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In this paper, we introduce other classes of inequalities chains depending on a parameter, extending the classical ones. We show in particular how the Huygens and Wilker inequalities are related in chains.

.

Introduction and classical inequalities

Wilker [START_REF] Wilker | Problem E 3306[END_REF] presented the following inequality which will appear of great importance since it inspired many researchers (see [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF], [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF], [START_REF] Chen | The Relationship between Huygens and Wilker inequalities and further remarks[END_REF], [START_REF] Neuman | On Wilker and Huygens type inequalities[END_REF], [START_REF] Wu | A further renement of Wilker's inequality[END_REF], [START_REF] Zhu | On Wilker-type inequalities[END_REF] and references therein), for x ∈ 0, π 2 ,

sin x x 2 + tan x x > 2. (1) 
Furthermore, we have an equivalence between inequalities

cos x < ( sin x x ) 3 ⇐⇒ 1 < ( sin x x ) 2 tan x x , 0 < x < π 2 .
By using the arithmetic-geometric mean inequality, Baricz and Sandor [START_REF] Baricz | Extensions of generalized Wilker inequality to Bessel functions[END_REF] have pointed out that this inequality implies

2 sin x x + tan x x > 3 and ( sin x x ) 2 + tan x x > 2 1 
The following inequality is due to Huygens for 0 < x < π

2 sin x x + tan x 2x > 3 2 . ( 2 
)
The following inequality valid for x ∈ 0, π 2 is known as Cusa inequality

sin x x < 2 3 + cos x 3 .
Inspired by Wilker inequality, Wu and Srivastava [START_REF] Wu | A weighted and exponential generalization of Wilker's inequality and its applications[END_REF] have introduced a similar inequality of Wilker type:

x sin x 2 + x tan x > 2. (3) 
These inequalities were widely extended to cases related to Bessel functions [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF], Lemniscate functions [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF], mixed trigonometric-polynomial problems [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities[END_REF], [START_REF] Sumner | Inequalities involving trigonometric functions[END_REF], [START_REF] Zhang | A new elementary proof of Wilker's inequalities[END_REF], asymptotic expansions [START_REF] Wilker | Problem E 3306[END_REF]- [START_REF] Wu | A further renement of Wilker's inequality[END_REF], generalized hyperbolic functions.

In [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] the authors compared these two inequalities as well as the similar inequalities and provided for x ∈ 0, π 2 ,

sin x x + tan x 2x + 1 2 < sin x x 2 + tan x x . ( 4 
) x sin x + x 2 tan x + 1 2 < x sin x 2 + x tan x . (5) 
Analog results occur for the hyperbolic functions. More precisely, the authors proved the following chain ([15], Theorem 2.1 or Theorem 4.1) for x ∈ 0, π 2 ,

1 2 sin x x 2 + tan x x > 1 3 2 sin x x + tan x x > 1 2 x sin x 2 + x tan x > 1 3 2x sin x + x tan x > 1. (6) 
For the hyperbolic counterpart they proved the analog chain ( [START_REF] Zhu | New Wilker-type and Huygens-type inequalities[END_REF], Theorem 2.2 or Theorem 4.2) for x ∈ (0, ∞),

1 2 sinh x x 2 + tanh x x > 1 3 2 sinh x x + tanh x x > 1 2 x sinh x 2 + x tanh x > 1 3 2x sinh x + x tanh x > 1. (7) 
The following inequality which is the hyperbolic counterpart is due to Lazarevic, for x = 0 sinh x x

3 > cosh x.
Moreover, in [START_REF] Chen | The Relationship between Huygens and Wilker inequalities and further remarks[END_REF] C-P. Chen and C. Mortici showed how the Huygens and Wilker inequalities are related. In this sense, they established a class of inequalities depending on a parameter n, where Huygens and Wilker inequalities are obtained when n = 1 and n = 2, respectively. More precisely they proved the following results Theorems 1,2,3

For every integer n ≥ 1 and 0 < x < 0, π 2 , we have

sin x x n + n tan x 2x - n + 2 2 > 0, (8) 
x sin x n + nx 2 tan x - n + 2 2 > 0. (9) 
For every integer n ≥ 2 and 0 < x < 0, π 2 , we have

sin x x n - n 3 cos x + n -3 3 > 0. (10) 
In fact, we provide the following chains depending in n which improves Theorem 1 of [START_REF] Chen | The Relationship between Huygens and Wilker inequalities and further remarks[END_REF] and inequality (4) of [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] Theorem A For every integer n ≥ 1 and x ∈ 0, π 2 , we have

0 < sin x x + tan x 2x - 3 2 < sin x x 2 + tan x x -2 < ... < f (n, x) = sin x x n + n tan x 2x - n + 2 2 . ( 11 
)
This inequality becomes Huygens and Wilker inequality for n = 1 and n = 2, respectively.

Theorem B

For every integer n ≥ 1 and x ∈ 0, π 2 , we have

0 < x sin x + x 2 tan x - 3 2 < x sin x 2 + x tan x -2 < ... < g(n, x) = x sin x n + nx 2 tan x - n + 2 2 . ( 12 
)
Theorem B improves Theorem 2 of [START_REF] Chen | The Relationship between Huygens and Wilker inequalities and further remarks[END_REF] and inequality (5) of [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] Theorem C

For every integer n ≥ 2 and x ∈ 0, π 2 , we have

0 < sin x x 2 - 2 cos x 3 - 1 3 < sin x x 3 -cos x < ... < sin x x n - n cos x 3 + n -3 3 . (13) 
Note that the case n = 3 corresponds to the Cusa inequality. Obviously, Theorem C is not true for n = 1. Theorem C asserts that inequalities of Cusa type hold true, for every integer n ≥ 2. Theorem C improves Theorem 3 of [START_REF] Chen | The Relationship between Huygens and Wilker inequalities and further remarks[END_REF] We get also the hyperbolic analog Theorem D For every integer n ≥ 1 and x ∈ (0, ∞), we have

0 < sinh x x + tanh x 2x - 3 2 < sinh x x 2 + tanh x x -2 < ... < f h (n, x) = sinh x x n + n tanh x 2x - n + 2 2 . ( 14 
)
Theorem E

For every integer n ≥ 1 and x ∈ (0, ∞), we have

0 < x sinh x + x 2 tanh x - 3 2 < x sinh x 2 + x tanh x -2 < ... < g h (n, x) = x sinh x n + nx 2 tanh x - n + 2 2 . ( 15 
)
Theorem F

For every integer n ≥ 2 and x ∈ (0, ∞), we have

0 < sinh x x 2 - 2 cosh x 3 - 1 3 < sinh x x 3 -cosh x < ... < sinh x x n - n cosh x 3 + n -3 3 . ( 16 
)
Note that the case n = 3 corresponds to the Lazarevic inequality. However, Theorem F is not true for n = 1. In fact we may prove

sinh x x - cosh x 3 -2 3 < 0 (to see that it suces to calculate the second derivative of sinh x -x cosh x 3 -2x
3 It equals 1 3 (sinh x -x cosh x) < 0). Theorem F asserts that inequalities of Lazarevic type hold true, for every integer n ≥ 2.

Proofs

2.1

Proof of Theorem A

The rst inequality of [START_REF] Zhang | A new elementary proof of Wilker's inequalities[END_REF] has been proved by [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] for x ∈ 0, π 2 , (see (4) above)

sin x x + tan x 2x + 1 2 < sin x x 2 + tan x x ⇐⇒ 0 < sin x x + tan x 2x - 3 2 < sin x x 2 + tan x x -2 ⇐⇒ 0 < sin x x sin x x -1 + tan x 2x - 1 2 . ( 17 
)
We will proceed by recurrence. Suppose up to order p ≥ 1 inequality ( 11) is true for 1 ≤ n ≤ p. Then we get

0 < sin x x p-1 + (p -1) tan x 2x - p + 1 2 < sin x x p + p tan x 2x - p + 2 2 .
Compute the dierence

sin x x p+1 + (p + 1) tan x 2x - p + 3 2 - sin x x p + p tan x 2x - p + 2 2 = sin x x p sin x x -1 + tan x 2x - 1 2 .
Moreover, since for x ∈ 0, π 2 , sin x x < 1 and sin x x p < sin x x . Then (17) implies

sin x x p sin x x -1 + tan x 2x - 1 2 > sin x x sin x x -1 + tan x 2x - 1 2 > 0.
Thus, inequality ( 11) is veried for p + 1.

Proof of Theorem B

The rst inequality of ( 12) has been proved by [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] for x ∈ 0, π 2 , (see (5) above)

x sin x + x 2 tan x + 1 2 < x sin x 2 + x tan x ⇐⇒ 0 < x sin x + x 2 tan x - 3 2 < x sin x 2 + x tan x -2 ⇐⇒ 0 < x sin x x sin x -1 + x 2 tan x - 1 2 . ( 18 
)
We will proceed by recurrence. Suppose up to order p ≥ 1 inequality ( 12) is true for 1 ≤ n ≤ p. Then we get

0 < x sin x p-1 + (p -1)x 2 tan x - p + 1 2 < x sin x p + px 2 tan x - p + 2 2 .
Compute the dierence

x sin x p+1 + (p + 1)x 2 tan x - p + 3 2 - x sin x p + px 2 tan x - p + 2 2 = x sin x p x sin x -1 + x 2 tan x - 1 2 .
Moreover, since for x ∈ 0, π 2 ,

x sin x > 1 and x sin x p > x sin x . Then (18) implies

x sin x p x sin x -1 + x 2 tan x - 1 2 > x sin x x sin x -1 + x 2 tan x - 1 2 > 0.
Thus, inequality ( 12) is veried for p + 1.

2.3

Proof of Theorem C

For the rst inequality we compute the dierence

sin x x 2 - 2 cos x 3 - 1 3 - sin x x 3 -cos x = sin x x 2 1 - sin x x + cos x -1 3 .
Moreover, for x ∈ 0, π 2 , the following inequalities hold

1 - x 2 6 < sin x x < 1 - x 2 6 + x 4 120 , - x 2 2 < cos x -1 < - x 2 2 + x 4 24 .
We then deduce

sin x x 2 1 - sin x x + cos x -1 3 < 1 - x 2 6 + x 4 120 2 x 2 6 - x 2 6 + x 4 72 = - x 4 24 + x 6 135 - x 8 2160 + x 10 86400 = - x 4 86400 3600 -640x 2 + 40x 4 -x 6 < 0, (19) 
since 3600 -640x 2 + 40x 4 -x 6 is positive and has no root for x ∈ 0, π 2 . This proved the rst inequality of (13). We will proceed now by recurrence. Suppose up to order p ≥ 2 inequality (13) is true for 1 ≤ n ≤ p. Then we get :

0 < sin x x p-1 - (p -1) cos x 3 + p -4 3 < sin x x p - p cos x 3 + p -3 3 . Compute the dierence sin x x p - p cos x 3 + p -3 3 - sin x x p+1 - (p + 1) cos x 3 + p -2 3 = sin x x p 1 - sin x x + cos x -1 3 . Moreover, since for x ∈ 0, π 2 , sin x x < 1 and sin x x p < sin x x . Then (19) implies sin x x p 1 - sin x x + cos x -1 3 < sin x x 2 1 - sin x x + cos x -1 3 < 0.
Thus, inequality ( 13) is veried for p + 1.

2.4

Proof of Theorem D

The rst inequality of ( 14) has been proved by [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] for x ∈ (0, ∞) , (see [START_REF] Sumner | Inequalities involving trigonometric functions[END_REF] above)

sinh x x + tanh x 2x + 1 2 < sinh x x 2 + tanh x x ⇐⇒ 0 < sinh x x + tanh x 2x - 3 2 < sinh x x 2 + tanh x x -2 ⇐⇒ 0 < sinh x x sinh x x -1 + tanh x 2x - 1 2 . ( 20 
)
We will proceed by recurrence. Suppose up to order p ≥ 1 inequality ( 14) is true for 1 ≤ n ≤ p. Then we get

0 < sinh x x p-1 + (p -1) tanh x 2x - p + 1 2 < sinh x x p + p tanh x 2x - p + 2 2 .
Compute the dierence

sinh x x p+1 + (p + 1) tanh x 2x - p + 3 2 - sinh x x p + p tanh x 2x - p + 2 2 = sinh x x p sinh x x -1 + tanh x 2x - 1 2 .
Moreover, since for x ∈ (0, ∞) , sinh x

x > 1 and sinh x x p > sinh x

x . Then (20) implies

sinh x x p sinh x x -1 + tanh x 2x - 1 2 > sinh x x sinh x x -1 + tanh x 2x - 1 2 > 0.
Thus, inequality ( 14) is veried for p + 1.

Proof of Theorem E

The rst inequality of ( 15) has been proved by [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] for x ∈ (0, ∞) , (see [START_REF] Sumner | Inequalities involving trigonometric functions[END_REF] above)

x sinh x + x 2 tanh x + 1 2 < x sinh x 2 + x tanh x ⇐⇒ 0 < x sinh x + x 2 tanh x - 3 2 < x sinh x 2 + x tanh x -2 ⇐⇒ 0 < x sinh x x sinh x -1 + x 2 tanh x - 1 2 . ( 21 
)
We will proceed by recurrence. Suppose up to order p ≥ 1 inequality ( 15) is true for 1 ≤ n ≤ p. Then we get

0 < x sinh x p-1 + (p -1)x 2 tanh x - p + 1 2 < x sinh x p + px 2 tanh x - p + 2 2 .
Compute the dierence

x sinh x p+1 + (p + 1)x 2 tanh x - p + 3 2 - x sinh x p + px 2 tanh x - p + 2 2 = x sinh x p x sinh x -1 + x 2 tanh x - 1 2 . 
Moreover, since for x ∈ (0, ∞) ,

x sinh x < 1 and

x sinh x p < x sinh x . Then (21) implies x sinh x p x sinh x -1 + x 2 tanh x - 1 2 > x sinh x x sinh x -1 + x 2 tanh x - 1 2 > 0.
Thus, inequality (15) is veried for p + 1.

Proof of Theorem F

For the rst inequality we compute the dierence

sinh x x 2 - 2 cosh x 3 - 1 3 - sinh x x 3 -cosh x = sinh x x 2 1 - sinh x x + cosh x -1 3 .
Using the Lazarevic inequality

sinh x x 3 > cosh x.
we deduce

sinh x x 2 1 - sinh x x + cosh x -1 3 < sinh x x 2 1 - sinh x x + sinh x x 3 -1 3 = sinh x x 2 - 2 sinh x x 3 3 - 1 3 = - 1 3 2 sinh x x + 1 sinh x x -1 2 < 0.
for x ∈ (0, ∞) . This proved the rst inequality of (16). We will proceed now by recurrence. Suppose up to order p ≥ 2 inequality (16) is true for 2 ≤ n ≤ p. Then we get :

0 < sinh x x p-1 - (p -1) cosh x 3 + p -4 3 < sinh x x p - p cosh x 3 + p -3 3 .
Compute the dierence

sinh x x p - p cosh x 3 + p -3 3 - sinh x x p+1 - (p + 1) cosh x 3 + p -2 3 = sinh x x p 1 - sinh x x + cosh x -1 3 .

Consider at rst

Lemma 2.6 Let p ≥ 2 be an integer then the X-polynomial

P (X) = X p (1 -X) + X 3 -1 3
is negative for X ≥ 0.

Indeed,

P (X) = 1 3 X p (1 -X) + (X -1) X 2 + X + 1 = 1 3 (X -1) X 2 + X + 1 -3X p = - 1 3 (X -1) 2 1 + 2X + 3X 2 + 3X 3 + ... + 3X p-1 .
Then using again the Lazarevic inequality, we derive

sinh x x p 1 - sinh x x + cosh x -1 3 < sinh x x p 1 - sinh x x + sinh x x 3 -1 3 = 1 3 sinh x x -1 sinh x x 2 + sinh x x + 1 -3 sinh x x p = - 1 3 sinh x x -1 2 1 + 2 sinh x x + 3 sinh x x 2 + 3 sinh x x 3 + ... + sinh x x p-1 < 0,
by Lemma 2.6 where X = sinh x x . Thus, inequality ( 16) is veried for p + 1.

Further remarks

The interesting question is whether it is possible to generalize the previous chains of inequalities or to nd new ones dependent on n. Consider again inequalities chains proved by [START_REF] Zhu | New Wilker-type and Huygens-type inequalities[END_REF] (Theorem 2.1 or Theorem 4.1) for x ∈ 0, π 2 ,

1 2 sin x x 2 + tan x x > 1 3 2 sin x x + tan x x > 1 2 x sin x 2 + x tan x > 1 3 2x sin x + x tan x > 1 (6) 
as well as [START_REF] Zhu | New Wilker-type and Huygens-type inequalities[END_REF] (Theorem 2.2 or Theorem 4.2) for x ∈ (0, ∞),

1 2 sinh x x 2 + tanh x x > 1 3 2 sinh x x + tanh x x > 1 2 x sinh x 2 + x tanh x > 1 3 2x sinh x + x tanh x > 1. (7) 
.

We will examine the two cases separately

Trigonometric case

Recall at rst [START_REF] Zhang | A new elementary proof of Wilker's inequalities[END_REF] and ( 12)

f (n, x) = sin x x n + n tan x 2x - n + 2 2 , g(n, x) = x sin x n + nx 2 tan x - n + 2 2 .
It is interesting to ask if we have analog chains for other values of n = 1, 2 like as those provided Theorems A,B. Unfortunately, the answer is no. We cannot provide more generalized chains. Indeed, one proved f (1, x) -g(n, x) > 0, f or n = 1, 2. Otherwise, thanks to Maple we may also prove :

f (2, x) -g(n, x) > 0, f or n ≤ 3, f (3, x) -g(n, x) > 0, f or n ≤ 4, f (4, x) -g(n, x) > 0, f or n ≤ 5, f (5, x) -g(n, x) > 0, f or n ≤ 7, ....
We may expect that f (p, x) -g(n, x) > 0, f or 1 ≤ n ≤ p + 1, f (p, x) -g(n, x) > 0, f or 5 ≤ n ≤ p + 2.

Hyperbolic case

Recall ( 14) and ( 15)

f h (n, x) = sinh x x n + n tanh x 2x - n + 2 2 , g h (n, x) = x sinh x n + nx 2 tanh x - n + 2 2 .
In this cas too unfortunately, we have not analog chains for other values of n = 1, 2 like as those provided Theorems D,E. We have only f h (1, x)g h (n, x) > 0, f or n = 1, 2. Otherwise, thanks to Maple we may prove :the dierence f h (p, x) -g h (n, x) has always zero for p = 1, 2, 3.

-However we have f h (4, x) -g h (n, x) > 0, f or n ≤ 6, f h (5, x) -g h (n, x) > 0, f or n ≤ 7, f h (6, x) -g h (n, x) > 0, f or n ≤ 8, ...

We may expect that

f h (p, x) -g h (n, x) > 0, f or 4 ≤ p, n ≤ p + 2.

Concluding remarks and perspectives

Following ideas of [START_REF] Chen | The Relationship between Huygens and Wilker inequalities and further remarks[END_REF] C-P. Chen and C. Mortici who proposed to study the above families of inequalities depending on a (positive) real parameter n in order to extend their Theorems 1, 2, 3. They proved Theorems 4, 5 as extensions of Theorems 1,2. We may hope to replace n by real parameters for which the chains introduced in the above Theorems A-F hold true.