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Abstract Recent advances in Artificial Intelligence (AI) have accelerated
the adoption of Al at a pace never seen before. Large Language Models (LLM)
trained on tens of billions of parameters show the crucial importance of paral-
lelizing models. Different techniques exist for distributing Deep Neural Networks
but they are challenging to implement. The cost of training GPU-based archi-
tectures is also becoming prohibitive. In this document we present a distributed
approach that is easier to implement where data and model are distributed in
processing units hosted on a cluster of machines based on CPUs or GPUs. Com-
munication is done by message passing. The model is distributed over the cluster
and stored locally or on a datalake. We prototyped this approach using open
sources libraries and we present the benefits this implementation can bring.

Keywords: F2D2N, model parallelism, data parallelism, Deep Neural Net-
work

1 Introduction

Data has become one of the most valuable asset a company can have and it’s
actually producing a lot of expectation. It brings several challenges like how
data should be extracted, stored, cleaned and transformed. When the amount
of data is huge or grows exponentially, it brings new challenges like how to
scale or how to train AI models in a reasonable amount of time and money.
Data volumes are growing every day. Deep learning models are struggling to
ingest the increased amount of data without reaching the hardware limits of
the training machines. GPUs are intensely used for matrix computation but
the increased size of the models makes the training phase no more possible
with standard techniques because the size of the models cannot fit anymore in
GPUs memory even the largest. Data, model, pipeline and tensor parallelism
are widely used to answer these challenges. Tensor parallelism is actually one
of the best approaches but it is challenging to implement and requires a lot of
engineering effort.

We prototyped the F2D2N where fragments of weights, bias, activation and
gradients are fully distributed and stored in remote machines. This allow the
model to be distributed over the network. These machines do not require GPUs
hardware even GPUs can of course speed up the training process. Feedforward



and back-propagation phases are done using an event messaging mechanism.
This implementation is also ready for future improvements like Reinforcement
Learning, Forward-Forward approach [4] and Generative AL

Reducing the size of the models negatively impact the precision of the models,
that’s why continuing exploring how to efficiently distribute the model is an
urgent need in the Al field.

But actually implementing model parallelism techniques are not straightforward
and require a lot of engineering effort. In this paper we give a brief review of
different techniques used to overcome DNN training challenges over the years.
We present shortly what data, model, pipeline and tensor parallelism are and we
will introduce an innovative way to organize and compute DNN in a distributed
cluster.

2 Related work

Scaling a DNN is hard and a lot of techniques have been implemented over the
years to address this challenge. We give a short presentation of those who are
actually widely used in the AT field.

2.1 Data Parallelism

The goal of data parallelism [1, 9, 6, 2] is to distribute the training data across
multiple processors or machines. The model is replicated on each processor,
and each replica processes a different subset of the training data. Each device
processes locally different mini-batches and then synchronized its local gradients
with the other devices before updating the model parameters. This is probably
the easiest way to train a DNN but this brings some important limitations while
scaling up the network.

For example, Data parallelism requires each device to hold a copy of the entire
model parameters, which can be a memory-intensive task for large models which
is also redundant and not efficient in terms of storage. While training DNN on
large datasets, it often leads to an out of memory (OOM) exception when the
training model exceeds the memory limits of the device. Mini-batches need to
remain as small as possible but this ends up in convergence issues.

2.2 Model Parallelism

Model parallelism [8, 2] tries to resolve some of the challenges data parallelism
brings when the size of the model does not fit anymore on the device. One sim-
ple technique is to split the layers of the model among available GPUs. Each
GPU will compute the feed-forward (Fz) pass of the hidden layer at a time.
Then after the back-propagation pass (Bz), it will update the gradients at a
time too.
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Figure 1: Feed-Forward (FF) and Back-propagation (BP) tasks usage over 4
GPUs.
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The figure 1 represents a model with 4 layers placed on 4 different GPUs
(vertical axis). The horizontal axis represents training this model through time,
demonstrating that only 1 GPU is utilized at a time.

As the graph shows, the main problem of this naive implementation is that
it is not efficient and costly for large training as only one GPU is used at a time.
It does not resolve the problem it tries to solve if one part of the model overfits
again the physical memory of the device.

2.3 Pipeline parallelism

To overcome model parallelism limits, Google was the first introducing the con-
cept of pipeline parallelism [5, 10, 2]. GPipe is actually implemented in Pytorch.
The goal is to split the mini-batch into multiple micro-batches and pipelines the
execution of these micro-batches across multiple GPUs. This approach leads
to a better utilization of the hardware resources because it allows the DNN to
train the model in parallel. This is outlined in the figure 2.
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Figure 2: Optimized pipeline parallelism over 4 GPUs.



The figure 2 represents a model with 4 layers placed on 4 different GPUs
(vertical axis). The horizontal axis represents training this model through time
demonstrating that the GPUs are utilized much more efficiently. Pipeline paral-
lelism divides the input mini-batch into smaller micro-batches, enabling differ-
ent accelerators to work on different micro-batches simultaneously. Gradients
are applied synchronously at the end. However, there still exists a bubble (as
demonstrated in the figure) where certain GPUs are not utilized [5].

Gpipe requires additional logic to handle the efficient pipelining of these
communication and computation operations, and suffers from pipeline bubbles
that reduce efficiency, or changes to the optimizer itself which impact accuracy.

2.4 Tensor Parallelism (TP)

Tensor parallelism [12, 11] (and its variants) is a method to speed up the training
of deep neural networks by parallelizing the computation of tensors. A tensor
is a multi-dimensional array of numerical values that is used to represent data
in deep learning. TP helps to scale up the training of deep neural networks
to larger datasets and more complex models. TP is widely used while training
huge amount of data and it’s already implemented by major cloud providers
like Amazon Web Services (AWS).

split columns split rows
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Figure 3: Tensor parallelism applied to 2 layers A et B

TP involves dividing particular model parameters, gradients, and optimizer
states among different devices.

Nethertheless, TP requires more complex software and hardware infrastructure
to distribute the computation across multiple devices or GPUs. This can in-
crease the complexity of the training process and require more expertise to set
up and maintain. Not all deep learning frameworks and libraries support tensor
parallelism (like transformers), so it may not be compatible with all the tools
and libraries a Deep Learning project requires.

3 Proposed architecture

3.1 Concepts

As we saw in the introduction, data is already huge in terms of volumes and
it will continue to grow. An important aspect is to be able to parallelize the



DNN as much as possible and to make it more easy to distribute and train.
Tensor Parallelism is actually one of the most widely solutions used to scale up
and distribute the computation of a DNN, but it suffers from being complex
to implement. Parallelizing data or model with these different techniques is
often challenging because of the complexity of the configuration, the costly
architecture and the engineering efforts it implies.

Based on that need, we intend to simplify the process of parallelization as much
as possible for three reasons:

e First of all : to be able to train complex and big DNN (or Convolutional
Neural Networks) with CPUs and/or GPUs machines.

e Secondly : to split the DNN in small units of computing (UC).

e Thirdly : to use open source libraries that can work in different environ-
ments like Windows, Linux or Mac OS.

A basic DNN is composed by 3 types of layers : an input layer, one or more
hidden layers and an output layer which outputs the final predictions.
Each hidden layer will compute on the feed-forward pass an activation function
o (relu, leakyRelu, sigmoid, tanH, etc) having w (weights), = (inputs) and b
(bias) :

a=o(wixy + ... + WpTp +b) (1)

The weighted function is a sum of a matrix product. So we can distribute this
function across a cluster of machines as the sum is commutative. The position of
each UC determines the position of the matrix array the UC will compute. For
the back-propagation, the derivative can be applied to the portion of weights or
bias hosted by each UC as it produces the same results if it was applied to the
whole set.

L is the layer, y the true label, z (weighted sum + bias) and o’ is the
derivative of the activation function :

6t = (a* —y) 0 o’ (2%) (2)

The error can be propagated from the output layer to the first input layer using
the transpose of the upper layer [ + 1 of w.

§' = ((w*HTs"* ) 0 o'(2) 3)

By combining (3) with (2) we can compute the error 6 for any layer in the
network.

Sl = %) (4)



In the context of an UC, we need to compute the portion of the matrix using
the chain rule.

5l,uc — ((wl,uc+1)T6l,uc+1) ® 0_/<Zl,uC) (5)

n.b. : More detailed information of the formulas can be found here [9]

3.2 Parallelized approach

We introduce in this paper a Fully Distributed Deep Neural Network (F2D2N).
The goal is to have units of computing (UC) that can handle a small piece of
the DNN. This architecture is close to micro-services. Each UC is responsible of
initializing the portion of weights or bias using the best algorithm like random,
Xavier, HE, etc. It stores its data (weights, bias, activation, gradients, etc)
locally or in a data lake. The grouping of all these pieces constitute the model
itself.

This approach allows the model to grow without reaching the hardware limits
of any device because the architecture can be scaled in advance to cover the
final training size of the model. This because we can calculate the number
of parameters the model will hold at its final stages and calibrate the needed
network to compute it.

For distributing the matrix computation (equation 1), we divided the hidden
layer into two different layers :

Weighted layer (WL) : this layer holds the portion of weights. The size
and the dimension of the matrix is calculated considering how the next layer
is divided and the size of the activation matrix it receives. It is exclusively
connected to its corresponding Activation layer (same index) and fully connected
to the next Activation layer. WL basically distributes the computation of the
splitted weighted matrix over a cluster of UCs. Each UC is dedicated to a
specific portion of the matrix. In equation 6, s is the startIndex and e is the
lastIndex of the portion of the matrix. This operation is repeated for each UC
in the Layer.

WMye = (W * Tg + ... + We * T (6)

Activation layer (AL) : this layer holds the portion of bias and activation.
The size and the dimension of the matrix is calculated considering how the next
weighted layer is divided and the size of the activation matrix it receives from
the previous layer. It is fully connected to the previous weighted layer and ex-
clusively connected to the weighted layer of it same index position.

Equation 7 : AL sums all the weighted matrix wm from layer [ — 1. uc;y is
the first UC and uc,, is the last UC in the layer [ — 1. Then it add a bias b and
compute the activation function o.

a= o((Wiye, +...+ WMy, )+b) (7)



Each UC processes its small piece of work (weighted computation or activation
computation) then triggers an event to the next UC until reaching the output
layer. Figure 4 shows a simplified schema of the F2D2N based on a DNN with 1
hidden layer. It contains : one Input layer (green), 2 weighted layers (purple) :
one for the input layer, one for the activation layer, 1 activation layer (orange)
and one output layer (blue)
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Figure 4: Simple F2D2N with 1 hidden layer using a cluster of 6 machines

As other approaches, F2D2N has some synchronous states. For example,
an AL UC has to wait until receiving the complete set of the weighted matrix
from the previous layer before computing the activation function in the forward
pass. This is only for a training sample but does not block the UC to continue
to process another sample.



Figure 5 shows activation neuron a! has to wait to receive weighted matrix s0a1
from actor machinel-UC1 and weighted matrix soad from machine2-UCI1 to
compute the activation function.
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Figure 5: Activation layer in machine3-UC1 waiting for Weighted matrix from
2 UCs machinel-UC1, machine2-UC1

For the back-propagation pass , the AL and WL UC have to detect when it
receives the last sample of a mini-batch to apply the gradients to the portions of
weights or bias it holds. Each UC has an internal buffer that tracks how many
back-propagation events it received and when the counter is equal to the size of
the mini-batch it will apply the gradients to the local weight or bias it contains.



Algorithm 1 Feed-forward AL

10:
11:

: Each sample has its unique correlationld
Initialize b matrix
Initialize UC hashMap variables: activation, weighted, shardsReceived
Layer [ is the current layer
ucIndex is the current vertical position of the UC in the L [

Step 1 : sum weightedInput matrix received from layer -1 and update
weighted matrix

Step 2 : check if all the portions of the weightedIlnput matrix have been
received
Step 3 : When shardsReceived are complete do :
Step 3.1 : z[correlationld] = weighted(correlationld) + b
Step 3.2 : a[correlationld] = o(z)
Step 3.3 : Send alcorrelationlId)] to WL(I+1, ucIndex)

Algorithm 2 Back-propagation WL

10:

12:

14:

16:

18:

20:

22:
24:

Updating weights during back-propagation
Each sample has its unique correlationld
regularisation : hyperparameter
learningRate : hyperparameter
nInput : size of the training sample
Init local variables
neuronCount = NeuronsInLayer.count
ucCount = UCInLayer.count
layerStep = neuronCount/ucCount
Initialize UC hashMap variables: weights, nablasw
Step 1. Receive gradients from activation layer +1 for a specific sample.
Step 2. Compute newDelta[layerSize] = weights(UC Sender) * delta) >
dot product
Step 3. Compute nablaw|delta.length] = delta * activation > dot product
Step 4. Case UC received all the sample of the current mini-batch
Step 4.1. Sum all the matrices of the mini-batch
Step 4.2. Compute gradients
for ¢ < 0 ucCount — 1 do
for j < 0 layerStep — 1 do
tmp < weightsli][j];
tmpl < (1 — learningRate - (regularisation/nInput)) - tmp);
tmp2 <+ (learningRate/MiniBatch) - nabla,[i][1];
weightsli][j] + (tmpl — tmp?2);
Step 4.3. clean buffer




Figure 6 shows the events flow during the training process of an epoch. Some
context parameters are sent during the feed-forward or back-propagation event
(min, max, avg, etc).
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Figure 6: Feed-forward and back-propagation event flow

4 Communication scheme

4.1 Graph Messaging Overview

A F2D2N is a graph that computes the feed-forward pass and back-propagation
pass by a message passing system. The neural network is divided horizontally
(the layers) and vertically (the UCs). If we want to scale up the cluster we need
to add vertically more UCs. Theoretically each UC can reach another UC in
the cluster. It is easy to scale up verticaly the cluster by adding new UCs to a
specific layer.

Epoch UC is the root of the graph. It is connected to at least one input
UC which will load and compute the initial input weighted matrix. Input UC
will be fully connected to at least one activation UC. This UC will sum all the
weighted matrix it received from the previous layer, will add the bias and will
send the activation results to its dedicated weighed UC. Weighted UC will be
fully connected to all the activation UC of the next level until reaching the
output UC. This architecture can also support vertical communication when
UC in the same layer needs to synchronized their data like batch normalization.
This will allow the architecture to support also Recurrent Neural Networks,
Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), etc.

4.2 Benefits

This architecture brings some interesting benefits :

10
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Figure 7: F2D2N as a graph from the epoch UC to Output UC

Model size : it is distributed on a data lake and can grow linearly with
the size of cluster. It is not limited to the physical size of a machine as
the load is distributed across UCs.

Check-pointing : each UC can save its memory state on a storage like a
data lake and the node manager can recreate the dead UC from it.

Contextual variables : min, max, avg, and many more information can
be transmitted in the message event. This allows the UC that receives
these information to determine the global min, max, avg of the full ma-
trix because it has the full vision of it. This removes the need for a costly
parameter server [7] for example as regularization or normalization tech-
niques can be applied during the back-propagation stage.

The F2D2N can remain live allowing new training phases to be processed
like reinforcement learning or to respond live to a request.

The F2D2N can be reconstructed in advance based on a specific configu-
ration.

Modularity : each piece of the F2D2N is a local or remote UC. This allow
the F2D2N to be completely divided into small units of computatiing and
to decide where they would be placed over the network. This allows also

the architect to determine which intensive compute units of the network
should go to specific machines (GPUs,CPUs).

Asynchronous : all the training samples of a batch are triggered asyn-
chronously allowing part of the feed-forward pass to parallelize the com-
putation of the training samples.

Continuous Integration /Continuous deployment (CI/CD) ready : F2D2N
is close to a micro-service architecture. This allow the entire architecture
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to be stored in a git repository, hosted in a development project under an
IDE like Intellij, tested, validated and delivered using a CI/CD pipeline

5 Performance evaluation

We prototyped this approach using Akka server implementation [14] which can
scale to 400 nodes without the need to put a lot of engineering effort. Akka clus-
ter can go beyong that size (over 1000 nodes) but this will need the help of tech-
nical specialists. We believe that for most usecases Akka implementation will
handle any F2D2N implementation. But this choice allowed us to not focus on
the cluster implementation itself. Note that Lightbend recently changed Akka
product licensing (https://www.lightbend.com/akka/pricing). The feedforward
and backpropagation pass are based on the Akka event messaging system. An
actor (UC) runs in a machine and it holds its own memory. A machine contains
one or several actors.

We prototyped a sample of a F2D2N using the MNIST dataset [3]. The
solution is designed in scala and needs Simple Build Tool (SBT) to compile and
run the solution. The external librairies (Maven) are defined in the build.sbt
file. Additional librairies are needed as NVIDIA drivers (CUDA) if we want
to activate the GPU support. This dataset has : 784 input neurons, 60 000
training samples, 10 000 test samples.

We defined 2 actors for the input layer, 2 actors for the first hidden layer, 2
actors for the 2nd input layer and 1 actor for the output layer using a cluster of
3 machines.

We ran the lab in 3 modes.

Table 1 shows the training duration of the MNIST database. Actually, the clus-
ter mode takes longer compared to the local mode because of the messages being
passed through the network and the size of the data not really significant. The
cluster mode will perform better on bigger training volumes where the model
would need to be splitted amoung the cluster.

We trained the prototype in 3 DELL R730 E5-2690 v4 @ 2.60GHz with 96GB
Ram & 1Tb SSD. The instances need to run a Java runtime (11 or higher) and
Scala Build Tool (SBT) in order to compile the git sources. A build.sbt file
contains the references to the maven packages.

Mode Duration (min)
Local: Pytorch/Jupyter 13.3
Local: F2D2N 24.2
Cluster (3 machines): F2D2N 29.2

Table 1: Training duration

Table 2 shows the parameters used to train the MNIST samples. We used the
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Categorical Cross Entropy as we are dealing with a multi-class classification
problem. The prototype will handle more cost functions in the future.

Parameters Value
Epochs 50
Learning rate 0.195
Activation Relu,Relu,Softmax
Cost function CategoricalCrossEntropy
Minibatch 50
Regularisation 0.5

Input Neurons 784
Hidden Layer 1 Neurons 128
Hidden Layer 2 Neurons 64

Output Neurons 10

Table 2: Hyperparameters

Table 3 shows F2D2N using 9 UCs on the local mode and the cluster mode to
train the MNIST database.

Layer ucC
Input 4 UCs
Hidden 1 2 UCs
Hidden 2 2 UCs
Output 1 UCs
Total 9 UCs (local or remote)

Table 3: Cluster configuration

Table 4 shows the list of the main libraries used in the prototype. They are
listed in the build.sbt and available in maven repository.

Figure 8 shows the training results for a F2D2N in a local mode. Blue
columns represent the execution time of an epoch (average of 36 seconds per
epoch) and the curve represents the cost function (categorical cross entropy)
which decrease over the time. The accuracy for that training is 96.10% for a
total execution time of 29 min.

6 Conclusion

In this paper, we reviewed different techniques that implement data and model
parallelism. Tensor parallelism is actually widely used to tackle the challenges

13



Library Version
sbt 1.9.2
scala 2.13.12
akka 2.8.5
Amazon Coretto 20
IDE Intellij 2023
ML ai.dlj

Table 4: Main scala libraries

"Duration seconds et Cost function par epoch Y & ! accuracy correct incorrect
@ Duration seconds @Cost function 9610 9610 390 29 3
50 20
epoch duration error
45 34 1.50250000(]
“ 0 46 34 1,50270000(
49 35 150350000
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o e 3 3 1.50900000C
25 37 1509300000
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=
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L epach 4 0

Figure 8: Training of a F2D2N during 50 epochs

of model parallelism but it suffers from being very complex to implement or to
extend it with new features.

We demonstrate that it is possible to parallelize a DNN into small units of
computing (UCs) and to distribute the training process in an event messaging
system. This modularity makes it more easy to implement new features like
encoders, RNN and reinforcement learning. It also makes possible to integrate
the solution in a DevOps workflow (CI/CD, tests, git, etc).

Our tests showed that expanding horizontally the DNN can have better per-
formance compared to vertical scaling even it can bring other challenges like
exploding gradients.

As future work, we aim to train F2D2N with larger datasets and make some
improvements like reducing the number of messages for better efficiency.
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