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Abstract
When physical sensors are involved, such as im-
age sensors, the uncertainty over the input data is
often a major component of the output uncertainty
of machine learning models. In this work, we
address the problem of input uncertainty propaga-
tion through trained neural networks. We do not
rely on a Gaussian distribution assumption of the
output or of any intermediate layer. We propagate
instead a Gaussian Mixture Model (GMM) that of-
fers much more flexibility using the Split&Merge
algorithm. This paper’s main contribution is the
computation of a Wasserstein criterion to control
the Gaussian splitting procedure for which theo-
retical guarantees of convergence on the output
distribution estimates are derived. The method-
ology is tested against a wide range of datasets
and networks. It shows robustness, and generic-
ity and offers highly accurate output probability
density function estimation while maintaining a
reasonable computational cost compared with the
standard Monte Carlo (MC) approach.1

1. Introduction
Predictive uncertainty results from the combination of nu-
merous sources. The most studied uncertainty source in the
literature is the weight uncertainty (known in the commu-
nity by epistemic uncertainty (Der Kiureghian & Ditlevsen,
2009), translating the lack of data (i.e. knowledge) in the
training dataset. Among the most popular approaches, we
can cite methods such as Monte Carlo Dropout (Gal &
Ghahramani, 2016), variational inference with Bayes By
Backprop (Blundell et al., 2015), or based on Markov Chain

1CMAP, CNRS, École polytechnique, Institut Polytechnique
de Paris, Palaiseau, France 2Data Science and Uncertainty Depart-
ment, National Laboratory of Metrology and Testing, Paris, France.
Correspondence to: Paul Monchot <paul.monchot@lne.fr>, Paul
Monchot <paul.monchot@polytechnique.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1The code to reproduce the experiments is available at https:
//github.com/PaulMcht/WGMprop.

Monte Carlo (Welling & Teh, 2011; Chen et al., 2014). The
second source of uncertainty in a deep neural network is
the inherent uncertainty of the data composing the train-
ing dataset (known in the community as aleatoric uncer-
tainty, and that cannot be reduced by increasing the num-
ber of training points). Proposed methods rely on adapted
loss functions (Kendall & Gal, 2017), quantile regression
(Tagasovska & Lopez-Paz, 2019), or ensemble distillation
(Malinin et al., 2019) and try to capture the uncertainty
induced by noisy trainable data points at inference time.
This allows, in particular, to improve the prediction per-
formance and increase the detection of out-of-distribution
samples. The scope of this paper is to assess the predic-
tive uncertainty induced by the input uncertainty (of the
test data point) at inference time for a not-editable trained
neural network. This amounts to estimating the output prob-
ability density function (PDF) for new samples not seen
by the neural network. Such problem arises especially in
a laboratory setting to investigate the robustness of trained
neural networks to corrupted inputs. Among many other
examples, it can be used in the field of autonomous driving
to develop neural networks capable of learning proper driv-
ing maneuvers and thus be highly resilient to various types
of input noise (brightness, blur, vibrations, sensor noise,
...). Equally, this issue is raised in an embedded context,
where time constraints prevent MC sampling. Our proposed
method allows for distribution propagation while staying
within a designated time budget, producing an estimate and
an upper bound of the error. Literature on this problem is
less abundant and lacks generic methods with mathematical
guarantees over the estimation.

We suggest building upon a long history of the Split&Merge
paradigm to propagate a distribution through non-linear
models. This paradigm was originally proposed by Soren-
son & Alspach (1971), who use Kalman filters for linear
filtering problems, with an extension to non-linear problems
in (Alspach & Sorenson, 1972). This method was taken
up again and improved as time went by. We can note in
particular the integration of Unscented Transform (UT) sam-
pling (Julier & Uhlmann, 2004) by Faubel et al. (2009), an
update of adaptive weights in (Terefjanu, 2011), and finally
the integration of an entropy-based criterion for nonlinear
dynamical systems in (DeMars et al., 2013). This paradigm
will be detailed in Section 3.2. The proposed methodology
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uses a mixture of Gaussian distributions propagated through
the neural network via a splitting procedure controlled by a
Wasserstein distance criterion (see, e.g., Villani, 2009, Sect.
7.1). A mixture of Gaussian distributions allows one to esti-
mate the propagated PDF faithfully. The introduction of the
Wasserstein distance criterion offers a sound and suitable
criterion for detecting non-linearity in neural networks. As a
direct result, it helps control the number of Gaussian compo-
nents in the mixture. Theoretical guarantees of convergence
on the output distribution estimates are proposed in Sec-
tion 3. Finally, extensive experimental results demonstrate
that the proposed method performs favorably against the
state-of-the art approaches on the MNIST (LeCun, 1998),
CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky
et al., 2009), and Camelyon (Litjens et al., 2018) datasets.

2. Related Work: Input uncertainty
propagation through neural networks

Uncertainty propagated through a neural network under
Gaussian assumption. This approach propagates the input
uncertainty by modeling the input and output distributions
as Gaussian. Following this approach, Astudillo & Neto
(2011) propagate the first two moments (through non-linear
layers) in a layer-wise fashion using UT sampling (Julier &
Uhlmann, 2004). In their work, Abdelaziz et al. (2015) use
a similar approach with additionally an analytical propaga-
tion through the sigmoid activation function alongside the
propagation of uncertainty in a full network fashion using
UT sampling. Later, Gast & Roth (2018) propagate the first
two moments analytically while assuming diagonal covari-
ance matrices, thereby neglecting the correlations within the
layers (called LPN for Lightweight Probabilistic Network).
Finally, Titensky et al. (2018) propagate the two first mo-
ments layer-by-layer using Extended Kalman Filtering. If
relying on shape assumptions to model the output distribu-
tion helps make the methods scalable, it does not guarantee
an accurate estimation of the output PDF. Indeed, when it
comes to studying input noise with a complex covariance
matrix structure, the unimodal Gaussian assumption over the
neural network output does not hold, the output density be-
ing often multimodal or asymmetric. Thus, the uncertainty
quantification of the prediction induced by the input distri-
bution cannot be summarized with a single estimate (Cox &
O’Hagan, 2022), but rather by its entire PDF, which, when
accurately estimated, allows, among other things, to derive
a α% prediction interval, PIα, within which falls a new
prediction with a α% probability.

Uncertainty propagated through neural networks using
Gaussian mixture model (GMM). The first attempt to
propagate a Gaussian mixture (GM) distribution through
a neural network f : Rd → Rd′

using the Split&Merge
paradigm (see Section 3.2 for details) was made by Zhang

& Shin (2021). For a Gaussian variable X ∈ Rd, the au-
thors measure the similarity between f(X) and a first-order
Taylor approximation f(X) using the Kullback-Leibler di-
vergence of f(X) from f(X). Section 3.2 details how
the distribution of X is split into a mixture of smaller
Gaussians when the value of this divergence exceeds some
threshold. The Kullback-Leibler divergence is expressed
as an integral involving the densities of the distributions
of f(X) and f(X) with respect to some dominant mea-
sure. Unfortunately, expressing the distribution of f(X)
with a density is, in general, intractable for a neural net f .
To circumvent this issue, Zhang & Shin (2021) use recur-
sively the Split&Merge paradigm to propagate the distri-
bution through the linear layers and the activation func-
tions. Propagating (mixtures of) Gaussian distributions
through linear layers is straightforward. For a smooth in-
vertible activation function σ : Rq → Rq (acting typically
componentwise), Zhang & Shin (2021) derive an upper
bound on the Kullback-Leibler divergence using the for-
mula p(σ(A)) =

∣∣Jσ(A)−1p(A)
∣∣, with Jσ(A) the Jacobian

matrix of σ. However, the Rectified Linear Unit (ReLU,
Maas et al., 2013) activation function is not invertible and,
more fundamentally, the Kullback-Leibler divergence of a
rectified Gaussian distribution from a continuous random
variable is always infinite. The authors bypass this issue
using the approximation given by a Leaky ReLU activation
function with slope δ ≪ 1. However, Section 4 will show
experimentally that this approach is impracticable in the
presence of a noise significantly affected by the nonlinearity
of the network. This is due to the fact that a Leaky ReLU
activation function with slope δ ≪ 1 still concentrates a
potentially significant fraction of probability mass in an
interval of the form [−O(δ), 0]. In this case, the Kullback-
Leibler divergence of the leakily rectified Gaussian from
a Gaussian with a variance larger than O(δ) becomes very
large. Consequently, the recursive Split&Merge paradigm
leads to an impractically high number of splits as soon as the
first (Leaky) ReLU activation function is encountered. For
these reasons, we were not able to implement their method-
ology in our experimental settings (Appendix A presents
theoretical elements to support it). The Wasserstein-based
criterion proposed in Section 3.3 helps crush these limits
by: 1) not requiring the use of densities; 2) being less sen-
sitive to small probability events; 3) making it possible to
use the Split&Merge paradigm on the whole network; and
4) ensuring theoretical convergence guarantees given in Sec-
tion 3.3.3.

3. Proposed Method (WGMprop)
In this section, we first define the notations that will be used
in the rest of the paper, then the classical Split&Merge al-
gorithm for Gaussian mixtures is introduced in section 3.2.
Section 3.3 exposes the motivations for using the new cri-
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terion based on the Wasserstein distance. Theoretical guar-
antees derived for this new criterion are presented in sec-
tion 3.3.3 and finally in section 3.4, the practical implemen-
tation of the method.

3.1. Framework

Write U ∈ Rd the multidimensional random variable of
probability distribution PU and with mean µU and covari-
ance matrix ΣU .

Let M be the space of mixtures of Gaussian distributions
and, for U such that PU ∈ M, write PU =

∑M
i=1 wiPU ,i,

with non-negative wis summing to one and PU ,i =
N (µU ,i,ΣU ,i), and M the number of components in the
mixture. We will keep the symbols M and wi generic for
any mixture, unless explicitly stated otherwise.

Furthermore, let S[1](·;n) be a splitting operator defined on
the space of Gaussian distributions and extended to Gaus-
sian mixtures by linearity. S[1](·;n) approximates PU by a
Gaussian mixture distribution of n components:

P
Û

[1] = S[1](PU ;n) =

n∑
i=1

wiPÛ
[1]

,i

Given some X ∈ Rd, the goal is to propagate PX through
a L2,2-Lipschitz continuous neural network f : Rd → Rd′

.
(More precisely, all the activation functions of f are as-
sumed to be Lipschitz continuous.) Leveraging the approx-
imation power of mixtures of Gaussian distributions (see,
e.g., Scott, 2015), we suppose from now on that X ∈ Rd is
a multivariate normal random variable.

Using the previous notations—omitting the dependence of
M on s and n—, the sth iteration

PX̂[s] = S[s](PX ;n) =

M∑
i=1

wiPX̂[s],i

of S[1] on PX will play a major role in this work.

Finally, let Y and Ŷ [s] the random variables such that Y =
f(X), Ŷ [s] = f(X̂ [s]) and let Ỹ [s] the random variable
obtained by propagating each component of PX̂[s] through
f by moment matching.

3.2. Classical Split&Merge for Gaussian Mixture Model

The Split&Merge algorithm is an iterative process built on
4 steps. At iteration s ∈ N, with PX̂[0] = PX , we apply the
following steps for each component PX̂[s],i of PX̂[s] :

• step1/propagation: it propagates, under linear assump-
tion, the component through f . Since normal distri-
butions are stable by linear operation, the propagation

step is reduced to the estimation of the output first
two moments of such Gaussian, from which we obtain
the estimate PỸ [s],i obtained by moment matching of
the true output distribution PŶ [s],i. The moments can
be estimated by sampling techniques or analytically
derived when formulas are available.

• step2/non-linearity detection: it quantifies how
strongly the Gaussian distribution PX̂[s],i was affected
by the non-linearity during the propagation utilizing
a thresholded discrepancy measure (threshold noted
Tsplit).

• step3/splitting: it splits the input Gaussian distribu-
tion PX̂[s],i using a splitting operator S(·, n) in case
the local linearity assumption is invalidated in step2,
then restarts from step1 on the split components, oth-
erwise PX̂[s],i remains unchanged. The splitting of a
multivariate Gaussian distribution N (µ,Σ) consists
in splitting the distribution in a specific single di-
rection, following the formula S[1](N (µ,Σ);n) =∑n

i=1 wiN (µi,Σi) with:

wi = ww̃i, µi = µ+ β̃i

√
λjνj , (1)

Λ̃ = diag(λ1, . . . , σ̃
2λj , . . . , λR) (2)

where (λr)1≤r≤R are the eigenvalues of Σ, j is the
splitting direction2, w̃i, β̃i and σ̃ are fixed parame-
ters (cf Appendix E)3. The split operator introduces
an approximation at each iteration, related to the stan-
dard error ϵ0,1 = W2(N (0, 1), S[1](N (0, 1);n)) > 0.
However, we can find a Gaussian mixture rendering
ϵ0,1 arbitrarily small, as long as a sufficient number
of components, with a reduced variance, are used in
the mixture. The splitting procedure stops when the
criterion computed in step2 becomes smaller than the
threshold.

• step4/merging: it merges similar components using a
thresholded discrepancy measure to reduce the num-
ber of components of the output estimated PDF PỸ [s] .
This step is not applied in our work.

The iterative process stops when all components of the
input mixture distribution satisfy the local linearity hy-
potheses made in step1. Provided this happens at iter-
ation s, the resulting GMM PX̂[s] , approximate of PX ,
is given by PX̂[s] = S[s](PX ;n) =

∑M
i=1 wiPX̂[s],i =∑M

i=1 wiN (µX̂[s],i,ΣX̂[s],i). Then, by propagating each
component of PX̂[s] by moment matching, one can easily
obtain an estimate of PY , denoted PỸ [s] , with PỸ [s] =

2the axis along which the Gaussian mixture PDF terms are split
3It is worth noting that all components split the same amount of

time have the same covariance matrix, and so the same eigenvalues

3



Input uncertainty propagation through trained neural networks∑M
i=1 wiPỸ [s],i.

The essential matter when using this iterative algorithm is
the choice of the criterion acting as the non-linearity detec-
tor. In the following section, we present a criterion based on
the Wasserstein distance.

3.3. The Wasserstein metric as a splitting criterion

3.3.1. THE WASSERSTEIN METRIC

The Wasserstein metric (see, e.g., Villani, 2009, p.118 and
references therein) is a popular tool used notably in trans-
portation theory. Given a strictly positive integer p, the
Wasserstein distance between the measures P and Q is de-
fined as

Wp (P, Q) =

(
inf

γ∈Γ(P,Q)
E(X,Y )∼γ (∥X − Y ∥p)

)1/p

,

(3)

where Γ is the set of probability measures on Rd×Rd having
marginals P and Q.

Wasserstein distances enjoy several appealing properties.
First, they are proper distances and satisfy, in particular, the
triangle inequality. It will be beneficial for computing dis-
tances between mixtures of Gaussian distributions. Second,
they also have interesting theoretical properties. Indeed, it
is well known (see, e.g., Villani, 2009, Proposition 7.29)
that the pth Wasserstein distance controls the moments up
to the p-th order. Therefore, when p ≥ 2, Wp(·, ·) can be
used to bound the error on the first two moments, which are
sometimes a primary interest.

Proposition 3.1. Using the previous notations, we have∥∥µY − µỸ [s]

∥∥ ≤ Wp(PY , PỸ [s]).

Also, let σY ,i and σỸ [s],i be the standard deviations of the
i-th marginals of PY and PỸ [s] . If p ≥ 2, then∣∣∣σY ,i − σỸ [s],i

∣∣∣ ≤ Wp(PY , PỸ [s])

The proof of proposition 3.1 can be found in appendice D.

Furthermore, Wasserstein distances metrize weak conver-
gence (see, e.g., Villani, 2009, Theorem 6.9). Consequently,
the convergence in the Wasserstein sense implies the conver-
gence of many interesting statistical quantities. The follow-
ing proposition shows notably that Wasserstein distances
bound the errors on the marginal quantile functions.

Proposition 3.2. Let QY (respectively QỸ [s]) be quantile
functions of Y (respectively Ỹ [s]), then:

1√
d

d∑
i=1

∫ 1

0

|QY (q)−QỸ [s](q)|dq ≤ Wp(PY , PỸ [s])

The proof of proposition 3.2 can be found in appendice D.

This can be interpreted as a bound on the average quantiles
of the marginal distribution. Using the Wasserstein distance
does not allow bounding an arbitrary quantile in general.
Unlike the KL metric, Wasserstein distances are relevant
for comparing probability measures when the reference dis-
tribution is not dominated by the other one. This situation
arises, e.g., when comparing PY and PỸ [s] for a neural
network using ReLU activation functions. As detailed in
Appendix A, in this setting, the KL distance between the
distribution is always +∞ which makes it impossible to
obtain any bounds. Even in the leaky ReLU setting, the
bounds that could be obtained would be meaningless when
the leaky ReLU becomes close to the classical one.

3.3.2. UPPER BOUND CRITERION

We propose to rely on a 2-Wasserstein distance criterion
between PY and PỸ [s] for the non-linearity detection. Com-
puting directly the distance is hard, so we will rely on an
upper bound obtained by introducing an intermediary distri-
bution PȲ [s] defined by linearizing the function f .

Proposition 3.3. Let W2(·, ·) the 2-Wasserstein distance
with respect to the usual Euclidean norm on Rd. Then, for
s ∈ N and after applying S[s](·, n) to PX , we have:

W2(PY , PỸ [s]) ≤ Bs, (4)

with

Bs = L2,2ϵ0,1

s∑
k=0

√
λ
[k]
∞+ (5)

∑
i

wiEX∼P
X̂[s],i

[
∥f(X)− f̄i(X)∥22

] 1
2 +[

∥µỸ [s],i − µȲ [s],i∥
2
2 +

Tr

(
ΣȲ [s],i +ΣỸ [s],i − 2

(
Σ

1
2

Ỹ [s],i
ΣȲ [s],iΣ

1
2

Ỹ [s],i

) 1
2

)] 1
2

where f̄i is the first order Taylor linearization of f at lo-
cation µX̂[s],i and λ

[k]
∞ is the highest eigenvalue of ΣX̂[k],i

after applying S[k](·, n) to PX . µỸ [s],i and ΣỸ [s],i (re-
spectively µȲ [s],i and ΣȲ [s],i) are the first two moments of
PỸ [s],i (respectively PȲ [s],i). L2,2 is the Lipschitz constant
(w.r.t. to the L2 norms) of f , and ϵ0,1 is the standard error
of the splitting operator S.

The proof of proposition 3.3 can be found in appen-
dice D.2.2.

The local linearity hypothesis is here used in two distinct
ways. The first is by first-order Taylor linearization, and
the second using the Gaussian stability by linear applica-
tion. The upper bound is composed of three distinct parts.
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The first part translates the output error due to the error
performed by splitting the input distribution (ϵ0,1 > 0). The
second part evaluates the error due to the approximation af-
ter Taylor linearization. The final part quantifies the moment
drifting between PȲ [s] and PỸ [s] induced by the lineariza-
tion hypothesis. We can note that no analytical formula
permits us to compute this upper bound. However, tech-
niques to estimate this quantity are presented in Section 3.4.

3.3.3. THEORETICAL GUARANTEES

We show here the convergence of this upper bound in Propo-
sition 3.4.

Proposition 3.4. Let R = rank(ΣX) and (λ1, ..., λR) the
non-null eigenvalues of ΣX in descending order, ∃C ∈ R+

such that:

Bs −→
s→∞

L2,2ϵ0,1

(
C +

R
√
λR

1− σ̃

)
,

with C =
∑rR

k=0

√
λ
[k]
∞ , and rR =

∑R−1
i=1

⌈
lnλi−lnλR

ln σ̃2

⌉
This gives immediately the following corollary.

Corollary 3.5. With the notations from Proposition 3.4:

lim supW2(PY , PỸ [s]) ≤ L2,2ϵ0,1

(
C +

R
√
λR

1− σ̃

)
.

The proof of proposition 3.4 can be found in appendice D.3.

Applying an infinite time, the split operator guides the crite-
rion’s upper bound convergence to a constant. This constant
depends on the standard error of the splitting operator ϵ0,1,
the Lipschitz constant L2,2 of the network f , the splitting
level n and the initial input uncertainty translated by the
initial eigenvalues of ΣX . We show that this convergence
bound depends on the initial error committed when split-
ting the initial distribution as a Gaussian mixture. ϵ0,1 can
be reduced using a split operator with more components
(higher n) and smaller variances (lower σ̃). The number of
iterations of the new scheme will also be reduced, and thus
the bound holds with the new ϵ0,1 and the old constant.

3.4. Practical implementation

The following subsections contains the practical implemen-
tation details of our proposed method.

3.4.1. GAUSSIAN SPLITTING

The splitting hyper-parameters from Equations (1)-(2) (pro-
vided in Appendix E) were obtained by solving the follow-
ing optimization problem:

minw̃i,β̃i,σ̃
DKL(N (0, 1))∥S[1](N (0, 1))) + αnσ̃

subject to
∑n

i=1 w̃i = 1, 0 < σ̃ < 1 (6)

where α is a scaling factor and n stands for the number of
components. The splitting direction corresponds here to
the direction of the largest uncertainty, i.e. the direction
having the highest eigenvalue. Other splitting directions
could have been chosen, such as the direction of largest
non-linearity (Faubel & Klakow, 2010) or the direction of
largest non-Gaussianity (Straka et al., 2016). These last two
solutions are not retained in our case because they introduce
an additional computational cost.

3.4.2. MOMENT MATCHING AND UPPER BOUND
ESTIMATION

Unscented Transform: To estimate the upper bound of
Proposition 3.3, we propose to rely on UT sampling. UT
is a sampling technique which propagates the first two
moments of the distribution PX̂[s],i = N (µX̂[s],i,ΣX̂[s],i)
through nonlinear transformation f by using a 2d + 1
weighted samples called sigma points, defined as:

Zi,[0] = µX̂[s],i ω0 =
κ

n+ κ

Zi,[j] = µX̂[s],i + (
√
(d+ κ)U X̂[s],i)[j] ωj =

1

2(n+ κ)

Zi,[j+d] = µX̂[s],i − (
√
(d+ κ)U X̂[s],i)[j] ωj+d =

1

2(d+ κ)

∀j ∈ {1, · · · , d}, where ΣX̂[s],i = UX̂[s],iU
T
X̂[s],i

,

(
√

(d+ κ)U X̂[s],i)[j] is the j-th column of√
(d+ κ)U X̂[s],i, ωj is the weight associated with

the j-th sigma point, and κ is a free parameter, usually set
as κ = d− 3. The sigma points are used to estimate µỸ [s],i,
ΣỸ [s],i, µȲ [s],i and ΣȲ [s],i by propagation through f and
f̄i following the procedure detailed in Section 3.4.3.

3.4.3. HOW TO OBTAIN f̄i:

Formally, a neural network can be considered as a non-
linear parametric function f(·,θ), results of the concate-
nation of L elementary blocks hi, each composed by a
linear transformation and a non-linear activation function:
Y = hL−1 (..h1 (h0 (X, θ0))) = f(X,θ).

To obtain f̄i, we perform a succession of first order Taylor
linearization: Ȳ = h̄L−1

(
..h̄1

(
h̄0 (X, θ0)

))
= f̄(X,θ),

using the 2d+1 sigma points Zi,[j] obtained in Section 3.4.2.
By noting Yi,[j],l = hl(hl−1(..h0(Zi,[j], θ0))) and µi,j,l =∑2d+1

j=1 wiYi,[j],l , and Yi,[j],0 = Zi,[j] then for the layer l,
we obtain h̄l by first order Taylor linearization:

h̄l(X) = hl(µi,j,l−1)+Jhl
(µi,j,l−1)(X−µi,j,l−1) (7)

where Jhl
(µi,j,l−1)

4 denotes the Jacobian matrix of hl at

4The Jacobian matrix is not defined everywhere for neural
networks using ReLU or Leaky ReLU, it is computed in practice
using classical computing library (Agrawal et al., 2019)
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location µi,j,l−1.

Finally:

µȲ [s],i ≈
2d+1∑
j=1

ωj f̄i(Zi,[j]), µỸ [s],i ≈
2d+1∑
j=1

ωjf(Zi,[j])

ΣȲ [s],i ≈
2d+1∑
j=1

ωj(f̄i(Zi,[j])− µȲ [s],i)(f̄i(Zi,[j])− µȲ [s],i)
T

ΣỸ [s],i ≈
2d+1∑
j=1

ωj(f(Zi,[j])− µỸ [s],i)(f(Zi,[j])− µỸ [s],i)
T

EX∼P
X̂[s],i

[
∥f(X)− f̄i(X)∥22

]
≈

2d+1∑
j=1

ωj∥f(Zi,[j])− f̄i(Zi,[j])∥22

3.4.4. HIGH DIMENSIONALITY

As the proposed methodology considers the neural network
as a black box, the scalability bottleneck in terms of memory
usage and computation time resides in the input and output
dimensions (independently of network width), which can be
elevated. This problem is first and foremost encountered in
image processing and convolutional neural network archi-
tectures. More specifically, our method relies on the inverse
of the input covariance matrix ΣX with computational com-
plexity in O(d3). To improve the scalability of the proposed
method, we apply the methodology over the active subspace
of ΣX (Constantine et al., 2014). The selection of the active
subspace consists in reducing the dimension by keeping the
r (r ≪ d) first largest eigenvalues of ΣX using algorithms
such as the Implicitly Restarted Lanczos Method (Calvetti
et al., 1994). To further improve the performances, we can
apply a burn-in stage consisting of initially performing s0
splitting iterations, where s0 is manually set.

Algorithm 1 presents the full algorithm.

4. Experiments
We first present a short single ReLU propagation experiment
before detailling our experiment performed over the MNIST
dataset, where the input dimension allow a deep compar-
ison with a MC reference. Then, we present experiments
conducted over the CIFAR-10, CIFAR-100 and Camelyon
datasets providing a wide range of scenarios.

4.1. Single ReLU experiment

To illustrate the theoretical limitations exposed in Section 2
of the use of the KL divergence to propagate Gaussian distri-
bution through neural networks using ReLU activation func-
tion, we conduct an experiment consisting in propagating a
univariate Gaussian distribution through a ReLU activation
function using the KL divergence based criterion (using the
Leaky-ReLU approximation with slope λ = 10−3), which

Algorithm 1 WGMprop
Input:

• Input Gaussian distribution, PX

• Splitting threshold, Tsplit

• Number of burn-in stages, s0
• Subspace maximal dimension, r
• Level of split, n

Output:
• GMM estimate P

Ỹ [s] = (ω
Ŷ [s],i

, µ
Ŷ [s],i

,Σ
Ŷ [s],i

)

1: Active subspace selection: ΣX = UrΛrU
T
r

2: Burn in: Apply s0 split operations S[s0](PX ;n) =

P
X̂[s0] = (ω

X̂[s0],i
, µ

X̂[s0],i
,Σ

X̂[s0],i
) (Eq. (1-2))

3: Split&Merge: For each components P
X̂[s0],i

of P
X̂[s0] :

4: UT sampling: Generate Zi,[j] and ωj (Sec. 3.4.2)
5: Propagation: Estimate P

Ỹ [s],i
and P

Ȳ [s],i
(Sec. 3.4.3)

6: Criteria estimation: Compute Bs using Equation (5)
7: Splitting: If Bs > Tsplit then split P

X̂[s],i
(Eq. (1-2))

8: Iteration: Apply the steps (4)-(7) to all splitted compo-
nents of P

X̂[s],i
until Bs < Tsplit

9: Output estimation: Estimate (µ
Ŷ [s],i

,Σ
Ŷ [s],i

)1≤i≤M by
moment matching

is a heavily-used key step in the approach of Zhang & Shin
(2021). Our approach is also tested (without the Leaky-
ReLU approximation) for comparison, although it can be
applied directly to the whole network.
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(a) Evolution of the splitting cri-
terion at each step of the iterat-
ing splitting procedure.
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(b) Number of splits as a func-
tion of the input variance re-
quired to propagate X ∼
N (1.0, σ2) through a ReLU.

Figure 1. Comparison between the KL and the Wasserstein based
criteria to propagate X ∼ N (1.0, σ2) through a ReLU (Leaky-
ReLU approximation with slope λ = 10−3 for the KL criterion)

First, Figure 1a shows the evolution of the maximum crite-
rion value at each step of the iterating procedure. Our pro-
posed Wasserstein-based criterion decreases as the number
of splits increases until it falls below the specified thresh-
old, ending the procedure. On the contrary, the criterion
based on the KL divergence becomes very large and thus
the procedure does not end. More theoretical information
on this phenomenon is provided in Appendix A.1. Finally,
Figure 1b shows the evolution of the number of necessary
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splits when propagating a Gaussian N (1.0, σ2) through a
ReLU. Observe that it leads to a very large number of splits,
making the propagation of a Gaussian distribution through
the first layer of a ReLU network already impracticable.
Appendix A.2 also provides the numerical details of the first
two iterations of this procedure using the KL divergence and
the Leaky-ReLU approximation with a slope λ = 10−3.

4.2. MNIST dataset

In this section, our method is tested against a MNIST regres-
sion task by looking at the law of logits where input images
are corrupted with different types of noise (Gaussian noise,
blur and contrast noise) at different levels of intensity (I1,
I2, I35 referring to low, medium and high intensity, respec-
tively). These noises were selected in order to cover a wide
range of scenarios in terms of covariance amplitude. Indeed,
while the Gaussian noise corrupts the pixels independently
(weak covariances), the blur corrupts each pixel according
to its neighborhood (medium covariances) and the contrast
noise affects the whole image (large covariances). The neu-
ral network is a 4-layers perceptron with 200 neurons each.
Practically, we generate 104 noisy samples, from which
we extract a mean vector and the associated variance co-
variance matrix. Then, we propagate the resulting normal
distribution through the network by comparing our method
(WGMprop) to the LPN method (Gast & Roth, 2018) and
full network UT propagation paradigm (Abdelaziz et al.,
2015), referenced as UT@FN in the following. We have
not been able to integrate in our experiments, the work of
(Zhang & Shin, 2021) for the reasons previously presented.
Figure 2 presents an input sample corrupted with the differ-
ent types of noises and levels of intensity. The MC reference
is built over 106 generated samples for all experiments.

Original Gaussian Blur Contrast

I1 I2 I3 I1 I2 I3 I1 I2 I3

Figure 2. Input sample image corrupted with different types of
noise (Gaussian noise, blur and contrast noise) at different levels
of intensity (I1, I2, I3).

4.2.1. RESULTS

A quantitative performance evaluation was performed over
500 test images from the MNIST dataset, comparing their
performance against the MC reference, which shows a mean
prediction time of 15.91 seconds (∼ 6.5s for sample gen-
eration and ∼ 9s for the propagation). We are studying
here the distribution of the class probabilities provided by

5Gaussian Noise: µ = (0, 0, 0), σ2 = (0.002, 0.01, 0.05);
Blur: µ = (0, 0, 0), σ2 = (1, 16, 49); Contrast Noise: µ =
(1, 1, 1), σ2 = (0.04, 1, 25). (µ, σ) correspond to the parameters
set for I1, I2 and I3.

the fixed network. The comparison between the reference
distribution obtained by Monte Carlo Sampling and the one
obtained by the various methods is performed using a prob-
abilistic metric such as the 2-Wasserstein distance (2W)
but also by comparing the quality of the estimation, using
the Mean absolute percentage error, of the mean probabil-
ity(MAPEMEAN = 100(|µMC − µWGMprop|)/µMC), and
of the standard deviation(MAPESTD). We also compute the
95% confidence interval (IOU95) and the mean prediction
time (TIME). Table 1 presents the results for the highest
noise intensity as this represents the most challenging set-
tings for our method (requiring the highest number of splits).

Table 1. Numerical comparison of the performance of state-of-the-
art methods and WGMprop on the three studied noises (Gaussian,
Blur and Contrast) at intensity I3. Standard deviation in ().

PERFORMANCE CRITERIA

Noise Method # Gaussian 2W (×103) MAPEMEAN MAPESTD IOU95 TIME (s)

G
au

ss
ia

n LPN 1 2.39(3.11) 4.26(4.82) 197.08(411.19) 0.342(0.156) 0.02(0.00)

UT 1 0.03(0.05) 0.21(0.26) 6.07(7.98) 0.859(0.117) 0.06(0.01)

Zhang et al. 10000∗ -/- -/- -/- -/- -/-

WGMprop 349 0.02(0.04) 0.16(0.20) 5.69(8.44) 0.876(0.113) 0.48(0.04)
B

lu
r

LPN 1 39.77(19.38) 13.61(9.48) 88.52(3.43) 0.145(0.037) 0.02(0.00)

UT 1 17.44(12.76) 17.00(10.89) 30.74(17.03) 0.604(0.101) 0.05(0.01)

Zhang et al. 10000∗ -/- -/- -/- -/- -/-

WGMprop 635 0.26(0.21) 0.17(0.15) 0.48(0.51) 0.920(0.034) 0.58(0.03)

C
on

tr
as

t LPN 1 88.15(33.15) 53.66(23.12) 66.55(10.03) 0.343(0.099) 0.02(0.00)

UT 1 95.85(45.12) 66.88(25.57) 44.18(26.74) 0.446(0.162) 0.04(0.01)

Zhang et al. 10000∗ -/- -/- -/- -/- -/-

WGMprop 691 0.25(0.23) 0.18(0.16) 0.26(0.29) 0.938(0.041) 0.81(0.10)

*Number of splits reached the memory limit at the first ReLU.

Here, the ’true’ input noise distribution was fitted using a
single Gaussian distribution. However, it is possible to fit
this input distribution using a GMM with K components.
All results for all noises and intensity and for K = 1, 2, 3
are presented in Appendix B.

From an overall perspective, LPN and UT@FN methods
are faster than WGMprop at the cost of accuracy. Indeed,
no matter the input noise complexity, the mean prediction
time of these methods stays constant (≈ 0.02s) while their
prediction errors rise dramatically (the IOU95 drops from
0.859 for a Gaussian noise and a UT@FN propagation to
0.446 for a contrast noise). In fact, in the case of an in-
put corrupted with a Gaussian noise, the output PDF is
closely Gaussian (2-Wasserstein value of 0.03× 10−5 for
the UT@FN method) whereas, for more complex noises,
the Gaussian assumption on the output PDF does not hold.

To illustrate this statement, Figure 3 displays both the es-
timated output PDFs and the reference PDF (MC) over
sample image n°66 (of the test dataset) corrupted with the
whole set of noises at the highest intensity (I3). In the case
of blur and contrast noise, UT@FN and LPN methods suffer
from shape misrepresentation due to their Gaussian assump-
tion. We can infer that neglecting the covariances in the

7



Input uncertainty propagation through trained neural networks

layer propagation proposed by LPN results in low estima-
tion accuracy of the output distribution statistics. On the
other hand, the WGMprop method captures the shape of
the output PDF well. It is, therefore, a good candidate to
obtain a reliable estimate of the 95% prediction interval
while maintaining a reasonable execution time (a maximum
of 0.81s for the contrast noise).

Figure 3. Estimated output PDFs (main marginal) for sample n°66
corrupted by blur kernel (Top), contrast noise (Middle) and
Gaussian-distributed additive noise (Bottom) (I3 intensity). The
output PDF estimated using Monte Carlo propagation (reference)
is filled in blue.

Although the mean prediction time slightly increases with
the input noise complexity (more Gaussian components in
the mixture are needed), WGMprop method predictions re-
main highly accurate: IOU95 superior to 0.876, MAPEMEAN

lower than 0.18%. In addition, the boxplot of the MAPE of
several predicted percentiles (1, 2.5, 25, 25, 97.5 and 99) are
shown in Figure 4. These boxplots present the MAPE distri-
butions over the different percentiles of the output PDF for
the 3 compared methods for a contrast noise of high inten-
sity. As expected, the methods under Gaussian assumption
present high errors on the considered set. Using Gaussian
mixture allows a faithful representation of the output PDF

and thus allows a reliable estimation of the different per-
centiles. We note a higher error towards the low percentiles.
For higher percentiles, our approach shows small MAPE
values as well as small dispersion of these errors.

Figure 4. MAPE boxplots for percentiles 1, 2.5, 25, 50, 75, 97.5
and 99. Input images were degraded by a large contrast kernel (I3).

4.3. More complex dataset

In this section, we test our methodology over more complex
datasets and network architectures, detailed in Table 2.

Table 2. Experiments details.
Dataset Architecture Input dimension Output dimension Last Layer Nb parameters s0

CIFAR-10 V GG8 32 × 32 × 3 10 Linear 2, 397, 216 3

CIFAR-100 V GG13 32 × 32 × 3 100 Softmax 10, 171, 936 1

Camelyon V GG10 96 × 96 × 3 2 Sigmoı̈d 10, 615, 328 1

This set of experiments allows us to explore different scenar-
ios by varying the input and output dimensions, the number
of parameters in the network, and the kind of last layer used
in the network (linear layer for regression case, softmax
for multiclass classification, and sigmoid for binary classifi-
cation). For these experiments, we maintain Monte Carlo
as a reference and implement UT@FN in addition to our
method (WGMprop). In the following section, we present
high-intensity blur noise results. For these high-dimensional
problems, we set the maximum dimension of the subspace
to 30. The number of burns is indicated by the column s0.

4.3.1. RESULTS

Table 3 presents the results using the same metrics as for
the MNIST classification problem.
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Table 3. Numerical comparison of the performance of state-of-the-
art methods and WGMprop on Blur noise at the highest level of
intensity I3. Standard deviation are presented in ().

PERFORMANCE CRITERIA

Dataset Method # Gaussian 2W (×103) MAPEMEAN MAPESTD IOU95 TIME (s)

C
IF

A
R

-1
0 MC (reference) 38.83

UT@FN 1 12.15(14.32) 16.96(13.58) 30.60(16.74) 0.634(0.122) 0.39(0.10)

WGMprop@FN 629 0.64(0.88) 0.63(0.63) 1.73(1.65) 0.877(0.061) 1.77(0.16)

C
IF

A
R

-1
00 MC (reference) 49.92

UT@FN 1 1.39(2.18) 60.33(43.67) 35.61(20.33) 0.320(0.227) 0.41(0.12)

WGMprop@FN 709 0.16(0.32) 3.45(3.33) 2.84(2.99) 0.783(0.121) 6.54(0.55)

C
am

el
yo

n MC (reference) 359.21

UT@FN 1 6.96(12.32) 43.93(87.48) 145.78(345.12) 0.131(0.181) 23.04(5.72)

WGMprop@FN 309 0.25(0.40) 3.80(12.93) 25.14(59.98) 0.783(0.184) 28.68(7.18)

We observe a net increase in execution time for both the
MC reference and the two compared methods. Indeed, all
three share an incompressible time in selecting the active
subspace (about 0.35 seconds for CIFAR10 and CIFAR100
datasets and about 22 seconds for the Camelyon dataset).
WGMprop maintains a competitive propagation time com-
pared to UT@FN, which requires the propagation of only
2r+1 samples, where r denotes the dimension of the active
subspace. WGMprop maintains high performance over all
metrics for the CIFAR-10 and CIFAR-100 datasets, being
22 times faster than Monte Carlo in the case of the CIFAR-
10 and eight times faster for the CIFAR-100. Finally, for the
Camelyon dataset, which is a binary classification task with
a sigmoid used as the last layer of the neural network, WGM-
prop shows good performances for the 2W and MAPESTD

metrics. However, the binary classification configuration
can produce output PDFs extremely concentrated around its
mean, where the notion of standard deviation and percentile
does not seem relevant anymore. This most likely explains
the results obtained for MAPESTD and IOU95.

5. Limitations
While precise, robust, and generic, our method built upon
GM models requires the empirical adjustment of hyperpa-
rameters for the splitting stage. A poor choice of threshold
conducts in a significant increase in memory usage and
computational time, automating its setting for the expected
performances in terms of accuracy could be a significant im-
provement of the proposed method. Indeed, in the presented
experiments, hyperparameters have been fixed empirically.
Nonetheless, through experimentation, we were able to iden-
tify a threshold value of Tsplit = 10−4 that worked well for
most experiments. We also recommend the use of a 7-level
split as it is the one showing the smallest ϵ0,1 (see Table 8
in Appendix E). Moreover, a trade-off between accuracy
and performance must be addressed for a covariance matrix
with a high dimensional active subspace (setting of the r
value). Finally, the number of burn-in stages depends on the
application and noise intensity. A value between 0 and 3

seems reasonable.

6. Conclusion
In this work, we proposed a Wasserstein-based Gaussian
Mixture propagation method for input uncertainty propa-
gation in Neural Networks. WGMprop provides a reliable
estimate of the 95% prediction interval in case of highly
corrupted input images. The proposed method is generic by
considering the neural network as a black box while using
its specificities (strongly linear by part) by computing an
adapted Wasserstein-based criterion. Moreover, the method
becomes even more relevant compared to standard Monte
Carlo methods when the cost of a single call to the neural
network increases. Finally, we provide a theoretical conver-
gence guarantee of our Wasserstein-based input uncertainty
propagation paradigm. This allows to effectively estimate
the statistical parameters of the output distribution. In ad-
dition to meeting the previously detailed limitations, the
following steps will focus on integrating weight uncertainty
to provide a more comprehensive uncertainty budget.
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Input uncertainty propagation through trained neural networks

A. Analysis of KL divergence as statistical distance in the Split&Merge paradigm for ReLU
neural networks.

A.1. Analyse of the KL-based splitting criterion

Definition A.1. (KL divergence) Let P and Q be distributions on the same set U . Then the KL divergence of p from q,
denoted D(P∥Q), is defined as

DKL(P∥Q) =

∫
U

dP

dλ
(x) log

dP
dλ (x)
dQ
dλ (x)

dλ(x)

where dP
dλ and dQ

dλ are the densities of P and Q with respect to a common dominating measure (which always exists). In the
discrete setting, this amounts to

DKL(P∥Q) =
∑
x∈U

P (x) log
P (x)

Q(x)
.

When both P and Q have a density with respect to the Lebesgue measure, we obtain

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx.

The KL divergence is a particular case of the family of f-divergence. It is not a proper distance since it is not symmetric and
does not verify the triangular inequality (which is primordial in our case to compute distance with mixture distribution). In
a more general aspect, the KL divergence becomes infinite when Q does not dominate P , i.e. it exists an event A, such
that P (A) ̸= 0 and Q(A) = 0. This happens, for instance, if the support of P is not included in the one Q when or if there
is Q has a density with respect to the Lebesgue measure while P is a mixture of such a density and one putting mass on
singletons. This situation arises for neural networks using ReLU activation functions. Zhang & Shin (2021) proposed to
overcome this problem by approximating the ReLU activation function by a Leaky ReLU with slope λ = 10−K and to
control the criteria DKL(p∥p̂) by computing the following upper bound (equation (9) in their paper):

DKL(p∥p̂) ≤
M∑
i=1

ws,iDKL (pi∥p̂i) (8)

with DKL (pi∥p̂i) defined as:

DKL(p∥p̂) =− k

2
+

k∑
i=1

log (f ′ (µi))−
k∑

i=1

Ep(zi) [log (f
′ (zi))]

+
1

2

k∑
i=1

k∑
j=1

(
cij

f ′ (µi) f ′ (µj)
Ep(zi,zj) [(f (zi)− f (µi)) (f (zj)− f (µj))]

)
.

(9)

Theoretically, this upper bound is not defined for the ReLU activation function. Indeed, when µi < 0 and µj < 0,
1

f ′(µi)f ′(µj)
= ∞ ≈ 102K . To circumvent this issue, the authors reduce the upper bound by reducing each term of the

sum
∑M

i=1 ws,iDKL (pi∥p̂i). As a direct consequence, ws,iDKL (pi∥p̂i) becomes small when ws,i is very small. So, the
proposed strategy artificially increases the number of Gaussian components in the mixture (increasing memory usage and
computation time drastically).

This large number of components makes the KL-based criterion unusable in practice. Indeed, as soon as the first activation
function (ReLU) is output, a costly merge step must be applied (detailed below). As each of the remaining components has
a different variance-covariance matrix, it is also necessary to perform as many inverses (the complexity scales with the cube
of the dimension of the current layer), which is impossible for classical CNN architectures.

A.2. Numerical details of the experiments 4

In the single ReLU experiment presented in Section 4, the first value of the criterion for a univariate Gaussian distribution
N (1.0, 1.0) is 0.333. It is then higher than the threshold value 0.001 and a step of splitting is applied. In the case of a 7-split
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using the hyperparameters provided in Appendix E, one of the splitted Gaussian components is N (−0.4992, 0.4389). For
this component, the new criterion value explodes to a value of 29450. The following provides the details of this calculation:
Consider the univariate Gaussian distribution N (1.0, 1.0). Let zi its UT samples, with z0 = 1.0, z1 = 1.0 +

√
3σ =

1.0 +
√
3 ∗ 1.0 = 2.7320 and z2 = 1.0−

√
3σ = −0.7320. Thus:

DKL ≤ −1

2
+log(1.0)−(

2

3
log(1.0)+

1

6
log(1.0)+

1

6
log(0.001)+

1

2
(

1.0

1.0 ∗ 1.0
(
2

3
(1.0−1.0)2+

1

6
(2.7320−1.0)2+

1

6
(0−1.0)2

DKL ≤ 0.3333

Then, one of the 7-splitted components is N (−0.4992, 0.1926). Following the same formula, we have z0 = −0.4992,
z1 = −0.4992 +

√
3σ = −0.4992 +

√
3 ∗ 0.4389 = 0.2609 and z2 = −0.4992−

√
3σ = −1.2594. Finally:

DKL ≤ −1

2
+log(0.001)−(

2

3
log(0.001)+

1

6
log(1.0)+

1

6
log(0.001)+

1

2
(
0.1926−1

0.0012
(
2

3
(0−0)2+

1

6
(0.2609−0)2+

1

6
(0−0)2

DKL ≤ 29450

This KL based criterion explosion is due to the fact that for this Gaussian we have its mean µ ∈ [−
√
3σ, 0]. In practice, this

situation always arises due to the UT sampling deterministic equations.

A.3. Analyse of the KL-based merging criterion

As mentioned in Sect. 2, the use of a KL based criterion requires a layer wise propagation through the neural network.
It would be possible to manually stop the splitting procedure by introducing a maximum number of components per
layer. However, a merging stage is required before propagating through the next layer. To do so, Zhang & Shin (2021)
propose to rely on the computation of an upper bound of the KL divergence between the Gaussian mixture composed of the
components (i, j) and the resulting merge Gaussian distribution. (Equation 21 in their paper).

Bi,j =
1

2
[(wi + wj) log |Σij | − wi log |Σi| − wj log |Σj |] (10)

This upper bound needs the computation of the log of the determinant of the covariance matrix of the different Gaussian
distributions. Unfortunately, the determinants in such Gaussian distributions are generally close to 0 (or even equal to 0)
which conducts the absolute value of the logarithm to be very large (or even to diverge). Note that

rank(AB) ≤ min(rank(A), rank(B)),

for A a K × L matrix and B an L × M matrix. Practically, it is not rare that the covariance matrix of a Gaussian
component of the mixture is singular. Empirically, we also observe that a few eigenvalues of the covariance matrices are ≫ 0.

In a layer-wise paradigm, the computational cost also depends on the width of each layer of the neural network. Using our
Wasserstein-based approach, it allows propagating the input distribution directly through the whole network avoiding these
problems.
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B. All results
In this section, we display all the results from all experimental settings and additional figures in order to illustrate the
performances of our methodology. Best performing methods for a given performance criterion are highlighted using
green rectangles .

B.1. Experiment settings

In the main body, the experiments were conducted by fitting the noisy input distribution by a single Gaussian distribution.
However, this input distribution can be fitted by a Gaussian mixture distribution with K components. Moreover, our
proposed method considers the neural network as a black box and thus the propagation is performed in a full network fashion
using UT sampling for output moment estimation. We wish to perform a comparison with a layer-wise implementation of
our approach (rendered possible by the sound and suitable Wasserstein criterion presented in Sect. 3). We additionally study
the impact of analytical moment estimations using the theorems provided in Appendix C. Thus, we provide in this section
the results on the MNIST experiment for different values of K (here K ∈ {1, 2, 3} (Pedregosa et al., 2011)) and for the
different variants of WGMprop displayed in Table 4:

• LPN: layer-wise propagation of a single Gaussian diagonal distribution using analytical formula

• HPN: LPN: layer-wise propagation of a single Gaussian distribution using analytical formula (LPN + covariance
estimations)

• UT@LW: layer-wise propagation of a single Gaussian distribution using UT sampling

• UT@FN: full network propagation of a single Gaussian distribution using UT sampling

• WGMProp@LPN: layer wise propagation of a GMM using analytical formula (no estimation of covariances)

• WGMProp@HPN: layer wise propagation of a GMM using analytical formula (estimation of covariances)

• WGMProp@UT: layer wise propagation of a GMM using UT sampling

• WGMProp@FN: our main methodology detailed in the main body of the paper.

Table 4. Propagation characteristics for both state-of-the-art methods and the various methods of the WGMprop framework.
Propagation Output PDF Moment estimation Covariance Criterion

Layer-wise Full Network Single Gaussian Gaussian Mixture UT Sampling Analytic With Without Wasserstein KL

LPN ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗

HPN ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗

UT@LW ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

UT@FN ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

WGMProp@LPN ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗

WGMProp@HPN ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

WGMProp@UT ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

WGMProp@FN ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Hyperparameters: In the following of this section experimental results are displayed using the following parameters:
s0 = 0, Tsplit = 0.0001, no subspace selection (r = input dimension). In this experimental setting, the MC reference shows
a mean prediction time of 74.53 seconds (∼ 65s for sample generation and ∼ 9s for sample propagation) In the main body
of this paper, the execution time was drastically reduced by setting r = 30.
Noise parameters are the following:
Gaussian Noise: µ = (0, 0, 0), σ2 = (0.002, 0.01, 0.05); Blur: µ = (0, 0, 0), σ2 = (1, 16, 49); Contrast Noise:
µ = (1, 1, 1), σ2 = (0.04, 1, 25). (µ, σ) correspond to the parameters set for I1, I2 and I3.
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Hardware and software: The experiments were conducted using a GPU NVIDIA Telsa V100 32GO HBM2 and a CPU
Intel Xeon Silver 4210. All the codes were written using Python 3 (Van Rossum & Drake, 2009) and Tensorflow 2 (Agrawal
et al., 2019). The implementation of our method was not optimized in terms of computation time.

B.2. MNIST dataset

B.2.1. METRIC TABLES

Table 5. Performance comparison for all type of noise and intensity, and with K = 1. Standard deviations are presented in (±).
PERFORMANCE CRITERIA

Noise Intensity Method # Gaussian 2W KL MEAN STD IOU95 TIME (s)

G
au

ss
ia

n
N

oi
se

I1

LPN 1 0.090(±0.130) 0.41(±0.34) 0.16(±0.13) 6255.53(±1570.23) 0.023(±0.010) 0.02(±0.01)

HPN 1 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.60) 0.948(±0.039) 0.12(±0.01)
UT@LW 1 0.009(±0.008) 0.02(±0.02) 0.08(±0.09) 4.04(±2.96) 0.931(±0.039) 0.07(±0.01)
UT@FN 1 0.019(±0.029) 0.04(±0.03) 0.06(±0.07) 7.84(±7.75) 0.904(±0.077) 0.09(±0.01)

WGMprop@LPN 10.14(±6.18) 0.389(±0.351) 0.29(±0.26) 0.15(±0.12) 1227.99(±1576.32) 0.167(±0.117) 0.79(±0.39)

WGMprop@HPN 10.14(±6.18) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.61(±0.56) 0.952(±0.036) 1.48(±0.81)

WGMprop@UT 1.91(±2.15) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.98(±2.90) 0.932(±0.038) 0.30(±0.20)

WGMprop@FN 6.02(±2.22) 0.019(±0.029) 0.04(±0.03) 0.06(±0.07) 7.75(±7.70) 0.905(±0.076) 0.67(±0.23)

I2

LPN 1 0.090(±0.130) 0.41(±0.34) 0.16(±0.13) 6255.53(±1570.23) 0.023(±0.010) 0.02(±0.01)

HPN 1 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.60) 0.948(±0.039) 0.12(±0.01)
UT@LW 1 0.009(±0.008) 0.02(±0.02) 0.08(±0.09) 4.04(±2.96) 0.931(±0.039) 0.07(±0.01)
UT@FN 1 0.019(±0.029) 0.04(±0.03) 0.06(±0.07) 7.84(±7.75) 0.904(±0.077) 0.09(±0.01)

WGMprop@LPN 10.14(±6.18) 0.389(±0.351) 0.29(±0.26) 0.15(±0.12) 1227.99(±1576.32) 0.167(±0.117) 0.79(±0.39)

WGMprop@HPN 10.14(±6.18) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.61(±0.56) 0.952(±0.036) 1.48(±0.81)

WGMprop@UT 1.91(±2.15) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.98(±2.90) 0.932(±0.038) 0.30(±0.20)

WGMprop@FN 6.02(±2.22) 0.019(±0.029) 0.04(±0.03) 0.06(±0.07) 7.75(±7.70) 0.905(±0.076) 0.67(±0.23)

I3

LPN 1 0.090(±0.130) 0.41(±0.34) 0.16(±0.13) 6255.53(±1570.23) 0.023(±0.010) 0.02(±0.01)

HPN 1 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.60) 0.948(±0.039) 0.12(±0.01)
UT@LW 1 0.009(±0.008) 0.02(±0.02) 0.08(±0.09) 4.04(±2.96) 0.931(±0.039) 0.07(±0.01)
UT@FN 1 0.019(±0.029) 0.04(±0.03) 0.06(±0.07) 7.84(±7.75) 0.904(±0.077) 0.09(±0.01)

WGMprop@LPN 10.14(±6.18) 0.389(±0.351) 0.29(±0.26) 0.15(±0.12) 1227.99(±1576.32) 0.167(±0.117) 0.79(±0.39)

WGMprop@HPN 10.14(±6.18) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.61(±0.56) 0.952(±0.036) 1.48(±0.81)

WGMprop@UT 1.91(±2.15) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.98(±2.90) 0.932(±0.038) 0.30(±0.20)

WGMprop@FN 6.02(±2.22) 0.019(±0.029) 0.04(±0.03) 0.06(±0.07) 7.75(±7.70) 0.905(±0.076) 0.67(±0.23)

B
lu

r

I1

LPN 1 0.019(±0.132) 13.53(±12.40) 2.20(±1.62) 12922.73(±6028.60) 0.011(±0.009) 0.02(±0.01)

HPN 1 0.129(±0.109) 1.89(±1.60) 0.08(±0.09) 5.04(±7.73) 0.746(±0.097) 0.12(±0.01)
UT@LW 1 0.151(±0.114) 1.97(±1.58) 0.88(±0.88) 10.26(±6.68) 0.729(±0.092) 0.07(±0.01)
UT@FN 1 0.193(±0.156) 2.37(±1.73) 1.18(±1.13) 18.00(±12.24) 0.711(±0.092) 0.08(±0.01)

WGMprop@LPN 12.52(±9.95) 0.150(±0.325) 0.74(±0.65) 0.32(±0.21) 13.21(±11.50) 0.794(±0.092) 0.92(±0.60)

WGMprop@HPN 10.04(±4.13) 0.007(±0.014) 0.11(±0.10) 0.01(±0.01) 0.19(±0.26) 0.983(±0.016) 1.40(±0.51)

WGMprop@UT 7.46(±1.79) 0.011(±0.024) 0.13(±0.11) 0.04(±0.04) 0.68(±0.52) 0.970(±0.021) 0.76(±0.15)

WGMprop@FN 77.73(±46.18) 0.042(±0.135) 0.18(±0.17) 0.07(±0.08) 3.21(±8.65) 0.952(±0.102) 7.04(±4.12)

I2

LPN 1 −0.011(±0.065) 45.62(±22.88) 5.25(±4.98) 11079.69(±3116.66) 0.013(±0.004) 0.02(±0.00)

HPN 1 0.319(±0.146) 7.35(±3.62) 3.55(±2.42) 8.38(±6.99) 0.766(±0.076) 0.12(±0.01)
UT@LW 1 0.435(±0.180) 8.17(±4.24) 4.58(±3.35) 32.74(±13.20) 0.810(±0.108) 0.06(±0.01)
UT@FN 1 0.428(±0.162) 8.14(±3.21) 4.63(±4.65) 29.84(±11.98) 0.770(±0.140) 0.08(±0.00)

WGMprop@LPN 155.03(±104.93) 0.410(±0.229) 1.76(±14.55) 1.20(±9.27) 2.58(±4.03) 0.945(±0.058) 9.38(±5.88)

WGMprop@HPN 64.16(±17.25) 0.017(±0.016) 0.34(±0.24) 0.05(±0.04) 0.15(±0.25) 0.980(±0.017) 8.20(±2.16)

WGMprop@UT 43.25(±11.87) 0.034(±0.033) 0.39(±0.24) 0.20(±0.17) 0.52(±0.70) 0.961(±0.026) 3.73(±0.98)

WGMprop@FN 219.15(±65.99) 0.045(±0.036) 0.43(±0.25) 0.13(±0.13) 1.01(±1.80) 0.953(±0.043) 19.33(±5.77)

I3

LPN 1 −0.003(±0.055) 32.79(±17.67) 4.00(±2.71) 9148.25(±2335.73) 0.014(±0.003) 0.02(±0.00)

HPN 1 0.311(±0.116) 5.84(±3.01) 4.31(±2.47) 11.44(±8.78) 0.760(±0.080) 0.12(±0.01)
UT@LW 1 0.365(±0.158) 6.04(±3.31) 2.46(±2.38) 24.07(±15.87) 0.763(±0.116) 0.06(±0.00)
UT@FN 1 0.393(±0.139) 8.12(±3.25) 8.21(±5.39) 17.86(±10.25) 0.668(±0.133) 0.08(±0.00)

WGMprop@LPN 235.25(±190.77) 0.498(±0.428) 10.11(±41.46) 4.08(±12.83) 7.54(±8.57) 0.878(±0.106) 14.04(±9.96)

WGMprop@HPN 88.19(±23.17) 0.030(±0.023) 0.47(±0.31) 0.10(±0.07) 0.43(±0.43) 0.952(±0.030) 11.81(±3.05)

WGMprop@UT 62.61(±15.17) 0.053(±0.040) 0.62(±0.33) 0.25(±0.19) 0.95(±0.93) 0.927(±0.042) 5.46(±1.27)

WGMprop@FN 218.48(±55.67) 0.063(±0.043) 0.77(±0.50) 0.25(±0.24) 1.15(±1.21) 0.909(±0.051) 20.08(±5.08)

C
on

tr
as

t

I1

LPN 1 0.018(±0.170) 18.47(±17.70) 2.90(±2.18) 14683.21(±6712.73) 0.011(±0.011) 0.02(±0.00)

HPN 1 0.187(±0.185) 2.63(±2.22) 0.11(±0.16) 7.11(±13.77) 0.724(±0.119) 0.12(±0.01)
UT@LW 1 0.218(±0.191) 2.79(±2.28) 1.28(±1.27) 12.81(±9.04) 0.704(±0.114) 0.06(±0.00)
UT@FN 1 0.189(±0.190) 2.88(±2.56) 0.22(±0.26) 4.96(±10.58) 0.729(±0.111) 0.08(±0.00)

WGMprop@LPN 14.06(±9.89) 0.186(±0.348) 0.85(±0.81) 0.33(±0.27) 10.76(±5.89) 0.803(±0.082) 1.02(±0.61)

WGMprop@HPN 11.97(±5.01) 0.018(±0.031) 0.17(±0.17) 0.02(±0.02) 0.29(±0.68) 0.977(±0.025) 1.63(±0.61)

WGMprop@UT 8.13(±2.58) 0.030(±0.052) 0.20(±0.19) 0.06(±0.06) 0.85(±0.71) 0.958(±0.035) 0.79(±0.20)

WGMprop@FN 103.61(±71.68) 0.039(±0.121) 0.13(±0.14) 0.02(±0.02) 2.08(±9.51) 0.952(±0.120) 9.49(±6.50)

I2

LPN 1 −0.015(±0.060) 126.98(±65.74) 17.18(±16.74) 10196.32(±3056.44) 0.016(±0.005) 0.02(±0.00)

HPN 1 0.928(±0.362) 33.22(±16.45) 12.40(±9.17) 11.31(±14.12) 0.670(±0.088) 0.12(±0.01)
UT@LW 1 1.070(±0.355) 32.05(±14.82) 10.43(±8.52) 36.93(±16.77) 0.748(±0.131) 0.07(±0.01)
UT@FN 1 0.920(±0.342) 31.64(±18.92) 6.11(±4.95) 11.71(±17.75) 0.680(±0.081) 0.08(±0.01)

WGMprop@LPN 281.92(±39.79) 0.267(±0.125) 0.63(±1.17) 0.09(±0.08) 0.24(±0.22) 0.992(±0.008) 16.82(±2.34)

WGMprop@HPN 84.25(±13.48) 0.019(±0.012) 1.45(±2.21) 0.07(±0.06) 0.06(±0.07) 0.993(±0.007) 10.58(±1.66)

WGMprop@UT 68.63(±12.98) 0.040(±0.029) 1.47(±2.34) 0.17(±0.15) 0.23(±0.19) 0.985(±0.015) 5.65(±1.03)

WGMprop@FN 383.63(±99.77) 0.018(±0.020) 1.45(±2.14) 0.07(±0.07) 0.09(±0.14) 0.991(±0.016) 34.34(±8.96)

I3

LPN 1 0.007(±0.159) 101.48(±56.83) 31.69(±34.55) 6007.26(±1659.82) 0.026(±0.006) 0.02(±0.00)

HPN 1 0.991(±0.378) 38.38(±17.90) 27.57(±13.04) 11.10(±9.06) 0.640(±0.089) 0.12(±0.01)
UT@LW 1 0.966(±0.410) 31.27(±16.59) 14.00(±9.41) 15.75(±14.28) 0.633(±0.096) 0.06(±0.00)
UT@FN 1 0.924(±0.376) 33.98(±19.47) 6.97(±4.87) 9.65(±8.45) 0.604(±0.058) 0.07(±0.00)

WGMprop@LPN 670.06(±148.56) 0.551(±0.316) 32.22(±42.94) 22.27(±30.94) 13.27(±20.02) 0.790(±0.131) 35.92(±6.72)

WGMprop@HPN 108.17(±9.88) 0.022(±0.012) 1.46(±3.43) 0.11(±0.07) 0.12(±0.10) 0.989(±0.006) 14.08(±1.30)

WGMprop@UT 97.02(±9.56) 0.044(±0.026) 1.23(±3.52) 0.24(±0.16) 0.31(±0.24) 0.980(±0.012) 8.02(±0.77)

WGMprop@FN 492.59(±91.99) 0.022(±0.015) 1.36(±3.04) 0.09(±0.07) 0.08(±0.10) 0.985(±0.015) 44.72(±8.36)
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Input uncertainty propagation through trained neural networks

Table 6. Performance comparison for all type of noise and intensity, and with K = 2. Standard deviations are presented in (±).
PERFORMANCE CRITERIA

Noise Intensity Method # Gaussian 2W KL MEAN STD IOU95 TIME (s)

G
au

ss
ia

n
N

oi
se

I1

LPN 2 0.087(±0.141) 0.39(±0.32) 0.16(±0.14) 94.98(±3.25) 0.041(±0.019) 0.02(±0.00)

HPN 2 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.62) 0.948(±0.039) 0.22(±0.01)
UT@LW 2 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.91(±2.80) 0.931(±0.039) 0.10(±0.00)
UT@FN 2 0.020(±0.045) 0.04(±0.03) 0.06(±0.10) 9.13(±10.68) 0.905(±0.077) 0.14(±0.00)

WGMprop@LPN 11.04(±5.12) 0.370(±0.340) 0.30(±0.25) 0.16(±0.13) 84.16(±11.00) 0.155(±0.111) 0.84(±0.33)

WGMprop@HPN 11.04(±5.12) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.62(±0.57) 0.951(±0.037) 1.63(±0.70)

WGMprop@UT 2.01(±0.19) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.91(±2.80) 0.931(±0.039) 0.31(±0.02)

WGMprop@FN 5.99(±2.83) 0.018(±0.028) 0.04(±0.03) 0.06(±0.07) 9.05(±10.58) 0.906(±0.075) 0.71(±0.30)

I2

LPN 2 0.087(±0.141) 0.39(±0.32) 0.16(±0.14) 94.98(±3.25) 0.041(±0.019) 0.02(±0.00)

HPN 2 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.62) 0.948(±0.039) 0.22(±0.01)
UT@LW 2 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.91(±2.80) 0.931(±0.039) 0.10(±0.00)
UT@FN 2 0.020(±0.045) 0.04(±0.03) 0.06(±0.10) 9.13(±10.68) 0.905(±0.077) 0.14(±0.00)

WGMprop@LPN 11.04(±5.12) 0.370(±0.340) 0.30(±0.25) 0.16(±0.13) 84.16(±11.00) 0.155(±0.111) 0.84(±0.33)

WGMprop@HPN 11.04(±5.12) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.62(±0.57) 0.951(±0.037) 1.63(±0.70)

WGMprop@UT 2.01(±0.19) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.91(±2.80) 0.931(±0.039) 0.31(±0.02)

WGMprop@FN 5.99(±2.83) 0.018(±0.028) 0.04(±0.03) 0.06(±0.07) 9.05(±10.58) 0.906(±0.075) 0.71(±0.30)

I3

LPN 2 0.087(±0.141) 0.39(±0.32) 0.16(±0.14) 94.98(±3.25) 0.041(±0.019) 0.02(±0.00)

HPN 2 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.62) 0.948(±0.039) 0.22(±0.01)
UT@LW 2 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.91(±2.80) 0.931(±0.039) 0.10(±0.00)
UT@FN 2 0.020(±0.045) 0.04(±0.03) 0.06(±0.10) 9.13(±10.68) 0.905(±0.077) 0.14(±0.00)

WGMprop@LPN 11.04(±5.12) 0.370(±0.340) 0.30(±0.25) 0.16(±0.13) 84.16(±11.00) 0.155(±0.111) 0.84(±0.33)

WGMprop@HPN 11.04(±5.12) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.62(±0.57) 0.951(±0.037) 1.63(±0.70)

WGMprop@UT 2.01(±0.19) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.91(±2.80) 0.931(±0.039) 0.31(±0.02)

WGMprop@FN 5.99(±2.83) 0.018(±0.028) 0.04(±0.03) 0.06(±0.07) 9.05(±10.58) 0.906(±0.075) 0.71(±0.30)

B
lu

r

I1

LPN 2 0.103(±0.398) 5.43(±4.04) 0.61(±0.39) 64.94(±204.91) 0.418(±0.096) 0.02(±0.00)

HPN 2 0.062(±0.124) 0.96(±0.75) 0.03(±0.05) 2.19(±10.58) 0.894(±0.074) 0.21(±0.01)
UT@LW 2 0.061(±0.061) 0.81(±0.59) 0.23(±0.19) 5.39(±3.20) 0.858(±0.071) 0.09(±0.01)
UT@FN 2 0.131(±0.108) 3.15(±4.03) 3.18(±4.15) 6.74(±6.72) 0.844(±0.092) 0.11(±0.00)

WGMprop@LPN 9.07(±2.41) 0.278(±0.433) 0.61(±0.57) 0.18(±0.12) 6.80(±6.36) 0.896(±0.071) 0.70(±0.14)

WGMprop@HPN 8.99(±2.63) 0.030(±0.120) 0.09(±0.10) 0.01(±0.02) 1.29(±9.10) 0.979(±0.023) 1.29(±0.33)

WGMprop@UT 8.01(±2.11) 0.025(±0.046) 0.11(±0.13) 0.04(±0.06) 0.69(±1.21) 0.969(±0.031) 0.79(±0.18)

WGMprop@FN 55.78(±30.05) 0.045(±0.093) 0.09(±0.08) 0.04(±0.04) 1.08(±4.35) 0.962(±0.069) 4.92(±2.61)

I2

LPN 2 0.028(±0.307) 8.01(±3.60) 2.00(±1.61) 19.79(±169.47) 0.681(±0.139) 0.02(±0.00)

HPN 2 0.227(±0.130) 1.45(±0.82) 0.21(±0.17) 1.64(±1.91) 0.880(±0.047) 0.21(±0.01)
UT@LW 2 0.282(±0.145) 1.86(±0.91) 1.35(±1.15) 2.40(±2.78) 0.859(±0.061) 0.09(±0.01)
UT@FN 2 0.336(±0.178) 7.62(±7.92) 7.41(±7.85) 3.57(±3.71) 0.823(±0.071) 0.12(±0.00)

WGMprop@LPN 32.76(±16.69) 0.236(±0.273) 0.43(±0.24) 0.22(±0.17) 1.20(±1.93) 0.955(±0.033) 2.14(±0.99)

WGMprop@HPN 22.98(±6.48) 0.023(±0.018) 0.18(±0.16) 0.02(±0.02) 0.09(±0.08) 0.984(±0.010) 3.06(±0.83)

WGMprop@UT 15.88(±3.39) 0.043(±0.036) 0.18(±0.12) 0.09(±0.07) 0.23(±0.21) 0.972(±0.019) 1.44(±0.29)

WGMprop@FN 137.44(±42.71) 0.042(±0.054) 0.17(±0.15) 0.05(±0.04) 0.27(±0.71) 0.970(±0.034) 12.22(±3.76)

I3

LPN 2 0.010(±0.213) 6.92(±2.51) 2.50(±2.00) 65.02(±475.44) 0.599(±0.217) 0.03(±0.01)

HPN 2 0.316(±0.157) 2.36(±1.20) 0.46(±0.37) 2.22(±1.78) 0.823(±0.050) 0.21(±0.02)
UT@LW 2 0.363(±0.178) 2.53(±1.11) 1.94(±1.30) 4.97(±4.21) 0.788(±0.064) 0.10(±0.01)
UT@FN 2 0.476(±0.198) 11.05(±12.43) 13.31(±15.69) 7.57(±6.63) 0.768(±0.070) 0.12(±0.00)

WGMprop@LPN 52.53(±13.76) 0.499(±0.325) 0.24(±0.11) 0.11(±0.10) 1.82(±1.86) 0.954(±0.039) 3.36(±0.83)

WGMprop@HPN 28.74(±7.94) 0.027(±0.016) 0.31(±0.24) 0.02(±0.02) 0.11(±0.09) 0.982(±0.008) 3.80(±0.99)

WGMprop@UT 19.33(±5.36) 0.061(±0.042) 0.29(±0.16) 0.13(±0.10) 0.46(±0.47) 0.960(±0.020) 1.75(±0.45)

WGMprop@FN 174.10(±46.61) 0.031(±0.028) 0.19(±0.15) 0.03(±0.03) 0.20(±0.25) 0.973(±0.023) 15.59(±4.13)

C
on

tr
as

t

I1

LPN 2 0.265(±0.496) 11.52(±9.90) 1.26(±0.94) 102.79(±226.88) 0.327(±0.087) 0.02(±0.00)

HPN 2 0.125(±0.158) 2.41(±1.90) 0.15(±0.18) 7.20(±34.32) 0.794(±0.100) 0.22(±0.01)
UT@LW 2 0.106(±0.085) 2.14(±1.59) 0.68(±0.57) 11.14(±6.59) 0.754(±0.091) 0.10(±0.00)
UT@FN 2 0.084(±0.084) 2.71(±2.25) 0.17(±0.19) 2.73(±5.81) 0.797(±0.095) 0.12(±0.00)

WGMprop@LPN 10.53(±5.81) 0.396(±0.527) 0.58(±0.45) 0.22(±0.15) 7.40(±4.85) 0.868(±0.052) 0.81(±0.37)

WGMprop@HPN 9.49(±3.01) 0.060(±0.146) 0.24(±0.23) 0.03(±0.02) 4.34(±38.48) 0.972(±0.025) 1.40(±0.38)

WGMprop@UT 8.07(±0.71) 0.020(±0.034) 0.25(±0.23) 0.06(±0.06) 0.81(±0.61) 0.963(±0.030) 0.82(±0.06)

WGMprop@FN 89.94(±57.08) 0.016(±0.046) 0.15(±0.16) 0.02(±0.01) 0.73(±4.59) 0.974(±0.072) 8.25(±5.18)

I2

LPN 2 0.149(±0.653) 31.74(±18.54) 7.11(±5.42) 83.05(±359.62) 0.521(±0.145) 0.03(±0.01)

HPN 2 0.845(±0.296) 23.87(±11.23) 6.36(±4.41) 11.51(±8.08) 0.732(±0.086) 0.22(±0.02)
UT@LW 2 0.795(±0.265) 17.77(±7.63) 4.62(±4.89) 12.09(±6.35) 0.754(±0.094) 0.10(±0.01)
UT@FN 2 0.864(±0.306) 30.22(±15.86) 4.87(±3.99) 4.87(±4.70) 0.654(±0.078) 0.12(±0.01)

WGMprop@LPN 370.66(±96.08) 0.265(±0.239) 7.06(±36.28) 4.81(±27.88) 3.86(±28.30) 0.981(±0.073) 21.98(±5.41)

WGMprop@HPN 86.94(±14.74) 0.026(±0.029) 1.46(±1.79) 0.09(±0.04) 0.11(±0.12) 0.991(±0.010) 11.11(±1.87)

WGMprop@UT 72.18(±11.22) 0.044(±0.028) 1.51(±2.00) 0.18(±0.11) 0.38(±0.31) 0.983(±0.016) 5.97(±0.91)

WGMprop@FN 433.62(±119.44) 0.021(±0.025) 1.12(±1.53) 0.06(±0.03) 0.10(±0.49) 0.991(±0.019) 38.18(±10.52)

I3

LPN 2 0.101(±0.518) 71.86(±61.45) 24.81(±31.99) 1571.97(±2001.32) 0.301(±0.347) 0.02(±0.00)

HPN 2 0.859(±0.416) 29.50(±20.17) 19.91(±15.17) 9.11(±8.48) 0.705(±0.136) 0.21(±0.01)
UT@LW 2 0.916(±0.388) 25.29(±17.43) 11.11(±9.79) 12.46(±13.13) 0.685(±0.124) 0.09(±0.01)
UT@FN 2 0.805(±0.442) 31.99(±23.11) 7.24(±6.33) 8.51(±9.57) 0.678(±0.140) 0.11(±0.00)

WGMprop@LPN 558.15(±143.52) 1.545(±0.963) 114.32(±88.74) 39.09(±60.09) 35.73(±139.52) 0.693(±0.220) 27.66(±5.31)

WGMprop@HPN 138.44(±50.48) 0.027(±0.031) 2.45(±4.40) 0.16(±0.10) 0.13(±0.17) 0.987(±0.009) 17.39(±6.26)

WGMprop@UT 122.07(±46.22) 0.049(±0.033) 2.20(±4.38) 0.31(±0.21) 0.31(±0.27) 0.976(±0.017) 9.98(±3.71)

WGMprop@FN 371.46(±196.76) 0.179(±0.208) 12.76(±16.35) 2.06(±3.10) 2.79(±4.62) 0.844(±0.172) 32.44(±17.04)
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Input uncertainty propagation through trained neural networks

Table 7. Performance comparison for all type of noise and intensity, and with K = 3. Standard deviations are presented in (±).
PERFORMANCE CRITERIA

Noise Intensity Method # Gaussian 2W KL MEAN STD IOU95 TIME (s)

G
au

ss
ia

n
N

oi
se

I1

LPN 3 0.068(±0.138) 0.37(±0.30) 0.16(±0.13) 93.03(±3.49) 0.055(±0.021) 0.03(±0.00)

HPN 3 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.61) 0.948(±0.039) 0.31(±0.02)
UT@LW 3 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.88(±2.79) 0.931(±0.039) 0.13(±0.01)
UT@FN 3 0.019(±0.034) 0.04(±0.03) 0.06(±0.10) 8.88(±10.38) 0.907(±0.074) 0.20(±0.01)

WGMprop@LPN 10.86(±8.17) 0.292(±0.327) 0.32(±0.27) 0.16(±0.13) 87.01(±9.72) 0.125(±0.100) 0.82(±0.51)

WGMprop@HPN 10.85(±8.16) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.64(±0.58) 0.950(±0.037) 1.54(±1.06)

WGMprop@UT 3.00(±00) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.88(±2.79) 0.931(±0.039) 0.40(±0.01)

WGMprop@FN 6.44(±2.97) 0.018(±0.027) 0.04(±0.03) 0.06(±0.06) 8.85(±10.38) 0.908(±0.074) 0.77(±0.31)

I2

LPN 3 0.068(±0.138) 0.37(±0.30) 0.16(±0.13) 93.03(±3.49) 0.055(±0.021) 0.03(±0.00)

HPN 3 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.61) 0.948(±0.039) 0.31(±0.02)
UT@LW 3 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.88(±2.79) 0.931(±0.039) 0.13(±0.01)
UT@FN 3 0.019(±0.034) 0.04(±0.03) 0.06(±0.10) 8.88(±10.38) 0.907(±0.074) 0.21(±0.01)

WGMprop@LPN 10.86(±8.17) 0.292(±0.327) 0.32(±0.27) 0.16(±0.13) 87.01(±9.72) 0.125(±0.100) 0.82(±0.51)

WGMprop@HPN 10.85(±8.16) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.64(±0.58) 0.950(±0.037) 1.54(±1.05)

WGMprop@UT 3.00(±00) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.88(±2.79) 0.931(±0.039) 0.40(±0.01)

WGMprop@FN 6.44(±2.97) 0.018(±0.027) 0.04(±0.03) 0.06(±0.06) 8.85(±10.38) 0.908(±0.074) 0.78(±0.31)

I3

LPN 3 0.068(±0.138) 0.37(±0.30) 0.16(±0.13) 93.03(±3.49) 0.055(±0.021) 0.03(±0.01)

HPN 3 0.005(±0.007) 0.03(±0.02) 0.00(±0.00) 0.65(±0.61) 0.948(±0.039) 0.31(±0.02)
UT@LW 3 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.88(±2.79) 0.931(±0.039) 0.41(±0.01)
UT@FN 6.44(±2.97) 0.018(±0.027) 0.04(±0.03) 0.06(±0.06) 8.85(±10.38) 0.908(±0.074) 0.77(±0.31)

WGMprop@LPN 10.86(±8.17) 0.292(±0.327) 0.32(±0.27) 0.16(±0.13) 87.01(±9.72) 0.125(±0.100) 0.83(±0.52)

WGMprop@HPN 10.85(±8.16) 0.005(±0.006) 0.02(±0.02) 0.00(±0.00) 0.64(±0.58) 0.950(±0.037) 1.57(±1.07)

WGMprop@UT 3.00(±00) 0.008(±0.008) 0.02(±0.02) 0.08(±0.09) 3.88(±2.79) 0.931(±0.039) 0.13(±0.01)

WGMprop@FN 6.44(±2.97) 0.018(±0.027) 0.04(±0.03) 0.06(±0.06) 8.85(±10.38) 0.908(±0.074) 0.77(±0.31)

B
lu

r

I1

LPN 3 0.190(±0.408) 2.63(±1.70) 0.28(±0.17) 18.46(±14.03) 0.631(±0.094) 0.02(±0.00)

HPN 3 0.093(±0.191) 0.41(±0.35) 0.02(±0.03) 4.80(±17.61) 0.958(±0.040) 0.31(±0.01)
UT@LW 3 0.029(±0.030) 0.33(±0.26) 0.10(±0.08) 2.63(±1.75) 0.936(±0.038) 0.12(±0.00)
UT@FN 3 0.108(±0.074) 3.87(±5.43) 4.65(±5.13) 9.47(±6.61) 0.926(±0.078) 0.16(±0.01)

WGMprop@LPN 8.47(±2.23) 0.259(±0.432) 0.73(±0.77) 0.16(±0.12) 5.17(±5.17) 0.801(±0.075) 0.68(±0.14)

WGMprop@HPN 7.23(±3.15) 0.085(±0.192) 0.15(±0.20) 0.02(±0.01) 4.39(±16.40) 0.975(±0.033) 1.07(±0.42)

WGMprop@UT 5.37(±2.99) 0.023(±0.028) 0.20(±0.21) 0.07(±0.07) 1.63(±1.68) 0.958(±0.036) 0.58(±0.25)

WGMprop@FN 51.66(±25.87) 0.018(±0.044) 0.02(±0.03) 0.02(±0.01) 0.44(±2.07) 0.983(±0.046) 4.75(±2.33)

I2

LPN 3 0.007(±0.300) 5.44(±2.95) 0.55(±0.53) 6.14(±6.48) 0.846(±0.096) 0.03(±0.00)

HPN 3 0.123(±0.082) 1.09(±0.66) 0.14(±0.15) 0.69(±0.81) 0.938(±0.041) 0.32(±0.02)
UT@LW 3 0.182(±0.121) 0.94(±0.51) 0.51(±0.38) 2.05(±1.88) 0.922(±0.055) 0.12(±0.00)
UT@FN 3 0.230(±0.140) 6.08(±5.61) 8.27(±6.73) 4.83(±3.31) 0.896(±0.065) 0.17(±0.00)

WGMprop@LPN 20.45(±4.00) 0.169(±0.270) 0.38(±0.23) 0.11(±0.12) 1.11(±1.34) 0.969(±0.035) 1.41(±0.24)

WGMprop@HPN 18.64(±3.33) 0.023(±0.032) 0.12(±0.09) 0.01(±0.01) 0.06(±0.08) 0.988(±0.010) 2.58(±0.43)

WGMprop@UT 16.58(±3.03) 0.054(±0.063) 0.13(±0.10) 0.08(±0.11) 0.28(±0.33) 0.975(±0.020) 1.51(±0.24)

WGMprop@FN 138.06(±36.60) 0.015(±0.015) 0.06(±0.05) 0.02(±0.02) 0.07(±0.17) 0.990(±0.012) 12.61(±3.32)

I3

LPN 3 0.027(±0.163) 3.70(±1.65) 0.49(±0.39) 7.28(±7.15) 0.810(±0.097) 0.02(±0.00)

HPN 3 0.199(±0.099) 1.09(±0.72) 0.12(±0.11) 1.08(±0.61) 0.902(±0.033) 0.31(±0.02)
UT@LW 3 0.245(±0.129) 1.01(±0.51) 0.29(±0.29) 1.86(±1.36) 0.881(±0.044) 0.12(±0.00)
UT@FN 3 0.365(±0.155) 11.98(±12.96) 14.65(±14.25) 10.34(±7.19) 0.832(±0.058) 0.17(±0.00)

WGMprop@LPN 21.55(±3.16) 0.263(±0.240) 0.24(±0.12) 0.07(±0.05) 1.30(±1.07) 0.962(±0.027) 1.48(±0.19)

WGMprop@HPN 20.96(±2.54) 0.024(±0.023) 0.12(±0.11) 0.01(±0.01) 0.10(±0.08) 0.987(±0.008) 2.88(±0.35)

WGMprop@UT 19.67(±2.83) 0.048(±0.048) 0.12(±0.09) 0.05(±0.11) 0.28(±0.41) 0.977(±0.017) 1.75(±0.23)

WGMprop@FN 131.53(±30.41) 0.027(±0.022) 0.08(±0.06) 0.02(±0.02) 0.07(±0.09) 0.982(±0.014) 11.96(±2.73)

C
on

tr
as

t

I1

LPN 3 0.258(±0.439) 6.91(±8.19) 0.74(±0.69) 47.64(±99.38) 0.542(±0.176) 0.03(±0.00)

HPN 3 0.138(±0.178) 1.65(±1.58) 0.10(±0.14) 7.95(±43.90) 0.874(±0.092) 0.32(±0.02)
UT@LW 3 0.077(±0.076) 1.36(±1.33) 0.37(±0.46) 7.02(±6.05) 0.834(±0.094) 0.13(±0.00)
UT@FN 3 0.202(±0.136) 9.59(±12.48) 6.93(±8.53) 16.81(±13.57) 0.825(±0.092) 0.16(±0.00)

WGMprop@LPN 14.11(±2.13) 0.447(±0.474) 0.30(±0.31) 0.12(±0.12) 3.86(±2.42) 0.876(±0.056) 1.02(±0.13)
WGMprop@HPN 12.64(±3.29) 0.093(±0.174) 0.20(±0.21) 0.01(±0.01) 6.64(±41.50) 0.973(±0.036) 1.78(±0.42)

WGMprop@UT 11.15(±3.29) 0.021(±0.034) 0.24(±0.25) 0.05(±0.06) 0.69(±0.85) 0.966(±0.032) 1.05(±0.26)

WGMprop@FN 90.85(±53.80) 0.014(±0.039) 0.10(±0.12) 0.01(±0.01) 0.28(±1.90) 0.981(±0.052) 8.18(±4.79)

I2

LPN 3 0.162(±0.413) 23.78(±12.53) 6.16(±4.20) 30.62(±56.14) 0.635(±0.159) 0.03(±0.00)

HPN 3 0.676(±0.237) 17.89(±8.59) 3.70(±2.47) 10.26(±3.63) 0.746(±0.079) 0.30(±0.02)
UT@LW 3 0.663(±0.208) 13.54(±5.09) 2.44(±1.90) 9.13(±5.15) 0.760(±0.117) 0.13(±0.01)
UT@FN 3 0.859(±0.453) 57.17(±62.62) 27.73(±51.36) 10.22(±14.92) 0.696(±0.082) 0.16(±0.01)

WGMprop@LPN 342.99(±125.17) 0.335(±0.419) 6.72(±22.02) 2.85(±9.72) 1.31(±4.41) 0.967(±0.088) 19.92(±6.56)
WGMprop@HPN 70.21(±18.98) 0.028(±0.030) 2.61(±3.54) 0.10(±0.05) 0.12(±0.16) 0.992(±0.009) 8.91(±2.35)

WGMprop@UT 56.98(±14.85) 0.041(±0.028) 2.67(±3.85) 0.15(±0.09) 0.33(±0.24) 0.986(±0.014) 4.77(±1.19)

WGMprop@FN 345.40(±99.62) 0.021(±0.022) 2.20(±3.23) 0.07(±0.04) 0.09(±0.56) 0.994(±0.013) 30.55(±8.81)

I3

LPN 3 0.167(±0.423) 16.85(±10.33) 4.36(±3.56) 7.95(±18.25) 0.845(±0.149) 0.02(±0.00)

HPN 3 0.223(±0.107) 9.31(±5.72) 2.24(±1.80) 4.55(±3.80) 0.835(±0.134) 0.31(±0.02)
UT@LW 3 0.250(±0.113) 7.03(±4.11) 1.84(±1.53) 3.16(±2.27) 0.808(±0.142) 0.12(±0.00)
UT@FN 3 0.331(±0.148) 43.43(±37.50) 20.60(±22.83) 4.98(±7.01) 0.742(±0.073) 0.16(±0.00)

WGMprop@LPN 287.24(±78.33) 0.349(±0.461) 2.52(±4.01) 0.04(±0.18) 0.09(±0.20) 0.988(±0.016) 17.33(±4.69)
WGMprop@HPN 50.65(±14.57) 0.015(±0.033) 4.53(±6.30) 0.02(±0.01) 0.06(±0.11) 0.994(±0.009) 6.67(±1.89)

WGMprop@UT 42.70(±11.48) 0.018(±0.012) 4.64(±6.38) 0.06(±0.05) 0.14(±0.12) 0.993(±0.011) 3.64(±0.94)

WGMprop@FN 231.09(±59.52) 0.009(±0.008) 3.97(±5.49) 0.01(±0.01) 0.03(±0.16) 0.997(±0.008) 20.53(±5.32)
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B.2.2. BOXPLOT RAW DATA TABLES

In this subsection we provide the boxplot for all noises and values of K ∈ {1, 2, 3} and intensity I3.

Figure 5. Mean absolute percentage error over the percentiles 1,
2.5, 25, 50, 75, 97.5 and 99 between WGMprop methods and
MC reference for contrast noise of intensity I3 and K = 1 (Top),
K = 2 (Middle) and K = 3 (Bottom).

Figure 6. Mean absolute percentage error over the percentiles 1,
2.5, 25, 50, 75, 97.5 and 99 between WGMprop methods and MC
reference for blur noise of intensity I3 and K = 1 (Top), K = 2
(Middle) and K = 3 (Bottom).

Figure 7. Mean absolute percentage error over the percentiles 1, 2.5, 25, 50, 75, 97.5 and 99 between WGMprop methods and MC
reference for Gaussian noise of intensity I3 and K = 1 (Top), K = 2 (Middle) and K = 3 (Bottom).
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B.2.3. MORE FIGURES

Figure 8. Estimated output PDFs (main marginal) for sample n°58
corrupted by blur kernel (Top), contrast noise (Middle) and
Gaussian-distributed additive noise (Bottom) (I3 intensity and
K = 1), MC reference filled in blue.

Figure 9. Estimated output PDFs (main marginal) for sample n°181
corrupted by blur kernel (Top), contrast noise (Middle) and
Gaussian-distributed additive noise (Bottom) (I3 intensity and
K = 1), MC reference filled in blue.

Figure 10. Estimated output PDFs (main marginal) for sample
n°416 corrupted by blur kernel (Top), contrast noise (Middle)
and Gaussian-distributed additive noise (Bottom) (I3 intensity and
K = 1), MC reference filled in blue.

Figure 11. Estimated output PDFs (main marginal) for sample
n°904 corrupted by blur kernel (Top), contrast noise (Middle)
and Gaussian-distributed additive noise (Bottom) (I3 intensity and
K = 1), MC reference filled in blue.

B.2.4. ANALYSIS

From an overall perspective, state-of-the-art methods are way faster than WGMprop methods at the cost of accuracy. Indeed,
no matter the input noise complexity, the mean prediction time of these methods stays constant (≈ 10−1) while their
prediction errors rise dramatically (the IOU95 drops from 0.948 for a Gaussian noise and a HPN propagation to 0.640 for a
contrast noise). In fact, in the case of an input corrupted with a Gaussian noise, the output PDF is closely Gaussian (KL
value of 0.005 for the HPN method) whereas, for more complex noises, the Gaussian assumption on the output PDF of each
layer does not hold.
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To illustrate this statement, Figure 11 displays both the estimated output PDFs using the methods listed in Table 4 and the
reference PDF (MC) over sample image n°904 corrupted with the whole set of noises at the highest intensity (I3). In the
case of blur noise and contrast noise, UT@LW, UT@FN and HPN methods suffer from shape misrepresentation due to their
Gaussian assumption. On the other hand, WGMprop methods capture well the shape of the output PDF and are therefore
good candidates to obtain a reliable estimate of the 95% prediction interval.

Moreover, although the mean prediction time scales with the input noise complexity (more Gaussian components in the
mixture are needed), WGMprop methods’ predictions remain highly accurate: IOU95 superior to 0.900, MAPEMEAN lower
than 0.25%. The analytical approach WGMprop@HPN achieves the highest IOU95 value for all studied noise models.
WGMprop@HPN also produces the lowest error values with respect to 2W, KL, MAPEMEAN and MAPESTD; except for the
contrast noise where WGMprop@FN performs slightly better on MAPEMEAN and MAPESTD at the cost of a high prediction
time (5 times as many Gaussian components in the mixture compared to WGMprop@UT (97.04) and WGMprop@HPN
(108.15)). In terms of mean prediction time, WGMprop@UT is the fastest for the whole experiment. This higher speed is
clearly correlated with the reduced number of Gaussian components in the mixture.

In addition, the boxplot of the MAPE of several predicted percentiles (1, 2.5, 25, 25, 97.5 and 99) are shown in Figure 4.
These boxplots present the MAPE distributions over the different percentiles of the output PDF for the 3 mixture-based
methods: WGMprop@HPN, WGMprop@FN and WGMprop@UT. Firstly, the proposed methods exhibit comparable
performances with an overlap of the MAPE distributions for all estimated percentiles. The methods show larger MAPE
errors as one moves towards the tails of the distribution (P1, P99) yet behave similarly. WGMprop@HPN has both the
lowest median values and the smallest dispersion of errors from P1 to P99.

However, in a layer-wise propagation paradigm such as in WGMprop@HPN and WGMprop@UT, the propagation can
become infeasible for deeper and wider neural networks. In fact, a layer-wise propagation induces many extra computational
costs:

• After the first layer, each Gaussian component of the mixture does not have the same covariance matrix and such forced
to apply N inverse where N is the number of components of the current Gaussian mixture distribution,

• To avoid the last point, we can reduce N by applying a merging phase which can be costly in practice, needing the
computation of N(N−1)

2 bounds,

• The curse of dimensionality can arise from the number of neurons in a specific layer, contrary to a full network
propagation where the dimensionality bottleneck only arise on the input or output layer of the network.

For all these reasons, our full network approach, based on UT sampling and a Wasserstein based criterion is to be favored
for its genericity and simplicity.
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B.3. More complex dataset

B.3.1. CIFAR10 DATASET

Figure 12. Estimated output PDFs (main marginal) for sample
n°2 of the CIFAR10 dataset corrupted by blur kernel (Top),
contrast noise (Middle) and Gaussian-distributed additive
noise (Bottom) (I3 intensity). The output PDF estimated
using Monte Carlo propagation (reference) is filled in blue.

Figure 13. Estimated output PDFs (main marginal) for sam-
ple n°89 of the CIFAR10 dataset corrupted by blur kernel
(Top), contrast noise (Middle) and Gaussian-distributed addi-
tive noise (Bottom) (I3 intensity). The output PDF estimated
using Monte Carlo propagation (reference) is filled in blue.

Figure 14. MAPE boxplots for CIFAR10 dataset and for percentiles 1, 2.5, 25, 50, 75, 97.5 and 99. Input images were degraded by a large
contrast kernel (I3).
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B.3.2. CIFAR100 DATASET

Figure 15. Estimated output PDFs (main marginal) for sam-
ple n°2 of the CIFAR100 dataset corrupted by blur kernel
(Top), contrast noise (Middle) and Gaussian-distributed addi-
tive noise (Bottom) (I3 intensity). The output PDF estimated
using Monte Carlo propagation (reference) is filled in blue.

Figure 16. Estimated output PDFs (main marginal) for sam-
ple n°89 of the CIFAR100 dataset corrupted by blur kernel
(Top), contrast noise (Middle) and Gaussian-distributed addi-
tive noise (Bottom) (I3 intensity). The output PDF estimated
using Monte Carlo propagation (reference) is filled in blue.

Figure 17. MAPE boxplots for CIFAR100 dataset and for percentiles 1, 2.5, 25, 50, 75, 97.5 and 99. Input images were degraded by a
large contrast kernel (I3).
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B.3.3. CAMELYON DATASET

Figure 18. Estimated output PDFs (main marginal) for sam-
ple n°2 of the Camelyon dataset corrupted by blur kernel
(Top), contrast noise (Middle) and Gaussian-distributed addi-
tive noise (Bottom) (I3 intensity). The output PDF estimated
using Monte Carlo propagation (reference) is filled in blue.

Figure 19. Estimated output PDFs (main marginal) for sam-
ple n°89 of the Camelyon dataset corrupted by blur kernel
(Top), contrast noise (Middle) and Gaussian-distributed addi-
tive noise (Bottom) (I3 intensity). The output PDF estimated
using Monte Carlo propagation (reference) is filled in blue.

Figure 20. MAPE boxplots for Camelyon dataset and for percentiles 1, 2.5, 25, 50, 75, 97.5 and 99. Input images were degraded by a
large contrast kernel (I3).
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C. Analytical moment propagation through classical activation functions.
For fully connected network and CNN, we provide the analytical formula to propagate the first two moments of a Gaussian
distribution through ReLU, leaky ReLU (Maas et al., 2013) or ELU (Clevert et al., 2015) activation function.
Due to the excessive length of the proofs, they are only given in the supplementary files available at https://github.
com/PaulMcht/WGMprop.

C.1. ReLU activation function

Proposition C.1. Let X be a random variable with X ∼ Nd(µ,Σ), µ ∈ Rd, Σ ∈ S+
d (R) with rank(Σ) = r, r ∈ N∗

and f be the rectified linear function, then for the random variable Y = (Y1, ..., Yd) = f(X) = (f(X1), ..., f(Xd)),
∀k, k′ ∈ {1...d}:

E[Yk] = ckϕk + µkΦk (11)
E[Y 2

k ] = (µ2
k + c2k)Φk + µkckϕk (12)

E[YkYk′ ] = ckαϕk′ϕNS + (µkµk′ + ckβ) (Φk′ − Φkk′) + µkck′ϕk′ΦS + µk′ckϕkΦNS (13)

where: µk = E[Xk], the mean of the kth component of the random variable X , Qr = (qk)k∈{1...d} ∈ Mr,d(R) the r first
line of Q such that Σ = QTΛQ = QT

r ΛrQr, and Λr ∈ Dr(R). Then, we have ck =
∥∥√Λrqk

∥∥ , ck−k′ =
∥∥√Λr(qk − qk′)

∥∥,

β =
c2k+c2j−c2

k−k′

2ck
, α =

√
c2j − β2. Finally, we note ϕk = ϕ0,1

(
µk

ck

)
, Φk′ = Φ0,1

(
µk′
ck′

)
, ΦNS = Φ0,1

(
µk′
α − βµk

αck

)
,

ΦS = Φ0,1

(
ck′µk

ckα
− βµk′

αck′

)
, ϕNS = ϕ0,1

(
βµk′
αck′

− µkck′
ckα

)
and Φkk′ = Φ0

0

,

 1 − β
ck′

− β
ck′

1


([

µk′
ck′

,−µk

ck

]T)
and ϕ and

Φ are respectively the PDF and CDF of the standard normal distribution.

C.2. Leaky ReLU activation function

Proposition C.2. Let X be a random variable with X ∼ Nd(µ,Σ), µ ∈ Rd, Σ ∈ S+
d (R) with rank(Σ) = r, r ∈ N∗ and

f be the leaky rectified linear function of parameters λ ∈ [0, 1[, then for the random variable Y = (Y1, ..., Yd) = f(X) =
(f(X1), ..., f(Xd)), ∀k, k′ ∈ {1...d}:

E[Yk] = (1− λ)ckϕk + (1− λ)µkΦk + λµk (14)
E[Y 2

k ] = (1− λ2)(µ2
k + c2k)Φk + (1− λ2)µkckϕk + λ2(c2k + µ2

k) (15)
E[YkYk′ ] = (1− λ)2ckαϕk′ϕNS

+ (µkµk′ + ckβ)
(
(1− λ)Φk′ − (1− λ)2Φkk′ + λ(1− λ)Φk + λ2

)
+ (1− λ)2µkck′ϕk′ΦS

+ (1− λ)2µk′ckϕkΦNS

+ λ(1− λ)(µk′ckϕk + µkck′ϕk′) (16)

where: µk = E[Xk], the mean of the kth component of the random variable X , Qr = (qk)k∈{1...d} ∈ Mr,d(R) the r first
line of Q such that Σ = QTΛQ = QT

r ΛrQr, and Λr ∈ Dr(R). Then, we have ck =
∥∥√Λrqk

∥∥ , ck−k′ =
∥∥√Λr(qk − qk′)

∥∥,

β =
c2k+c2j−c2

k−k′

2ck
, α =

√
c2j − β2. Finally, we note ϕk = ϕ0,1

(
µk

ck

)
, Φk′ = Φ0,1

(
µk′
ck′

)
, ΦNS = Φ0,1

(
µk′
α − βµk

αck

)
,

ΦS = Φ0,1

(
ck′µk

ckα
− βµk′

αck′

)
, ϕNS = ϕ0,1

(
βµk′
αck′

− µkck′
ckα

)
and Φkk′ = Φ0

0

,

 1 − β
ck′

− β
ck′

1


([

µk′
ck′

,−µk

ck

]T)
and ϕ and

Φ are respectively the PDF and CDF of the standard normal distribution.
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C.2.1. ELU ACTIVATION FUNCTION

Proposition C.3. Let X be a random variable with X ∼ Nd(µ,Σ), µ ∈ Rd, Σ ∈ S+
d (R) with rank(Σ) = r, r ∈ N∗

and f be the exponential linear function, then for the random variable Y = (Y1, ..., Yd) = f(X) = (f(X1), ..., f(Xd)),
∀k, k′ ∈ {1...d}:

E[Yk] = ckϕk + (µk + λ)Φk + λeµk+
c2k
2 (1− Φkck)− λ (17)

E[Y 2
k ] = (µ2

i + c2i − λ2)Φi + µiciϕi + λ2e2(c
2
i+µi)(1− Φ2ci)− 2λ2eµi+

c2i
2 (1− Φci)

+ λ2 (18)
E[YkYk′ ] = ciαϕjϕNS

+ (µiµj + ciβ + λµi) Φj

−
(
µiµj + ciβ + λ(µi + µj) + λ2

)
Φij

+ (µicjϕj + λcjϕj +
λβci
cj

((ϕj − eµj+
c2j
2 ϕcj ))ΦS

+ (µjciϕi + λciϕi + λβ(ϕi − eµi+
c2i
2 ϕci))ΦNS

+ λcie
µj+

c2j
2 ϕβiΦα

+ λcje
µi+

c2i
2 ϕaΦe

+ λ2eµi+
c2i
2 Φci

− λeµj+
c2j
2 (µi + βci)Φcj

+ λeµi+
c2i
2 (λ+ βci + µj)ΦA

+ λeµj+
c2j
2 (λ+ βci + µi)(Φβi

+ΦB)

+ λ2eµi+µj+
c2i+c2j

2 +ciβ(1− Φβ+ci − ΦC)

− λ(λeµi+
c2i
2 + λeµj+

c2j
2 + ciϕi + cjϕj − λ) (19)

where: µk = E[Xk], the mean of the kth component of the random variable X , Qr = (qk)k∈{1...d} ∈ Mr,d(R) the r first
line of Q such that Σ = QTΛQ = QT

r ΛrQr, and Λr ∈ Dr(R). Then, we have ck =
∥∥√Λrqk

∥∥ , ck−k′ =
∥∥√Λr(qk − qk′)

∥∥,

β =
c2k+c2j−c2

k−k′

2ck
, α =

√
c2j − β2. Finally, we note ϕk = ϕ0,1

(
µk

ck

)
, Φk′ = Φ0,1

(
µk′
ck′

)
, ΦNS = Φ0,1

(
µk′
α − βµk

αck

)
,

ΦS = Φ0,1

(
ck′µk

ckα
− βµk′

αck′

)
, ϕNS = ϕ0,1

(
βµk′
αck′

− µkck′
ckα

)
, Φkk′ = Φ0

0

,

 1 − β
ck′

− β
ck′

1


([

µk′
ck′

,−µk

ck

]T)
, ϕa =

ϕ0,1

(
µj+βci

cj

)
, Φβi

= Φ0,1

(
µi

ci
+ β

)
, Φe = Φ0,1

(
β
α

µj+βci
cj

− cjµi

αci
− cjci

α

)
, Φα = Φ0,1

(
βµi

αci
− µj

α − α
)

, Φβ+ci =

Φ0,1(
µi

ci
+ ci+β), Φci = Φ0,1

(
µi

ci
+ ci

)
, Φ2ci = Φ0,1

(
µi

ci
+ 2ci

)
, ΦA = Φ0

0

,

 1 − β
cj

− β
cj

1


([

µj+βci
cj

,−µi

ci
− ci

]T)
,

ΦB = Φ0
0

,

 1 − β
cj

− β
cj

1


([

µj

cj
+ cj ,−µi

ci
− β

]T)
,

and ΦC = Φ0
0

,

 1 − β
cj

− β
cj

1


([

µj+c2j+βci
cj

,−(µi

ci
+ ci + β)

]T)
),

Finally, ϕ and Φ are respectively the PDF and CDF of the standard normal distribution.
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D. Mathematical proofs
D.1. The Wasserstein metric

Here we provide the proofs of proposition 3.1 and 3.2

Proof of Proposition 3.1. Let P0 and P̃0 be the centered versions of P and P̃ . Using the identity E
[
∥A∥2

]
= ∥µA∥2 +

Tr (Cov (A)) for a random vector A, we have

W 2
2 (P, P̃ ) = inf

γ∈Γ
EX,Y∼γ

[
∥X − Y ∥2

]
= ∥µP − µP̃ ∥

2
+ inf

γ∈Γ(P,P̃)
Tr (Cov (X − Y ))

= ∥µP − µP̃ ∥
2
+W 2

2 (P0, P̃0).

The latter gives the first assertion. Furthermore, let X0 ∼ P0 and Y0 ∼ P̃0. Using

ϕi : (x1, . . . , xn) ∈ Rd → xi

and (Villani, 2009, Proposition 7.29) shows that

W2(P, P̃ ) ≥ W2(P0, P̃0)

≥

∣∣∣∣∣
√∫

x2
i dP0 −

√∫
x2
i dP0

∣∣∣∣∣
=

∣∣∣σP,i − σP̃ ,i

∣∣∣ .

Proof of Proposition 3.2. Let Y and Ỹ two random variables in Rd with respective distributions P and P̃ .

W2(P, P̃ ) ≥ W1(P, P̃ ) = inf
γ∈Γ(P,P̃ )

E
[
∥Y − Ỹ ∥12

]
(20)

But, ∀x ∈ Rd : ∥x∥2 ≥ 1√
d
∥x∥1, thus:

W2(P, P̃ ) ≥ 1√
d

inf
γ∈Γ(P,P̃ )

E
[
∥Y − Ỹ ∥11

]
(21)

And:

W1(P, P̃ ) = inf
γ∈Γ(P,P̃ )

E
[
∥Y − Ỹ ∥1

]
= inf

γ∈Γ(P,P̃ )
E

[
d∑

i=1

|Yi − Ỹi|

]

≥
d∑

i=1

inf
γi∈Γ(Pi,P̃i)

E
[
|Yi − Ỹi|

]
≥

d∑
i=1

W1(Pi, P̃i) (22)
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The first preceding inequality is obtained by reversing the sum and the infimum and noting that if γ ∈ Γ(P, P̃ ) then by
definition, we have γi ∈ Γ(Pi, P̃i). Then, when d = 1:

Wp(X,Y ) =
∥∥F−1

X − F−1
Y

∥∥
p
=

(∫ 1

0

∣∣F−1
X (α)− F−1

Y (α)
∣∣p dα

)1/p

(23)

with FX and F−1
X (q) = inf {x : FX(x) ≥ q} , q ∈ (0, 1), the distribution and quantile functions of X .

Thus, by noting Q (respectively Q̃) the quantile function of P (respectively P̃ ):

1√
d

d∑
i=1

∫ 1

0

|Q(q)− Q̃(q)|dq ≤ W2(P, P̃ ) (24)

D.2. Wasserstein criterion

First, we recall the general notations which will be used in the propositions and their proofs and introduce some new ones.

D.2.1. NOTATIONS

Write U ∈ Rd the multidimensional random variable of probability distribution PU and with mean µU and covariance
matrix ΣU .

Let M be the space of mixtures of Gaussian distributions and, for U such that PU ∈ M, write PU =
∑M

i=1 wiPU ,i, with
non-negative wis summing to one and PU ,i = N (µU ,i,ΣU ,i). We will keep the symbols M and wi generic for any mixture,
unless explicitly stated otherwise.

Furthermore, let S[1](·;n) be a splitting operator defined on the space of Gaussian distributions and extended to Gaussian
mixtures by linearity. S[1](·;n) approximates PU by a Gaussian mixture distribution of n components:

P
Û

[1] = S[1](PU ;n) =

n∑
i=1

wiPÛ
[1]

,i

Given some X ∈ Rd, the goal is to propagate PX through a L2,2-Lipschitz continuous neural network f : Rd → Rd′
.

Leveraging the approximation power of mixtures of Gaussian distributions (see, e.g., Scott, 2015), we suppose from now on
that X ∈ Rd is a multivariate normal random variable.

Using the previous notations—omitting the dependence of M on n—, the sth iteration

PX̂[s] = S[s](PX ;n) =

M∑
i=1

wiPX̂[s],i

of S[1] on PX will play a major role in this work.

The split operator introduces an approximation at each iteration, related to the standard error ϵ0,1 =
W2(N (0, 1), S[1](N (0, 1);n)) > 0.

Let Y and Ŷ [s] the random variables such that Y = f(X), Ŷ [s] = f(X̂ [s]) and let Ỹ [s] the random variable obtained by
propagating each component of PX̂[s] through f by moment matching.

Finally, f̄i is the first order Taylor linearization of f at location µX̂[s],i and λ
[k]
∞ is the highest eigenvalue of ΣX̂[k],i after

applying S[k](·, n) to PX .
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D.2.2. UPPER BOUND

Here, we present a proof of the proposition 3.3.
Lemma D.1. Write Q the multivariate normal distribution N (µ,Σ) with mean µ ∈ Rd and variance covariance matrix
Σ ∈ S+

d (R). Write Q̂ the mixture of multivariate normal distribution such that Q̂ = S(Q;n) =
∑n

i=1 wiN (µi,Σi). Write
λ∞ the highest eigenvalue of Σ. Then:

W2(Q, Q̂) ≤ ϵ0,1
√
λ∞ (25)

Proof of Lemma D.1. Write Q the multivariate normal distribution N (µ,Σ) with mean µ ∈ Rd and variance covariance
matrix Σ ∈ S+

d (R). Write Q̂ the mixture of multivariate normal distribution such that Q̂ = S(Q;n) =
∑n

i=1 wiN (µi,Σi).

Σ ∈ S+
d (R) =⇒ ∃U ∈ O+

d (R) ∃Λ ∈ Dd(R) : Σ = UΛUT .

We have Λ = diag(λ1, .., λd) and by definition of the splitting operator, we have Σi = UΛiU
T , with Λi =

diag(λ1, .., σ̃
2λj , .., λd), where j = argmaxk λk.

W2(Q, Q̂) = inf
γ∈Γ(Q,Q̂)

E
[
∥X − X̂∥22

] 1
2

= inf
γ∈Γ(Q,Q̂)

E
[
∥UX − UX̂∥22

] 1
2

= inf
γ∈Γ(P,P̂ )

E
[
∥X − X̂∥22

] 1
2

. (26)

Since U is orthogonal with P is the multivariate normal distribution N (Uµ,Λ) and P̂ =
∑n

i=1 wiN (Uµi,Λi), the split
operator modifies only the marginal of P having the highest eigenvalue (λ∞), noted P∞, with mean µ∞ and variance σ2

∞.

W 2
2 (P, P̂ ) = inf

γ∈Γ(P,P̂ )
E
[
∥X − X̂∥22

]
= inf

γ∈Γ(P,P̂ )
E

[
d∑

i=1

(Xi − X̂i)
2

]

= inf
γ∈Γ(P,P̂ )

E
[
(X∞ − X̂∞)2

]
+ E

∑
i ̸=∞

(Xi − X̂i)
2


≤ inf

γ∈Γ(P∞,P̂∞)
E
[
∥X∞ − X̂∞∥22

]
= W 2

2 (P∞, P̂∞) (27)

Because Γ(P∞, P̂∞) ⊂ Γ(P, P̂ ). Γ(P∞, P̂∞) is chosen as the subset of Γ(P, P̂ ) restricting to the identity for all dimensions
except the one of highest eigenvalue.

Thus:

W2(P, P̂ ) ≤ W2(P∞, P̂∞)

= inf
γ∈Γ(P∞,P̂∞)

E
[
∥X∞ − X̂∞∥22

] 1
2

= σ∞ inf
γ∈Γ(P∞,P̂∞)

E

[
∥X∞ − µ∞

σ∞
− X̂∞ − µ∞

σ∞
∥22

] 1
2

= σ∞ϵ0,1

=
√

λ∞ϵ0,1 (28)
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Lemma D.2. Write Q the multivariate normal distribution N (µ,Σ) with mean µ ∈ Rd and variance covariance matrix Σ ∈
S+
d (R). Write Q̂[s] the mixture of multivariate normal distribution such that Q̂[s] = S[s](Q;n) =

∑M
i=1 wiN (µ

[s]
i ,Σ

[s]
i ),

s ∈ N. Write λ
[k]
∞ the highest eigenvalue of Σ[k] where Σ[k] is the covariance matrix of each component of Q̂[k] obtained

after applying k splits. Then:

W2(Q, Q̂[s]) ≤ ϵ0,1

s−1∑
k=0

√
λ
[k]
∞ (29)

Proof of Lemma D.2. Write Q the multivariate normal distribution N (µ,Σ) with mean µ ∈ Rd and variance covariance ma-
trix Σ ∈ S+

d (R). Write Q̂[s] the mixture of multivariate normal distribution such that Q̂[s] = S[s](Q;n) =
∑M

i=1 wiQ̂
[s]
i =∑M

i=1 wiN (µ
[s]
i ,Σ

[s]
i ), s ∈ N. Write λ

[k]
∞ the highest eigenvalue of Σ[k] where Σ[k] is the covariance matrix of each

component of Q̂[k] obtained after applying k splits.

W2(Q, Q̂[s]) = W2

(
Q,S[s](Q;n)

)
≤

s−1∑
k=0

W2

(
S[k](Q;n), S[k+1](Q;n)

)
(30)

With S[0](Q;n) = Q

And:

W2

(
S[k](Q;n), S[k+1](Q;n)

)
≤

M∑
i=1

wiW2

(
Q̂

[k]
i , S(Q̂

[k]
i ;n)

)
≤

M∑
i=1

wiW2

(
N (µ

[k]
i ,Σ

[k]
i ), S(N (µ

[k]
i ,Σ

[k]
i );n)

)
(31)

But for a same level of split k, all components of the mixture have the same covariance matrix, i.e. ∀i ∈ {1...M} : Σ
[k]
i =

Σ
[k]
0 . Thus, with

∑
i wi = 1, by noting λ

[k]
∞ the highest eigenvalue of Σ[k]

0 , and by applying Lemma D.1, we obtain:

W2(Q, Q̂[s]) ≤ ϵ0,1

s−1∑
k=0

√
λ
[k]
∞ (32)

Proof of Proposition 3.3. Let W2(·, ·) the 2-Wasserstein distance with respect to the usual Euclidean norm on Rd. With the
general notations, we have:

W2(PY , PỸ [s]) ≤ W2(PY , PŶ [s]) +W2(PŶ [s] , PỸ [s]) (33)
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With:

W2(PY , PŶ [s]) = inf
γ∈Γ(PY ,P

Ŷ [s] )
E
[
∥Y − Ŷ ∥22

] 1
2

≤ inf
γ∈Γ(PX ,P

X̂[s] )
E
[
∥f(X)− f(X̂)∥22

] 1
2

≤ L2,2 inf
γ∈Γ(PX ,P

X̂[s] )
E
[
∥X − X̂∥22

] 1
2

≤ L2,2W2(PX , PX̂[s])

≤ L2,2ϵ0,1

s−1∑
k=0

√
λ
[k]
∞ (34)

By applying Lemma D.2.

And:

W2

(
PŶ [s] , PỸ [s]

)
≤

M∑
i=1

wiW2

(
PŶ [s],i, PỸ [s],i

)
≤

M∑
i=1

wi

(
W2(PŶ [s],i, PȲ [s],i) +W2(PȲ [s],i, PỸ [s],i)

)
(35)

With:

W2(PȲ [s],i, PỸ [s],i) =
(
∥µȲ [s],i − µỸ [s],i∥

2
2 + Tr(ΣȲ [s],i +ΣỸ [s],i − 2

(
Σ

1
2

Ỹ [s],i
ΣȲ [s],iΣ

1
2

Ỹ [s],i
)

1
2

)) 1
2

(36)

And:

W 2
2 (PŶ [s],i, PȲ [s],i) = inf

γ∈Γ(P
Ŷ [s],i

,P
Ȳ [s],i

)
E
[
∥Ŷ [s] − Ȳ [s]∥22

]
≤ EX∼P

X̂[s],i

[
∥f(X)− f̄i(X)∥22

]
(37)

By choosing γ entirely defined by X ∼ PX̂[s],i and such that (Ŷ [s], Ȳ [s]) = (f(X), f̄i(X)).

This gives the results.

D.3. Upper bound convergence

We present here the proof of the proposition 3.4.

Lemma D.3. Let x = [x1, ..., xd] denotes a vector in Rd
+. Let g denotes the function such that: g(x) = [x1, ..., σ̃

2xj , ..., xd],
with j = argmaxi xi and 0 ≤ σ̃ ≤ 1, and g[k] the concatenation of k times g. Without loss of generality, we suppose that
∀i ∈ {1...d− 1} xi > xd. Then:

s∑
k=1

√
∥g[k](x)∥∞ −→

s→∞

(
C +

d
√
xd

1− σ̃

)
(38)

where C =
∑rd

k=0

√
∥g[k]∥∞, and rd =

∑d−1
i=1

⌈
ln xi−ln xd

ln σ̃2

⌉
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Proof of Lemma D.3. We note x[k] = g[k](x). For all i ∈ {1...d − 1}, let Ni denotes the minimum integer such that
(σ̃2)Nixi < xd.

Trivially, Ni =
⌈
ln xi−ln xd

ln σ̃2

⌉
Thus after applying rd =

∑d−1
i=1 Ni =

∑d−1
i=1

⌈
ln xi−ln xd

ln σ̃2

⌉
times g over x, we have ∀i ∈

{1...d− 1} σ̃2xd ≤ x
[rd]
i ≤ xd (the left inequality obtained by reasoning by absurd).

More generally: ∀m ∈ N ∀i ∈ {1...d− 1} (σ̃2)m+1xd ≤ x
[rd+md]
i ≤ (σ̃2)mxd (by recurrence).

And: ∀m ∈ N ∀i ∈ {1...d− 1} ∀p ∈ {0...d− 1} x
[rd+md+p]
i ≤ x

[rd+md]
i

∞∑
k=0

√
∥g[k](x)∥∞ =

rd∑
k=0

√
∥g[k](x)∥∞ +

∞∑
k=0

d−1∑
p=0

√
∥g[rd+kd+p](x)∥∞

≤
rd∑
k=0

√
∥g[k](x)∥∞ + d

∞∑
k=0

√
∥g[rd+kd](x)∥∞

≤
rd∑
k=0

√
∥g[k](x)∥∞ + d

∞∑
k=0

√
(σ̃2)kxd

≤
rd∑
k=0

√
∥g[k](x)∥∞ +

d
√
Xd

1− σ̃
(39)

finishing the proof.

Proof of Proposition 3.4. Let us note Vs =
∑

i wiEX∼P
X̂[s],i

[
∥f(X)− f̄i(X)∥22

] 1
2 +

(
∥µỸ [s],i − µȲ [s],i∥

2
2 +

Tr

(
ΣȲ [s],i +ΣỸ [s],i − 2

(
Σ

1
2

Ỹ [s],i
ΣȲ [s],iΣ

1
2

Ỹ [s],i

) 1
2

)) 1
2

In the following, we show that Vs −→
s→∞

0.

∥µỸ [s],i − µȲ [s],i∥
2
2 = ∥EX∼P

X̂[s],i

[
f(X)− f̄i(X)

]
∥22

≤ EX∼P
X̂[s],i

[
∥f(X)− f̄i(X)∥22

]
(40)

Where f̄i is the first order Taylor linearization of f at location µX̂[s],i. With Jf (µX̂[s],i) the Jacobian of f at location
µX̂[s],i, we have f̄i(X) = f(µX̂[s],i)+Jf (µX̂[s],i)(X−µX̂[s],i). Please refer to Remark D.4 for a discussion about Jf (·).
Thus:

EX∼P
X̂[s],i

[
∥f(X)− f̄i(X)∥22

]
= EX∼P

X̂[s],i

[
∥f(X)− f(µX̂[s],i)− Jf (µX̂[s],i)(X − µX̂[s],i)∥

2
2

]
≤ 2

(
EX∼P

X̂[s],i

[
∥f(X)− f(µX̂[s],i)∥

2
2

]
+ EX∼P

X̂[s],i

[
∥Jf (µX̂[s],i)(X − µX̂[s],i)∥

2
2

]
)

≤ 2(L2
2,2 + |||Jf (µX̂[s],i)|||

2)EX∼P
X̂[s],i

[
∥X − µX̂[s],i∥

2
2

]
≤ 2(L2

2,2 + |||Jf (µX̂[s],i)|||
2)EX∼P

X̂[s],i

[
d∑

k=1

(Xk − µX̂[s],i,k)
2

]

≤ 2(L2
2,2 + |||Jf (µX̂[s],i)|||

2)

d∑
k=1

EX∼P
X̂[s],i

[
(Xk − µX̂[s],i,k)

2
]

≤ 2(L2
2,2 + |||Jf (µX̂[s],i)|||

2)Tr(ΣX̂[s],i) (41)
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where ||| · ||| is the matrix norm, and Tr is the matrix trace.

Tr

(
ΣȲ [s],i +ΣỸ [s],i − 2

(
Σ

1
2

Ỹ [s],i
ΣȲ [s],iΣ

1
2

Ỹ [s],i

) 1
2

)
≤ Tr

(
ΣȲ [s],i +ΣỸ [s],i

)
(42)

And:

Tr
(
ΣỸ [s],i

)
= Tr

(
Cov(Ỹ [s],i)

)
= Tr

(
Cov

(
f(X̂ [s],i)

))
= Tr

(
Cov

(
f(X̂ [s],i)− EX′ [f(X ′)]

))
≤ EX̂[s],i [∥f(X̂ [s],i)− EX′ [f(X ′)]∥22]
= EX̂[s],i [∥EX′ [f(X̂ [s],i)− f(X ′)]∥22]
= L2

2,2EX̂[s],i [∥EX′ [X̂ [s],i −X ′]∥22]

≤ L2
2,2EX̂[s],i [EX′ [∥X̂ [s],i −X ′∥22]]

= L2
2,2EX̂[s],i [EX′ [∥(X̂ [s],i − EX̂[s],i [X̂

[s],i])− (X ′ − EX′ [X ′])∥22]]

≤ 2L2
2,2(EX̂[s],i [∥X̂ [s],i − EX̂[s],i [X̂

[s],i]∥22] + EX′ [∥X ′ − EX′ [X ′]∥22])

= 4L2
2,2EX̂[s],i [∥X̂ [s],i − EX̂[s],i [X̂

[s],i]∥22]

= 4L2
2,2Tr

(
Cov

(
X̂ [s],i − EX̂[s],i [X̂

[s],i]
))

= 4L2
2,2Tr

(
ΣX̂[s],i

)
(43)

Where X ′ is an i.i.d copy of X̂ [s],i.

Finally:

Tr
(
ΣȲ [s],i

)
= Tr

(
Cov

(
Ȳ [s],i

))
= Tr

(
Cov

(
f̄(X̂ [s],i)

))
= Tr

(
Cov

(
f(µX̂[s],i) + Jf (µX̂[s],i)(X̂

[s],i − µX̂[s],i)
))

= Tr
(
Cov

(
Jf (µX̂[s],i)(X̂

[s],i − µX̂[s],i)
))

≤ EX̂[s],i [∥Jf (µX̂[s],i)(X̂
[s],i − µX̂[s],i)∥

2
2]

≤ |||Jf (µX̂[s],i)|||
2EX̂[s],i [∥X̂ [s],i − µX̂[s],i∥

2
2]

= |||Jf (µX̂[s],i)|||
2Tr

(
Cov

(
X̂ [s],i − EX̂[s],i [X̂

[s],i]
))

= |||Jf (µX̂[s],i)|||
2Tr

(
Cov

(
ΣX̂[s],i

))
(44)

And ∀i ∈ {1...M} : ΣX̂[s],i = ΣX̂[s],0, noting J[s] = maxi |||Jf (µX̂[s],i)||| and having
∑

i ωi = 1 conducts:

Vs ≤
√
2
(
L2
2,2 + J2

[s]

)
Tr

(
ΣX̂[s],0

)
+

√(
6L2

2,2 + 3J2
[s]

)
Tr

(
ΣX̂[s],0

)
(45)

Vs −→
s→∞

0 (46)
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Because ΣX̂[s],i −→
s→∞

0 and J[s] ≤ L2,2 by the Lipschitz assumption on f .

Applying Lemma D.3 gives us the requested result.

Remark D.4. The proof of Proposition ?? introduces the Jacobian matrix of f . It assumes that f is C1 so that Jf (x) is the
Jacobian matrix of f at x ∈ Rd. The proof only requires f̄i to be a linear mapping of the form x 7→ f(µX̂[s],i) +A(x−
µX̂[s],i), with a bound on |||A|||. This is the case for gradients computed by standard backpropagation algorithms with
Lipschitz activation functions such as ReLU or Leaky ReLU.

E. Splitting library
We recall that the splitting of a multivariate Gaussian distribution consists in splitting the distribution in a specific direction,
following the formula:

wi = ww̃i, µi = µ+ µ̃i

√
λjνj , Λ̃ = diag(λ1, . . . , σ̃

2λj , . . . , λk) (47)

where j is the splitting direction, i.e. the axis along which the Gaussian mixture PDF terms are split, w̃i, µ̃i and σ̃ are
specified by Table 8.

Table 8. Splitting library for the standard univariate Gaussian distribution.

# components w̃i β̃i σ̃ ϵ0,1(×10−5)

3
0.6364 0.0
0.1818 +1.0579 0.005 5.57
0.1818 -1.0579

5

0.4444 0.0
0.2455 +0.9332
0.2455 -0.9332 0.008 4.42
0.0323 +1.9776
0.0323 -1.9776

7

0.3048 0.0
0.2410 +0.7056
0.2410 -0.7056
0.0948 +1.4992 0.019 4.18
0.0948 -1.4992
0.0118 +2.4601
0.0118 -2.4601

This library is reused from (Zhang & Shin, 2021) (apart from ϵ0,1 values) but originally appears in (DeMars et al., 2013).
These parameters can be obtained by resolving the minimization problem presented in Section 3.4.1 using methods such as
fmincon from Matlab (Mat, 2017).

F. Merge criterion

For a layer-wise approach, we provide here a Wasserstein based criterion. Let’s note p(Y ) =
∑M

k=1 wkpk(Y ),
with pk(Y ) = N (µk,Σk), a Gaussian mixture distribution and p(i,j)(Y ) =

∑M−1
k=1 wkp

(i,j)
k (Y ) with p

(i,j)
k (Y ) =

N (µ
(i,j)
k ,Σ

(i,j)
k ) the resulting mixture after merging the Gaussian i and j of p(Y ). Without loss of generality, we can

assume that (i, j) = (M − 1,M):

Cmerge
M−1,M = W 2

2 (p, p
(M−1,M))

≤ wM−1W
2
2 (pM−1, p

(M−1,M)
M−1 ) + wMW 2

2 (pM , p
(M−1,M)
M−1 ) (48)
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G. Societal impacts
More generally, uncertainty quantification consists in quantifying a doubt over a prediction so that one can assess its
reliability. Our work proposes to do so for deep learning algorithms where classic uncertainty quantification techniques can
not be applied.

As such, our work and research have no direct negative societal impacts. On the contrary, quantifying uncertainty for
complex systems based on deep learning-based technological solutions is critical. Indeed, it allows control systems to
increase the security of such solutions in the case of a decision with an elevated associated doubt.

However, quantifying uncertainty in deep learning algorithms tends to facilitate the deployment of these solutions, which
present negative social impacts inherent to this kind of technology. Among these impacts, we mainly find issues concerning
privacy, security (Bae et al., 2018), bias and discrimination (Mehrabi et al., 2021).

H. Libraries
Table 9 presents the library used in this project as well as their version and license.

Table 9. Details of library used in this project

Library Version Build License

matplotlib (Hunter, 2007) 3.5.1 py37haa95532 1 BSD
numpy (Harris et al., 2020) 1.211.5 py37h7a0a035 2 BSD 3
pot (Flamary et al., 2021) 0.8.2 py37h3182a2c 0 MIT
scikit-image (Van der Walt et al., 2014) 0.19.2 py37hf11a4ad 0 BSD 3
scikit-learn (Pedregosa et al., 2011) 1.0.2 py37hf11a4ad 1 BSD 3
scipy (Virtanen et al., 2020) 1.7.3 py37h0a974cb 0 BSD
seaborn (Waskom, 2021) 0.11.2 pyhd3eb1b0 0 BSD
tensorflow-gpu (Agrawal et al., 2019) 2.1.0 h0d30ee6 0 Apache 2.0
tensorflow-probability (Agrawal et al., 2019) 0.8.0 py 0 Apache 2.0
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