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Abstract—We consider the partial graph alignment problem on
two correlated sparse Erdős–Rényi graphs with differing edge or
node densities. Exploiting that these graphs are locally tree-like,
we come to consider a hypothesis testing problem on correlated
Galton-Watson trees. To solve this problem, we give several
equivalent conditions for the existence of likelihood-ratio tests
with vanishing type-I-error and significant power. We then show
that these same conditions enable the partial graph alignment
algorithm MPAlign to succeed.
This paper generalizes recent results from Ganassali L., Mas-
soulié L. and Lelarge M. to the asymmetric edge and node density
case. This extension allows for greater applicability of the results
and resolves a special case of the subgraph isomorphism problem.

Index Terms—graph alignment, sparse Erdős–Rényi graphs,
tree correlation testing

I. INTRODUCTION

Given two correlated graphs without node labels, the graph
alignment problem (or graph matching problem) consists of
finding an optimal mapping between the two graph’s node
sets. This problem has received considerable attention in the
last decade due to its various applications, including de-
anonymization of social network data [1], and comparing
protein-protein interaction graphs of different species [2].

There are different ways of formalizing the graph alignment
problem and we focus on the planted version where the two
correlated graphs are issued from a generative random graph
model with a latent true node matching. The simplest and
most well-studied random graphs are so-called Erdős–Rényi
graphs with parameters n ∈ N and pn ∈ [0, 1]: To sample
G0 ∼ ER(n, pn), one fixes n nodes and draws an edge
between each pair of nodes independently with probability
pn. Two correlated Erdős–Rényi graphs are typically obtained
by subsampling twice independently from G0.

This model has first been studied in [3] and recent results
sharply quantify the information theoretic limits for recov-
ering the latent node matching. In [4], the authors establish
exact information theoretic threshoIds for partial alignment if
pn = n−α+o(1). In the case where npn → ∞, [5] presents a
polynomial-time algorithm which asymptotically achieves full
alignment.

This work was partially supported by the French government under man-
agement of Agence Nationale de la Recherche as part of the “Investissements
d’avenir” program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

This leaves the question open about a polynomial time
algorithm for the sparse case pn = λ/n, i.e. when the graphs
have constant average degree λ ∈ R. The works of Ganassali
et.al. have examined this regime, especially [6] which this
paper aims to generalize for asymmetrically correlated graphs.

A. Correlated graph model

To specify what we mean by asymmetrically correlated
graphs and their latent matching, we fix parameters s, s′ ∈
(0, 1] and sample an Erdős–Rényi graph G0 ∼ ER(n, λ/n)
whose nodes V (G0) receive labels in [n] := {1, ..., n}. Now
we sample two subgraphs of G0, using two distinct procedures:

1) Varying edge densities: For every edge in G0, inde-
pendently delete it with probability 1 − s to obtain G.
Then, restarting with G0, repeat the deletion process
independently with probability 1− s′ to obtain G̃.

2) Differring node numbers: For every node in G0 indepen-
dently, delete it and its adjacent edges with probability
1 − s to obtain G. Then, restarting with G0, repeat the
process independently with probability 1− s′ to get G̃.

After either subsampling procedure, let σ∗ be a random
permutation of [n] which induces a map σ∗ : V ∗ → [n] where
V ∗ := V (G̃) denotes the set of true labels of the second
graph. This σ∗ is used to shuffle the nodes in G̃ to obtain
a randomly labeled graph G′. We call the couple (G,G′)
correlated Erdős–Rényi graphs (with varying edge densities
/ with differing node numbers).

B. Goal: One-sided partial graph alignment

Given correlated Erdős–Rényi graphs (G,G′), the goal is
to recover σ∗ : V ∗ → [n] partially, i.e. retrieve a significant
percentage of node correspondances. As pointed out in [6],
we cannot retreive the full permutation σ∗, one reason being
isolated nodes in G and G′ that cannot be correctly matched.

To define partial alignment, we need the notions of overlap
and error fraction. For a subset V̂ ⊂ V (G) of the nodes of G
and a matching estimator σ̂ : V̂ → V (G′), we define

ov(σ∗, σ̂) :=
1

|V ∗|
∑

i∈V̂ ∩V ∗

1σ̂(i)=σ∗(i), and

err(σ∗, σ̂) :=
1

|V (G)|
∑
i∈V̂

1i ̸∈V ∗ or σ̂(i)̸=σ∗(i).



A high overlap ov(σ∗, σ̂) indicates a powerful matching
procedure but ignores the number of falsely matched nodes.
Therefore, it is essential to control the error fraction err(σ∗, σ̂)
which lets us define good estimators as follows:

Definition 1. A sequence of alignment estimators σ̂ = (σ̂n)n
achieves one-sided partial alignment if there is ε > 0 such that

P (ov(σ∗, σ̂) ≥ ε) n→∞−−−−→ 1, and

P (err(σ∗, σ̂) = o(1))
n→∞−−−−→ 1.

Our goal in the following is to find an algorithm and
sufficient conditions on λ, s, s′ to enable one-sided partial
alignment.

C. Notations

• For a graph G, one of its nodes i ∈ V (G) and a distance
d ∈ N, we denote the depth-d neighborhood of i in G by

NG(i, d) := {j ∈ V (G) : distG(i, j) ≤ d}.

• Recall that the Poisson-distribution Poi(µ) is defined for
k = 0, 1, 2, ... via

πµ(k) := P(X = k) = e−µµ
k

k!
for X ∼ Poi(µ).

• A Galton Watson tree t with Poi(µ)-offspring is iteratively
defined to be a root node with X0 ∼ Poi(µ) children
i1, ..., iX0

, which all independently have Xij ∼ Poi(µ)
children and so forth. We write t ∼ GWµ and denote
by GWµ(τ) the likelihood of a fixed tree τ being of law
GWµ. Furthermore, we use Ext(GWµ) to denote the event
of extincion, i.e. that a tree of law GWµ has finite depth.
• Let Xd be the set of all unlabeled rooted trees with depth

at most d. Rigorously, one may define t ∈ Xd recursively as a
tuple (kτ )τ∈Xd−1

∈ NXd−1 where each coordinate kτ counts
how many child-trees of t’s root are equal to τ .
• Let τ be a rooted tree. For a node i of τ , let cτ (i) be

the number of its children. Let Vd(τ) denote the vertices up
to depth d and write Ld(τ) = Vd(τ) \ Vd−1(τ) for the dth

generation of τ .

II. FROM SPARSE GRAPHS TO TREE TESTING.
The key idea in the sparse setting is that sparse Erdős–Rényi

graphs are locally tree-like. The following lemma, which
combines lemmata 2.2 and 2.4 in [8], makes this idea rigorous.

Lemma 1. Let G ∼ ER(n, λ/n) and d := ⌊c log(n)⌋ for
some c fulfilling c log(λ) < 1/2. Then there exists ε > 0 such
that for all nodes i of G, one has

P(NG(i, d) contains cycles (i.e. is not a tree) ) = O(n−ε).

Furthermore, if we compare the law of NG,d(i) with GWλ

truncated to depth d, their total variation distance is O(n−ε).

Determining whether two nodes i ∈ V (G) and j ∈ V (G′)
should be matched therefore translates to whether the trees
NG(i, d) and NG′(j, d) are correlated. We will see that this
translates to a tree correlation testing problem with the fol-
lowing hypotheses:

a) Independent model P0: Let τ, τ ′ be independent
GWλs and GWλs′ trees. Obtain t, t′ by randomly relabeling
both trees. This defines P0 ∼ (t, t′) ∼ GWλs ×GWλs′ .

b) Correlated model P1: We introduce a model for
correlated trees by viewing them as augmentations of their
intersection tree τ∗:

Definition 2. For λ > 0, s, s′ ∈ (0, 1) and a tree τ = (V,E)
define its (λ, s, s′)-augmentation Aλ,s,s′(τ) as follows:

1) For each i ∈ V draw c+(i) ∼ Poi(λs(1− s′))) indepen-
dently and attach c+(i) additional children to i.

2) Attach an independent GWλs tree to each new child
added in the first step.

To sample from the distribution P1, one starts with an
intersection tree τ∗ ∼ GWλss′ and augment it twice indepen-
dently with different parameters: first with (λ, s, s′), then with
(λ, s′, s). This yields τ = Aλ,s,s′(τ

∗) and τ ′ = Aλ,s′,s(τ
∗).

Relabeling τ and τ ′, we obtain t, t′ and denote their joint
distribution as P1.

For i = 0, 1 and random trees (t, t′) ∼ Pi, we write (td, t
′
d) for

their depth-d-truncated versions and denote by Pi,d the law of
(td, t

′
d). Given a pair of trees (τ, τ ′), we denote by Pi,d(τ, τ

′)
the likelihood of them being sampled from Pi up to depth d.

Note that under both models P0 and P1, the pair (t, t′) has
the same marginal distributions as the local neighboorhoods
in correlated Erdős–Rényi graphs G and G′. Remarkably, this
is true in the varying edge densities as well as the differing
node numbers framework since deleting a node in a tree is
equivalent to deleting the edge leading to that node.

Having translated the initial problem to a testing problem, it
remains to find an equivalent notion for one-sided alignment:

Definition 3. An asymptotic one-sided test is a sequence of
functions Td : Xd ×Xd → {0, 1} fulfilling

• P0,d (Td(td, t′d) = 1)
d→∞−−−→ 0 (vanishing type-I-error),

• lim infd→∞ P1,d(Td = 1) ≥ ε > 0 (significant power).

We will see that one-sided testability enables one-sided
alignment.

III. CONDITIONS FOR ONE-SIDED TESTABILITY

The goal of this section is to point out conditions which are
equivalent to one-sided testability, more easily understandable
and which yield an efficiently computable test for P0 vs. P1.

A natural quantity to examine in our testing problem is the
likelihood ratio at depth d for a pair of trees (t, t′):

Ld(t, t
′) :=

P1,d(t, t
′)

P0,d(t, t′)
.

Note that Ld enables a simple notation for the Kullback-
Leibler divergence at depth d:

KLd := KL(P1,d∥P0,d) = E1,d[logLd].

Using Jensen’s inequality and the convexity of x 7→ x log(x),
one can easily show that the sequence (KLd)d is increasing
and therefore admits a limit KL∞ ∈ [0,∞].



With these notations, we can state our main theorem:

Theorem 1. In the above hypothesis test setting, the following
are equivalent:

(i) There exists a one-sided test to decide P0 vs. P1,
(ii) There exists ad →∞ such that P0,d(Ld > ad)→ 0

and lim infd P1,d(Ld > ad) > 0.
(iii) λss′ > 1 and KL∞ =∞,
(iv) λss′ > 1 and there is C = C(λ, s, s′) > 0 such that

P1

(
lim inf

d
(λss′)−d log(Ld) ≥ C

)
≥ 1− P(Ext(GWλss′))

These equivalences are the result we were looking for:
Point (ii) motivates the use of likelihood ratio tests while
(iv) provides the necessary sequence ad = exp(C(λss′)d).
Additionally, future work may leverage (iii) to derive exact
conditions on λ, s and s′ for one-sided testability.

For the remainder of this section, we prove Thorem 1. This
requires some technical results first.

A. Properties of the likelihoood ratio
A remarkable property of Ld in our setting is the following

recursive likelihood ratio formula which will be useful for
efficient computation:

Proposition 1. Let t, t′ ∈ Xd and denote their root children
as t1, ..., tc and t′1, ..., t

′
c′ respectively. Using Sc to denote the

set of permutations of [c], we can express (Ld)d recursively:

Ld(t, t
′) =

c∧c′∑
k=0

ψ(k, c, c′)
∑

σ∈Sc,
σ′∈Sc′

k∏
i=1

Ld−1(tσ(i), t
′
σ′(i))

where

ψ(k, c, c′) = exp(λss′)
(1− s′)c−k(1− s)c′−k

λk k!(c− k)!(c′ − k)!
.

A proof for this proposition can be found in the appendix.
Taking conditional expectations in the recursive likelihood
ratio formula and using independence of (c, c′) from the pairs
(ti, t

′
i), we obtain the following corollary. For details, one can

effortlessly translate the proof of proposition 2.1 in [6].

Corollary 1. The sequence (Ld)d is a martingale with respect
to P0 and since Ld ≥ 0 for all d, this martingale almost surely
converges to a limit L∞.

Using this result, we can take the recursive likelihood ratio
formula and let d→∞, then take E0 to obtain

E0[L∞] = E0

c∧c′∑
k=0

ψ(k, c, c′)
∑

σ∈Sc,
σ′∈Sc′

k∏
i=1

E0 [L∞ | c, c′]


= E0

[ ∞∑
k=0

1k≤c∧c′ψ(k, c, c
′)c! c′!E0[L∞]k

]

=

∞∑
k=0

πλss′(k)E0[L∞]k

In other words, E0[L∞] is a fixed point of the probability
generating function of Poi(λss′).

B. Proof of Theorem 1

The first equivalence can be shown quickly:

Proof of (i) ⇐⇒ (ii). We start by noting that (ii) =⇒ (i)
directly follows from the choice Td = 1Ld>ad

. The reverse
direction naturally uses the Neyman-Pearson lemma, but it is
not immediate due to some technicalities. In particular, one
needs to carefully handle the probabiliy of {Ld = ad}. Due
to lack of space, we refer to Step 3 in the proof of Theorem
1 in [6] for a complete argument.

For the remaining points, we will show the circular impli-
cations (iv) =⇒ (i) =⇒ (iii) =⇒ (iv).

Proof of (iv) =⇒ (i). Point (iv) suggests the test sequence

Td = 1 :⇐⇒ Ld ≥ exp
(
C (λss′)d

)
.

Markov’s inequality paired with λss′ > 1 and E0[Ld] = 1
gives

P0(Td = 1) ≤ E0[Ld]

exp (C (λss′)d)

d→∞−−−→ 0.

To show significant power, we apply Fatou’s lemma to obtain

lim inf
d→∞

P1(Td = 1) = lim inf
d→∞

E1(1Td=1) ≥ E1(lim inf
d→∞

1Td=1)

= P1

(
lim inf
d→∞

{Td = 1}
)

= P1

(
∃D ∀d ≥ D : Ld ≥ exp

(
C (λss′)d

))
= P1

(
lim inf
d→∞

µ−d log(Ld) ≥ C
)
> 0.

Thus, (Td)d is asymptotically one-sided.

The next step requires the technical properties of the like-
lihood ratio:

Proof of (i) =⇒ (iii). Assuming (i) to be true, we refer to
Step 5 in the proof of Theorem 1 in [6] for a demonstration
of KL∞ =∞ which is independent of s and s′.

In order to show λss′ > 1, we assume the contrary, i.e.
λss′ ≤ 1. A standard result from Galton-Watson tree theory
(c.f. [10]) states that in this case, 1 is the only fixed point
in [0, 1] of the probability generating funciton of Poi(λss′).
Since E0[L∞] has the same fixed point property, we obtain
E0[L∞] = 1. This gives us trivial convergence of the means
E0[Ld] = 1→ 1 = E0[L∞], which we can combine with the
almost sure convergence Ld → L∞ and Scheffé’s Lemma to
obtain that Ld converges to L∞ in L1. This in turn yields that
(Ld)d is a flat martingale and is therefore uniformly integrable.
However, one-sided testability in the form of (ii) contradicts
the definition of uniform integrability, since for all but finitely
many d,

E0 [|Ld|1Ld>ad
] = P1(Ld > ad) ≥ ε > 0

but we would expect the left term to go to 0. This contradiction
lets us conclude λss′ > 1.



The final step (iii) =⇒ (iv) is more involved and requires
the following result on Galton-Watson trees from [10]:

Lemma 2. Let τ ∼ GWµ and denote wd := |Ld(τ)|/µd.
Then, (wd)d is a positive martingale whose almost sure limit
w satisfies

P (w > 0 | τ survives ) = 1.

Proof of (iii) =⇒ (iv). Let (t, t′) ∼ P1 and set τ∗ = t∩t′ to
be their true intersection tree. Call σ∗ and σ′∗ the injections
of τ∗ into t and t′ respectively. Marginally, the intersection
tree is distributed as τ∗ ∼ GWλss′ . Set µ := λss′ and
write Wd := |Ld(τ

∗)|. By Lemma 2, the martingale µ−dWd

converges almost surely towards a random variable w.
From now on, condition on the event {τ∗ survives } which

is possible because µ > 1. Lemma 2 consequently lets us
assume w > 0. Using the result from section B of the
Appendix, we have that for all d, k ∈ N,

Ld+k(t, t
′) ≥

∏
i∈Vd−1(τ∗)

ψ (cτ∗(i), ct(σ
∗(i)), ct′(σ

′∗(i)))

×
∏

j∈Ld(τ∗)

Lk(tσ∗(j), t
′
σ′∗(j))

=: Ad ×Bd,k

We examine Ad and Bd,k individually starting with the latter.
Taking the logarithm, we rewrite this product to a sum:

log (Bd,k)

|Ld(τ∗)|
=

1

|Ld(τ∗)|
∑

i∈Ld(τ∗)

log
(
Lk(tσ∗(i), t

′
σ′∗(i))

)
.

︸ ︷︷ ︸
=:ad

For i ̸= j, the random pairs (tσ∗(i), t
′
σ′∗(i)) and (tσ∗(j), t

′
σ′∗(j))

are independent, they follow the law P1 and the logarithms
of their likelihoods are in L1(P1). The law of large numbers
is therefore applicable, yielding ad

d→∞−−−→ E1[logLk] almost
surely. Consequently, on an event of probability 1, there exists
a sequence 0 < εd → 0 such that for all d,

ad ≥ E1[log(Lk)]| − εd (1)

Similarly, since |Ld(τ
∗)|µ−d → w almost surely, there also

exists a sequence 0 < δd → 0 such that

|Ld(τ
∗)| ≥ wµd − δdµd for all d. (2)

Realizing E1[log(Lk)] = KLk and combining (1) and (2) gives

Bd,k = exp {|Ld(τ
∗)|ad} ≥ exp {|Ld(τ

∗)| (KLk − εd)}
≥ exp

{(
wµd − δdµd

)
(KLk − εd)

}
≥ exp

{
KLk wµ

d − µd (δdKLk + εdw)
}

Let k be large enough so that KLk > 1 and fix any ω ∈ Ω for
which all sequences converge. Choosing d sufficiently large,
one has δd(ω) ≤ w(ω)/4 and εd(ω) ≤ KLk/4, yielding

µdδd(ω)KLk + µdεd(ω)w(ω) ≤ 1⁄2 KLkw(ω)µ
d.

This implies that on an event B of probability 1 and for d
large enough,

Bd,k ≥ exp
{

1⁄2 KLkwµ
d
}

(3)

Turning to Ad now, we start by introducing the notation

Fi := log (ψ (cτ∗(i), ct(σ
∗(i)), ct′(σ

′∗(i))))

As before, we take the logarithm to rewrite

log(Ad) =
∑

i∈Vd−1(τ∗)

Fi =

d−1∑
g=0

∑
i∈Lg(τ∗)

Fi.

Through basic computations, one can show that all Fi have
the same distribution, finite variance and nonpositive mean.
Letting F

(d)
= Fi and writing Lg as a shorthand for Lg(τ

∗),
we set

Ŝd :=

d−1∑
g=0

∑
i∈Lg

Fi − E[Fi] = log(Ad)− E[F ]
d−1∑
g=0

|Lg|

Define sigma-fields Fd := σ (Fi : i ∈ Lg, g ≤ d− 1) to get

E
[
Ŝ2
d

]
=E

[
E
[
Ŝ2
d | Fd−1

]]
=E

[
Ŝ2
d−1

]
+ E

 ∑
i∈Ld−1

E
[
(Fi − E[Fi])

2
]

+ 2E

Ŝd−1

∑
i∈Ld−1

E[Fi − E[Fi]]


=E

[
Ŝ2
d−1

]
+Var(F ) E[|Ld−1]︸ ︷︷ ︸

=µd−1

.

Using this result recursively, we obtain

E
[
Ŝ2
d

]
=

d∑
g=1

Var(F )µg−1 = Var(F )
µd − 1

µ− 1
. (4)

This allows us to establish

P
(
|Ŝd| ≥ dµ

d
2

)
≤

E
[
Ŝ2
d

]
d2µd

≤ 1

d2
Var(F )

1− µ−d

µ− 1
≤ C

d2

where we have used Markov’s inequality, (4), Var(F ) < ∞,
and 1− µ−d ≤ 1. The constant C depends on µ and Var(F )
but not on d. Consequently,

∑∞
d=1 P(|Ŝd| ≥ dµ

d
2 ) < ∞ and

by Borel-Cantelli there almost surely exists M ∈ N such that∣∣∣ log(Ad)− E[F ]
d−1∑
g=0

|Lg|
∣∣∣ < dµ

d
2 for all d ≥M.

Combining this with |Lq| ≥ wµq − δqµq from above, we get

log(Ad) ≥ E[F ]w
d−1∑
g=0

µq − E[F ]
d−1∑
g=0

δqµ
q − dµ d

2

≥ E[F ]w
µd

µ− 1
− dµ d

2 for d ≥M.

In the last step, we have used E[F ] ≤ 0 to omit the second
term. Summarizing our arguments about Ad, there exists an
event A of probability 1 such that for any ω ∈ A we find a
constant M ′(ω) such that for all d ≥M ′(ω),



(i) dµ
d
2 ≤ w(ω)µd, and

(ii) log(Ad)(ω) ≥
(
E[F ](µ− 1)−1 − 1

)
w(ω)µd.

To conclude the proof, let C ′ := E[F ](µ−1)−1−1 and choose
k large enough so that 1⁄2 KLk > |C ′|. Combining (ii) with
(3) implies that on the event A ∩ B, for large enough d,

log (Ld+k(t, t
′)) ≥ log(Ad) + log(Bd,k) ≥ wµd(C ′ +

1

2
KLk)

Since this holds true on {τ∗ survives} ∩ A ∩ B, we conclude

P1

(
lim inf
d→∞

µ−(d+k) log(Ld+k) ≥ µ−k(C ′ + 1⁄2 KLk)

)
≥ P ({τ∗ survives} ∩ A ∩ B) .

Setting C := µ−k(C ′ + 1⁄2 KLk) > 0 and noting

P (Extc(τ∗) ∩ A ∩ B) = 1− P(Ext(GWλss′))

this yields the desired result. Finally note that C can be
computed from µ, E[F ], KLk, and n, which all solely depend
on λ, s and s′.

IV. GRAPH ALIGNMENT ALGORITHM

As a final step, we present the algorithm MPAlign from
[6] which is the bridge between tree correlation testing and
sparse graph alignment. Thanks to the recursive likelihood
ratio formula from Proposition 1, we can calculate Ld in
polynomial time as part of the algorithm.

Contrary to the original description of the algorithm, we
refrain from introducing a specific notation for particular tree
subgraphs: For two nodes i, i′ ∈ V (G), we talk about the tree
rooted at i and pointing away from i′ to describe the subgraph
NG\{i,i′}(i, d). In other words, this is the subtree of G after
removing the edge {i, i′}, which is rooted at i and restricted
to depth d .

Algorithm 1 MPAlign (message-passing for graph alignment)
Input: Two graphs G,G′, a depth d and a threshold β.
Output: A set of pairs M representing the matched nodes.
• M ← ∅;
• For all pairs of nodes i ∈ V (G) and j ∈ V (G′), use
the recursive likelihood ratio formula to compute Ld for all
pairs of trees rooted at i and j that are pointing away from
their neighbors.
for (i, j) ∈ V (G)× V (G′) do

if neither NG(i, d) nor NG′(j, d) contain cycles and
there exist triples of neighbors i1, i2, i3 ∈ NG(i, 1)
as well as j1, j2, j3 ∈ NG′(j, 1) such that Ld−1 > β
for all pairs of trees rooted at it, jt, t ∈ {1, 2, 3} and
pointing away from i, j then

• M ←M∪ {i, j}
end if

end for
return M

The reason why triples of neighbors are considered is the
so-called dangling tree trick. It assures that in the case where
i and j should not be matched, there exists at least one pair

(it, jt) whose corresponding trees are disjoint in the sense
of the correct matching. This pair should therefore easily be
identified as a sample from P0.
Remark 1. As detailed in [6], this algorithm’s runtime is
polynomial in n. This is why we talk about an efficient
algorithm despite the fact that the polynomial’s degree is rather
high, which restricts the applicability to larger graphs.

We will now give a theoretical guarantee for Algorithm 1 to
achieve one-sided partial alignment. The proof the following
theorem can be adapted one-to-one from Section 6 in [6], by
noting that G∪G′ ∼ ER(n, λ(s+ s′− ss′)/n) and G∩G′ ∼
ER(n, λss′/n). We emphasize that this result heavily relies
on Lemma 1 from Section II.

Theorem 2. Let (G,G′) be correlated Erdős–Rényi graphs
with either varying edge densities or differing node numbers.
Further assume that the parameters λ, s and s′ fulfill one of
the conditions in Theorem 1. Set n̂ := min{|V (G)|, |V (G′)|}
and define d = ⌊c log(n̂)⌋ as well as β = exp(n̂γ) for some
c, γ with c log(λ(s+s′−ss′)) < 1/4 and γ ∈ (0, c log(λss′)).
Then there exists ε > 0 such that with high probability, the
output M from Algorithm 1 fulfills

ovn(M) =
1

|V ∗|
∑
i∈V ∗

1(i,σ∗(i))∈M ≥ ε for large n,

and

errn(M) :=
1

|V (G)|
∑

i∈V (G)

1{∃j ̸=σ∗(i) : (i,j)∈M}
n→∞−−−−→ 0.

In other words, MPAlign achieves one-sided partial alignment.

Remark 2. This theorem is formulated to cover differing node
numbers alongside varying edge densities. In the latter case,
notations simplify since n = n̂ and V ∗ = [n].
Remark 3 (Subgraph isomorphism problem). Choosing s = 1
and s′ < 1 in the differing node numbers setting, the
second graph G′ is a strict subgraph of G. Assuming the
conditions in Theorem 2 to hold, one can partially recover
the unknown injection V (G2) ↪−→ V (G1) using Algorithm 1.
This automatically yields a partial solution to the subgraph
isomorphism problem on sparse Erdős–Rényi graphs!

V. CONCLUSION AND OUTLOOK

This document provides insights into asymmetric tree cor-
relation testing and has proposed a first alignment algorithm
of sparse graphs with differing node numbers. The addition
of asymmetry generalizes the results in [6] and makes them
more applicable. Future work aims at finding more precise
conditions on λ, s and s′ for feasibility of tree correlation
testing, following the line of work in [7]. Other open questions
revolve around accelerating MPAlign for better scalability and
understanding whether sparse graph alignment can be possible
when tree correlation testing is not.
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APPENDIX

A. The recursive likelihood ratio formula
We present a proof of the essential part of Proposition 1:
Let (t, t′) ∈ X 2

d and denote their root nodes as ρ(t)) and
ρ(t′). Define c := deg(ρ(t)) and c′ := deg(ρ(t′)) as well as
the event D := {deg(ρ(τ)) = c,deg(ρ(τ ′)) = c′}. Compute

P1,d(t, t
′) = P1,d ((τ, τ

′) = (t, t′), D)

(a)
==

c∧c′∑
k=0

P1,d ((τ, τ
′) = (t, t′), D, deg(ρ(τ ∩ τ ′)) = k)

=

c∧c′∑
k=0

P1,d (D, deg(ρ(τ ∩ τ ′)) = k) ξ

(b)
==

c∧c′∑
k=0

πλss′(k)πλs(1−s′)(c− k)πλs′(1−s)(c
′ − k) ξ

where

ξ = P1,d ((τ, τ
′) = (t, t′) | D, deg(ρ(τ ∩ τ ′)) = k)

Note that in (a) we have used that deg(ρ(τ ∩ τ ′)) ≤
deg(ρ(τ)) ∧ deg(ρ(τ ′)), while (b) relies on the fact that τ
and τ ′ are (λ, s, s′) and (λ, s′, s)-augmentations respectively.
Denoting by t1, . . . , tc the child trees of ρ(t), we have

ξ =
∑
σ,σ′

1

c! c′!

(
k∏

i=1

P1,d−1(t
′
σ(i), t

′
σ′(i))

)

×

(
c∏

i=k+1

GWλs,d−1(tσ(i))

) c′∏
i=k+1

GWλs′,d−1(t
′
σ′(i))

 .

Under the null-hypothesis, the likelihood is computed much
more easily:

P0,d(t, t
′) = GWλs,d(t)GWλs′,d(t

′)

= πλs(c)

(
c∏

i=1

GWλs,d(ti)

)
πλs′(c

′)

 c′∏
i=1

GWλs′,d(t
′
i)

 .

Putting things together, we obtain

Ld(t, t
′) =

c∧c′∑
k=0

πλss′(k)πλs(1−s′)(c− k)πλs′(1−s)(c
′ − k)

πλs(c)πλs′(c′) c! c′!

×
∑

σ∈Sc,
σ′∈Sc′

(
k∏

i=1

P1,d−1(t
′
σ(i), t

′
σ′(i))

)

×

(
k∏

i=1

GWλs(tσ(i))

)−1( k∏
i=1

GWλs′(t
′
σ′(i))

)−1

=
c∧c′∑
k=0

ψ(k, c, c′)
∑

σ∈Sc,
σ′∈Sc′

k∏
i=1

Ld−1(tσ(i), t
′
σ′(i)).

where the term ψ implicitly defined in the last equation can
be simplified to

ψ(k, c, c′) = exp(λss′)
(1− s′)c−k(1− s)c′−k.

λk k!(c− k)!(c′ − k)!
.

B. Lower bound on Ld+k

Applied iteratively, the recursive likelihood ratio formula
yields the explicit formula

Ld(t, t
′) =

∑
τ∈Xd

∑
σ∈S(τ,t),
σ′∈S(τ,t′)

∏
i∈Vd−1(τ)

ψ (cτ (i), ct(σ(i)), ct′(σ
′(i)))

where S(τ, t) denotes the set of all injective mappings from
τ to t. Applying this formula to Ld+k(t, t

′) only keeping the
summands such that τ = τ∗ up to depth d, we get the lower
bound

Ld+k(t, t
′)

≥
∑

τ∈Xd+k

τd=τ∗
d

∑
σ∈S(τ,t), σ=σ∗ on Vd(τ)

σ′∈S(τ,t′), σ′=σ′∗ on Vd(τ
′)

×
∏

i∈Vd−1(τ∗)

ψ (cτ∗(i), ct(σ
∗(i)), ct′(σ

′∗(i)))

×
∏

j∈Ld(τ∗)

∏
m∈Vk−1(τj)

ψ
(
cτj (m), ctσ∗(j)

(σ(m)), ct′
σ′∗(j)

(σ′(m))
)

=

 ∏
i∈Vd−1(τ∗)

ψ (cτ∗(i), ct(σ
∗(i)), ct′(σ

′∗(i)))


×

 ∏
j∈Ld(τ∗)

Lk(tσ∗(j), t
′
σ′∗(j))

 .


