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This paper considers the callback reachability problem — determining if a callback can be called by an event-
driven framework in an unexpected state. Event-driven programming frameworks are pervasive for creating
user-interactive applications (apps) on just about every modern platform. Control flow between callbacks is
determined by the framework and largely opaque to the programmer. This opacity of the callback control flow
not only causes difficulty for the programmer but is also difficult for those developing static analysis. Previous
static analysis techniques address this opacity either by assuming an arbitrary framework implementation or
attempting to eagerly specify all possible callback control flow, but this is either too coarse to prove properties
requiring callback-ordering constraints or too burdensome and tricky to get right. Instead, we present a middle
way where the callback control flow can be gradually refined in a targeted manner to prove assertions of
interest. The key insight to get this middle way is by reasoning about the history of method invocations
at the boundary between app and framework code — enabling a decoupling of the specification of callback
control flow from the analysis of app code. We call the sequence of such boundary-method invocations
message histories and develop message-history logics to do this reasoning. In particular, we define the notion
of an application-only transition system with boundary transitions, a message-history program logic for
programs with such transitions, and a temporal specification logic for capturing callback control flow in a
targeted and compositional manner. Then to utilize the logics in a goal-directed verifier, we define a way
to combine after-the-fact an assertion about message histories with a specification of callback control flow.
We implemented a prototype message history-based verifier called Historia and provide evidence that our
approach is uniquely capable of distinguishing between buggy and fixed versions on challenging examples
drawn from real-world issues and that our targeted specification approach enables proving the absence of
multi-callback bug patterns in real-world open-source Android apps.
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1 INTRODUCTION

The standard approach for creating user-interactive applications (apps) is with event-driven frame-
works. In this programming model, a developer defines callback methods that the framework
invokes at run time in response to asynchronous events (e.g., starting the application, clicking a
button, or a background task finishing). Since the callbacks modify the state of the application,
an unexpected order of callback invocations may lead to a bad application state and a subsequent
crash. To fix such a crash, it is common for the developer to update the application to change or
accommodate complex callback interactions. To help the developer verify fixes to the crashing app,
we present in this paper a technique to reason about callback order and to develop a tool that can
automatically prove such fixes correct.
As a specific example of an event-driven framework, we consider Android, a widely-used and

complex mobile operating system. Figure 1 shows a stack trace for a reported crash in AntennaPod,
a popular open-source podcast player. But this stack trace is not helpful to the developer because
the cause and effect span multiple callback invocations. This stack trace shows that there was a
null dereference in the call callback — but not how the reference became null. In particular, the
reference must have been set to null in some previous callback invocation before this call callback
invocation that is not visible in this stack trace. To make such reasoning even more difficult, the app
itself may affect the order of callbacks through the invocation of methods defined by the framework
API; we refer to calls from the app to framework API methods as callins by analogy to callbacks. In
summary, the developer of the app needs to reason about the order in which the framework could
invoke callbacks and how the app invokes callins to understand and fix this crash.
Understanding the order of callbacks in this event-driven programming model is not only

challenging for the developer but is also a central challenge for a program verifier attempting
to prove an app safe from crashes. The program verifier has access to the app code, but the
framework code is unavailable for all intents and purposes. While this is true for most event-
driven frameworks, it is particularly difficult in Android, which consists of thousands of API
classes [Android Developers 2022b], evolves quickly, includes lots of native code, and varies by
device with manufacturer customizations. One approach to the unavailable-framework problem is
to analyze the app code assuming an arbitrary framework implementation. This design corresponds
to analyzing each top-level callback (i.e., entry point into the app code) as a separate program with
an application-only call graph [Ali and Lhoták 2012]. The advantage of this approach is that it is
simple and general (i.e., it can over-approximate any framework implementation by assuming all
callbacks can be invoked at any time in the event loop) and thus is the approach generally taken
by industrial-scale analyzers for Android apps (e.g., [Distefano et al. 2019; Fuchs et al. 2009; Liang
et al. 2013; Mariana Trench 2022]).
However, this most-over-approximate framework model is also wildly unrealistic. Without

callback-ordering constraints, a verifier cannot possibly prove correct the accepted fix for Figure 1.
Thus, many static analyzers for Android attempt to eagerly encode the callback control flow of core
classes of the framework (e.g., the Activity Lifecycle [Android Developers 2022a] modeled by [Arzt
et al. 2014; Blackshear et al. 2015b; Yang et al. 2015]). This approach also has some significant
limitations. For one, it is not feasible to eagerly specify the callback control flow of thousands of
framework classes individually — let alone callback control flow involving relationships between
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java.lang.IllegalStateException: . . .

Caused by: java.lang.NullPointerException: . . .

at de.danoeh.antennapod.fragment.ExternalPlayerFragment$$Lambda$4.call (Unknown Source:1193)

. . .

Fig. 1. A reported stack trace from a confirmed bug [Fietz 2018b] that crashed the AntennaPod Android app.

We have elided multiple lines identifying Android framework methods (using . . . for 14 elided lines in total).

multiple classes. On top of that, even specifying the behavior for a few framework components
results in both soundness and precision issues [Cao et al. 2015; Meier et al. 2019; Wang et al. 2016].

The main observation of this paper is that although the most-over-approximate framework model
is unrealistic, the application-only approach for analyzing event-driven apps is not completely
hopeless either. In particular, if we decouple the framework modeling from the analysis of the app
code, then the approach offers the appealing capability to gradually refine the possible callback
control flow as needed and in a targeted manner. To get a sense, imagine a call graph with a
“framework” node representing the event loop and outgoing edges to each callback entry (as well
as edges from callback nodes to the callin nodes they invoke). We can now consider traces through
this graph instantiating callback or callin nodes with object instances; we refer to such a callback or
a callin instantiation generically as a message. Thus, we are interested in reasoning about message
histories — sequences of messages obtained by call-return traces through this graph.
For any given framework implementation, not all message histories are realizable at run time.

Thus, our key insight is to encode possible framework implementations by abstracting possible
message histories. Crucially, this encoding and reasoning about message histories enables decou-
pling the specification of callback control flow from the abstract interpretation to compute an
inductive program invariant. Specifically, in this paper, we make the following contributions:

• We define the notion of an application-only transition system that records messages and a
message-history program logic (MHPL) to describe and reason about boundary transitions
between the app and the framework independently of any specification of the framework
(Section 3). In MHPL, we consider a backwards-from-error formulation that enables goal-
directed reasoning from a state assertion in the app, and we observe that deriving infeasible
initial message histories refutes callback reachability. To capture consumption and order-
ing in MHPL, message-history assertions are derived from a fragment of ordered linear
logic [Polakow and Pfenning 1999a,b] — making use of an ordered linear implication.

• We formalize a callback control-flow temporal logic (CBCFTL) to specify realizable message
histories — that is fully decoupled from any particular program logic (Section 4). This specifi-
cation logic enables us to restrict possible callback control flow in a manner that is targeted
and compositional. To capture possible traces, CBCFTL is a specialization of past-time linear
temporal logic [Lichtenstein et al. 1985].

• We design an automated reasoning approach for the combination of MHPL assertions and
CBCFTL specifications (Section 5). To utilize MHPL and CBCFTL together in a static verifier,
we define an algorithm instantiating CBCFTL specifications with MHPL assertions into a
single formula describing realizable message histories. We then use this encoding to answer
queries about message-history entailment or whether a message history excludes the initial
state with an off-the-shelf SMT solver.

• We empirically evaluate Historia, a prototype goal-directed verifier with MHPL and show
that it can refute callback reachability assertions with succinct specifications of callback
control flow in CBCFTL (Section 6). In particular, we applied it to distinguish between the
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buggy and fixed versions from 5 real-world multi-callback issues from in-the-wild crashes
of Android apps. Furthermore, we codified these 5 issues into bug patterns and evaluated
the ability to use Historia to prove the absence of these bug patterns on 47 open-source
apps containing over 2 million lines of code: 43% of the potentially buggy locations could be
proven safe using Historia with no additional modeling of callback control flow and then
on a sample of the remaining locations, half of them could be proven safe (or witnessed as
buggy) with a small amount of additional modeling.

2 OVERVIEW

In this section, we illustrate how a developer could go deeper to diagnose and fix the bug causing
the crash shown in Figure 1 (Section 2.1) and then demonstrate how our approach is able to prove
the fixed version correct (Section 2.2).

2.1 Using Message Histories to Distinguish Bugs from Fixes

We show a simplified version of an actual pull request submitted to fix the issue in Figure 2a.
What distinguishes the buggy and fixed versions — without and with line 8, respectively — are
the possible message histories (i.e., the possible sequences of callbacks and callins). In Figure 2b,
we show a message history witnessing a crash in the buggy version, while in Figure 2c, we show
the analogous message history in the fixed version. The key to distinguishing the buggy and fixed
versions is determining if such message histories are realizable at run time.

Figure 2a shows part of the PlayerFragment class of the AntennaPod app that displays a user
interface (UI) and loads some media for playing podcasts. Importantly, the app loads the media in a
background task, a thread running asynchronously to the UI thread, to not block the user interface.
The framework invokes the onCreate callback of a PlayerFragment object when initializing the user
interface. At location 2, this callback invokes the Single.create callin (from the RxJava library) to start
the background task that loads the media. The subsequent call to task.subscribe(this) at location 3
registers the call callback. At a later time, the framework will invoke the call callback. The call

callback uses the Glide class to display the media on the this.act object. At any time, the framework
can destroy the PlayerFragment (e.g., when the user navigates to another part of the app) and invoke
the onDestroy callback, which at location 5, sets the field this.act to null to prevent memory leaks.

As noted above, Figure 2b shows a crashing message history, that is, a sequence callback entries
(cb), callin calls (ci), and callback returns (cbret). The arguments and return values of each message
(e.g., f, t, s, and a) represent run-time addresses of objects. The app crashes if the call callback is
invoked after the PlayerFragment is paused. After the f.onCreate() callback invocation (i.e., messages 1–
4), the framework disposes the user interface and invokes the f.onDestroy() callback, setting the
this.act field to null (i.e., app transitions between messages 5–6). Then, the background process
completes triggering the call callback (i.e., message 7). However, the this.act field is now null

causing the call to Glide.with(this.act) to crash (represented by the assert on line 5 of Figure 2a).
The fixed version adds a call to this.sub.unsubscribe() at line 8, which unsubscribes the call

callback preventing its invocation after onDestroy. In Figure 2c, we show a message history that,
while similar looking to the crashing message history of Figure 2b, is not realizable with respect to
the framework implementation. There is no execution that can generate the message history of
Figure 2c because the callback at message 8 is removed by the added message 6 in the fixed version.
Such a minimal difference between the “realizable crashing” message history and the “unrealizable
safe” message history highlights the automated reasoning challenge in distinguishing between the
buggy and fixed versions of the app.
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class PlayerFragment extends Fragment

implements Action1<Playable> {

Activity act = null;

Subscription sub = null;

void onCreate() {

1 this.act = . . . get non-null Activity. . .;

2 var task = Single.create(. . .);

3 this.sub = task.subscribe(this);

4 }

void call(Playable media){

5 assert(this.act != null);

6 Glide.with(this.act).load(media);

}

void onDestroy() {

7 this.act = null;

8 this.sub.unsubscribe();

9 }

}

fwk:

{f
wk

1
:.
..
}∨

{f
wk

2
:.
..
}∨

{f
wk

3
:.
..
}∨

{f
wk

4
:.
..
}

cb this.onCreate()

ci ...

ci ...
cbret ...

cb this.call(m)

ci ...
cbret ...

cb this.onDestroy()

ci ...
cbret ...

(a) A patch adding line 8 fixing the crash [Fietz 2018a]. On the

left side, we illustrate an application-only transition system with

a location fwk representing the framework location inside the

event loop with call and return edges ⇀ for callbacks. Callins

are captured by self-loops as they affect framework state but are

not on the event loop. We further indicate that the framework

location fwk is annotated with an inductive invariant to prove the

assertion safe (expanded later in Figure 3).

1 cb f.onCreate();
2 ci t = Single.create(. . .);
3 ci s = t.subscribe(f);
4 cbret f.onCreate();

5 cb f.onDestroy();

6 cbret f.onDestroy();

7 cb f.call(m);
exn a == null;

(b) A realizable message history witness-

ing an exception (exn) in the buggy ver-

sion.

1 cb f.onCreate();
2 ci t = Single.create(. . .);
3 ci s = t.subscribe(f);
4 cbret f.onCreate();

5 cb f.onDestroy();

6 ci s.unsubscribe();

7 cbret f.onDestroy();

8 cb f.call(m);
exn a == null;

(c) An unrealizable message history wit-

nessing an exception (exn) in the fixed

app. This cannot happen at run time.

Fig. 2. The crash from Figure 1 arises in the buggy version of the code (without line 8) when a null value is

passed to Glide.with from the this.act field at line 6 in the call callback. To prevent the crash, the developer

creates the fixed version by adding unsubscribe at line 8. Message histories shown by sub-figures (b) and (c)

show how a crash might be reached in both the buggy and fixed apps (without any reasoning about their

realizability). What we prove is that the message history for the fixed version shown in (c) is unrealizable. In the

message histories, single-letter identifiers represent run-time instances (e.g., f is an instance of PlayerFragment)

and boxes are drawn around callback invocations.

2.2 Historia: Refuting Callback Reachability with Message-History Logics

Here, we provide an overview of our static analysis abstraction and our framework specification
logic that enables refining paths through the application-only transition system by reasoning about
the realizability of message histories. In Figure 2a, we illustrate an application-only transition
system, which consists of app transitions from the app code augmented with boundary transitions
to a single, distinguished framework location fwk. Boundary transitions represent places where
the framework makes non-deterministic choices of callback invocations as well as return values
of the callin invocations (formalized in Section 3.1). The application-only transition system has
the benefit of being a sound framework model by default (i.e., without further specification, is
the most-over-approximate framework model) but clearly admits many unrealizable paths. Our
key insight is to internalize the concept of realizable message histories into the static analysis
abstraction. This internalization of realizable message histories into the abstract domain enables
decoupling the specification of possible callback control flow from the abstract interpretation
to compute an inductive program invariant. Such an approach is in contrast with the ones that
eagerly augment the interprocedural control flow graph with framework-specific control flow. At
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cb this.call(media);{ 5 : okhist · f.act ↦� null ∗ this ↦� f };assert(this.act != null)

{ fwk1 : cb f.call(m) ↠ okhist · f.act ↦� null }

cb this.onDestroy();{ 7 : ci s.unsubscribe() ↠ . . . · f.sub ↦� s ∗ this ↦� f };this.act = null;ci this.sub.unsubscribe()

{ fwk2 : ci s.unsubscribe() ↠ cb f.call(m) ↠ okhist · f.sub ↦� s }

cb this.onCreate();{ 1 : ... ∗ this ↦� f };ci tsk = create(. . .);ci this.sub = tsk.subscribe(this)

{ fwk3 : cb f.onCreate() ↠ ci s = t.subscribe(f) ↠ ci s.unsubscribe() ↠ cb f.call(m) ↠ okhist }

cb this.onCreate();{ 1 : ... ∗ this ↦� f2 };ci tsk = create(. . .);ci this.sub = tsk.subscribe(this)

{ fwk4 : cb f2.onCreate() ↠ ci s2 = t2.subscribe(f2) ↠
cb f.onCreate() ↠ ci s = t.subscribe(f) ↠ ci s.unsubscribe() ↠ cb f.call(m) ↠ okhist · f2 ≠ f }

⊢𝑆

Fig. 3. An inductive invariant for the fixed app consisting of abstract message histories and abstract app

states at each location in the application-only transition system (Figure 2a) that may reach the assertion

failure. For brevity, this figure excludes less interesting transitions such as the case where the failing call

invocation is preceded by another invocation of call. However, all transitions are considered by the verifier.

The abstract message histories only show messages from the user provided specification for clarity. Note,

there is only one framework location and that we use the subscripts (e.g., fwk1, fwk2) to indicate disjunctive

elements of the abstract state at the framework location. With the specification of realizable message histories

(Section 2.2.2) combined with the abstract message histories (Section 2.2.3), we can show that this invariant

has reached a fixed point and that it excludes the initial state proving the assertion safe.

a high level, our approach shares some conceptual similarity with context-free language (CFL)
reachability-based analysis [Reps 1998] in reasoning about realizability in the analysis but for
imposing callback control flow instead of call-return semantics.
To describe our static analysis, we define Message-History Program Logic (MHPL), a program

logic with an ordered linear implication for capturing assumptions about future messages. Then,
to enable specifying callback-control flow, we introduce Callback-Control Flow Temporal Logic
(CBCFTL), a past-time temporal logic for specifying constraints on the past message history given
the present message. Finally, to automate reasoning about the realizability of message histories, we
define an algorithm for instantiating CBCFTL specifications with MHPL assertions — combining the
inferred assumptions from a backwards-from-error static analysis and specified callback-control–
flow constraints. In the rest of this section, we demonstrate our technique by walking through the
verification of the bug-fix from Figure 2a.

2.2.1 Message-History Program Logic (MHPL). Program analyses often compute invariants for
each location in the program. Our approach relies on computing such an invariant that abstracts
the message histories and application states that may reach the assertion failure using a novel
message-history program logic (MHPL). If the invariant excludes the initial state of the program
(e.g., the empty message history), then there is no way the assertion failure can be reached from the
initial state, letting Historia prove that the assertion failure is impossible. Here, we demonstrate
such a proof on our running example.

While analyzing the application, Historia maintains an invariant map, mapping each program
location to its current invariant (represented as Σ̂ in Section 3.2). Individual locations in the
application are labeled with line numbers, and the framework location representing the event loop
is labeled with fwk. We show a representation of this invariant map for our example in Figure 3. In
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a goal-directed, backwards-from-error formulation, the invariant map is initialized with the state
{ 5 : okhist · f.act↦� null∗ this↦� f } positioned right before the assertion failure. There are two parts of
the abstract state (which we separate with a centered dot ·). On the right, there is an abstraction of
the heap or store of the app for the assertion failure; in particular, it says an object f has a field act

that points to null and this points to f. We use intuitionistic separation logic [Ishtiaq and O’Hearn
2001; Reynolds 2002] to describe the relevant heap or store, but our approach is parameterized by
essentially whatever logic one wishes to use to reason about the app state. The left component
is more interesting — it is our abstraction of the possible message histories to reach this location
(𝜔 defined in Section 3.2). In particular, any execution that witnesses this assertion failure must
have done so with a realizable message history, written okhist. Intuitively, okhist denotes the set of
all realizable message histories as dictated by the framework. Note that okhist is not “top” or “true”,
which would concretize to all message histories — realizable or unrealizable.

Next, we compute the abstract message history at the location just before the call entry. This
location is the fwk location (i.e., the framework event loop). We write the message from this
transition as cb f.call(m)where f and m are symbolic variables corresponding to the values bound to
the formal parameters this and media of call, respectively. To capture the effect of invoking call, the
abstract message history is updated to cb f.call(m) ↠ okhist at the abstract message history labeled
by fwk1 in Figure 3 (this abstract state also removes the this variable due to popping the stack).
Intuitively, cb f.call(m) ↠ okhist denotes any message history to which f.call(m) can be appended
to obtain a realizable message history. Operationally, cb f.call(m) ↠ okhist can be thought of as
the set obtained by starting with the set of realizable message histories okhist, removing those that
do not end with f.call(m), and truncating the remaining ones to remove f.call(m) from the end.

Having computed an abstract state at a framework location (fwk1 in Fig. 3), we can now check if
the abstract state excludes the initial state; if it does not, then we have not yet found a proof that
the assertion failure is unreachable. The message history abstraction of the initial state is simply
a singleton set containing an empty message history. If the framework could invoke f.call(m)

as the first callback, then f.call(m) alone is a realizable message history (i.e., f.call(m) ∈ okhist).
Consequently, cb f.call(m) ↠ okhist is a set that contains an empty message history, hence it
includes the initial state, prompting an alarm.
However, in reality the framework cannot invoke f.call(m) as the first callback (i.e., f.call(m)

is not a realizable message history). Crucially, since the set of realizable message history okhist

of the framework is not available (i.e., it is defined in the framework implementation), Historia
can use separately-provided specifications of realizable message histories. The following informal
specification requires f.call(m) to be preceded by the invocation of cb s=t.subscribe(f) for the
message history to be realizable:

Informal Spec 1: “The framework may only invoke call if subscribe has been invoked in the past,
and unsubscribe has not been invoked since subscribe.”

With this targeted specification, cb f.call(m) ↠ okhist no longer contains the empty message
history and excludes the initial state. Historia therefore (correctly) does not raise an alarm at fwk1.
This transformation of the abstract state from location 5○ to fwk1 is done by an abstract pre-

transformer, which is applied repeatedly to all predecessor transitions of an updated state until
reaching a fixed point. Applying the pre-transformer on the onDestroy callback results in the abstract
state {fwk2 : ci s.unsubscribe() ↠ cb f.call(m) ↠ okhist· ...} denoting the message histories that end
in ci s.unsubscribe() followed by cb f.call(m). Each new abstract state is added to the invariant at a
location as a disjunctive clause (i.e., the fwk location has an invariant of the form {fwk1 ∨fwk2 ∨ ...}).
Continuing so on the buggy version from Figure 2a (and using the necessary specifications)
would yield a state whose abstract message history is cb f.onCreate() ↠ ci s=t.subscribe(l) ↠
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cb l.call(m) ↠ okhist. Note that this state includes the initial state raising an alarm, as it satisfies
the constraint imposed by Informal Spec 1.
As messages are parametrized by symbolic variables, we consider an unbounded number of

possible message instances at each predecessor step. Even if one restricts to one possible message
instance for each callback method, considering all possible predecessor callbacks makes the proof
search exponential. Fortunately, we are able to join abstract states by merging disjunctions, and
merging is required to find a fixed point in most cases. Given a disjunction of abstract states, one
disjunct may be merged with another if the first disjunction implies, or entails, the one it is being
merged with. By merging new abstract states from backward transitions when possible, we can
reach a fixed point on some paths being explored. In Figure 3, for example, fwk4 is merged with fwk3.
No further backward transitions need to be explored from fwk4 because they have been explored
from fwk3.

For presentation, Fig. 3 shows only a few of the transitions and abstract states computed for the
running example. In practice, Historia computes the fixed point at the framework location after
considering all backward transitions and shows that the resultant inductive invariant excludes
the initial state (for the running example with the fix). In other words, it proves that no realizable
message history reaches the assertion violation in the fixed version of AntennaPod.

2.2.2 Callback Control-Flow Temporal Logic (CBCFTL). CBCFTL is a novel language for formally
writing specifications of realizable message histories. A specification written in CBCFTL consists
of a conjunction of history implications. With no history implications, the CBCFTL specification
places no restrictions on the realizable message history. Each additional history implication targets
one message that the framework can control, such as the invocation of the callback call or onCreate.
A history implication𝑚� 𝜔 says that whenever a message satisfying the target abstract message
𝑚 occurs, then the preceding message history must satisfy the temporal formula 𝜔 .1 Temporal
formulas are drawn from a syntactically restricted fragment of past-time linear temporal logic
over finite traces. Such a structure for CBCFTL is natural for three reasons: (1) it allows the
developer of the framework model to target callbacks or callins with history implications as needed,
(2) history implications are compositional, and (3) specifications may be cleanly combined with
abstract message histories to automatically check excludes-initial and entailment (as described in
Section 2.2.3).

For Informal Spec 1, the history implication captures what must be true of the message history
when cb l.call(m) is next. First, there must exist a subscription object s that was returned from
invoking subscribe. This object s must be returned from the same invocation of subscribe that l was
passed to registering the call callback. The subscription object s is the only parameter to the method
unsubscribe which must not have come since the invocation of subscribe. Invoking unsubscribe on
other objects will have no effect on the target call. All of this is captured by History Implication 1.

History Implication 1. For all objects l and m, if the framework invokes l.call(m), then for some
(subscription) object s, the message ci s.unsubscribe() has Not happened Since ci s = _.subscribe(l).

cb l.call(m)� ∃s. ci s.unsubscribe() NS ci s = _.subscribe(l)

Note that since, S, is the past-time dual of until, U, in LTL. The NS operator has a built-in “not”
and restricts nesting to maintain decidability (discussed in Section 4). Underscore _ in the above
specification is simply a shorthand for a locally existentially-quantified variable (i.e., “don’t care”).

A key feature of CBCFTL is that it handles quantified values such as the listener object l and the
subscription object s. Since the history implication applies any time a call is invoked, the listener
1The 𝑚̂� 𝜔 history implication can be seen as the first-order, past-time linear temporal logic formula □(𝑚̂ → Y𝜔 ) that
combines always (or globally) □, implication→, and yesterday (or previous) Y from past-time linear temporal logic (ptLTL).
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object l is universally quantified. Reasoning about such quantifier alternation is often undecidable.
However, the restrictions we have chosen for CBCFTL allow them to be combined with abstract
message histories such that automated reasoning is feasible.

2.2.3 Combining Abstract Message Histories with Callback Control-Flow. Next, we consider how
to interpret and automatically reason about the meaning of abstract message histories. Con-
sider the abstract state just before the call callback with the abstract message history transition,
cb f.call(m) ↠ okhist, which says that the next message must be cb f.call(m). First, excludes-initial
needs to be proven (i.e., this abstract state does not contain the initial state), and then, entailment
checks if it should be merged with any equivalent or weaker abstract states. Both of these steps rely
on a first-order logic encoding of abstract message histories that we explain here. We prove the
resulting first-order logic encoding to be decidable for the excludes-initial judgment and computable
in practice for the entailment judgment.

This encoding starts by combining the abstract state cb f.call(m) ↠ okhist with History Implica-
tion 1. The first step of combining abstract message histories with temporal formula is instantiation
(i.e., the instantiate-yes judgment in Section 5). Intuitively, instantiation turns the "next" message
from the abstract state into requirements on the message history so far. For convenience, the output
of instantiation is represented by the same language of temporal formula as is used in the history
implications. Temporal formula (1) shown below results from instantiating History Implication 1
on the abstract message history cb f.call(m) ↠ okhist. Note how fresh variables are introduced for
the existentially quantified values, but the values from the call are retained.

∃s', t'. ci s'.unsubscribe() NS ci s' = t'.subscribe(f) (1)

Such a temporal formula may be converted to first-order logic and checked for excludes-initial and
entailment via SMT solver as explained in Section 2.2.2.
This temporal formula excludes the initial state because there must exist a subscribe call in the

message history (i.e., the judgment ⊢𝑆 𝜔 excludesinit from section Section 5). Here, we also see
why targeted specification is desirable for performance reasons. Each history implication can add
constraints that prevent states from being merged via entailment. The result of combining two
sound history implications is always sound. However, such combinations may impact performance
by increasing the abstract state disjunctions at a location.
The next abstract message history shown by the invariant map at fwk2 adds the unsubscribe

call, ci s.unsubscribe() ↠ cb f.call(m) ↠ okhist. The previously instantiated formula needs to be
updated for the ci s.unsubscribe() message. That is, we must consider two cases: (1) this unsubscribe

matches the unsubscribe from the previous step (deriving a contradiction), and (2) this unsubscribe

is irrelevant to the previous step. Combining these cases into the temporal formula is referred to
as quotienting (i.e., the Quotient-not-since judgment from Section 5). Additionally, if there was a
history implication targeting unsubscribe, it would also need to be instantiated (since there is not,
the instantiate-no rule applies instead). Combining these steps results in temporal formula (2).

∃s'. (ci s'.unsubscribe() ≠ ci s.unsubscribe()) ∧ ci s'.unsubscribe() NS ci s' = _.subscribe(f) (2)

We attempt to eagerly merge abstract states using entailment. While as noted above fwk4 merges
with fwk3, the abstract states at fwk1 and fwk2 cannot be merged since they restrict the app heap
differently. However for presentation, we illustrate entailment on the abstract message histories
from fwk1 and fwk2, ignoring the app heap. To determine entailment, we algorithmically search for
a message history represented by temporal formula (2) and not by temporal formula (1). If no such
message history exists, then this disjunction has not progressed toward the initial state and can
be dropped. This entailment holds: the added constraint (ci s'.unsubscribe() ≠ ci s.unsubscribe())
simplifies to s' ≠ s and does not add any message histories to the abstraction over those represented
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by temporal formula (1). Note with the abstract app heap, a concrete app heap where f.act points
to a non-null value is represented by fwk2 but not fwk1, so these states may not be merged overall.

3 MESSAGE-HISTORY PROGRAM LOGIC (MHPL)

In this section, we explain the process of proving an application safe by showing no realizable
message history can reach the assertion failure. First, we define the notion of an application-only
transition system that records a message history during execution (Section 3.1). Executions in this
transition system, such as reaching the assertion failure, may be restricted based onwhether they are
realizable (e.g., with a user provided specification). The application-only transition system provides
a concrete semantics for a message-history program logic (MHPL) to reason about realizable
message histories by adding the message history𝜔 to the concrete state as ghost state. Using MHPL,
we can abstract message histories backwards from an assertion proving that no failing message
history is realizable (Section 3.2).

3.1 An Application-Only Transition System with Message Histories

Figure 4 defines the syntax and semantics of a program that uses boundary transitions to provide
semantics to an app absent of the hidden framework implementation. Conceptually, all framework
code is merged within a single framework location fwk (as illustrated in Figure 2a from Section 2).
Our semantics are non-deterministic when the framework chooses the arguments for a callback
invocation or the return value for a callin. Execution simply “gets stuck” on an unrealizable boundary
transition from the framework.
Boundary transitions b append a message to the message history 𝜔 capturing all interaction

between the app and framework. A boundary transition is a crossing of the app-framework boundary
via a callback invocation fwk−[cbmd (𝑥)]� ℓ from the framework back to the app, a callback return
ℓ −[cbret𝑥 ′ md (𝑥)]� fwk from the app into the framework, or a callin invocation ℓ −[ci𝑥 ′ md (𝑥)]� ℓ ′

from the app into the framework and back. App transitions t represent app code, for example,
consisting of standard operations like reading and writing to the application heap. A message
history 𝜔 ::= 𝜀 | 𝜔 ;𝑚 is a sequence of messages with 𝜀 being the empty sequence. The application-
only transition system is parametrized by a set of realizable message histories Ω representing
actions possible under the real framework.
Method names md are a fully qualified and disambiguated name for method procedures. We

assume we can identify a method as being an app (i.e., a callback) method or a framework (i.e., a
callin) method based on the method identifier md (e.g., app methods that override a framework
type are callbacks in the case of Android). The key part of the program state is recording a message
history where messages𝑚 are instances of boundary transitions; that is, a callback invocation with
bound values cbmd (𝑣), a callback return cbret 𝑣 ′ md (𝑣), or a callin invocation ci 𝑣 ′ md (𝑣). Values,
𝑣 , may be compared with equality, created by the app, or created by the framework.

Callbacks and callins use a sequence of parameters as program variables 𝑥 and return a value;
we write a sequence with an overline (e.g., 𝑥 for a sequence of variables). For simplicity, we assume
that variable scoping and shadowing is handled by translation to this language (e.g., via alpha-
renaming). A callback return cbret𝑥 ′ md (𝑥) says that it returns the value in variable 𝑥 ′ — for the
corresponding callback cbmd (𝑥); for simplicity, we assume an A-normal form where program
expressions are evaluated in internal app transitions and bound to variable 𝑥 ′ here. For a callin
invocation ci𝑥 ′ md (𝑥), variable 𝑥 ′ is the variable to bind the return value of the invocation.

We see transitions as control-flow edges between two program locations loc. A program location
can be the framework location fwk or an app location ℓ . The framework location fwk represents all
control locations inside the framework. A program p is then a set of boundary b or app transitions
t for some unspecified syntax of app transitions. Conceptually, a program p is the control-flow
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boundary transitions b ::= fwk−[cbmd (𝑥)]� ℓ | ℓ −[cbret𝑥 ′md (𝑥)]� fwk | ℓ −[ci𝑥 ′md (𝑥)]� ℓ′

app transitions t message histories 𝜔 ::= 𝜀 | 𝜔 ;𝑚 realizable message histories Ω

method names md messages 𝑚 ::= cbmd (𝑣) | cbret 𝑣 ′md (𝑣) | ci 𝑣 ′md (𝑣) values 𝑣

variables 𝑥 program locations loc ::= fwk | ℓ app locations ℓ

programs p ::= ◦ | p, b | p, t program states 𝜎 ::= loc : 𝜇

memories 𝜇 ::= 𝜔 · 𝜅 · 𝜌 app stores 𝜌

boundary stacks 𝜅 ::= ◦ | 𝜅; k boundary activations k ::= cbmd (𝑣) app states 𝜍 ::= ℓ : 𝜌

⟨𝜎, b⟩ ⇓Ω 𝜎′ 𝜎 →Ω
p 𝜎′

c-callback-invoke
𝜔 ; cbmd (𝑣) ∈ Ω

⟨fwk : 𝜔 · 𝜅 · 𝜌, fwk−[cbmd (𝑥)]� ℓ⟩ ⇓Ω ℓ : 𝜔 ; cbmd (𝑣) · 𝜅; cbmd (𝑣) · 𝜌 [𝑥 ↦→ 𝑣]

c-callback-return
𝑚 = cbret 𝜌 (𝑥 ′)md (𝑣) 𝑣 = 𝜌 (𝑥) 𝜔 ;𝑚 ∈ Ω

⟨ℓ : 𝜔 · 𝜅; cbmd (𝑣) · 𝜌, ℓ −[cbret𝑥 ′md (𝑥)]� fwk⟩ ⇓Ω fwk : 𝜔 ;𝑚 · 𝜅 · 𝜌

c-callin-invoke
𝑣 = 𝜌 (𝑥) 𝑚 = ci 𝑣 ′md (𝑣) 𝜔 ;𝑚 ∈ Ω

⟨ℓ : 𝜔 · 𝜅 · 𝜌, ℓ −[ci𝑥 ′md (𝑥)]� ℓ′⟩ ⇓Ω ℓ′ : 𝜔 ;𝑚 · 𝜅 · 𝜌 [𝑥 ′ ↦→ 𝑣 ′]

c-app-step
⟨ℓ : 𝜌, t⟩ ⇓ ℓ′ : 𝜌′ t ∈ p ℓ = pre(t) ℓ′ = post(t)

ℓ : 𝜔 · 𝜅 · 𝜌 →Ω
p ℓ′ : 𝜔 · 𝜅 · 𝜌′

c-boundary-step
⟨𝜎, b⟩ ⇓Ω 𝜎′ b ∈ p

𝜎 →Ω
p 𝜎′

initial program state 𝜎init = fwk : 𝜀 · ◦ · 𝜌init initial app store 𝜌init

Fig. 4. An application-only transition system with boundary transitions and message histories. The message

history𝜔 component of the program state records the execution of boundary transitions b between the app and
framework. We use the judgment 𝜎 →Ω

p 𝜎′ to represent a single step over either an app or boundary transition
in the application. The transition system is parametrized by a set of realizable message histories 𝜔 ∈ Ω.

graph for each app callback augmented with boundary control-flow edges into and back from the
framework location fwk.
A program state 𝜎 is a memory 𝜇, at program location loc, which consists of a message history

𝜔 with a boundary stack 𝜅 and an app store 𝜌 . A boundary stack 𝜅 is a stack ensuring that the
message history consists of matching calls and returns. If we assume that callbacks may not be
nested inside of callbacks, this stack may have at most one activation k. Like app transitions, the
specific form of app stores 𝜌 is unspecified, except we assume it supports looking up the value for
an app variable 𝜌 (𝑥) and initializing variables 𝜌 [𝑥 ↦→ 𝑣]. An app state 𝜍 is then a pair of an app
location ℓ and an app store 𝜌 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 289. Publication date: October 2023.



289:12 Shawn Meier, Sergio Mover, Gowtham Kaki, and Bor-Yuh Evan Chang

Boundary transitions b are particularly interesting as they capture the non-deterministic or
unobserved behavior of the framework and record the action in the “ghost state” 𝜔 for the message
history. The boundary transition judgment form ⟨𝜎, b⟩ ⇓Ω 𝜎 ′ says, “In program state 𝜎 , executing
the boundary transition b results in an updated program state 𝜎 ′ and is realizable under realizable
message histories Ω.” This judgment form captures the realizable executions of boundary transitions.
To execute a callback invocation transition fwk−[cbmd (𝑥)]� ℓ via rule c-callback-invoke, the
program state is at the framework location fwk, values 𝑣 are chosen for the callback parameters 𝑥
non-deterministically (conceptually by the framework) and initialized in the app store 𝜌 [𝑥 ↦→ 𝑣], and
the callback activation cbmd (𝑣) is pushed on the boundary stack 𝜅 . Then to record this boundary
transition execution, this callback message cbmd (𝑣) is appended onto the current message history
𝜔 . We want to capture that depending on the current message history 𝜔 , this callback invocation
transition may not be realizable. This realizability of message histories is captured by checking if
the new message history is realizable with 𝜔 ; cbmd (𝑣) ∈ Ω.
Executing a callback return transition ℓ −[cbret𝑥 ′ md (𝑥)]� fwk via rule c-callback-return is

then the expected symmetric operation. The return value is read out of the app store 𝜌 (𝑥 ′), the
callback activation cbmd (𝑣) is popped off the boundary stack, and control goes into the framework
location fwk. The premise 𝑣 = 𝜌 (𝑥) enforces that argument variables are not modified by the
callback which simplifies the formalism. The callback return message cbret 𝜌 (𝑥 ′)md (𝑣) is similarly
appended onto the current message history 𝜔 to record the execution of the callback return
transition — and checked for realizability. Note that to connect the callback invocation with its
return, the callback return message includes the method name md and actual arguments 𝑣 from
the callback activation.
The callin invocation transition ℓ −[ci𝑥 ′ md (𝑥)]� ℓ ′ via rule c-callin-invoke is symmetric to

callback invocation and return together, that is, the arguments for the callin 𝑣 are read from
the app store, and the callin return value from the framework 𝑣 ′ is chosen non-deterministically
(conceptually by the framework) and then bound to variable 𝑥 ′. Then, the callin message ci 𝑣 ′ md (𝑣)
is appended onto the current message history𝜔 and checked for realizability. It should be noted that
c-callback-invoke, c-callback-return, and c-callin-invoke together capture that the framework
cannot modify the app store 𝜌 except through invoking callback methods. This formalizes one
aspect of the so-called separate compilation assumption of Ali and Lhoták [2012], which considers
the consequences of the assumption that framework is developed separately and compiled in the
absence of the app. As a consequence of these semantics checking realizability at each boundary
transition, every prefix of a realizable message history must also be realizable.
The application-only transition system is then given by the transition relation judgment form

𝜎 →Ω
p 𝜎 ′ that says, “Program state 𝜎 steps to 𝜎 ′ in program p by either a boundary transition b

or app transition t under realizable message histories Ω.” Straightforwardly, the c-app-step and
c-boundary-step rules simply state that we can either take a step with an app transition t or a
boundary transition b in the program p (depending on the program location). The transition seman-
tics of app transitions are left unspecified ⟨𝜍, t⟩ ⇓ 𝜍 ′. We assume that app transitions themselves do
not read or write framework state directly, as the app store 𝜌 is separate from the framework state.
And finally, concrete executions are given by the reflexive-transitive closure of this single-step
transition relation from an initial program state 𝜎init. We write 𝜎 →∗Ω

𝑝 𝜎 ′ for the reflexive-transitive
closure of 𝜎 →Ω

p 𝜎 ′.

3.2 Refuting Callback Reachability with Message-History Program Logic

The ultimate aim of MHPL is to prove statically that a program assertion cannot fail. We start with
the error condition, 𝜎̂ , an abstract state just before the assertion such that the assertion may fail (e.g.,
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f.act ↦� null from the running example in Section 2 representing app memories where there exists a
framework object with a null act field). We refute the reachability of the error condition with the
judgment form ⊢𝑆p 𝜎̂ unreach. This judgment form is read as, “No concrete program state satisfying
the abstract state 𝜎̂ is reachable in program p with realizable message history specification 𝑆 .”
We use CBCFTL, defined in Section 4, to abstract the set of reachable message histories Ω in the
concrete semantics. We use the judgment 𝜔 |= 𝑆 to say that a message history 𝜔 is captured by a
specification 𝑆 and note the set of message histories in a specification as Ω𝑆 (i.e., the concretization
of a specification 𝑆 is the set of message histories Ω𝑆 ). Since the specification is an input to our
algorithm, we assume that 𝑆 is a sound abstraction of realizable message histories (i.e., Ω𝑆 ⊆ Ω for
the set of realizable message histories Ω in the concrete semantics).

Our proof technique works in a goal-directed manner: we over-approximate the set of the states
that may reach the given error condition 𝜎̂ with a program-state invariant, Σ̂. If the initial program
state 𝜎init : fwk : 𝜀 · ◦ · 𝜌init is excluded from the program state-invariant, Σ̂, then the location of 𝜎̂
cannot be reached with any concrete state satisfying abstract state error condition 𝜎̂ . For some
abstract state 𝜎̂ , the excludes-initial judgment, ⊢𝑆 𝜎̂ excludesinit, holds only if the concretization
of 𝜎̂ must not contain the initial state 𝜎init. While an abstract state 𝜎̂ may be excludes-initial in
any of its components (e.g., the abstract app store), the particularly interesting component here is
its abstract message history 𝜔 . Thus, in subsequent sections, we focus in on the excludes-initial
judgment on abstract message histories. Excludes-initial for message histories, ⊢𝑆 𝜔 excludesinit,
holds if 𝜀 is not in the concretization of 𝜔 .

3.2.1 An Abstract Semantics with Message Histories. In Figure 5, we define MHPL, which abstracts
the application-only transition system from Section 3.1, to derive refutations with respect to
message histories. To abstract messages𝑚, we replace concrete values with symbolic variables 𝑥 .
Symbolic variables are existentially quantified across each part of the abstract program state with
an assignment, 𝜃 . That is, a concrete state 𝜎 satisfies the concretization relation of an abstract state,
𝜎̂ (i.e., 𝜎 |= 𝜎̂) if a 𝜃 exists such that each part of 𝜎 satisfies the concretization relation with each
part of 𝜎̂ (e.g., 𝜔 · 𝜃 |=𝑆 𝜔).
An abstract message history 𝜔 captures the set of message histories reaching a given program

location loc under the realizable message history specification 𝑆 . An abstract message history
can be okhist, which corresponds to all realizable message histories under 𝑆 . Note that since we
only care about realizable message histories, we do not include a ⊤ abstract message history
corresponding to all message histories. Since our logic explores backwards, it adds constraints on
future boundary transitions to the abstract message history 𝜔 as they are encountered. The key is
to see this constraint as an ordered linear implication on the right𝑚 ↠ 𝜔 , which informally says,
“For all messages satisfying𝑚, appending that message to the current message history implies that
the new message history satisfies 𝜔 .” In the middle part of Figure 5, we give a precise concretization
relation between a message history with an assignment 𝜔 · 𝜃 and an abstract message history:
𝜔 · 𝜃 |=𝑆 𝜔 .

The rest of an abstract program state is straightforward. We do not care specifically about the
form of abstract app stores, except that like concrete app stores, we need a way to look up a
(symbolic) value for a variable and to initialize variables. To do that, we use intuitionistic separation
logic [Ishtiaq andO’Hearn 2001; Reynolds 2002] to indicate arbitrary store⊤, separating-conjunction
of two stores 𝜌̂1 ∗ 𝜌̂2, a singleton points-to or cell for program variables 𝑥 ↦� 𝑥 , an infeasible store
⊥, or a disjunction of stores 𝜌̂1 ∨ 𝜌̂2, which we usually consider in disjunctive normal form. An
abstract app state 𝜍̂ ::= ℓ : 𝜌̂ | · · · is then an abstract app store and location ℓ . An abstract memory
𝜇̂ ::= 𝜔 · 𝜅̂ · 𝜌̂ | · · · is then a product of an abstract message history 𝜔 , an abstract boundary stack 𝜅̂,
and an abstract store 𝜌̂ — or a disjunction of such products. An abstract program state 𝜎̂ ::= loc : 𝜇̂ is
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abstract messages 𝑚̂ ::= cbmd (𝑥) | ci𝑥 ′md (𝑥) | cbret𝑥 ′md (𝑥) symbolic variables 𝑥

assignments 𝜃 ::= ◦ | 𝜃 [𝑥 ↦→ 𝑣] abstract message histories 𝜔 ::= okhist | 𝑚̂ ↠ 𝜔

realizable message histories specs 𝑆 abstract app stores 𝜌̂ ::= ⊤ | 𝜌̂1 ∗ 𝜌̂2 | 𝑥 ↦� 𝑥 | · · · | ⊥ | 𝜌̂1 ∨ 𝜌̂2

abstract app states 𝜍̂ ::= ℓ : 𝜌̂ abstract memories 𝜇̂ ::= 𝜔 · 𝜅̂ · 𝜌̂ | ⊥ | 𝜇̂1 ∨ 𝜇̂2

abstract program states 𝜎̂ ::= loc : 𝜇̂ abstract boundary stacks 𝜅̂ ::= ⊤ | 𝜅̂1 • cbmd (𝑥)

abstract program-state invariants Σ̂ ::= ◦ | Σ̂, 𝜎̂

𝜔 · 𝜃 |=𝑆 𝜔

𝜔 · 𝜃 |=𝑆 okhist iff 𝜔 |= 𝑆 𝜔 · 𝜃 |=𝑆 𝑚̂ ↠ 𝜔 iff 𝑚 · 𝜃 |= 𝑚̂ implies 𝜔 ;𝑚 · 𝜃 |=𝑆 𝜔 and 𝜔 ;𝑚 |= 𝑆

⊢ {𝜎̂′} b {𝜎̂}
a-callback-invoke

⊢ {fwk : cbmd (𝑥) ↠ 𝜔 · 𝜅̂ · 𝜌̂} fwk−[cbmd (𝑥)]� ℓ {ℓ : 𝜔 · 𝜅̂ • cbmd (𝑥) · 𝜌̂ ∗ ∗𝑥 ↦� 𝑥}

a-callback-return
𝜌̂ = 𝜌̂

′ ∗ 𝑥 ′ ↦� 𝑥 ′ ∗ ∗𝑥 ↦� 𝑥

⊢ {ℓ : cbret𝑥 ′md (𝑥) ↠ 𝜔 · 𝜅̂ • cbmd (𝑥) · 𝜌̂} ℓ −[cbret𝑥 ′md (𝑥)]� fwk {fwk : 𝜔 · 𝜅̂ · 𝜌̂}

a-callin-invoke
𝜌̂ = 𝜌̂

′ ∗ ∗𝑥 ↦� 𝑥

⊢ {ℓ : ci𝑥 ′md (𝑥) ↠ 𝜔 · 𝜅̂ · 𝜌̂} ℓ −[ci𝑥 ′md (𝑥)]� ℓ′ {ℓ′ : 𝜔 · 𝜅̂ · 𝜌̂ ∗ 𝑥 ′ ↦� 𝑥 ′}

Σ̂ ⊢𝑆 b

a-boundary-step
Σ̂(post(b)) ⊢𝑆 𝜎̂ ⊢ {𝜎̂′} b {𝜎̂} 𝜎̂

′ ⊢𝑆 Σ̂(pre(b))
Σ̂ ⊢𝑆 b

Σ̂ ⊢ t

a-app-step
app(Σ̂(post(t))) ⊢ 𝜍̂ ⊢ {̂𝜍 ′} t {̂𝜍} 𝜍̂

′ ⊢ app(Σ̂(pre(t)))
Σ̂ ⊢ t

Σ̂ ⊢𝑆p 𝜎̂ ⊢𝑆p 𝜎̂ unreach

a-inductive
𝜎̂ ⊢𝑆 Σ̂(loc(𝜎̂)) Σ̂ ⊢𝑆 b for all b ∈ p Σ̂ ⊢ t for all t ∈ p

Σ̂ ⊢𝑆p 𝜎̂

a-refute
Σ̂ ⊢𝑆p 𝜎̂ ⊢𝑆 Σ̂(fwk) excludesinit

⊢𝑆p 𝜎̂ unreach

Fig. 5. Refuting callback reachability with a MHPL. We abstract the application-only transition system with

Hoare triples over app and boundary transitions and an abstract program state invariant Σ̂. The location of

an abstract state is noted with loc(𝜎̂) and looking up the state at a location in the invariant is noted with

Σ̂(loc). Executing backwards, an abstract message history 𝜔 becomes conditional in messages observed in

the future execution. An abstract realizable message history 𝑆 is parameter and is the abstract analogue of

the concrete set of realizable message histories Ω.
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simply an abstract memory 𝜇̂ at a program location loc. For abstract boundary stacks 𝜅̂, we consider
arbitrary boundary stacks ⊤, or appending a boundary activation 𝜅̂ • cbmd (𝑥). Finally, we consider
abstract program-state invariants Σ̂ to be a set of abstract program states 𝜎̂ , which we also treat as
a map from locations loc to the abstract state 𝜎̂ at that location (i.e., Σ̂(loc) = 𝜎̂ iff 𝜎̂ = loc : 𝜇̂ and
𝜎̂ ∈ Σ̂).

We describe the abstract semantics of boundary transitions b as Hoare triples ⊢ {𝜎̂′} b {𝜎̂},
except that we are interested in backwards over-approximating triples instead of forwards. That
is, we read the judgment as, “If there is an execution of the boundary transition b to a post-state
satisfying 𝜎̂ , the pre-state of that execution satisfies 𝜎̂′” (Lemma 3.1).

Lemma 3.1 (hoare triple soundness). If ⊢ {𝜎̂′} b {𝜎̂} and ⟨𝜎 ′, b⟩ ⇓Ω 𝜎 such that 𝜎 |=𝑆 𝜎̂ and
Ω ⊆ Ω𝑆 , then 𝜎 ′ |=𝑆 𝜎̂

′.

The abstract semantics rules for boundary transitions b follow closely their concrete counterparts
(assuming a structural rule for disjunction of memories 𝜇̂). The a-callback-invoke rule captures
computing the pre-condition of the callback invocation transition fwk−[cbmd (𝑥)]� ℓ and shows
moving from an assertion on the abstract boundary stack 𝜅̂ • cbmd (𝑥) to a hypothetical next
message in the abstract message history cbmd (𝑥) ↠ 𝜔 . In detail, it first asserts that the post-app
memory has bindings for the callback parameters 𝜌̂ ∗ ∗𝑥 ↦� 𝑥 and has the corresponding callback
activation on top of the boundary stack 𝜅̂ • cbmd (𝑥). Then, we drop the parameter bindings and
pop the callback activation. Finally, we update the abstract message history with the abstract
message corresponding to the callback invocation, cbmd (𝑥) ↠ 𝜔 . As an example from Section 2,
the abstract state { 5 : okhist · f.act ↦� null∗ this ↦� f } just after the entry of call produces the pre-state
{ fwk1 : cb f.call(m) ↠ okhist · f.act ↦� null } at the framework location which proceeds call.
Continuing to mirror the abstract semantics, the a-callback-return rule pushes a hypothetical

callback message on the boundary stack corresponding to the callback that would have just re-
turned in the concrete execution. Similar to abstract callback invoke (a-callback-invoke), abstract
callback return (a-callback-return) and abstract callin invoke (a-callin-invoke) add hypotheti-
cals to the abstract message history. The main difference is how each updates the abstract app
store. For a-callback-return, the return value and its relationship to other symbolic variables is
unknown, therefore we ensure that the separation logic domain has materialized return values
and arguments for the callback via 𝜌̂

′ ∗ 𝑥 ′ ↦� 𝑥 ′ ∗ ∗𝑥 ↦� 𝑥 . For example, the post state from the
running example is transferred over the return of the onDestroy callback to produce the pre-state
{ 9 : cbret f2.onDestroy() ↠ cb f.call(m) ↠ okhist · . . . }. Note that we elide the return value here,
as onDestroy is void. The value f2 may or may not alias f, as there is a case split from the separation
logic materialization (Figure 3 from Section 2 shows just the aliased case).
Finally, a-callin-invoke removes a program variable from the post app store corresponding to

the return value and introduces fresh symbolic variables to the pre-store bound to the arguments
of the callin invoke. For example, the post state { 3 : ... ↠ okhist · task ↦� t ∗ this ↦� f } transferred
over the create call creates the pre-state { 2 : ci t = create(...) ↠ ... ↠ okhist · this ↦� f }.
We write app(𝜎̂) = 𝜍̂ for the projection of an abstract program state 𝜎̂ to an abstract app state

𝜍̂ that drops the abstract message history 𝜔 and abstract boundary stack 𝜅̂ components. The app
transitions are checked for being inductive in the analogous way with the a-app-step rule defining
the judgment form Σ̂ ⊢ t, which similarly depends on an abstract semantics for app transitions
⊢ {̂𝜍 ′} t {̂𝜍} and an entailment judgment for abstract app states 𝜍̂ ⊢ 𝜍̂

′.
We then check that the abstract program-state invariants Σ̂ are inductive for executing backwards

a given boundary transition b with the judgment form Σ̂ ⊢𝑆 b. This judgment says, “In abstract
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program-state invariants Σ̂, executing boundary transition b backwards is inductive when con-
strained by realizable message histories defined by specification 𝑆 .” The a-boundary-step defines
this judgment and captures the backwards over-approximation. Specifically, it depends on an
entailment judgment 𝜎̂ ⊢𝑆 𝜎̂

′ that is parametrized by the realizable message histories specification 𝑆
(i.e., it should satisfy the following soundness condition: if 𝜎̂ ⊢𝑆 𝜎̂

′ and 𝜎 |=𝑆 𝜎̂ , then 𝜎 |=𝑆 𝜎̂
′). To get

the post- and pre-locations of a boundary transition b, we write post(b) and pre(b), respectively.
Then, the rule chooses some 𝜎̂ that over-approximates Σ̂(post(b)) — i.e., Σ̂(post(b)) ⊢𝑆 𝜎̂ , applies
the abstract semantics for b — i.e., ⊢ {𝜎̂′} b {𝜎̂}, and checks that Σ̂(pre(b)) over-approximates 𝜎̂′

— i.e., 𝜎̂′ ⊢𝑆 Σ̂(pre(b)). This rule is the backwards over-approximating version of the usual Hoare
rule of consequence. A similar judgment may be written for an app transition Σ̂ ⊢ t (e.g., as in
Blackshear et al. [2013]). For clarity, the semantics is written with explicitly materialized points-to
for message arguments and return values (e.g., ∗𝑥 ↦� 𝑥 ). If such values do not otherwise constrain
the abstract state, they may be summarized into the top store ⊤ without precision loss.

Lemma 3.2 (boundary-step soundness). If Σ̂ ⊢𝑆 b and ⟨𝜎 ′, b⟩ ⇓Ω 𝜎 such that 𝜎 |=𝑆 Σ̂(post(b))
and Ω ⊆ Ω𝑆 , then 𝜎 ′ |=𝑆 Σ̂(pre(b)).

To describe an inductive program invariant, we define themay-witness judgment form Σ̂ ⊢𝑆p 𝜎̂ that
says, “Abstract program-state invariants Σ̂ is inductive executing backwards from abstract program
state 𝜎̂ — at location loc(𝜎̂) — in program p.” The a-inductive rule that defines this judgment form
simply checks that each boundary transition b and each app transition t in program p are inductive.

Lemma 3.3 (inductive soundness). If Σ̂ ⊢𝑆p 𝜎̂ and 𝜎 ′ →∗Ω
𝑝 𝜎 such that 𝜎 |=𝑆 𝜎̂ and Ω ⊆ Ω𝑆 , then

𝜎 ′ |=𝑆 Σ̂(loc(𝜎 ′)).

Finally, to derive a refutation of reachability ⊢𝑆p 𝜎̂ unreach, the a-refute rule says that we derive
an inductive program invariant Σ̂ from 𝜎̂ — i.e., Σ̂ ⊢𝑆p 𝜎̂ , and we derive that the program invariant at
the entry location fwk excludes the initial (concrete) program state — i.e., ⊢𝑆 Σ̂(fwk) excludesinit.

Theorem 3.4 (refute soundness). If ⊢𝑆p 𝜎̂ unreach and 𝜎 ′ →∗Ω
𝑝 𝜎 such that 𝜎 |=𝑆 𝜎̂ and Ω ⊆ Ω𝑆 ,

then 𝜎 ′ ≠ 𝜎init .

3.2.2 Abstract Interpretation with Message Histories. While we have described a checking system
with the may-witness judgment form Σ̂ ⊢𝑆p 𝜎̂ , we can consider a direct approach to computing an
inductive program invariant Σ̂ from an error condition 𝜎̂ via a backwards abstract interpretation.
The invariant map Σ̂ is initialized with the error condition just before the assertion (okhist · ⊤ · 𝜌̂
where 𝜌̂ negates the assertion condition) and ⊥ at other locations. We then proceed with a standard
worklist algorithm. When the invariant map is updated at a location, all transitions to that location
are added to the worklist. Each transition in the worklist and abstract state at the post-location
are processed by a transfer function (based on the Hoare triples defined above) producing a pre-
condition that is joined into the invariant map. Pre-conditions at a location are eagerly merged
with existing disjuncts both to avoid an updated state at a location and for efficiency. Merging is
done automatically via the entailment check, 𝜔 · 𝜅̂ · 𝜌̂ ⊢𝑆 𝜔

′ · 𝜅̂′ · 𝜌̂′. If a new pre-condition cannot be
merged with an existing disjunct, it is added to the existing disjunctions. At the framework location
fwk, all callback return boundary transitions, ℓ −[cbret𝑥 ′ md (𝑥)]� fwk, are added to the worklist.
We alarm if we cannot prove that the invariant at fwk excludes initial. If a fixed point is reached
that excludes the initial state, ⊢𝑆 𝜔 · 𝜅̂ · 𝜌̂ excludesinit, then we have refuted the reachability of the
assertion failure. Intuitively, we have now captured the abstract state at all locations that may step
to the assertion failure, and excludes initial is proving that no message history can go from the
initial state of the program to the assertion and fail.
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Excludes-initial, ⊢𝑆 𝜔 excludesinit, and entailment of abstract message histories, 𝜔 ⊢𝑆 𝜔 are
automated via SMT (and described in Section 5). Existing techniques can combine the message
history SMT encoding with other parts of the abstract state (e.g., using Piskac et al. [2013] for
separation logic).

4 CALLBACK CONTROL-FLOW TEMPORAL LOGIC (CBCFTL)

In this section, we describe the Callback Control-Flow Temporal Logic (CBCFTL) that we use to
express the specification 𝑆 of the realizable message histories. We design CBCFTL as a compromise
between the expressiveness required to specify callback control flow and the need of the abstract
interpretation to automate judging excludes-initial (⊢𝑆 𝜔 excludesinit) and entailment (𝜔 ⊢𝑆 𝜔

′),
which are parametric in the specification language used to express 𝑆 .

As we observe in Section 2, a specification of realizable message histories must be able to express:
(1) quantification over message values (e.g., the subscription object s from History Implication 1);
and (2) constraints on what messages must have or have not happened in the past (e.g., subscribe or
unsubscribe). These requirements suggest CBCFTL should be a linear temporal logic (LTL) [Manna
and Pnueli 1992] interpreted over finite sequences (i.e., message histories) [Giacomo and Vardi 2013],
with first-order quantification of message arguments, and past-time temporal operators [Lichtenstein
et al. 1985]. In principle, the excludes-inital and entailment judgment could be reduced to checking
the satisfiability of first-order LTL (FO-LTL) formulas, but it is undecidable [Song and Wu 2016]
and is limited in ready-to-use implementations.

Instead, we restrict the CBCFTL syntax such that reasoning about message histories leading to
a target message is decidable (i.e., with history implications consisting of a target message and
temporal formula). In Section 5, we show that such a problem can be in turn reduced to the satisfia-
bility of the fragment of temporal formulas of CBCFTL. We show how to use such a subproblem to
decide the excludes-initial (⊢𝑆 𝜔 excludesinit) judgment and to obtain a semi-algorithm for judging
entailment (𝜔 ⊢𝑆 𝜔

′). The syntactic restriction of CBCFTL carefully controls the use of features
of the logic, such as negation and quantifier alternation, that complicate automated reasoning. In
particular, the restrictions are such that we can encode a temporal formula 𝜔 of CBCFTL in an
equisatisfiable formula in the Extended Effectively Propositional (Extended EPR) logic [Korovin
2013; Padon et al. 2017]. This section first gives the syntax and semantics of CBCFTL and then
explains the encoding of the temporal formula fragment in Extended EPR.

4.1 A Temporal Logic for Expressing Realizable Message Histories

Figure 6 describes the CBCFTL syntax and semantics. A CBCFTL specification 𝑆 is a conjunction
of history implications 𝑠 ::= 𝑚 � 𝜔 . Each history implication targets an abstract message, 𝑚,
controlled by the framework (e.g., invocation of the call callback) and a temporal formula, 𝜔 , that
must hold before the framework outputs that message. While not captured in the syntax, history
implications 𝑠 are closed formulas where the variables of the abstract message in the antecedent are
implicitly universally quantified, and we assume that the temporal formula 𝜔 in the consequent is
quantified so that its free variables are a subset of the variables of𝑚 (i.e., fv(𝜔) ⊆ fv(𝑚) where fv(·)
yields the set of free variables of a formula). Section 5 will explain how abstract message histories
combine with history implications leaving only temporal formula, which motivates this design.

Temporal formulas 𝜔 include restricted versions of standard past-time temporal operators (O𝑚

for Once, HN 𝑚 for Historically Not, and 𝑚2 NS 𝑚1 for Not Since), equality and disequality
between variables, and positive Boolean combinations. In particular, the temporal operators apply
only to individual symbolic messages𝑚 and do not allow for explicit negations (although some
negations are implicit in the history implication� and in the temporal operators HN and NS).
Symbolic messages𝑚 are essentially abstract messages𝑚, except we allow for a local existential
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quantification of variables ∃𝑥 .𝑚, which is convenient for “don’t care” arguments (e.g., the _ in
History Implication 1). The structure of CBCFTL specifications 𝑆 also limits the nesting of the
temporal operators: past temporal operators are always nested in a future temporal operator (�),
and the only future temporal operator is history implication𝑚� 𝜔 . While not explicitly shown
in the syntax, we also restrict quantifiers such that ∀𝑥 .𝜔 may only contain conjunctions and
disjunctions of HN𝑚 and equality/disequality of symbolic variables.

The most interesting part of temporal formulas 𝜔 are the temporal operators: HN𝑚 states that
𝑚 has historically not (i.e., has never) occurred in the past, O𝑚 that𝑚 occurred at least once in the
past, and𝑚2 NS𝑚1 that𝑚2 has not occurred since𝑚1 occurred. The operators restrict standard
past-time temporal operators so that for a given message𝑚, we either positively look back for the
time𝑚 occurs or negatively rule out𝑚 at each time in the past. Thus, the O𝑚 operator is directly
the Once operator from past-time LTL, while HN𝑚 and𝑚2 NS𝑚1 are syntactic restrictions for the
appropriate negations within Historically and Since (i.e.,HN𝑚

def
= H ¬𝑚 and𝑚2 NS𝑚1

def
= ¬𝑚2 S𝑚1

in past-time LTL). Additionally, we allow standard boolean combinations of operators as well as
equality of variables.
A model of a specification 𝑆 is a (concrete) message history 𝜔 , which is a finite sequence of

messages𝑚. Message histories 𝜔 are zero-indexed by positions 𝑖 ∈ [0, len(𝜔)), and we write 𝜔 [𝑖]
for the message at position 𝑖 in 𝜔 and len(𝜔) for the length of 𝜔 . A message history satisfies a
history implication 𝜔 |= 𝑚� 𝜔 iff for all positions 𝑖 in the message history (i.e., 𝑖 ∈ [0, len(𝜔)]), if
a concrete message𝑚 with an assignment for its variables 𝜃 models𝑚 and is 𝜔 [𝑖], then the prefix of
𝜔 up to 𝑖 − 1 must satisfy the temporal formula 𝜔 (under the assignment 𝜃 ). A model for a temporal
formula 𝜔 is a tuple 𝜔 · 𝜃 · 𝑖 of a message history, an assignment, and a position in 𝜔 . The past-time
temporal operators apply to the prefix of the message history 𝜔 up to (and including) position 𝑖 ,

CBCFTL specification 𝑆 ::= true | 𝑆1 ∧ 𝑆2 | 𝑠 history implication 𝑠 ::= 𝑚̂� 𝜔

temporal formula 𝜔 ::= O𝑚 | HN𝑚 | 𝑚2 NS𝑚1 | ∃𝑥 .𝜔 | ∀𝑥 .𝜔 | 𝜔1 ∧ 𝜔2 | 𝜔1 ∨ 𝜔2 | 𝑥1 = 𝑥2 | 𝑥1 ≠ 𝑥2

symbolic messages 𝑚 ::= 𝑚̂ | ∃𝑥 .𝑚

𝜔 |= 𝑆 𝜔 |= 𝑚̂� 𝜔 iff 𝑚 · 𝜃 |= 𝑚̂ such that 𝜔 [𝑖] =𝑚 implies 𝜔 · 𝜃 · 𝑖 − 1 |= 𝜔

𝜔 · 𝜃 · 𝑖 |= 𝜔 𝜔 · 𝜃 · 𝑖 |=𝑚2 NS𝑚1 iff ∃ 𝑗 ∈ [0, 𝑖] . 𝜔 · 𝜃 · 𝑗 |=𝑚1 and ∀𝑘 ∈ ( 𝑗, 𝑖] . 𝜔 · 𝜃 · 𝑘 ̸ |=𝑚2

𝜔 · 𝜃 · 𝑖 |= O𝑚 iff ∃ 𝑗 ∈ [0, 𝑖] . 𝜔 · 𝜃 · 𝑗 |=𝑚 𝜔 · 𝜃 · 𝑖 |= HN𝑚 iff ∀𝑘 ∈ [0, 𝑖] . 𝜔 · 𝜃 · 𝑘 ̸ |=𝑚

𝜔 · 𝜃 · 𝑖 |=𝑚

𝜔 · 𝜃 · 𝑖 |= 𝑚̂ iff 𝑚 · 𝜃 |= 𝑚̂ and 𝜔 [𝑖] =𝑚 𝜔 · 𝜃 · 𝑖 |= ∃𝑥 .𝑚 iff ∃𝑣 . 𝜔 · 𝜃 [𝑥 ↦→ 𝑣] · 𝑖 |=𝑚

Fig. 6. Syntax and semantics of callback control-flow temporal logic (CBCFTL). CBCFTL is a subset of

first-order linear temporal logic (FO-LTL) that describes a set of realizable message histories. A CBCFTL

specification 𝑆 is a conjunction of history implications 𝑚̂ � 𝜔 . Temporal formulas 𝜔 include restricted

versions of standard past-time temporal operators that apply only to individual symbolic messages𝑚 with

limited negation O (Once), HN (Historically Not), and NS (Not Since). While not shown in the syntax here,

the subformula 𝜔 of universal quantification ∀𝑥 .𝜔 is further restricted to HN𝑚 or the propositional forms to

limit quantifier alternation.
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and the relation is undefined for any position outside the valid range of indices of the message
history 𝜔 (e.g., −1).

The temporal operators captures the looking back “positively” for a message (e.g., for O𝑚, there
must exist a 𝑗 ∈ [0, 𝑖] where the message at 𝑗 models𝑚 — i.e., 𝜔 · 𝜃 · 𝑗 |=𝑚) or “negatively” when
ruling out one (i.e., for HN 𝑚, all the messages at 𝑘 ∈ [0, 𝑖] must not model 𝑚). The temporal
operator 𝑚2 NS 𝑚1 is a more general version combining “positively” looking for 𝑚1 (i.e., ∃ 𝑗 ∈
[0, 𝑖] . 𝜔 · 𝜃 · 𝑗 |= 𝑚1) while “negatively” ruling out𝑚2 (i.e., ∀𝑘 ∈ ( 𝑗, 𝑖] . 𝜔 · 𝜃 · 𝑘 ̸ |= 𝑚2). All three
temporal formula reference the judgment 𝜔 · 𝑖 ·𝑚 |=𝑚 to match a symbolic message to a position 𝑖
in a message history 𝜔 under a variable assignment 𝜃 .

4.2 Encoding Temporal Formula Into Extended EPR

Here, we describe how we encode temporal formula into Extended EPR [Korovin 2013; Padon
et al. 2017], a decidable fragment of first-order logic. In brief, effectively propositional (EPR) is
a first-order logic fragment where closed formulas converted into prenex normal form have the
quantifier prefix ∃∀ without any function symbols. Extended EPR adds function symbols as long
as the quantifier alternation graph does not contain cycles. The quantifier alternation graph is a
directed graph where the nodes are sorts and the edges are defined by functions (or ∀𝑥 .∃𝑦. . . .)
from the sort of the argument to the sort of the value.
To encode a temporal formula 𝜔 , we model message histories 𝜔 with uninterpreted func-

tions over uninterpreted sorts. We use an uninterpreted function hist : HistIdx → Msg from
history indices HistIdx to message instancesMsg. To capture message instances, we use a function
msgname : Msg → MsgName from message instances to message names MsgName (i.e., represent-
ing the message kind, like cb, and the method name) and a functionmsgargs : Msg → ArgIdx → Val
frommessages instances to arguments indicesArgIdx to valuesVal (i.e., representing the arguments
of the message instance).

Then to describe ordering constraints on messages in a message history, we use a set of ordering
axioms (referred to as𝜓ax). We use an uninterpreted function ≤: HistIdx → HistIdx → Bool and
axiomatize a total ordering on HistIdx (like Padon et al. [2017]), as well as an axiom for zero (i.e.,
∀idx ∈ HistIdx. 0 ≤ idx where 0 is a variable). Argument indices ArgIdx are finite and bounded
to the largest arity found in the framework methods. Message names MsgName are also finite
and bounded by the framework interface definition. As such, we precisely represent the needed
ordering constraints on messages in message histories.

Given the above, the encoding of temporal formula 𝜔 is now direct. We can encode an abstract
message 𝑚 (i.e., an unquantified symbolic message𝑚) at an index idx ∈ HistIdx using the hist,
msgname, and msgargs functions. To be able to encode the length of a message history, we introduce
a distinguished variable len. Then, we can encode the past-time temporal operators (O𝑚, HN𝑚,
and𝑚2 NS𝑚1) using the encoding of an abstract message at an index, 0, ≤, and len. Here, we
leverage the restriction that the temporal operators apply only to individual symbolic messages𝑚.
With respect to Extended EPR, it is clear that the quantifier alternation graph from the function
symbols is acyclic. And then, the encoding of temporal formula𝜔 described above stays in Extended
EPR because of the careful control of negation to prevent introducing any ∀∃ edges.

5 COMBINING ABSTRACT MESSAGE HISTORIES WITH CALLBACK CONTROL-FLOW

MHPL from Section 3 depends on two judgments, excludes initial ⊢𝑆 𝜔 excludesinit and entailment
𝜔 ⊢𝑆 𝜔

′. Excludes initial says that abstract message history, 𝜔 , excludes the initial, empty message
history. Message history 𝜔 entailing a second message history 𝜔

′ says that all concrete traces
abstracted by 𝜔 are also abstracted by 𝜔

′. Both of these judgments depend on the CBCFTL specifica-
tion from Section 4 for a definition of realizable message histories. For each abstract message history,
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⊢𝑆 𝜔 ≡ 𝜔

temporal-okhist

⊢𝑆 okhist ≡ true

temporal-hypmsg
𝑆, 𝑚̂1 ⊢ 𝜔 ′

1 ⊢𝑆 𝜔2 ≡ 𝜔2 ⊢ 𝜔2 ≡ 𝜔 ′
2 # 𝑚̂1

⊢𝑆 𝑚̂1 ↠ 𝜔2 ≡ 𝜔 ′
1 ∧ 𝜔 ′

2

𝑆, 𝑚̂ ⊢ 𝜔 ⊢ 𝜔 ≡ 𝜔 ′ # 𝑚̂

instantiate-yes
𝑚̂1 ≃𝜗 𝑚̂2

(𝑚̂2 � 𝜔), 𝑚̂1 ⊢ [𝜗]𝜔

instantiate-no
𝑚̂1 ; 𝑚̂2

(𝑚̂2 � 𝜔), 𝑚̂1 ⊢ true

qotient-once

⊢ O𝑚 ≡ Match(𝑚, 𝑚̂) ∨ (NotMatch(𝑚, 𝑚̂) ∧ O𝑚) # 𝑚̂

qotient-historically-not

⊢ HN𝑚 ≡ HN𝑚 ∧ NotMatch(𝑚, 𝑚̂) # 𝑚̂

qotient-not-since

⊢𝑚2 NS𝑚1 ≡ Match(𝑚1, 𝑚̂) ∨ (NotMatch(𝑚1, 𝑚̂) ∧𝑚2 NS𝑚1 ∧ NotMatch(𝑚2, 𝑚̂)) # 𝑚̂

Fig. 7. Instantiating CBCFTL specifications 𝑆 with abstract message histories 𝜔 from MHPL. The judgment

form ⊢𝑆 𝜔 ≡ 𝜔 says, “Under CBFTL specification 𝑆 , an abstract message history 𝜔 is equivalent to a temporal

formula 𝜔 .” We can view this judgment as giving us an encoding into a temporal formula 𝜔 , the instantiation

of a specification of realizable message histories 𝑆 with a particular abstract message history 𝜔 to derive a

description of the realizable message histories up to a program location.

we combine with the CBCFTL specification in order to avoid reasoning about the specification
separately. In this section, we first show how to combine an abstract message history, 𝜔 , with a
specification, 𝑆 , resulting in a single temporal formula, 𝜔 (as we describe in Section 2.2.3). Second,
we show how to compute excludes initial and entailment for temporal formula. Finally, we prove
that defining these judgments in this way is sound.
The high-level intuition is that given an abstract message history 𝜔 , we instantiate the specifi-

cation of realizable message histories 𝑆 with 𝜔 into a single temporal formula 𝜔 . Then, with this
temporal formula 𝜔 , we can implement these judgments on abstract message histories via queries
to an off-the-shelf SMT solver (using the encoding described at the end of Section 4). In Figure 7,
we describe the judgment form ⊢𝑆 𝜔 ≡ 𝜔 that captures this combining of 𝜔 and 𝑆 into a single
temporal formula 𝜔 .
As we see in Figure 7, the combining (or equivalent-to-a-temporal-formula) judgment form ⊢𝑆

𝜔 ≡ 𝜔 is syntax-directed on the abstract message history 𝜔 . Under the assumption of 𝑆 , the abstract
message history okhist is equivalent to the temporal formula true (rule temporal-okhist). For the
ordered-implication abstract message history𝑚 ↠ 𝜔 , intuitively, we want to hypothesize𝑚1 to
derive any constraints from instantiating from 𝑆 and to derive any constraints from “quotienting” the
constraints from 𝜔2 to “remove𝑚1 from the end”. Instantiating and quotienting are captured by two
helper judgments. The instantiate judgment form 𝑆,𝑚 ⊢ 𝜔 says, “In specification 𝑆 , hypothesizing
abstract message𝑚, temporal formula 𝜔 describe realizable message histories.” And the quotient
judgment form ⊢ 𝜔 ≡ 𝜔 ′ #𝑚 says, “Temporal formula 𝜔 is equivalent to temporal formula 𝜔 ′ with
abstract message𝑚 appended.” We can now read the key temporal-hypmsg rule: if hypothesizing
𝑚1 in 𝑆 yields temporal formula 𝜔 ′

1, abstract message history 𝜔2 is equivalent to temporal formula
𝜔2, and 𝜔2 is equivalent to temporal formula 𝜔 ′

2 with𝑚1 appended, then the ordered-implication
abstract message history𝑚 ↠ 𝜔 is equivalent to 𝜔 ′

1 ∧ 𝜔 ′
2.

Instantiation is the process of combining the hypothetical next message of an abstract mes-
sage history with a history implication (e.g., Equation 1 in the running example from Section 2).
For the instantiate judgment 𝑆,𝑚 ⊢ 𝜔 , we show only the cases for single history implications
𝑚2 � 𝜔 where the hypothesized message𝑚1 either matches (instantiate-yes) or doesn’t match
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(instantiate-no). The other cases for true and 𝑆1 ∧ 𝑆2 just yield true and the conjunction of the
instantiations in 𝑆1 and 𝑆2, respectively. As𝑚2 � 𝜔 implicitly binds the variables of𝑚2, we write
𝑚1 ≃𝜗 𝑚2 for a matching up to a substitution 𝜗 from the variables of𝑚2 to the variables of𝑚1 and
write [𝜗]𝜔 for the capture-avoiding substitution with 𝜗 in 𝜔 . And we write𝑚1 ; 𝑚2 for the case
where𝑚1 cannot match𝑚2.

The quotient judgment form, shown in Figure 7, ⊢ 𝜔 ≡ 𝜔 ′ #𝑚 is syntax-directed on 𝜔 to yield 𝜔 ′.
We show the quotienting judgments for the three temporal operators O, HN, and NS. Quotienting
the other temporal formula 𝜔 productions is straightforward. Quotienting once, O𝑚, with the
abstract message𝑚 has two possibilities: (1) Match(𝑚,𝑚) — the abstract message is equivalent to
the message in the “once” making the temporal formula equivalent to “true” and (2) NotMatch(𝑚,𝑚)
— the abstract message is not equivalent to the message in the “once” leaving the temporal formula
unchanged. Mirroring the quotienting of once, quotienting historically not,HN𝑚, with the abstract
message𝑚 has two possibilities: (1) Match(𝑚,𝑚) — the abstract message is equivalent to the message
in the “has never” making the temporal formula equivalent to “false” and (2) NotMatch(𝑚,𝑚) — the
abstract message is not equivalent to the message in the “has never” leaving the temporal formula
unchanged. The operator𝑚2 NS𝑚1 is a combination of the previous two: either the quotiented
message matches the right-hand side becoming true, or it must not match the left-hand side.
We see that for quotienting with the temporal operators, we need an analogous encoding of

match or doesn’t match: the meta-level functions Match(𝑚,𝑚) and NotMatch(𝑚,𝑚) encode into
propositional formula of a symbolic message𝑚 matching or not matching an abstract message𝑚,
respectively. Since the message names,md, and kinds are known, Match(𝑚,𝑚) and NotMatch(𝑚,𝑚)
always result in equalities and disequalities of logic variables (e.g., Equation 2 in the running
example from Section 2) or “false”.
With the ability to combine an abstract message history 𝜔 from MHPL with a CBCFTL spec-

ification of realizable message histories 𝑆 via the ⊢𝑆 𝜔 ≡ 𝜔 judgment, algorithms for judging
excludes-initial and entailment via SMT queries become clear. Let us write ⊢ 𝜔 ≡ 𝜓 for the encoding
of a temporal formula 𝜔 into a closed first-order formula𝜓 and use𝜓ax for the axioms encoding
message histories from Section 4.

We define procedures for judging excludes-initial ⊢𝑆 𝜔 excludesinit as checking for the unsatisfi-
ability of𝜓ax ∧𝜓 ∧ len = 0 (where ⊢𝑆 𝜔 ≡ 𝜔 and ⊢ 𝜔 ≡ 𝜓 ), and entailment 𝜔 ⊢𝑆 𝜔

′ as checking for
the unsatisfiability of 𝜓ax ∧𝜓 ∧ ¬𝜓 ′ (where ⊢𝑆 𝜔 ≡ 𝜔 , ⊢ 𝜔 ≡ 𝜓 , ⊢𝑆 𝜔

′ ≡ 𝜔 ′, and ⊢ 𝜔 ′ ≡ 𝜓 ′). The
soundness of checking these judgments relies on the correctness of the combining judgment:

Theorem 5.1 (Correct Combining of MHPL and CBCFTL). (1) If ⊢𝑆 𝜔 ≡ 𝜔 such that𝜔 ·𝜃 |=𝑆 𝜔 ,
then 𝜔 · 𝜃 |= 𝜔 . (2) If ⊢𝑆 𝜔 ≡ 𝜔 such that 𝜔 · 𝜃 |= 𝜔 and 𝜔 |= 𝑆 , then 𝜔 · 𝜃 |=𝑆 𝜔 .

Note that we assume a well-formedness condition that no abstract message is vacuous (i.e.,
for any abstract message𝑚 and any assignment 𝜃 , there exists a (concrete) message𝑚 such that
𝑚 · 𝜃 |=𝑆 𝑚). The correctness of combining relies on correct instantiation and quotienting:

Lemma 5.2 (Correct Instantiating of History Implications). (1) If 𝑆,𝑚 ⊢ 𝜔 such that
𝜔 ;𝑚 |= 𝑆 and𝑚 · 𝜃 |= 𝑚, then 𝜔 · 𝜃 |= 𝜔 . (2) If 𝑆,𝑚 ⊢ 𝜔 such that 𝜔 |= 𝑆 and𝑚 · 𝜃 |= 𝑚 and 𝜔 · 𝜃 |= 𝜔 ,
then 𝜔 ;𝑚 |= 𝑆 .

Lemma 5.3 (Correct Quotienting of Temporal Formulas). (1) If ⊢ 𝜔 ≡ 𝜔 ′ # 𝑚 such that
𝜔 ;𝑚 · 𝜃 |= 𝜔 and𝑚 · 𝜃 |= 𝑚, then 𝜔 · 𝜃 |= 𝜔 ′. (2) If ⊢ 𝜔 ≡ 𝜔 ′ #𝑚 such that 𝜔 · 𝜃 |= 𝜔 ′ and𝑚 · 𝜃 |= 𝑚,
then 𝜔 ;𝑚 · 𝜃 |= 𝜔 .

Proofs for these statements may be found in the extended version [Meier et al. 2023b] Appendix C.
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6 EMPIRICAL EVALUATION

Aswe discuss in Section 2, the challenge for a program verifier is to prove the safety of assertions that
depend on the callback order, while avoiding unsound models of the framework. We hypothesize
that: (1) thanks to the targeted callback control flow specification, Historia can prove safe assertions
while avoiding unsound results when an assertion does not hold. And (2) Historia can be applied
to real event-driven programs. We validate our hypotheses with the following research questions:
RQ1: Proving Assertions: Is it possible to write a targeted CBCFTL specification for Historia

and prove safe assertions, while avoiding unsound framework models?
RQ2: Generalizability to Real-World Applications: Can Historia prove assertions on real-

sized, complex, and widely used Android applications?

Bug Patterns. Checking for arbitrary assertions, such as safe null dereference, is not interesting
as most safe assertions can be proven with an intra-callback analysis. So, to find assertion locations
in Android apps that require callback control flow reasoning, we identified a set of problematic API
usage patterns. We first searched bug reports of runtime crashes for popular open source Android
apps satisfying all the following criteria: (a) The issue had a stack trace similar the one shown
in Figure 1. (b) The issue accepted a fix that relies on the callback order. (c) The crash involved
callbacks or callins from a set of commonly used Android objects (Activity, Fragment, Dialog, View objects
such as buttons and menus, AsyncTask, and Single/Maybe from RxJava). Then, we classified the crashes
according to 5 patterns of interaction between callbacks and callins. (1) getAct[3] [Fietz 2018a] —
the Android method getActivity returns null if called on a Fragment that is not in the “created” state,
and the app dereference such null pointer (Activity and Fragment objects are in the “created” state
if the onCreate callback has been invoked, but the onDestroy has not). (2) execute[5] [Fietz 2015] —
the app calls execute twice on the same AsyncTask object, ending in an exception. (3) dismiss[7] [Fietz
2016] — the app calls dismiss on a Dialog constructed with an Activity that is currently in the “created”
state, ending in an exception. (4) finishnull [Meier 2021] — the app dereference a field in an onClick

callback, the same field can be set to null in the onPause callback, and the app call finish on the
enclosing Activty (we call “nullable” the fields that can be set to null in a callback). (5) subsnull
[Hamster 2020] — the app dereferences a nullable field in a callback executed concurrently, such
as Runnable run. We name the patterns with the main message involved in the crash, followed in
subscript by an “exception property”, specifying when the bug would manifest with throwing an
exception. Such exception properties may be a CBCFTL history implication (referenced by number
and listed in the extended version [Meier et al. 2023b] Appendix D) specifying when the framework
returns an exception, a null value, or a nullable field dereference (indicated by null).

Implementation. Historia implements the backward abstract interpretation with message his-
tories of Section 3 for refuting callback reachability assertions in Android apps. Historia uses
Soot [Vallée-Rai et al. 1999] for loading the compiled app and to implement the application only
control flow graph construction (similar to [Ali and Lhoták 2013] but augmented with boundary
transitions as discussed in Section 3.1). Historia implements the encoding of Section 5, and uses
the Z3 SMT solver [de Moura and Bjørner 2008] to check the satisfiability of temporal formulas
(Section 4). Historia further processes callbacks in parallel and pre-empts calls to Z3 when possible
for performance. We ran our experiments using Chameleon Cloud [Keahey et al. 2020] using an
AMD EPYC 7763 and 256 GB of RAM.

6.1 RQ1: Proving Event-Driven Patterns

In Table 1, we evaluate the ability of Historia and the representative state of-the art framework
modeling (no-order, eager) to prove safe fixes of the bug patterns, while correctly alarming on
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Table 1. The rows of this table are split into Bug and Fix benchmarks for each pattern. We first list the number

of callbacks, callback returns, or callins that could be captured by a history implication in the framework

model. Next, we list the number of history implications (specs) written for the benchmark (listed in the

extended version [Meier et al. 2023b] Appendix D), then, we show how many of the messages are in the

specification. The depth captures how many times Historia needed to step backwards through a callback

(e.g. Figure 3 shows 4 steps back). Historia alarms on all the bug versions ( ! ), and refutes reachability of

the bug assertion for 4 out of the 5 bug-fixes ( ✓ ). In the last case, Historia explored up-to 5 callbacks before

timing out at 30 min ( 5 ). For the comparison with ideal tools using the “no-order” and “eager” modeling

approaches, some results are labeled false-✓ and false- ! .

Pattern Historia no-order eager

cb, ret ci specs cb cbret ci time depth res res res
(n) (n) (n) (n) (%) (n) (%) (n) (%) (s) (n)

Bug getAct[3] 9 15 3[1,4] 3 33 1 11 2 13 9 3 ! ! false-✓
execute[5] 7 6 3[2,6] 2 29 0 0 2 33 12 3 ! ! !
dismiss[7] 7 6 2[8] 1 14 1 14 1 17 18 4 ! ! false-✓
finishnull 7 9 3[9,10,2] 3 43 1 14 3 33 52 3 ! ! false-✓
subsnull 9 17 5[11,1213,14,15] 3 33 0 0 5 29 24 3 ! ! false-✓

Fix getAct[3] 9 16 3[1,4] 3 33 1 11 3 19 16 3 ✓ false- ! ✓

execute[5] 7 7 3[2,6] 2 29 0 0 3 43 27 4 ✓ false- ! false- !
dismiss[7] 7 6 2[8] 1 14 1 14 1 17 79 6 ✓ false- ! ✓

finishnull 7 10 3[9,10,2] 3 43 1 14 4 40 1800 5 5 false- ! ✓

subsnull 9 18 5[11,1213,14,15] 3 33 0 0 6 33 150 5 ✓ false- ! ✓

total 66 73 10 22 33 6 9 21 29

instances containing the bug. For each one of the 5 bug patterns, we distilled a Bug and a Fix
benchmark application from the real app code mentioned in the representative bug reports (slicing
the app code to remove all the components and code non-necessary to reproduce the bug). The
Bug version demonstrates the usage of the framework callbacks and callins causing the crash in
the original application, while the Fix version applies the fix from the bug report. A sound analysis
should always alarm on the Bug version.

We manually wrote a CBCFTL specification sufficient to prove the assertion safe for each fix, and
then we run Historia with this specification (specs column) on both the Bug and Fix version. We
compare Historia with the main framework modeling approaches, which either do not assume
any callback ordering (no-order), or provide an eager modeling of the framework. Infer [Calcagno
and Distefano 2011] and Flowdroid [Arzt et al. 2014] are used as representatives for the first and
second approach, respectively. Of the 5 bug patterns, only the 4th and 5th patterns are supported
by Infer and none are supported by Flowdroid. We note that Flowdroid is the only open source tool
we could run in the eager category but does not natively support these properties. Therefore, in
order to compare with the no-order model, the first three exception properties were reduced to a
nullable field and checked with Infer (i.e., we manually wrote code that would throw a null pointer
exception just before the actual exception was thrown). For the remaining two, we added nullability
annotations on the affected fields (because Infer will not alarm on a null value from a field without
this annotation). For the eager model, we manually examine the artificial main method generated
by Flowdroid. This is a main method that should behave as the original app composed with the
framework. We evaluate whether any sound and precise whole-program static analysis could prove
the fix while alarming on the bug with this main method.
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Discussion of the Results. Historia always (and correctly) alarms ( ! ) on all the Bug versions,
while either refutes ( ✓ ) or does not terminate before exhausting a run-time budget of 30 minutes (
5 result in the finishnull benchmark). For the Fix version of the finishnull benchmark, Historia
still does not alarm, but provides the partial result proving that no program execution containing
less than 5 callback invocations can reach the assertion. Interestingly, such a partial proof rules out
the (abstract) execution Historia found when failing to refute the assertion in the Bug version for
finishnull , which visits 4 callbacks (see the depth column). Targeted refinement of the framework
specific control-flow specifications was required in each case for Historia to avoid false alarms.

Unsurprisingly, the no-order model results in false alarms on each fixed benchmark. Additionally,
for the eager model, we found that in all but one case the artificial main method generated by
Flowdroid rules out the sequence of callbacks reaching the real bug. In three of these cases, a
callback that has to be executed to reach the bug was missing from the call graph. In one case, the
main method over-constrained the callback order. For the remaining case, the eager model did not
generate code that changed state when setEnabled(false) was invoked, disabling a button. Therefore,
no program analysis could distinguish the state where onClick could not occur on that button.

6.2 RQ2: Generalizability to Real-World Applications

Next, we evaluate the generalizability of Historia by analyzing a set of 47 widely used applications
containing over 2 million lines of code. These apps were found and retrieved from the F-Droid
repository [F-Droid 2023] by filtering for apps updated in the last 2 years and that are more than 8
years old (rejecting obfuscated or otherwise difficult to inspect apps). We answer this question by
searching for the five bug patterns and attempting to verify the 1090 locations found. First, we run
Historia on each location with only the exception property, and then, we sample 8 locations that
could not be proven for targeted specification refinement including timeouts and alarms.
We searched for the five patterns described in RQ1 using the application-only control flow

graph. For the execute and dismiss patterns, we searched for the callins in the call graph. The
remaining three patterns use an intraprocedural data flow analysis to find nullable values that were
dereferenced. This value comes from either getActivity for the first pattern or a nullable field for
the remaining patterns. The finish pattern looks for such dereference commands in the onClick

callback when the finish method is used, and the subs pattern looks for dereferences in common
concurrency callbacks.
Results are reported in Table 2. The first column lists the individual patterns while the second

column lists the locations found for each. For scale, we list the thousands of lines of code contained
by the apps the patterns were found in KLOC. We then report the number and percentage of the
locations that Historia alarms on, timeouts on, and is able to prove safe. As the most common
unsoundness in RQ1 was missing methods from the call graph, we compare the number of applica-
tion methods found in the call graph of Historia and Flowdroid. A higher number of methods
indicates more code is being analyzed.
Table 3 lists 8 randomly sampled locations from distinct apps that Historia could not prove

without refinement. For each sample, we recorded the time required to write the CBCFTL specifica-
tion in the "spec time" column. The time to understand the callbacks being specified is not included
in the recorded time, as this would be required for any modeling approach. If it took more than an
hour to run Historia or if we took more than an hour to write the specification time, we record a
timeout⊗ in the result (res) column. For perspective on the modeling difficulty, we list the number
of messages that could be captured by the specification (the cb,ret and ci columns under Sample),
as well as the total number of specifications as history implications we wrote (under the specs
column) and the number and percentage of app messages that could be matched (the cb, cbret, and
ci columns under Historia).
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Table 2. Verifying usages of the multi-callback patterns among 47 open-source Android apps with only the

exception property. We list the results by alarms where Historia finished but could not prove the property,

timeouts where Historia took over half an hour, and safe where no further specification was needed. We

list the number of app methods that are contained in the call graphs of both Historia and Flowdroid. There

were 9 apps that timed out with Flowdroid. Among the 38 apps that Flowdroid could finish on, it found 28k

application methods as compared to 70k application methods found by Historia.

Pattern Historia Flowdroid

locations apps KLOC alarm timeout safe K methods K methods
(n) (n) (n*1000) (n) (%) (n) (%) (n) (%) (n*1000) (n*1000)

getAct[3] 558 24 1,655 261 47 97 17 200 36 105 22
execute[5] 155 31 1,669 0 0 2 1 153 99 92 18
dismiss[7] 291 38 1,853 43 15 208 71 40 14 102 21
finishnull 31 8 323 3 10 3 10 25 81 29 6
subsnull 55 10 1,108 1 2 7 13 47 85 16 3

total 1090 47 2,058 308 28 317 29 465 43 121 28

Table 3. We sampled 8 locations that could not be proven from Table 2 and attempted to add CBCFTL

specifications to prove them safe. These are listed by app name as all samples were chosen so the apps

are unique; specific locations app versions and links may be found in the extended version [Meier et al.

2023b] Appendix D.
∗
The Connectbot benchmark here was a timeout in Table 2; we manually removed

callbacks to help find the alarm and understand the bug, while the benchmarks were unmodified.

Sample Historia

App Pattern cb,ret ci specs cb cbret ci time res spec time
(n) (n) (n) (n) (%) (n) (%) (n) (%) (s) (m)

Vanilla Music getAct[3] 473 5,440 ⊗ 60
OpenVPN getAct[3] 938 9,628 2 49 5 5 1 167 2 0 ✓ 5
Seafile getAct[3] 2,464 19,562 2 54 2 9 0 68 0 1 ✓ 5
Syncthing getAct[3] 709 5,573 3,600 ⊗ 9
Navit finishnull 279 2,424 3,600 ⊗ 54
Connectbot dismiss[7] 19∗ 248∗ 1 0 0 0 0 2 1 754 true- ! 4
BatteryBot getAct[3] 171 2,470 1 7 4 4 2 55 2 1 ✓ 3
Antennapod getAct[3] 3,906 2,3056 3,600 ⊗ 35

Discussion. Before manual refinement of the specification of the framework model, our tool was
able to prove 43% of the locations safe, raise alarms on 28% and times out on 29%. We note that for
execute[5] , finishnull , and subsnull , we get few alarms as developers appear to use these patterns
defensively. Of the 8 samples, we found that we were able to correctly classify 4 locations within
the hour budget of specification writing time (and always in within 5 minutes) and the hour budget
of Historia run time (and from a few seconds to a few minutes). Of the 4 timeouts, one was from
the specification writing time, and the rest were Historia taking more than an hour.

In the 3 cases where we were able to prove locations, the specifications ignored 95% or more of
the boundary transitions in the app (i.e., no abstract message can match the majority of transitions
in the applications). This highlights a performance benefit to targeted-refinement — although our
analysis is unbounded in the worst case, in practice the majority of the messages that boundary
transitions in the app can produce do not affect the encoded meaning of the message history,
and most abstract states are immediately merged via entailment. Calling back to Section 5, the
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specification ignoring most messages means that most of the time the quotient judgments result in
an equivalent message history. Ignoring most messages allows most abstract states to be merged.
With benchmarks containing hundreds to thousands of callbacks among thousands to tens of
thousands of app methods and SMT calls for each new abstract pre-state, this means that we are
avoiding the exponential explosion in the typical case.
It is also noteworthy that the application-only control flow graph used by Historia captures

significantly more applications methods than Flowdroid. Among the applications that we could use
Flowdroid to build call graphs for, it found 28K app methods. In these same apps, Historia found
70K app methods. This seems to reflect our observation from RQ1 that it is very challenging to
capture all possible callbacks while eagerly modeling the framework and thus an argument for the
targeted modeling approach of Historia.

6.3 Threats to Validity

The main threat to validity of our experiments is the shifting behavior and authors understanding
of the Android framework for which we used as a case study. As noted in the Introduction, manual
modeling of the Android framework is extremely difficult. Even though the application-only control
flow graph appears more sound from these experiments, we found that it is possible to miss callbacks
without a complete list of objects the framework can instantiate with reflection. To reduce the risk
of an unsound call graph, we ensured that each location in RQ1 and a sampling of locations from
RQ2 cannot be proven unreachable for any state (i.e., is reachable under some app state) unless the
location appears to actually be unreachable through manual inspection.

7 RELATEDWORK

Depending on the analysis domain, precise models are often included for some components but
elided for others. As described in Section 1, a common approach, particularly in industrial Android
analysis tools, is to use no model at all (i.e., the most over-approximate model). Verifiers with no
callback order modeling have the advantage of performance and are the easiest to maintain but
have a high false alarm rate requiring heuristic filtering [Calcagno et al. 2015]. Precision is added
to the callback control flow models for a range of different domains of static analysis. Awareness
of the Activity lifecycle and other user interface callbacks can improve taint analysis for security
[Arzt et al. 2014; Calzavara et al. 2016; Gordon et al. 2015]. Other program analysis tools will use
the Activity lifecycle in addition to precise models of other user interface components for verifying
user interface properties [Perez and Le 2021; Yang et al. 2018, 2015]. Framework precision with
respect to objects used for concurrency such as AsyncTask and thread pools is often captured for race
detection [Hu and Neamtiu 2018; Wu et al. 2019; Yang et al. 2018, 2015] and other tools that detect
concurrency issues [Pan et al. 2020]. For our experiments, we added precision for some callbacks
from the Activity lifecycle, other user interface components, and objects for concurrency such as
AsyncTask. The benefit of our compositional modeling approach is that components may be added on
an as-needed basis as opposed to eagerly modeling a large portion of the framework.

Building the model of the framework directly into the program semantics used for the analysis
has the advantage that the subsequent abstraction may be precisely chosen based on the modeled
behavior. Many of the tools that build the model into the analysis capture UI elements, inter-
component communication, and the stack like behavior of windows [Calzavara et al. 2016; Payet
and Spoto 2014; Rountev and Yan 2014; Yang et al. 2018]. The drawback to building the model
directly into the analysis is that adding or updating behaviors [Huang et al. 2018] requires modifying
the analysis itself. The most common approach to model callback orders is by generating an artificial
main method [Arzt and Bodden 2016; Arzt et al. 2014; Gordon et al. 2015; Hu and Neamtiu 2018;
Pan et al. 2019]. An artificial main method has the advantage that modeling can be decoupled
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from the program analysis by generating code that enforces a callback order to link with the
application. When analyzing with such a main method, the normal abstraction used by the program
analysis captures the callback control flow (e.g., through context sensitivity). The generation of
main methods that can be abstracted precisely is a challenge. Capturing behavior such as arbitrary
interleaving between callbacks (e.g., multiple simultaneous activities) can be difficult while avoiding
language features that cause imprecision in analysis such as dynamic dispatch. We note that race
detectors often combine some aspects of hard coding the callback control flow into the program
semantics with utilizing an artificial main method (often for call graph construction). Automata and
graph based approaches to modeling and abstraction [Blackshear et al. 2015a; Perez and Le 2021]
are compositional and only rely on knowledge of relative order between callbacks. A difficulty with
any modeling approach that eagerly models components is that the more components are modeled,
the more likely the model is unsound. Unsoundness is common among any approach we listed that
captures some callback order [Cao et al. 2015; Meier et al. 2019; Wang et al. 2016]. Our approach
can lessen the risk here by enabling a targeted approach to callback control-flow modeling to avoid
modeling more than necessary.

8 CONCLUSION

We have described a novel middle way for refuting callback reachability that enables a decoupling
of the specification of callback control flow from the abstract interpretation to compute program in-
variants over an application-only transition system. This decoupling offers the appealing capability
to gradually refine the possible callback control flow as needed and in a targeted manner to prove
an assertion of interest, and it thus moves us past the false dichotomy of either using no modeling
or eagerly modeling all callback control-flow constraints. The key innovation of our approach is an
internalization of message histories into the analysis abstraction as a hypothetical (i.e., an ordered
linear implication) to capture message histories up to a program location constrained by future
messages and parametrized by a separate specification of realizable message histories. We then
define a specification logic for callback control flow (CBCFTL) that carefully specializes past-time
linear temporal logic so that we can utilize message-history program logic (MHPL) assertions
together with CBCFTL specifications. Our evaluation provides evidence with a proof-of-concept
implementation that our approach can refute callback reachability in challenging examples drawn
from real-world issues among open-source apps.
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