
Figure 13. They were computed automatically by Xilinx Vivado software based on the
synthesized design during the post-implementation stage. The implementation used 43%
of the look-up table (LUT) resources because of the long 32-bit width of the IEEE 754 repre-
sentation. According to our tests, if this representation was decreased to 16 bits (basically,
halving the precision), the LUT usage would be reduced by half. The implementation also
featured a high usage of DSP resources because they were heavily used for the arithmetic
functions. In a 16-bit implementation, this number would be reduced to 10%. Looking at
these values it is clear that there is room for the implementation of larger models.

(a) (b)

Figure 13. The resource utilization and power consumption of an RRT–GNPS. (a) The hardware
resource utilization of an RRT–GNPS. (b) The power consumption of an RRT–GNPS is 0.716 w.
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The performed experiments showed the feasibility of the proposed implementation
method. Even if a relatively small experiment was conducted, the implementation would
scale linearly with respect to the number of RRT and obstacle points. Since most of the
arithmetic blocs are reused in a larger design, the existing hardware resources should be
sufficient for real-world cases. Our approach used a manual coding of the problem and its
manual translation to the hardware design. It is clear that this procedure should be autom-
atized, and we are currently working on such a translation using the developed templates.

6. Conclusions

In this research, the RRT algorithm was split into several functional groups and
modeled by a GNPS to reorganize it to facilitate its FPGA implementation. By this attempt,
the GNPS was applied to the robot path planning field for the first time after its motion
control applications. The FPGA implementation method for a GNPS with a IEEE 754 single
precision floating point variables was devised: the arithmetic operations were executed by
chained FtPAUs, which were fired at different time to clarify the computing timing schedule;
the function of the predicates was replaced by trigger signals stimulating associated FtPAU
groups to achieve parallel or serial manipulations. An LFSR-based method was conceived
to generate floating point numbers in the range of (0, 1).

The obtained implementation highlighted several strong points of the proposed method.
First, it was demonstrated that it is possible to code the RRT algorithm using a parallel
unconventional computing model and to preserve most of the parallelism in the subsequent
FPGA implementation. Moreover, the structure of the GNPS models allows easily updating
or tuning of parts of the algorithm, without disturbing the functioning of remaining
ones. Hence, by using a GNPS as an intermediate implementation step, it allowed us to
concentrate more on the algorithm parallelization than on its FPGA encoding, leading to
fewer implementation errors and a faster FPGA design. Second, it was shown that it is
feasible to use variables encoded in the IEEE 754 format, although at the price of a higher
space consumption with respect to the fixed point encoding [13,14]. It is worth noting that
the obtained speed-up was similar to some of the cited implementations but running at a
lower speed. We think that this might be a consequence of using the intermediate GNPS
representation that required development of a parallelization of the RRT algorithm. Finally,
the obtained implementation was parallel in line with the RRT algorithm: all distance
computations were performed in parallel, the sequential parts corresponded to the serial
computations, and the comparison phase found the minimum distance values.

Our approach also had limitations. We imagine that all hardware resources could
be employed but would still not be sufficient to process a large amount of data. If the
data were divided into several parts and input sequentially, this would be a good solution.
So, for the FPGA implementation and its application, what is still lacking is the relevant
software, which can (partially) automate the design process and organize the data in
different portions and then import the data in a way that makes full use of the computing
nodes implemented in the FPGA. As a consequence, the desired software is vital for the
application of our architecture. Moreover, such software is indispensable for real-life
applications of FPGAs. We will focus on this software in the next phase whose aim is to
enhance the automation computation of the FPGAs to a higher level.
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