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I. INTRODUCTION

Given two correlated graphs without node labels, the graph alignment problem (or graph matching problem) consists of finding an optimal mapping between the two graph's node sets. This problem has received considerable attention in the last decade due to its various applications, including deanonymization of social network data [START_REF] Narayanan | Robust de-anonymization of large sparse datasets[END_REF], and comparing protein-protein interaction graphs of different species [START_REF] Aladag | SPINAL: scalable protein interaction network alignment[END_REF].

There are different ways of formalizing the graph alignment problem and we focus on the planted version where the two correlated graphs are issued from a generative random graph model with a latent true node matching. The simplest and most well-studied random graphs are so-called Erdős-Rényi graphs with parameters n ∈ N and p n ∈ [0, 1]: To sample G 0 ∼ ER(n, p n ), one fixes n nodes and draws an edge between each pair of nodes independently with probability p n . Two correlated Erdős-Rényi graphs are typically obtained by subsampling twice independently from G 0 . This model has first been studied in [START_REF] Pedarsani | On the privacy of anonymized networks[END_REF] and recent results sharply quantify the information theoretic limits for recovering the latent node matching. In [START_REF] Ding | Matching recovery threshold for correlated random graphs[END_REF], the authors establish exact information theoretic threshoIds for partial alignment if p n = n -α+o (1) . In the case where np n → ∞, [START_REF] Mao | Random graph matching at Otter's threshold via counting chandeliers[END_REF] presents a polynomial-time algorithm which asymptotically achieves full alignment.

This work was partially supported by the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

This leaves the question open about a polynomial time algorithm for the sparse case p n = λ/n, i.e. when the graphs have constant average degree λ ∈ R. The works of Ganassali et.al. have examined this regime, especially [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF] which this paper aims to generalize for asymmetrically correlated graphs.

A. Correlated graph model

To specify what we mean by asymmetrically correlated graphs and their latent matching, we fix parameters s, s ′ ∈ (0, 1] and sample an Erdős-Rényi graph G 0 ∼ ER(n, λ/n) whose nodes V (G 0 ) receive labels in [n] := {1, ..., n}. Now we sample two subgraphs of G 0 , using two distinct procedures:

1) Varying edge densities: For every edge in G 0 , independently delete it with probability 1 -s to obtain G.

Then, restarting with G 0 , repeat the deletion process independently with probability 1 -s ′ to obtain G.

2) Differring node numbers: For every node in G 0 independently, delete it and its adjacent edges with probability 1 -s to obtain G. Then, restarting with G 0 , repeat the process independently with probability 1 -s ′ to get G. After either subsampling procedure, let σ * be a random permutation of [n] which induces a map σ * : V * → [n] where V * := V ( G) denotes the set of true labels of the second graph. This σ * is used to shuffle the nodes in G to obtain a randomly labeled graph G ′ . We call the couple (G, G ′ ) correlated Erdős-Rényi graphs (with varying edge densities / with differing node numbers).

B. Goal: One-sided partial graph alignment

Given correlated Erdős-Rényi graphs (G, G ′ ), the goal is to recover σ * : V * → [n] partially, i.e. retrieve a significant percentage of node correspondances. As pointed out in [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF], we cannot retreive the full permutation σ * , one reason being isolated nodes in G and G ′ that cannot be correctly matched.

To define partial alignment, we need the notions of overlap and error fraction. For a subset V ⊂ V (G) of the nodes of G and a matching estimator σ : V → V (G ′ ), we define

ov(σ * , σ) := 1 |V * | i∈ V ∩V * 1 σ(i)=σ * (i) , and 
err(σ * , σ) := 1 |V (G)| i∈ V 1 i̸ ∈V * or σ(i)̸ =σ * (i) .
A high overlap ov(σ * , σ) indicates a powerful matching procedure but ignores the number of falsely matched nodes. Therefore, it is essential to control the error fraction err(σ * , σ) which lets us define good estimators as follows: Definition 1. A sequence of alignment estimators σ = (σ n ) n achieves one-sided partial alignment if there is ε > 0 such that

P (ov(σ * , σ) ≥ ε) n→∞ ----→ 1, and 
P (err(σ * , σ) = o(1)) n→∞ ----→ 1.
Our goal in the following is to find an algorithm and sufficient conditions on λ, s, s ′ to enable one-sided partial alignment.

C. Notations

• For a graph G, one of its nodes i ∈ V (G) and a distance d ∈ N, we denote the depth-d neighborhood of i in G by

N G (i, d) := {j ∈ V (G) : dist G (i, j) ≤ d}. • Recall that the Poisson-distribution Poi(µ) is defined for k = 0, 1, 2, ... via π µ (k) := P(X = k) = e -µ µ k k! for X ∼ Poi(µ).
• A Galton Watson tree t with Poi(µ)-offspring is iteratively defined to be a root node with X 0 ∼ Poi(µ) children i 1 , ..., i X0 , which all independently have X ij ∼ Poi(µ) children and so forth. We write t ∼ GW µ and denote by GW µ (τ ) the likelihood of a fixed tree τ being of law GW µ . Furthermore, we use Ext(GW µ ) to denote the event of extincion, i.e. that a tree of law GW µ has finite depth.

• Let X d be the set of all unlabeled rooted trees with depth at most d. Rigorously, one may define t ∈ X d recursively as a tuple (k τ ) τ ∈X d-1 ∈ N X d-1 where each coordinate k τ counts how many child-trees of t's root are equal to τ .

• Let τ be a rooted tree. For a node i of τ , let c τ (i) be the number of its children. Let V d (τ ) denote the vertices up to depth d and write L d (τ ) = V d (τ ) \ V d-1 (τ ) for the d th generation of τ .

II. FROM SPARSE GRAPHS TO TREE TESTING.

The key idea in the sparse setting is that sparse Erdős-Rényi graphs are locally tree-like. The following lemma, which combines lemmata 2.2 and 2.4 in [START_REF] Ganassali | From tree matching to sparse graph alignment[END_REF], makes this idea rigorous.

Lemma 1. Let G ∼ ER(n, λ/n) and d := ⌊c log(n)⌋ for some c fulfilling c log(λ) < 1/2. Then there exists ε > 0 such that for all nodes i of G, one has

P(N G (i, d) contains cycles (i.e. is not a tree) ) = O(n -ε ).
Furthermore, if we compare the law of N G,d (i) with GW λ truncated to depth d, their total variation distance is O(n -ε ).

Determining whether two nodes i ∈ V (G) and j ∈ V (G ′ ) should be matched therefore translates to whether the trees N G (i, d) and N G ′ (j, d) are correlated. We will see that this translates to a tree correlation testing problem with the following hypotheses: a) Independent model P 0 : Let τ, τ ′ be independent GW λs and GW λs ′ trees. Obtain t, t ′ by randomly relabeling both trees. This defines P 0 ∼ (t, t ′ ) ∼ GW λs × GW λs ′ .

b) Correlated model P 1 : We introduce a model for correlated trees by viewing them as augmentations of their intersection tree τ * : Definition 2. For λ > 0, s, s ′ ∈ (0, 1) and a tree τ = (V, E) define its (λ, s, s ′ )-augmentation A λ,s,s ′ (τ ) as follows:

1) For each i ∈ V draw c + (i) ∼ Poi(λs(1 -s ′ ))) independently and attach c + (i) additional children to i. 2) Attach an independent GW λs tree to each new child added in the first step.

To sample from the distribution P 1 , one starts with an intersection tree τ * ∼ GW λss ′ and augment it twice independently with different parameters: first with (λ, s, s ′ ), then with (λ, s ′ , s). This yields τ = A λ,s,s ′ (τ * ) and τ ′ = A λ,s ′ ,s (τ * ). Relabeling τ and τ ′ , we obtain t, t ′ and denote their joint distribution as P 1 .

For i = 0, 1 and random trees (t, t ′ ) ∼ P i , we write (t d , t ′ d ) for their depth-d-truncated versions and denote by P i,d the law of (t d , t ′ d ). Given a pair of trees (τ, τ ′ ), we denote by P i,d (τ, τ ′ ) the likelihood of them being sampled from P i up to depth d.

Note that under both models P 0 and P 1 , the pair (t, t ′ ) has the same marginal distributions as the local neighboorhoods in correlated Erdős-Rényi graphs G and G ′ . Remarkably, this is true in the varying edge densities as well as the differing node numbers framework since deleting a node in a tree is equivalent to deleting the edge leading to that node.

Having translated the initial problem to a testing problem, it remains to find an equivalent notion for one-sided alignment:

Definition 3. An asymptotic one-sided test is a sequence of functions T d : X d × X d → {0, 1} fulfilling • P 0,d (T d (t d , t ′ d ) = 1) d→∞ ---→ 0 (vanishing type-I-error), • lim inf d→∞ P 1,d (T d = 1) ≥ ε > 0 (significant power).
We will see that one-sided testability enables one-sided alignment.

III. CONDITIONS FOR ONE-SIDED TESTABILITY

The goal of this section is to point out conditions which are equivalent to one-sided testability, more easily understandable and which yield an efficiently computable test for P 0 vs. P 1 .

A natural quantity to examine in our testing problem is the likelihood ratio at depth d for a pair of trees (t, t ′ ):

L d (t, t ′ ) := P 1,d (t, t ′ ) P 0,d (t, t ′ )
.

Note that L d enables a simple notation for the Kullback-Leibler divergence at depth d:

KL d := KL(P 1,d ∥P 0,d ) = E 1,d [log L d ].
Using Jensen's inequality and the convexity of x → x log(x), one can easily show that the sequence (KL d ) d is increasing and therefore admits a limit

KL ∞ ∈ [0, ∞].
With these notations, we can state our main theorem:

Theorem 1. In the above hypothesis test setting, the following are equivalent: (i) There exists a one-sided test to decide P 0 vs. P 1 , (ii) There exists

a d → ∞ such that P 0,d (L d > a d ) → 0 and lim inf d P 1,d (L d > a d ) > 0. (iii) λss ′ > 1 and KL ∞ = ∞, (iv) λss ′ > 1 and there is C = C(λ, s, s ′ ) > 0 such that P 1 lim inf d (λss ′ ) -d log(L d ) ≥ C ≥ 1 -P(Ext(GW λss ′ ))
These equivalences are the result we were looking for: Point (ii) motivates the use of likelihood ratio tests while (iv) provides the necessary sequence a d = exp(C(λss ′ ) d ).

Additionally, future work may leverage (iii) to derive exact conditions on λ, s and s ′ for one-sided testability.

For the remainder of this section, we prove Thorem 1. This requires some technical results first.

A. Properties of the likelihoood ratio

A remarkable property of L d in our setting is the following recursive likelihood ratio formula which will be useful for efficient computation: Proposition 1. Let t, t ′ ∈ X d and denote their root children as t 1 , ..., t c and t ′ 1 , ..., t ′ c ′ respectively. Using S c to denote the set of permutations of [c], we can express (L d ) d recursively:

L d (t, t ′ ) = c∧c ′ k=0 ψ(k, c, c ′ ) σ∈Sc, σ ′ ∈S c ′ k i=1 L d-1 (t σ(i) , t ′ σ ′ (i) )
where

ψ(k, c, c ′ ) = exp(λss ′ ) (1 -s ′ ) c-k (1 -s) c ′ -k λ k k!(c -k)!(c ′ -k)! .
A proof for this proposition can be found in the appendix. Taking conditional expectations in the recursive likelihood ratio formula and using independence of (c, c ′ ) from the pairs (t i , t ′ i ), we obtain the following corollary. For details, one can effortlessly translate the proof of proposition 2.1 in [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF].

Corollary 1. The sequence (L d ) d is a martingale with respect to P 0 and since L d ≥ 0 for all d, this martingale almost surely converges to a limit L ∞ .

Using this result, we can take the recursive likelihood ratio formula and let d → ∞, then take E 0 to obtain

E 0 [L ∞ ] = E 0     c∧c ′ k=0 ψ(k, c, c ′ ) σ∈Sc, σ ′ ∈S c ′ k i=1 E 0 [L ∞ | c, c ′ ]     = E 0 ∞ k=0 1 k≤c∧c ′ ψ(k, c, c ′ )c! c ′ ! E 0 [L ∞ ] k = ∞ k=0 π λss ′ (k)E 0 [L ∞ ] k
In other words, E 0 [L ∞ ] is a fixed point of the probability generating function of Poi(λss ′ ).

B. Proof of Theorem 1

The first equivalence can be shown quickly:

Proof of (i) ⇐⇒ (ii). We start by noting that (ii) =⇒ (i) directly follows from the choice T d = 1 L d >a d . The reverse direction naturally uses the Neyman-Pearson lemma, but it is not immediate due to some technicalities. In particular, one needs to carefully handle the probabiliy of {L d = a d }. Due to lack of space, we refer to Step 3 in the proof of Theorem 1 in [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF] for a complete argument.

For the remaining points, we will show the circular implications (iv) =⇒ (i) =⇒ (iii) =⇒ (iv).

Proof of (iv) =⇒ (i). Point (iv) suggests the test sequence

T d = 1 : ⇐⇒ L d ≥ exp C (λss ′ ) d .
Markov's inequality paired with λss ′ > 1 and E 0 [L d ] = 1 gives

P 0 (T d = 1) ≤ E 0 [L d ] exp (C (λss ′ ) d ) d→∞ ---→ 0.
To show significant power, we apply Fatou's lemma to obtain

lim inf d→∞ P 1 (T d = 1) = lim inf d→∞ E 1 (1 T d =1 ) ≥ E 1 (lim inf d→∞ 1 T d =1 ) = P 1 lim inf d→∞ {T d = 1} = P 1 ∃D ∀d ≥ D : L d ≥ exp C (λss ′ ) d = P 1 lim inf d→∞ µ -d log(L d ) ≥ C > 0.
Thus, (T d ) d is asymptotically one-sided.

The next step requires the technical properties of the likelihood ratio:

Proof of (i) =⇒ (iii). Assuming (i) to be true, we refer to Step 5 in the proof of Theorem 1 in [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF] for a demonstration of KL ∞ = ∞ which is independent of s and s ′ .

In order to show λss ′ > 1, we assume the contrary, i.e. λss ′ ≤ 1. A standard result from Galton-Watson tree theory (c.f. [START_REF] Abraham | An introduction to Galton-Watson trees and their local limits[END_REF]) states that in this case, 1 is the only fixed point in [0, 1] of the probability generating funciton of Poi(λss ′ ). Since E 0 [L ∞ ] has the same fixed point property, we obtain E 0 [L ∞ ] = 1. This gives us trivial convergence of the means

E 0 [L d ] = 1 → 1 = E 0 [L ∞ ],
which we can combine with the almost sure convergence L d → L ∞ and Scheffé's Lemma to obtain that L d converges to L ∞ in L 1 . This in turn yields that (L d ) d is a flat martingale and is therefore uniformly integrable. However, one-sided testability in the form of (ii) contradicts the definition of uniform integrability, since for all but finitely many d,

E 0 [|L d |1 L d >a d ] = P 1 (L d > a d ) ≥ ε > 0
but we would expect the left term to go to 0. This contradiction lets us conclude λss ′ > 1.

The final step (iii) =⇒ (iv) is more involved and requires the following result on Galton-Watson trees from [START_REF] Abraham | An introduction to Galton-Watson trees and their local limits[END_REF]: Proof of (iii) =⇒ (iv). Let (t, t ′ ) ∼ P 1 and set τ * = t∩t ′ to be their true intersection tree. Call σ * and σ ′ * the injections of τ * into t and t ′ respectively. Marginally, the intersection tree is distributed as τ * ∼ GW λss ′ . Set µ := λss ′ and write W d := |L d (τ * )|. By Lemma 2, the martingale µ -d W d converges almost surely towards a random variable w.

From now on, condition on the event {τ * survives } which is possible because µ > 1. Lemma 2 consequently lets us assume w > 0. Using the result from section B of the Appendix, we have that for all d, k ∈ N,

L d+k (t, t ′ ) ≥ i∈V d-1 (τ * ) ψ (c τ * (i), c t (σ * (i)), c t ′ (σ ′ * (i))) × j∈L d (τ * ) L k (t σ * (j) , t ′ σ ′ * (j) ) =: A d × B d,k
We examine A d and B d,k individually starting with the latter.

Taking the logarithm, we rewrite this product to a sum:

log (B d,k ) |L d (τ * )| = 1 |L d (τ * )| i∈L d (τ * ) log L k (t σ * (i) , t ′ σ ′ * (i)
) .

=:a d

For i ̸ = j, the random pairs (t σ * (i) , t ′ σ ′ * (i) ) and (t σ * (j) , t ′ σ ′ * (j) ) are independent, they follow the law P 1 and the logarithms of their likelihoods are in L 1 (P 1 ). The law of large numbers is therefore applicable, yielding a d d→∞ ---→ E 1 [log L k ] almost surely. Consequently, on an event of probability 1, there exists a sequence 0 < ε d → 0 such that for all d,

a d ≥ E 1 [log(L k )]| -ε d (1)
Similarly, since |L d (τ * )|µ -d → w almost surely, there also exists a sequence 0 < δ d → 0 such that

|L d (τ * )| ≥ wµ d -δ d µ d for all d. (2) 
Realizing E 1 [log(L k )] = KL k and combining ( 1) and ( 2) gives

B d,k = exp {|L d (τ * )|a d } ≥ exp {|L d (τ * )| (KL k -ε d )} ≥ exp w µ d -δ d µ d (KL k -ε d ) ≥ exp KL k w µ d -µ d (δ d KL k + ε d w)
Let k be large enough so that KL k > 1 and fix any ω ∈ Ω for which all sequences converge. Choosing d sufficiently large, one has δ d (ω) ≤ w(ω)/4 and ε d (ω) ≤ KL k /4, yielding

µ d δ d (ω)KL k + µ d ε d (ω)w(ω) ≤ 1 ⁄2 KL k w(ω)µ d .
This implies that on an event B of probability 1 and for d large enough,

B d,k ≥ exp 1 ⁄2 KL k wµ d (3) 
Turning to A d now, we start by introducing the notation

F i := log (ψ (c τ * (i), c t (σ * (i)), c t ′ (σ ′ * (i))))
As before, we take the logarithm to rewrite

log(A d ) = i∈V d-1 (τ * ) F i = d-1 g=0 i∈Lg(τ * ) F i .
Through basic computations, one can show that all F i have the same distribution, finite variance and nonpositive mean. Letting F

= F i and writing L g as a shorthand for L g (τ * ), we set

Ŝd := d-1 g=0 i∈Lg F i -E[F i ] = log(A d ) -E[F ] d-1 g=0 |L g | Define sigma-fields F d := σ (F i : i ∈ L g , g ≤ d -1) to get E Ŝ2 d =E E Ŝ2 d | F d-1 =E Ŝ2 d-1 + E   i∈L d-1 E (F i -E[F i ]) 2   + 2E   Ŝd-1 i∈L d-1 E[F i -E[F i ]]   =E Ŝ2 d-1 + Var(F ) E[|L d-1 ] =µ d-1
.

Using this result recursively, we obtain

E Ŝ2 d = d g=1 Var(F ) µ g-1 = Var(F ) µ d -1 µ -1 . (4) 
This allows us to establish

P | Ŝd | ≥ dµ d 2 ≤ E Ŝ2 d d 2 µ d ≤ 1 d 2 Var(F ) 1 -µ -d µ -1 ≤ C d 2
where we have used Markov's inequality, (4), Var(F ) < ∞, and 1 -µ -d ≤ 1. The constant C depends on µ and Var(F ) but not on d. Consequently,

∞ d=1 P(| Ŝd | ≥ dµ d 2 ) < ∞ and by Borel-Cantelli there almost surely exists M ∈ N such that log(A d ) -E[F ] d-1 g=0 |L g | < dµ d 2 for all d ≥ M.
Combining this with |L q | ≥ wµ q -δ q µ q from above, we get

log(A d ) ≥ E[F ] w d-1 g=0 µ q -E[F ] d-1 g=0 δ q µ q -dµ d 2 ≥ E[F ] w µ d µ -1 -dµ d 2
for d ≥ M.

In the last step, we have used E[F ] ≤ 0 to omit the second term. Summarizing our arguments about A d , there exists an event A of probability 1 such that for any ω ∈ A we find a constant M ′ (ω) such that for all d ≥ M ′ (ω),

(i) dµ d 2 ≤ w(ω)µ d , and (ii) log(A d )(ω) ≥ E[F ](µ -1) -1 -1 w(ω)µ d . To conclude the proof, let C ′ := E[F ](µ-1) -1 -1 and choose k large enough so that 1 ⁄2 KL k > |C ′ |. Combining (ii) with (3) implies that on the event A ∩ B, for large enough d, log (L d+k (t, t ′ )) ≥ log(A d ) + log(B d,k ) ≥ wµ d (C ′ + 1 2 KL k )
Since this holds true on {τ * survives} ∩ A ∩ B, we conclude

P 1 lim inf d→∞ µ -(d+k) log(L d+k ) ≥ µ -k (C ′ + 1 ⁄2 KL k ) ≥ P ({τ * survives} ∩ A ∩ B)
.

Setting C := µ -k (C ′ + 1 ⁄2 KL k ) > 0 and noting P (Ext c (τ * ) ∩ A ∩ B) = 1 -P(Ext(GW λss ′ ))
this yields the desired result. Finally note that C can be computed from µ, E[F ], KL k , and n, which all solely depend on λ, s and s ′ .

IV. GRAPH ALIGNMENT ALGORITHM

As a final step, we present the algorithm MPAlign from [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF] which is the bridge between tree correlation testing and sparse graph alignment. Thanks to the recursive likelihood ratio formula from Proposition 1, we can calculate L d in polynomial time as part of the algorithm.

Contrary to the original description of the algorithm, we refrain from introducing a specific notation for particular tree subgraphs: For two nodes i, i ′ ∈ V (G), we talk about the tree rooted at i and pointing away from i ′ to describe the subgraph N G\{i,i ′ } (i, d). In other words, this is the subtree of G after removing the edge {i, i ′ }, which is rooted at i and restricted to depth d .

Algorithm 1 MPAlign (message-passing for graph alignment) Input: Two graphs G, G ′ , a depth d and a threshold β. Output: A set of pairs M representing the matched nodes.

• M ← ∅;

• For all pairs of nodes i ∈ V (G) and j ∈ V (G ′ ), use the recursive likelihood ratio formula to compute L d for all pairs of trees rooted at i and j that are pointing away from their neighbors. d) contain cycles and there exist triples of neighbors i 1 , i 2 , i 3 ∈ N G (i, 1) as well as j 1 , j 2 , j 3 ∈ N G ′ (j, 1) such that L d-1 > β for all pairs of trees rooted at i t , j t , t ∈ {1, 2, 3} and pointing away from i, j then • M ← M ∪ {i, j} end if end for return M

for (i, j) ∈ V (G) × V (G ′ ) do if neither N G (i, d) nor N G ′ (j,
The reason why triples of neighbors are considered is the so-called dangling tree trick. It assures that in the case where i and j should not be matched, there exists at least one pair (i t , j t ) whose corresponding trees are disjoint in the sense of the correct matching. This pair should therefore easily be identified as a sample from P 0 . Remark 1. As detailed in [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF], this algorithm's runtime is polynomial in n. This is why we talk about an efficient algorithm despite the fact that the polynomial's degree is rather high, which restricts the applicability to larger graphs.

We will now give a theoretical guarantee for Algorithm 1 to achieve one-sided partial alignment. The proof the following theorem can be adapted one-to-one from Section 6 in [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF], by noting that G ∪ G ′ ∼ ER(n, λ(s + s ′ -ss ′ )/n) and G ∩ G ′ ∼ ER(n, λss ′ /n). We emphasize that this result heavily relies on Lemma 1 from Section II.

Theorem 2. Let (G, G ′ ) be correlated Erdős-Rényi graphs with either varying edge densities or differing node numbers. Further assume that the parameters λ, s and s ′ fulfill one of the conditions in Theorem 1. Set n := min{|V (G)|, |V (G ′ )|} and define d = ⌊c log(n)⌋ as well as β = exp(n γ ) for some c, γ with c log(λ(s+s ′ -ss ′ )) < 1/4 and γ ∈ (0, c log(λss ′ )). Then there exists ε > 0 such that with high probability, the output M from Algorithm 1 fulfills

ov n (M) = 1 |V * | i∈V * 1 (i,σ * (i))∈M ≥ ε for large n, and 
err n (M) := 1 |V (G)| i∈V (G) 1 {∃j̸ =σ * (i) : (i,j)∈M} n→∞ ----→ 0.
In other words, MPAlign achieves one-sided partial alignment.

Remark 2. This theorem is formulated to cover differing node numbers alongside varying edge densities. In the latter case, notations simplify since n = n and V * = [n]. Remark 3 (Subgraph isomorphism problem). Choosing s = 1 and s ′ < 1 in the differing node numbers setting, the second graph G ′ is a strict subgraph of G. Assuming the conditions in Theorem 2 to hold, one can partially recover the unknown injection V (G 2 ) -→ V (G 1 ) using Algorithm 1. This automatically yields a partial solution to the subgraph isomorphism problem on sparse Erdős-Rényi graphs! V. CONCLUSION AND OUTLOOK This document provides insights into asymmetric tree correlation testing and has proposed a first alignment algorithm of sparse graphs with differing node numbers. The addition of asymmetry generalizes the results in [START_REF] Ganassali | Correlation detection in trees for planted graph alignment[END_REF] and makes them more applicable. Future work aims at finding more precise conditions on λ, s and s ′ for feasibility of tree correlation testing, following the line of work in [START_REF] Ganassali | Statistical limits of correlation detection in trees[END_REF]. Other open questions revolve around accelerating MPAlign for better scalability and understanding whether sparse graph alignment can be possible when tree correlation testing is not.

1 c! c ′ ! k i=1 P 1,d-1 (t ′ σ(i) , t ′ σ ′ (i) ) × c i=k+1 GW λs,d-1 (t σ(i) )   c ′ i=k+1 GW λs ′ ,d-1 (t ′ σ ′ (i) )   .
Under the null-hypothesis, the likelihood is computed much more easily: Putting things together, we obtain

L d (t, t ′ ) = c∧c ′ k=0 π λss ′ (k)π λs(1-s ′ ) (c -k)π λs ′ (1-s) (c ′ -k) π λs (c) π λs ′ (c ′ ) c! c ′ ! × σ∈Sc, σ ′ ∈S c ′ k i=1 P 1,d-1 (t ′ σ(i) , t ′ σ ′ (i) ) × k i=1
GW λs (t σ(i) )

-1 k i=1 GW λs ′ (t ′ σ ′ (i) ) -1 = c∧c ′ k=0 ψ(k, c, c ′ ) σ∈Sc, σ ′ ∈S c ′ k i=1 L d-1 (t σ(i) , t ′ σ ′ (i) ).
where the term ψ implicitly defined in the last equation can be simplified to

ψ(k, c, c ′ ) = exp(λss ′ ) (1 -s ′ ) c-k (1 -s) c ′ -k . λ k k!(c -k)!(c ′ -k)! .

B. Lower bound on L d+k

Applied iteratively, the recursive likelihood ratio formula yields the explicit formula where S(τ, t) denotes the set of all injective mappings from τ to t. Applying this formula to L d+k (t, t ′ ) only keeping the summands such that τ = τ * up to depth d, we get the lower bound L k (t σ * (j) , t ′ σ ′ * (j) )   .

Lemma 2 .

 2 Let τ ∼ GW µ and denote w d := |L d (τ )|/µ d . Then, (w d ) d is a positive martingale whose almost sure limit w satisfies P (w > 0 | τ survives ) = 1.

P

  0,d (t, t ′ ) = GW λs,d (t) GW λs ′ ,d (t ′ ) = π λs (c) c i=1 GW λs,d (t i ) π λs ′ (c ′ )

L

  d (t, t ′ ) = τ ∈X d σ∈S(τ,t), σ ′ ∈S(τ,t ′ ) i∈V d-1 (τ ) ψ (c τ (i), c t (σ(i)), c t ′ (σ ′ (i)))

L

  d+k (t, t ′ ) ≥ τ ∈X d+k τ d =τ * d σ∈S(τ,t), σ=σ * on V d (τ ) σ ′ ∈S(τ,t ′ ), σ ′ =σ ′ * on V d (τ ′ ) × i∈V d-1 (τ * ) ψ (c τ * (i), c t (σ * (i)), c t ′ (σ ′ * (i))) × j∈L d (τ * ) m∈V k-1 (τj ) ψ c τj (m), c t σ * (j) (σ(m)), c t ′ σ ′ * (j) (σ ′ (m)) =   i∈V d-1 (τ * ) ψ (c τ * (i), c t (σ * (i)), c t ′ (σ ′ * (i))) j∈L d (τ * )
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APPENDIX

A. The recursive likelihood ratio formula

We present a proof of the essential part of Proposition 1: Let (t, t ′ ) ∈ X 2 d and denote their root nodes as ρ(t)) and ρ(t ′ ). Define c := deg(ρ(t)) and c ′ := deg(ρ(t ′ )) as well as the event

Note that in (a) we have used that deg(ρ(τ ∩ τ ′ )) ≤ deg(ρ(τ )) ∧ deg(ρ(τ ′ )), while (b) relies on the fact that τ and τ ′ are (λ, s, s ′ ) and (λ, s ′ , s)-augmentations respectively. Denoting by t 1 , . . . , t c the child trees of ρ(t), we have ξ = σ,σ ′