
HAL Id: hal-04435098
https://hal.science/hal-04435098v1

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lifestate: Event-Driven Protocols and Callback Control
Flow

Shawn Meier, Sergio Mover, Bor-Yuh Evan Chang

To cite this version:
Shawn Meier, Sergio Mover, Bor-Yuh Evan Chang. Lifestate: Event-Driven Protocols and Callback
Control Flow. 33rd European Conference on Object-Oriented Programming, ECOOP 2019, Jul 2019,
London, United Kingdom. �10.4230/LIPICS.ECOOP.2019.1�. �hal-04435098�

https://hal.science/hal-04435098v1
https://hal.archives-ouvertes.fr

Lifestate: Event-Driven Protocols and Callback
Control Flow
Shawn Meier
University of Colorado Boulder, USA

Sergio Mover
École Polytechnique, France

Bor-Yuh Evan Chang
University of Colorado Boulder, USA

Abstract
Developing interactive applications (apps) against event-driven software frameworks such as Android
is notoriously difficult. To create apps that behave as expected, developers must follow complex and
often implicit asynchronous programming protocols. Such protocols intertwine the proper registering
of callbacks to receive control from the framework with appropriate application-programming
interface (API) calls that in turn affect the set of possible future callbacks. An app violates the
protocol when, for example, it calls a particular API method in a state of the framework where
such a call is invalid. What makes automated reasoning hard in this domain is largely what makes
programming apps against such frameworks hard: the specification of the protocol is unclear, and
the control flow is complex, asynchronous, and higher-order. In this paper, we tackle the problem of
specifying and modeling event-driven application-programming protocols. In particular, we formalize
a core meta-model that captures the dialogue between event-driven frameworks and application
callbacks. Based on this meta-model, we define a language called lifestate that permits precise and
formal descriptions of application-programming protocols and the callback control flow imposed
by the event-driven framework. Lifestate unifies modeling what app callbacks can expect of the
framework with specifying rules the app must respect when calling into the framework. In this
way, we effectively combine lifecycle constraints and typestate rules. To evaluate the effectiveness
of lifestate modeling, we provide a dynamic verification algorithm that takes as input a trace of
execution of an app and a lifestate protocol specification to either produce a trace witnessing a
protocol violation or a proof that no such trace is realizable.

2012 ACM Subject Classification Software and its engineering → Software verification

Keywords and phrases event-driven systems, application-programming protocols, application frame-
work interfaces, callbacks, sound framework modeling, predictive dynamic verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.4

1 Introduction

We consider the essential problem of checking that an application (app) programmed against
an event-driven framework respects the required application-programming protocol. In such
frameworks, apps implement callback interfaces so that the app is notified when an event
managed by the framework occurs (e.g., a user-interface (UI) button is pressed). The app
may then delegate back to the framework through calls to the application programming
interface (API), which we term callin by analogy to callback. To develop working apps, the
programmer must reason about hidden callback control flow and often implicit asynchronous
programming protocols.

Couple difficult reasoning about the space of possible control flow between callbacks
with insufficient framework documentation, and it is unsurprising to find some questionable
“fixes” for protocol violations. In Figure 1, we show a snippet found on GitHub. The “race
condition?” comment is quoted directly from the app developer. The same asynchronous,

© Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 4; pp. 4:1–4:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

90
6.

04
92

4v
2

 [
cs

.P
L

]
 1

3
Ju

n
20

19

https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Lifestate: Event-Driven Protocols and Callback Control Flow

try { progress.dismiss(); } catch (IllegalArgumentException ignored) {} // race condition?

Figure 1 A protocol “fix” [10]. The dismiss call throws an exception if called in an invalid state.

implicitly defined, control flow that make it difficult for the app developer to reason about
his app is also what makes verifying the absence of such protocol violations hard.

In this paper, we focus on the problems of specifying event-driven protocols (i.e., specifying
when the invocation of a callin in the app code causes a protocol violation) and modeling
the callback control flow (i.e., modeling the possible executions of callbacks).

Lifecycle Automata are Insufficient for Modeling Callback Control Flow. Lifecycle au-
tomata are a common representation used to model callback control flow that is both central
to Android documentation [1, 39] and prior Android analysis techniques—both static and
dynamic ones (e.g., [5, 32, 8]). In Figure 2, we show a lifecycle automaton for the Activity

class of the Android framework. The black, solid edges are the edges present in the Android
documentation [1] showing common callback control flow. These edges capture, for example,
that the app first receives the onStart callback before entering a cycle between the onResume
and the onPause callbacks. But this clean and simple class-based model quickly becomes
insufficient when we look deeper.

First, there are complex relationships between the callbacks on “related” objects. For
example, an OnClickListener object l with an onClick callback may be “registered” on a View

object v that is “attached” to an Activity object a. Because of these relationships, the callback
control flow we need to capture is somewhat described by modifying the lifecycle automaton
for Activity a with the additional blue, dotted edges to and from onClick (implicitly for
OnClickListener l) in Figure 2. This modified lifecycle encodes framework-specific knowledge
that the OnClickListener l’s onClick callback happens only in the “active” state of Activity

a between its onResume and onPause callbacks, which typically requires a combination of
static analysis on the app and hard-coded rules to connect callbacks on additional objects
such as OnClickListeners to component lifecycles such as Activity. We refer to such callback
control-flow models based on such refined lifecycle automatons as lifecycle++ models.

Second, there are less common framework-state changes that are difficult to capture
soundly and precisely. For example, an analysis that relies on a callback control-flow model
that does not consider the intertwined effect of a finish call may be unsound. The red,
dashed edges represent callback control flow that are not documented (and thus missing from

a.onCreate() a.onStart() a.onResume()

l.onClick(b)

a.onPause() a.onStop() a.onDestroy()

a.onRestart()

Figure 2 The Activity lifecycle automaton from the Android documentation [1] (shown with
solid, black edges). To capture callback control flow between “related” objects, such component
lifecycles are often instantiated and refined with additional callbacks from other objects, such as a
onClick callback from the OnClickListener interface (shown with dotted, blue edges). But there
are also less common callback control-flow paths that are often undocumented or easily missed, such
as the additional edges induced by an invocation in the app code of the finish callin (shown as
dashed, red edges).

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:3

typical callback control flow models). Each one of these edges specifies different possible
callback control flow that the framework imposes depending on if and when the app invokes
the finish callin inside one of the Activity’s callbacks. Of course, the lifecycle automaton
can be extended to include these red edges. However, this lifecycle automaton is now quite
imprecise in the common case because it does not express precisely when certain callback
control-flow paths are spurious (i.e., depending on where finish is not called). Figure 2
illustrates why developing callback control flow models is error prone: the effect of calls to
finish are subtle and poorly understood.

It is simply too easy to miss possible callback control flow—an observation also made by
Wang et al. [52] about lifecycle models. While lifecycle automata are useful for conveying
the intuition of callback control flow, they are often insufficiently precise and easily unsound.

In this paper, we re-examine the process of modeling callback control flow. In prior
work, modeling callback control flow was almost always a secondary concern in service
to, and often built into, a specific program analysis where the analysis abstraction may
reasonably mask unsound callback control flow. Instead, we consider modeling callback
control flow independent of any analysis abstraction—we identify and formalize the key
aspects to effectively model event-driven application-programming protocols at the app-
framework interface, such as the effect of callin and callback invocations on the subsequent
callback control flow, This first-principles approach enables us to validate callback control-flow
soundness with real execution traces against the event-driven framework implementation. It
is through this validation step that we discovered the red, dashed edges in Figure 2.

Contributions. We make the following contributions:

We identify essential aspects of event-driven control flow and application-programming
protocols to formalize a core abstract machine model λlife (Section 3). This model
provides a formal basis for thinking about event-driven frameworks and their application-
programming protocols.
We define a language for simultaneously capturing event-driven application-programming
protocols and callback control flow called lifestates, which both model what callback
invocations an app can expect from the framework and specify rules the app must respect
when calling into the framework (Section 4). Intuitively, lifestates offer the ability to
specify traces of the event-driven program in terms of an abstraction of the observable
interface between the framework and the app. And thus, this definition leads to a
methodology for empirically validating lifestate models against actual interaction traces.
We define lifestate validation and dynamic lifestate verification. And then, we encode
them as model checking problems (Section 5). Given an app-framework interaction
trace and a lifestate model, validation checks that the trace is in the abstraction of the
observable interface defined by the model. This validation can be done with corpora
of traces recorded from any set of apps interacting with the same framework because,
crucially, the lifestate model speaks only about the app-framework interface. Then, given
a trace, dynamic lifestate verification attempts to prove the absence of a rearrangement
of the recorded events that could cause a protocol violation. Rearranging the execution
trace of events corresponds to exploring a different sequence of external inputs and hence
discovering possible protocol violations not observed in the original trace.
We implement our model validation and trace verification approach in a tool called
Verivita and use it to empirically evaluate the soundness and precision of callback control
flow models of Android (Section 6). Our results provide evidence for the hypotheses
that lifecycle models, by themselves, are insufficiently precise to verify Android apps as

ECOOP 2019

4:4 Lifestate: Event-Driven Protocols and Callback Control Flow

conforming to the specified protocols, that model validation on large corpora of traces
exposes surprising unsoundnesses, and that lifestates are indeed useful.

2 Overview: Specifying and Modeling Lifestates

Here, we illustrate the challenges in specifying and modeling event-driven application-
programming protocols. In particular, we motivate the need for lifestates that permit
specifying the intertwined effect of callin and callback invocations. We show that even
if an app is buggy, it can be difficult to witness the violation of the Android application
programming protocol. Then, more importantly, we show how an appropriate fix is both
subtle to reason about and requires modeling the complex callback control flow that depends
on the previous execution of not only the callbacks but also the callins.

Our running example (code shown in Figure 3) is inspired by actual issues in Antenna-
Pod [16], a podcast manager with 100,000+ installs, and the Facebook SDK for Android [27].
The essence of the issue is that a potentially time-consuming background task is started
by a user interaction and implemented using the AsyncTask framework class. Figure 3
shows buggy code that can potentially violate the application-programming protocol for
AsyncTask. The remover.execute() call (marked with B) throws an IllegalStateException
if the AsyncTask t instance, pointed-to by remover, is already running. So a protocol rule
for AsyncTask is that t.execute() cannot be called twice for the same AsyncTask t. The
IllegalStateException type is commonly used to signal a protocol violation and has been
shown to be a significant source of Android crashes [28].

In Figure 3, the RemoverActivity defines an app window that, on creation (via the
onCreate callback), registers a click listener (via the button.setOnClickListener(. . .) call on
line 3). This registration causes the framework to notify the app of a button click through
the onClick method. When that happens, the onClick callback starts the FeedRemover
asynchronous task (via the remover.execute() call on line 5). What to do asynchronously
is defined in the doInBackground callback, and when the FeedRemover task is done, the
framework delegates to the onPostExecute callback, which closes the RemoverActivity (via
the call to activity.finish()).

We diagram a common-case execution trace in Figure 4.a. Even though the app is buggy,

class RemoverActivity extends Activity {
FeedRemover remover;
void onCreate() {

1 Button button = . . .;
2 remover = new FeedRemover(this);
3 button.setOnClickListener(
4 new OnClickListener() {

void onClick(View view) {
5 remover.execute(); B

}
});

}
}

class FeedRemover extends AsyncTask {
RemoverActivity activity;
void doInBackground() {
. . . remove feed . . .

}
void onPostExecute() {
// return to previous activity

6 activity.finish();
}

}

Figure 3 An example app that violates the protocol specified by the interaction of the Android
framework components AsyncTask, Button, and OnClickListener. On line 5, remover.execute() (marked
with B) can throw an IllegalStateException if the remover task is already running.

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:5

the trace does not witness the protocol violation. The exception does not manifest because
the user only clicks once (Click) before the FeedRemover task completes and generates
the post-execute event (PostExecute). And so the (t:AsyncTask).execute() callin on the
AsyncTask instance t is executed only once before the activity is closed (cf. the onClick and
onPostExecute callbacks in Figure 3).

If typically the Activity is quickly destroyed after the button click, then seeing a protocol
violation in a test is quite unlikely. However, it is possible to click a second time before the
AsyncTask completes, thereby witnessing a protocol violation. We show this error trace in
Figure 4.b: when the app invokes the callin (t:AsyncTask).execute() for the second time in
the second Click event, the framework is in a state that does not allow this transition. We
say that the callin invocation is disallowed at this point, and apps must only invoke allowed
callins. While the original trace Create;Click;PostExecute does not concretely witness the
protocol violation, it has sufficient information to predict the error trace Create;Click;Click.
It may, however, be difficult to reproduce this error trace: the button must be pressed twice
before the activity.finish() method is called by the PostExecute event destroying the
Activity. But how can we predict this error trace from the original one?

2.1 Predict Violations from Recorded Interactions
We define the dynamic lifestate verification problem as predicting an error trace that (possibly)
witnesses a protocol violation from a trace of interactions or proving that no such error trace
exists. Concretely, the input to dynamic lifestate verification is an interaction trace like the
one illustrated in Figure 4.a. These traces record the sequence of invocations and returns
of callbacks and callins between the framework and the app that result from an interaction
sequence. A recorded trace includes the concrete method arguments and return values (e.g.,
the instance t from the diagrams corresponds to a concrete memory address).

The main challenge, both for the app developer and dynamic lifestate verification, is that
the relevant sequence of events that leads to a state where a callin is disallowed is hidden
inside the framework. The developer must reason about the evolving internal state of the
framework by considering the possible callback and callin interactions between the app and
the framework to develop apps that both adhere to the protocol and behave intuitively. To
find a reasonable fix for the buggy app from Figure 3, let us consider again the error trace
shown in Figure 4.b. Here, the developer has to reason that the (t:AsyncTask).execute()
callin is allowed as soon as t is initialized by the call to (t:AsyncTask).<init>() in the Create
event and is disallowed just after the first call to (t:AsyncTask).execute() in the first Click
event. That is, the developer must reason about what sequence of events and callins determine
when a callin is allowed or disallowed. Since callins are invoked inside callback methods and
callback methods are in turn invoked by the framework to notify the app of an event, the
internal framework state determines what events can happen when and hence the callback
control flow. In particular, the internal framework state determines when the Create and
Click events are enabled (i.e., can happen) during the execution. Thus to properly fix this
app, the developer must ensure that Create happens before a Click and then only a single
Click happens before a PostExecute. How can the app developer constrain the external
interaction sequence to conform to this property?

In Figure 5.a, we show a fix based on the above insight that is particularly challenging to
verify. The fix adds line 5 that disables Button button to indicate when the task has already
been started. Thus, this modified version does not violate the no-execute-call-on-already-
executing-AsyncTask protocol on line 6. To reason precisely enough about this fix, we must
know that the button.setEnabled(false) call changes internal framework state that prevents

ECOOP 2019

4:6 Lifestate: Event-Driven Protocols and Callback Control Flow

Framework App

(a:Activity).onCreate()

(t:AsyncTask).<init>()
2

(b:Button).setOnClickListener(l:OnClickListener)
4

CreateCreate Create Activity a.

(l:OnClickListener).onClick(b:Button)

(t:AsyncTask).execute()
5

(t:AsyncTask) = (t:AsyncTask).execute()

(l:OnClickListener).onClick(b:Button)

ClickClick User clicks on Button b.

(t:AsyncTask).onPostExecute()

(a:Activity).finish()
6

PostExecutePostExecute Finish AsyncTask t.

calling a callback
returning from a callback
calling a callin
returning from a callin

(4.a) A trace that does not witness a protocol
violation since the callin (t:AsyncTask).execute()
on t is executed only once.

Framework App

(a:Activity).onCreate()

(t:AsyncTask).<init>()
2

(b:Button).setOnClickListener(l:OnClickListener)
4

CreateCreate

(l:OnClickListener).onClick(b:Button)

(t:AsyncTask).execute()
5

ClickClick

(l:OnClickListener).onClick(b:Button)

(t:AsyncTask).execute()
5

ClickClick

The AsyncTask t is still running, so the
PostExecute event has not yet happened.

(4.b) The Create;Click;Click interaction
sequences witnesses the no-execute-call-on-
already-executing-AsyncTask protocol violation.

Figure 4 We visualize the interface between an event-driven framework and an app as a dialog
between two components. With execution time flowing downwards as a sequence events, control
begins on the left with the framework receiving an event. Focusing on the highlighted Click event
in Figure 4.a, when a user clicks on the button corresponding to object b of type Button, the onClick
callback is invoked by the framework on the registered listener l. For clarity, we write method
invocations with type annotations (e.g., (l:OnClickListener).onClick(b:Button)), and variables b
and l stand for some concrete instances (rather than program or symbolic variables). The app
then delegates back to the framework by calling an API method to start an asynchronous task t
via (t:AsyncTask).execute(). To connect with the app source code, we label the callins originating
from the app timeline with the corresponding program point numbers in Figure 3. Here, we can see
clearly a callback as any app method that the framework can call (i.e., with an arrow to the right

), and a callin as any framework method that an app can call (i.e., with an arrow to the left
). We show returns with dashed arrows (but sometimes elide them when they are unimportant).

the onClick from happening again. Note that this need to reason about complex control flow
arises from the interactions between just two framework types Button and AsyncTask—not to
mention that these two are amongst the simplest framework types in Android. There is a
clear need here for better automated reasoning tools to support the app developer.

Verivita Approach. Our dynamic verification approach explores all the possible sequences
of interactions that can be obtained by replicating, removing, and reordering the events
in a trace. By rearranging event traces, the algorithm statically explores different input
sequences of events that a user interaction could generate. The algorithm applied to the
Create;Click;PostExecute trace in Figure 4.a from the buggy app version indeed yields the
error trace Create;Click;Click (shown in Figure 4.b). But more critically, our approach
also makes it possible to prove that the fixed app version does not have any traces that

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:7

class RemoverActivity extends Activity {
FeedRemover remover;
void onCreate() {

1 Button button = . . .;
2 remover = new FeedRemover(this);
3 button.setOnClickListener(
4 new OnClickListener() {

void onClick(View view) {
5 + button.setEnabled(false);
6 remover.execute(); B

}
});

}
}

class FeedRemover extends AsyncTask {
RemoverActivity activity;
void doInBackground() {
. . . remove feed . . .

}
void onPostExecute() {
// return to previous activity

7 activity.finish();
}

}

(5.a) A button.setEnabled(false)
call prevents the user from clicking,
triggering the onClick callback.

Framework App

(a:Activity).onCreate()

enabled callbacks©X
disallowed callins B

a.onCreate()©X
(t:AsyncTask).<init>()

2
(b:Button).setOnClickListener(l:OnClickListener)

l.onClick(b)©X 4

CreateCreate

(l:OnClickListener).onClick(b:Button)
l.onClick(b)©X

(b:Button).setEnabled(false)
5

(t:AsyncTask).execute()t.onPostExecute()©X
t.execute()B

6

ClickClick

The Click is not enabled, so it cannot happen here.

(t:AsyncTask).onPostExecute()t.onPostExecute()©X
t.execute()B

(a:Activity).finish()
7

PostExecutePostExecute

(5.b) The enabled callbacks and disallowed callins are
shown along the Create;Click;PostExecute trace from
the fixed app in 5.a.

Figure 5 A fixed version of the app from Figure 3 that adheres to the application-programming
protocol. The annotations in 5.b show that after the call to (b:Button).setEnabled(false), the
l.onClick(b) callback is no longer enabled, and thus the app can assume that the framework will
not call l.onClick(b) at this point.

violates the protocol (by rearranging Create;Click;PostExecute).
Central to our approach is capturing the essential, hidden framework state—tracking the

set of enabled callbacks and the set of disallowed callins. Figure 5.b illustrates this model
state along a trace from the fixed app. After the first Click, the application disables the
button to prevent a second Click via the call to (b:Button).setEnabled(false), which at that
point removes l.onClick(b) from the set of enabled callbacks the framework can trigger.

Verivita addresses the dynamic verification problem by reducing it to a model checking
problem. The model is a transition system with (i) states abstracting the set of enabled
callbacks and disallowed callins and (ii) transitions capturing the possible replication, remov-
ing, and reordering of a given interaction trace. The safety property of interest is that the
transition system never visits a disallowed callin. How can we construct such a transition
system that over-approximates concrete behavior while being precise enough to make alarm
triage feasible? As alluded to in Section 1, lifestate specification is crucial here.

2.2 Specify Event-Driven Protocols and Model Callback Control Flow
In Figure 6, we illustrate the essence of callback control-flow modeling as finite-state automata
that over-approximate rearrangements of the Create;Click;PostExecute trace shown in
Figure 5.b. Automaton 6.a exhibits the trivially sound, unconstrained, “top” abstraction
that considers all replications, removals, and reorderings of the interaction trace. This
abstraction is the one that assumes all callbacks are always enabled. Since a possible trace

ECOOP 2019

4:8 Lifestate: Event-Driven Protocols and Callback Control Flow

Create

Click
PostExecute

(6.a) False alarm on the
trivially sound, unconstrained,
“top” abstraction.

Create
Click

PostExecute

Click

PostExecute

(6.b) False alarm on the
Activity lifecycle-refined ab-
straction.

Create
PostExecute

Click

PostExecute

(6.c) False alarm on the life-
cycle with the Click restricted
to the active Activity state (as
shown in Figure 2).

Create Click

PostExecute
(6.d) Verified safe when we consider the
effect of Button.setEnabled(. . .).

Create Click

(6.e) This unsound abstraction is missing
the PostExecute edge.

Figure 6 In previous works, models are generated for an application restricting the possible
order of callbacks. In this figure, we show four sound abstractions with different levels of precision,
indicating whether they can verify our fixed application 5.a, as well as one unsound abstraction.

in this abstraction includes two Click events, a sound verifier must alarm. Meanwhile,
Automaton 6.b shows a refined abstraction encoding the Android-specific Activity lifecycle.
The abstraction is framework-specific but application-independent and captures that the
Create event cannot happen more than once. The abstraction shown by Automaton 6.b
is also insufficient to verify the trace from the fixed app because two Click events are still
possible.

Automaton 6.c shows a refined, lifecycle++ abstraction that considers the Activity lifecycle
with additional constraints on an “attached” Click event. This abstraction is representative
of the current practice in callback control-flow models (e.g., [5, 32, 8]). While Automaton 6.c
restricts the Click event to come only after the Create event, the abstraction is still too
over-approximate to verify that the trace from the fixed app is safe—two Click events are
still possible with this model. But worse is that this model is still, in essence, a lifecycle model
that is constrained by Android-specific notions like View attachment, Listener registration,
and the “live” portion of lifecycles. In existing analysis tools, such constrained lifecycle
models are typically hard-coded into the analyzer.

We need a better way to capture how the application may affect callback control flow. In
this example, we need to capture the effect of the callin button.setEnabled(false) at line 5
in Figure 5.a, which is the only difference with the buggy version in Figure 3. The modeling
needs to be expressive to remove such infeasible traces and compositional to express state
changes independently. Thus, the role of lifestate specification is to describe how the internal
model state is updated by observing the history of intertwined callback and callin invocations.
For example, we write

(`b:Button).setEnabled(false) 9 (`l:OnClickListener).onClick(`b:Button) (for all `l, `b)

to model when (`b:Button).setEnabled(false) is invoked, the click callback is disabled on the

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:9

same button `b (on all listeners `l). Also, we similarly specify the safety property of interest

(`t:AsyncTask).execute() 9 (`t:AsyncTask).execute() (for all `t)

that when (`t:AsyncTask).execute() is called on a task `t, it disallows itself. And analogously,
lifestates include specification forms for enabling callbacks or allowing callins.

Lifestate uniformly models the callback control-flow and specifies event-driven application-
programming protocols. The rules that enable and disable callbacks model what callbacks
the framework can invoke at a specific point in the execution of the application, while the
rules that disallow and allow callins specify what callins the application must invoke to
respect the protocol. What makes lifestate unique compared to typestates [50] or lifecycle
automata is this unification of the intertwined effects of callins and callbacks on each other.

The complexity of the implicit callback control flow is what makes expressing and
writing correct models challenging. An issue whose importance is often under-estimated
when developing callback control-flow models is how much the model faithfully reflects the
framework semantics. How can we validate that a lifestate specification is a correct model of
the event-driven framework?

Validating Event-Driven Programming Protocols. As argued in Section 1, a key concern
when developing a framework model is that it must over-approximate the possible real
behavior of the application. The “top” model as shown in Automaton 6.a trivially satisfies
this property, and it may be reasonable to validate an application-independent lifecycle
model like Automaton 6.c. However, as we have seen, verifying correct usage of event-driven
protocols typically requires callback control-flow models with significantly more precision.

Automaton 6.d shows a correct lifestate-abstraction that contains an edge labeled
PostExecute. We express this edge with the rule shown below:

(`t:AsyncTask).execute() → (`t:AsyncTask).onPostExecute() (for all `t)

This rule states that when (`t:AsyncTask).execute() is called, its effect is to enable the callback
(`t:AsyncTask).onPostExecute() on the AsyncTask `t.

If we do not model this rule, we obtain the abstraction in Automaton 6.e. The lifestate
model is unsound since it misses the PostExecute edge.

The trace Create;Click;PostExecute shown in Figure 5.b is a witness of the unsound-
ness of the abstraction: Automaton 6.e accepts only proper prefixes of the trace (e.g.,
Create;Click), and hence the abstraction does not capture all the possible traces of the app.
We can thus use interaction traces to validate lifestate rules: a set of lifestate rules is valid if
the abstraction accepts all the interaction traces. The validation applied to the abstraction
shown in Automaton 6.e demonstrates that the abstraction accepts Create;Click as the
longest prefix of the trace Create;Click;PostExecute. This information helps to localize
the cause for unsoundness since we know that after the sequence Create;Click, the callback
PostExecute is (erroneously) disabled.

The encoding of the abstraction from lifestate rules is a central step to perform model
validation and dynamic verification. At this point, we still cannot directly encode the
abstraction since the lifestate rules contain universally-quantified variables. How can we
encode the lifestate abstraction as a transition system amenable to check language inclusion
for validation, and to check safety properties for dynamic verification?

From Specification to Validation and Verification. Generalizing slightly, we use the term
message to refer to any observable interaction between the framework and the app. Messages

ECOOP 2019

4:10 Lifestate: Event-Driven Protocols and Callback Control Flow

consist of invocations to and returns from callbacks and callins. The abstract state of the
transition system is then a pair consisting of the permitted-back messages from framework
to app and the prohibited-in messages from app to framework. And thus generalizing the
example rules shown above, a lifestate specification is a set of rules whose meaning is,

If the message history matches r, then the abstract state is updated according to
the specified effect on the set of permitted-back and prohibited-in messages.

There are many possible choices and tradeoffs for the matching language r. As is common,
we consider a regular expression-based (i.e., finite automata-based) matching language.

We exploit the structure of the validation and dynamic verification problem to encode
the lifestate abstraction. In both problems, the set of possible objects and parameters is
finite and determined by the messages recorded in the trace. We exploit this property to
obtain a set of ground rules (rules without variables). We can then encode each ground
rule in a transition system. Since the rule is ground, the encoding is standard: each regular
expression is converted to an automaton and then encoded in the transition system, changing
the permitted-prohibited state as soon as the transition system visits a trace accepted by
the regular expression, which implicitly yields a model like automata 6.d.

Lifestate offers a general and flexible way to specify the possible future messages in terms
of observing the past history of messages. It, however, essentially leaves the definition of
messages and what is observable abstract. What observables characterize the interactions
between an event-driven framework and an app that interfaces with it? And how do these
observables define event-driven application-programming protocols and callback control flow?

2.3 Event-Driven App-Framework Interfaces
Lifestate rules are agnostic to the kinds of messages they match and effects they capture on
the internal abstract state. To give meaning to lifestates, we formalize the essential aspects
of the app-framework interface in an abstract machine model called λlife in Section 3. This
abstract machine model formally characterizes what we consider an event-driven framework.
The λlife abstract machine crisply defines the messages that the app and the framework code
exchange and a formal correspondence between concrete executions of the program and the
app-framework interface. We use this formal correspondence to define the semantics of the
lifestate framework model, its validation problem, and protocol verification.

We do not intend for λlife to capture all aspects of something as complex as Android; rather,
the purpose of λlife is to define a “contract” by which to consider a concrete event-driven
framework implementation. And thus, λlife also defines the dynamic-analysis instrumentation
we perform to record observable traces from Android applications that we then input to the
Verivita tool to either validate a specification or verify protocol violations.

Preview. We have given a top-down overview of our approach, motivating with the dynamic
protocol verification problem the need for having both a precise callback control-flow model
and an event-driven protocol specification. We also presented how the lifestate language
addresses this need capturing the intertwined effect of callins and callbacks. In the next
sections, we detail our approach in a bottom-up manner—beginning with formalizing the λlife
abstract machine model. We show that, assuming such a model of execution, it is possible
to provide a sound abstraction of the framework (i.e., no real behavior of the framework
is missed by the abstraction) expressed with a lifestate model. We then formalize how we
validate such models and how we use lifestates to verify the absence of protocol violations.

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:11

expressions e ∈ Expr ::= bind v1 v2 | invoke v | disallow v | allow v thunks and calls
| enable v | disable v | force κ events and forcing
| v | let x = e1 in e2 | · · · other expressions

functions λ ::= x =>g e

packages g ::= app | fwk

values v ∈ Val ::= x | λ | κ | () | · · · | thk

variables x ∈ Var thunks κ ∈ Thunk ::= λ[v] thunk stores µ, ν ::= · | µ;κ
continuations k ::= • | k . x.e | κ | k�κ states σ ∈ State ::= 〈e, µ, ν, k〉 | bad

(7.a) The syntax and the semantic domains.
σ −→ σ′

Enable
〈enable κ, µ, ν, k〉 −→ 〈κ, µ;κ, ν, k〉

Disable
〈disable κ, µ;κ, ν, k〉 −→ 〈κ, µ, ν, k〉

Event
κ ∈ µ

〈v, µ, ν, •〉 −→ 〈force κ, µ, ν, κ〉

Disallow
〈disallow κ, µ, ν, k〉 −→ 〈κ, µ, ν;κ, k〉

Allow
〈allow κ, µ, ν;κ, k〉 −→ 〈κ, µ, ν, k〉

Invoke
κ /∈ ν

〈invoke κ, µ, ν, k〉 −→ 〈force κ, µ, ν, k〉

InvokeDisallowed
κ ∈ ν

〈invoke κ, µ, ν, k〉 −→ bad

Bind
〈bind λ v, µ, ν, k〉 −→ 〈λ[v], µ, ν, k〉

Force
(x′ =>g′ e′)[v′] = κ

〈force κ, µ, ν, k〉 −→ 〈[κ/thk][v′/x′]e′, µ, ν, k�κ〉

Return
〈v, µ, ν, k�κ〉 −→ 〈v, µ, ν, k〉

Finish
〈v, µ, ν, κ〉 −→ 〈v, µ, ν, •〉

Let
〈let x = e1 in e2, µ, ν, k〉 −→ 〈e1, µ, ν, k . x.e2〉

Continue
〈v, µ, ν, k . x.e2〉 −→ 〈[v/x]e2, µ, ν, k〉

(7.b) Semantics. Explicitly enable, disable, disallow, and allow thunks.

Figure 7 λlife, a core model of event-driven programs capturing enabledness of events and
disallowedness of invocations.

3 Defining Event-Driven Application-Programming Protocols

Following Section 2, we want to capture the essence of the app-framework interface with
respect to framework-imposed programming protocols. To do so, we first formalize a small-
step operational semantics for event-driven programs with an abstract machine model λlife.
The λlife abstract machine draws on standard techniques but explicitly highlights enabled
events and disallowed callins to precisely define event-driven protocols. We then instrument
this semantics to formalize the interface of the event-driven framework with an app, thereby
defining the traces of the observable app-framework interface of a λlife program.

This language is intentionally minimalistic to center on capturing just the interface
between event-driven frameworks and their client applications. By design, we leave out
many aspects of real-world event-driven framework implementations (e.g., Android, Swing,
or Node.js), such as typing, object-orientation, and module systems that are not needed for
formalizing the dialogue between frameworks and their apps (cf. Section 2). Our intent is to
illustrate, through examples, that event-driven frameworks could be implemented in λlife and
that λlife makes explicit the app-framework interface to define observable traces consisting of
back-messages and in-messages (Section 3.3).

ECOOP 2019

4:12 Lifestate: Event-Driven Protocols and Callback Control Flow

3.1 Syntax: Enabling, Disabling, Allowing, and Disallowing
The syntax of λlife is shown at the top of Figure 7.a, which is a λ-calculus in a let-normal
form. The first two cases of expressions e split the standard call-by-value function application
into multiple steps (similar to call-by-push-value [30]). The bind λ v expression creates a
thunk κ = λ[v] by binding a function value λ with an argument value v. We abuse notation
slightly by using λ as the meta-variable for function values (rather than as a terminal symbol).
A thunk may be forced by direct invocation invoke κ—or indirectly via event dispatch.

I Example 1 (Applying a Function). Let t be bound to an AsyncTask and onPostExecute to
an app-defined callback (e.g., onPostExecute from Figure 5.a), then the direct invocation of
a callback from the framework can be modeled by the two steps of binding and then invoking:

let cb = bind onPostExecute t in invoke cb

Now in λlife, a thunk κ may or may not have the permission to be forced. Revoking
and re-granting the permission to force a thunk via direct invocation is captured by the
expressions disallow κ and allow κ, respectively. A protocol violation can thus be modeled
by an application invoking a disallowed thunk.

The direct invocation expressions are mirrored with expressions for event dispatch. An
enable κ expression enables a thunk κ for the external event-processing system (i.e., gives the
system permission to force the thunk κ), while the disable κ expression disables the thunk κ.

I Example 2 (Enabling an Event). Let t be bound to an AsyncTask and handlePostExecute
to an internal framework-defined function for handling a post-execute event, then enqueuing
such an event can be modeled by the two steps of binding then enabling:

let h = bind handlePostExecute t in enable h

By separating function application and event dispatch into binding to create a thunk
κ = λ[v] and then forcing it, we uniformly make thunks the value form that can be granted
permission to be invoked (via allow κ) or for event dispatch (via enable κ). The force κ

expression is then an intermediate that represents a thunk that is forcible (i.e., has been
permitted for forcing via allow κ or enable κ).

The remainder of the syntax is the standard part of the language: values v, variable
binding let x = e1 in e2, and whatever other operations of interest · · · (e.g., arithmetic,
tuples, control flow, heap manipulation). That is, we have made explicit the expressions to
expose the app-framework interface and can imagine whatever standard language features in
· · · in framework implementations. The values v of this expression language are variables x,
function values λ, thunks κ, unit (), and whatever other base values of interest · · · . Two
exceptions are that (1) the currently active thunk is available via the thk identifier (see
Section 3.2) and (2) functions x =>g e are tagged with a package g (see Section 3.3).

3.2 Semantics: Protocol Violations
At the bottom of Figure 7.a, we consider an abstract machine model enriched with an
enabled-events store µ, and a disallowed-calls store ν. These are finite sets of thunks, which
we write as a list κ1; · · · ;κn. The enabled-events store µ saves thunks that are permitted
to be forced by the event loop, while the disallowed-calls store ν lists thunks that are not
permitted to be forced by invocation. These thunk stores make explicit the event-driven
application-programming protocol (that might otherwise be implicit in, for example, flag
fields and conditional guards).

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:13

A machine state σ : 〈e, µ, ν, k〉 consists of an expression e, enabled events µ, disallowed calls
ν, and a continuation k. A continuation k can be the top-level continuation • or a continuation
for returning to the body of a let expression, which are standard. Continuations are also used
to record the active thunk via κ and k�κ corresponding to the run-time stack of activation
records. These continuation forms record the active thunk and are for defining messages and
the app-framework interface in Section 3.3. Since events occur non-deterministically and
return to the main event loop, it is reasonable to assume that a state σ should also include a
heap, and the expression language should have heap-manipulating operations through which
events communicate. We do not, however, formalize heap operations since they are standard.

We define an operational semantics in terms of the judgment form σ −→ σ′ for a small-
step transition relation. In Figure 7.b, we show the inference rules defining the reduction steps
related to enabling-disabling, disallowing-allowing, invoking, creating, and finally forcing
thunks. The rules follow closely the informal semantics discussed in Section 3.1. Observe that
Enable and Allow both permit a thunk to be forced, and Disable and Disallow remove
the permission to be forced for a thunk. The difference between Enable and Disable versus
Allow and Disallow is that the former pair modifies the enabled events µ, while the latter
touches the disallowed calls ν.

The Event rule says that when the expression is a value v and the continuation is the
top-level continuation •, then a thunk is non-deterministically chosen from the enabled events
µ to force. Observe that an enabled event remains enabled after an Event reduction, hence
λlife can model both events that do not self-disable (e.g., the Click event from Section 2) and
those that are self-disabling (e.g., the Create event). The Invoke rule has a similar effect, but
it checks that the given thunk is not disallowed in ν before forcing. The InvokeDisallowed
rule states that a disallowed thunk terminates the program in the bad state. And the Bind
rule simply states that thunks are created by binding an actual argument to a function value.

The Force rule implements the “actual application” that reduces to the function body
e′ with the argument v′ substituted for the formal x′ and the thunk substituted for the
identifier thk, that is, [κ/thk][v′/x′]e′. To record the stack of activations, we push the forced
thunk κ on the continuation (via k�κ). The Return and Finish rules simply state that the
recorded thunk κ frames are popped on return from a Force and Event, respectively. The
Return rule returns to the caller via the continuation k, while the Finish rule returns to the
top-level event loop •. The last line with the Let and Continue rules describe, in a standard
way, evaluating let-binding.

A program e violates the event-driven protocol if it ends in the bad state from the initial
state 〈e, ·, ·, •〉.

I Example 3 (Asserting a Protocol Property.). The no-execute-call-on-already-executing-
AsyncTask protocol can be captured by a disallow. We let execute be a framework function
(i.e., tagged with fwk) that takes an AsyncTask t.

let execute = (t =>fwk disallow thk; . . . let h = bind handlePostExecute t in enable h)

The execute function first disallows itself (via disallow thk) and does some work (via . . .)
before enabling the handlePostExecute event handler (writing e1; e2 as syntactic sugar for
sequencing). The disallow thk asserts that this thunk cannot be forced again—doing so
would result in a protocol violation (i.e., the bad state).

In contrast to an event-driven framework implementation, the state of a λlife program
does not have a queue. As we see here, a queue is an implementation detail not relevant for
capturing event-driven programming protocols. Instead, λlife models the external environment,
such as, user interactions, by the non-deterministic selection of an enabled event.

ECOOP 2019

4:14 Lifestate: Event-Driven Protocols and Callback Control Flow

back-messages mbk ∈ Σbk ::= cb κ | v= ciret κ in-messages min ∈ Σin ::= ci κ | v= cbret κ
messages m ∈ Σ ::= mbk | min | dis min | ε observable traces ω ∈ Σ∗ ::= ε | ωm

σ
−→
m σ′

ForceCallback
(x′ =>app e

′)[v′] = κ fwk = pkg(k)

〈force κ, µ, ν, k〉
−→
cb κ 〈[κ/thk][v′/x′]e′, µ, ν, k�κ〉

ForceCallin
(x′ =>fwk e

′)[v′] = κ app = pkg(k)

〈force κ, µ, ν, k〉
−→
ci κ 〈[κ/thk][v′/x′]e′, µ, ν, k�κ〉

ReturnCallin
(x′ =>fwk e

′)[v′] = κ app = pkg(k)

〈v, µ, ν, k�κ〉
−→

v= ciret κ 〈v, µ, ν, k〉

ReturnCallback
(x′ =>app e

′)[v′] = κ fwk = pkg(k)

〈v, µ, ν, k�κ〉
−→

v= cbret κ 〈v, µ, ν, k〉

InvokeDisallowed
κ ∈ ν

〈invoke κ, µ, ν, k〉
−→

dis ci κ bad

thk(κ) def= thk(k�κ) def= κ thk(k . x.e) def= thk(k) pkg(k) def= g if (x =>g e)[v] = thk(k)

Figure 8 The instrumented transition relation σ −→m σ′ defines the app-framework interface and
observing the event-driven protocol.

3.3 Messages, Observable Traces, and the App-Framework Interface

To minimally capture how a program is composed of separate framework and app code, we
add some simple syntactic restrictions to λlife programs. Function values λ tagged with the fwk

are framework code and the app tag labels app code. We express a framework implementation
〈Funfwk, λinit〉 with a finite set of framework functions Funfwk and an initialization function
λinit ∈ Funfwk. A program e uses the framework implementation if it first invokes the
function λinit, and all the functions labeled as fwk in e are from Funfwk.

In a typical, real-world framework implementation, the framework implicitly defines
the application-programming protocol with internal state to check for protocol violations.
The Enable, Disable, Allow, and Disallow transitions make explicit the event-driven
protocol specification in λlife. Thus, it is straightforward to capture that framework-defined
protocols by syntactically prohibiting the app from using enable κ, disable κ, allow κ, and
disallow κ. Again, the enabled-event store µ and the disallowed-call store ν in λlife can be
seen as making explicit the implicit internal state of event-driven frameworks that define
their application-programming protocols.

The app interacts with the framework only by “exchanging messages.” The app-framework
dialogue diagrams from Figures 4.a, 4.b, and 5.b depicts the notion of messages as arrows
back-and-forth between the framework and the app. The framework invokes callbacks and
returns from callins (the arrows from left to right), while the app invokes callins and returns
from callbacks (the arrows from right to left). To formalize this dialogue, we label the
observable transitions in the judgment form and define an observable trace—a trace formed
only by these observable messages. Being internal to the framework, the Enable, Disable,
Allow, and Disallow transitions are hidden, or unobservable, to the app.

In Figure 8, we define the judgment form σ
−→
m σ′, which instruments our small-step

transition relation σ −→ σ′ with message m. Recall from Section 2 that we define a callback
as an invocation that transitions from framework to app code and a callin as an invocation
from app to framework code. In λlife, this definition is captured crisply by the execution
context k in which a thunk is forced. In particular, we say that a thunk κ is a callback
invocation cb κ if the underlying callee function is an app function (package app), and it
is called from a framework function (package fwk) as in rule ForceCallback. The thk(·)

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:15

function inspects the continuation for the running, caller thunk. The pkg(·) function gets
the package of the running thunk.

Analogously, a thunk κ is a callin ci κ if the callee function is in the fwk package, and the
caller thunk is in the app package via rule ForceCallin.

I Example 4 (Observing a Callback). Letting handlePostExecute be a framework function
(i.e., in package fwk) and onPostExecute be an app function, the observable transition from
the framework to the app defines the forcing of cb as a callback:

let onPostExecute = (t =>app . . .) in

let handlePostExecute = (t =>fwk let cb = bind onPostExecute t in invoke cb) in

In the above, we focused on the transition back-and-forth between framework and app code
via calls. Returning from calls can also be seen as a “message exchange” with a return from a
callin as another kind of back-message going from framework code to app code (left-to-right
in the figures from Section 2). We write a callin-return back-message v= ciret κ indicating
the returning thunk κ with return value v. Likewise, a return from a callback is another kind
in-message going from app code to framework code (right-to-left). We instrument returns in
a similar way to forcings with the return back-message with ReturnCallin and the return
in-message with ReturnCallback.

Finally to make explicit protocol violations, we instrument the InvokeDisallowed rule to
record the disallowed-callin invocations. These rules replace the corresponding rules Force,
Return, and InvokeDisallowed from Figure 7.b. For replacing the Force and Return
rules, we elide two rules, one for each, where there is no switch in packages (i.e., g′ = pkg(k)
where g′ is the package of the callee message). These “uninteresting” rules and the remaining
rules defining the original transition relation σ −→ σ′ not discussed here are simply copied
over with an empty message label ε.

Observable Traces and Dynamic-Analysis Instrumentation. As described above, the app-
framework interface is defined by the possible messages that can exchanged where messages
consist of callback-callin invocations and their returns. A possible app-framework interaction
is thus a trace of such observable messages.

I Definition 5 (App-Framework Interactions as Observable Traces). Let paths(e) be the
path semantics of λlife expressions e that collects the finite sequences of alternating state-
transition-state σmσ′ triples according to the instrumented transition relation σ −→m σ′. Then,
an observable trace is a finite sequence of messages ω : m1 . . .mn obtained from a path by
dropping the intermediate states and keeping the non-ε messages. We write JeK for the set of
the observable traces obtained from the set of paths, paths(e), of an expression e.

An observable trace ω violates the event-driven application-programming protocol if ω
ends with a disallowed dis message.

These definitions yield a design for a dynamic-analysis instrumentation that observes
app-framework interactions. The trace recording in Verivita obtains observable traces ω like
the app-framework dialogue diagrams in Section 2 by following the instrumented semantics
σ
−→
m σ′. Verivita maintains a stack similar to the continuation k to emit the messages

corresponding to the forcings and returns of callbacks and callins, and it emits disallowed
dis κ messages by observing the exceptions thrown by the framework.

ECOOP 2019

4:16 Lifestate: Event-Driven Protocols and Callback Control Flow

states σ̂ ::= 〈µ̂, ν̂, ω〉 | bad ω permitted-back µ̂ ::= · | µ̂;mbk prohibited-in ν̂ ::= · | ν̂;min

σ̂ −→ σ̂′

PermittedBack
mbk ∈ µ̂ ω′ = ωmbk

µ̂′ = updbk
S (ω′, µ̂) ν̂′ = updin

S (ω′, ν̂)
〈µ̂, ν̂, ω〉 −→ 〈µ̂′, ν̂′, ω′〉

ProhibitedIn
min ∈ ν̂

ω′ = ω(dis min)
〈µ̂, ν̂, ω〉 −→ bad ω′

PermittedIn
min /∈ ν̂ ω′ = ωmin

µ̂′ = updbk
S (ω′, µ̂) ν̂′ = updin

S (ω′, ν̂)
〈µ̂, ν̂, ω〉 −→ 〈µ̂′, ν̂′, ω′〉

Figure 9 This transition system defines an abstraction of the framework-internal state consistent
with an observable trace ω with respect to a framework abstraction S. The abstract state σ̂ contains
a store of permitted back-messages µ̂ and a store of prohibited in-messages ν̂, corresponding to
an abstraction of enabled events and disallowed calls, respectively. The meaning of the framework
abstraction S is captured by the store-update functions updbk

S and updin
S , which determine how an

abstract store changes on a new message.

4 Specifying Protocols and Modeling Callback Control Flow

Using λlife as a concrete semantic foundation, we first formalize an abstraction of event-
driven programs composed of separate app and framework code with respect to what is
observable at the app-framework interface. This abstract transition system captures the
possible enabled-event and disallowed-call stores internal to the framework that are consistent
with observable traces, essentially defining a family of lifestate framework abstractions. Then,
we instantiate this definition for a specific lifestate language that both specifies event-driven
application-programming protocols and models callback control flow.

The main point in these definitions is that lifestate modeling of callback control flow
can only depend on what is observable at the app-framework interface. Furthermore, the
concrete semantic foundation given by λlife leads to a careful definition of soundness and
precision and a basis for model validation and predictive-trace verification (Section 5).

Abstracting Framework-Internal State by Observing Messages In Figure 9, we define the
transition system that abstracts the framework-internal state consistent with an observable
trace ω. An abstract state 〈µ̂, ν̂, ω〉 contains a store of permitted back-messages µ̂ and a store
of prohibited in-messages ν̂. What the transition system captures are the possible traces
consistent with iteratively applying a framework abstraction S to the current abstract state:
it performs a transition with a back-message mbk only if mbk is permitted mbk ∈ µ̂, and a
transition with an in-message min only if min is not prohibited min 6∈ ν̂. The trace ω in an
abstract state saves the history of messages observed so far. In the most general setting for
modeling the event-driven framework, the transition system can update the stores µ̂ and ν̂
as a function of the history of the observed messages ω. These updates are formalized with
the store-update functions updbk

S (ω, µ̂) and updin
S (ω, ν̂) that define an abstraction S of the

event-driven framework describing both its application-programming protocol and its callback
control flow. A framework abstraction S also defines the initial abstract state 〈µ̂initS , ν̂initS , ε〉
that contains the initial (abstract) state of the stores of the permitted back-messages and
prohibited in-messages.

The semantics JSK of a framework abstraction S is the set of observable traces of the
transition system defined in Figure 9 instantiated with S. We get sequences of states from
the transition relation σ̂ −→ σ̂′, read the observable trace ω from the final state, and form a
set of all such observable traces.

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:17

parametrized messages m ::= cb λ[p] | p′= ciret λ[p] | ci λ[p] | p′= cbret λ[p]

lifestate rules s ::= r →m | r 9 m
lifestate abstractions S ::= · | sS
trace matchers: regular expressions of parametrized messages r

symbolic variables ` ∈ SVar parameters p ∈ SVar ∪Val binding maps θ ::= · | θ, ` 7→ v

(10.a) A lifestate abstraction is a set of rules that permits (→) or prohibits (9) parametrized
messages m.

updbk
S (ω, µ̂) def=

{
mbk

∣∣ consistentS(ω) ∧
(
¬prohibitS(ω,mbk) ∧ (permitS(ω,mbk) ∨mbk ∈ µ̂)

) }
updin

S (ω, ν̂) def=
{
min

∣∣ consistentS(ω)→
(
¬permitS(ω,min) ∧ (prohibitS(ω,min) ∨min ∈ ν̂)

) }
permitS(ω,m) def= ∃r →m ∈ S,∃θ, (ω, θ |= r) ∧ θ(m) = m

prohibitS(ω,m) def= ∃r 9 m ∈ S,∃θ, (ω, θ |= r) ∧ θ(m) = m
consistentS(ω) def= ∀m ∈ Σ, (permitS(ω,m)↔ ¬ prohibitS(ω,m))

µ̂init
S

def= updbk
S (ε,Σbk) ν̂init

S
def= updin

S (ε, ∅)

(10.b) Semantics of a lifestate framework abstraction. The store-update functions updbk
S and

updin
S find rules from S that match the given trace ω and update the store according to a consistent

binding θ from symbolic variables to values.

Figure 10 Lifestate is a language for simultaneously specifying event-driven protocols and
modeling callback control flow in terms of the observable app-framework interface.

I Definition 6 (Soundness of a Framework Abstraction). (1) A framework abstraction S is
a sound abstraction of a λlife program e if JeK ⊆ JSK; (2) A framework abstraction S is a
sound abstraction of a framework implementation 〈Funfwk, λinit〉 if and only if S is sound
for every possible program e that uses the framework implementation 〈Funfwk, λinit〉.

The possible observable traces of a framework abstraction S is slightly richer than
observable λlife traces in that callback-return messages (v= cbret κ) may also be prohibited
(in addition callin-invocations ci κ). Prohibiting callback-return messages corresponds to
specifying a protocol where the app yields an invalid return value. If we desire to capture
such violations at the concrete level, it is straightforward to extend λlife with “return-invalid”
transitions by analogy to InvokeDisallowed transitions.

Finally, if S1 and S2 are sound specifications, we say that S1 is at least as precise as S2
if JS1K ⊆ JS2K.

A Lifestate Abstraction. We arrive at lifestates by instantiating the framework abstraction
S in a direct way as shown in Figure 10. To describe rules independent of particular programs
or executions, we parametrize messages with symbolic variables ` ∈ SVar. The definition
of the parametrized messages m is parallel to the non-parameterized version but using
parameters instead of simply concrete values v. We call a message m ground when it does
not have symbolic variables (from SVar), and we distinguish the ground and parameterized
messages by using normal m and bold m fonts, respectively. For example, the parametrized
callback-invocation message cb λ[`] specifies that a callback function λ is invoked with an
arbitrary value from Val. The variable ` can be used across several messages in a rule,
expressing that multiple messages are invoked with, or return, the same value.

A lifestate abstraction S is a set of rules, and a rule consists of trace matcher r that
when matched either permits (→ operator) or prohibits (9 operator) a parametrized message
m. As just one possible choice for the matcher r, we consider r to be a regular expression
where the symbols of the alphabet are parametrized messages m. In matching a trace ω to

ECOOP 2019

4:18 Lifestate: Event-Driven Protocols and Callback Control Flow

a regular expression of parametrized messages, we obtain a binding θ that maps symbolic
variables from the parametrized messages to the concrete values from the trace. Given a
binding θ and a message m, we write θ(m) to denote the message m′ obtained by replacing
each symbolic variable ` in m with θ(`) if defined.

The semantics of lifestates is given by a choice of store-update functions updbk
S and

updin
S in Figure 10.b and the abstract transition relation σ̂ −→ σ̂′ defined previously in

Section 4. The store-update functions work intuitively by matching the given trace ω against
the matchers r amongst the rules in S and then updating the store according to the matching
rules {s1, . . . , sn} ⊆ S.

To describe the store-update functions in Figure 10.b, we write ω, θ |= r to express that
a trace ω and a binding θ satisfy a regular expression r. The definition of this semantic
relation is standard, except for parametrized messages m. Here, we explain this interesting
case for when the trace ω and the binding θ satisfy the regular expression m (i.e., ω, θ |= m):

ω, θ |= m iff ω = m and θ(m) = m for some ground message m

A necessary condition for ω, θ |= m is, for example, that θ must assign a value to all the
variables in m, to get a ground message, and the message must be equal to the trace ω. Note
that, if there is no such ground message for m with the binding θ, then ω, θ 6|= m. The full
semantics of matching parametrized regular expressions is given in the extended version [33].

Now, the function updbk
S (ω, µ̂) captures how the state of the permitted back-messages

store µ̂ changes according to the rules S. As a somewhat technical point, a back-message
can only be permitted if the rules S are consistent with respect to the given trace ω (i.e.,
consistentS(ω)). The consistentS(ω) predicate holds iff there are no rules that permits and
prohibitsm for the same messagem and trace ω. Then, if the predicate consistentS(ω) is true,
the back-message mbk must not be prohibited given the trace ω (i.e., ¬prohibitS(ω,mbk)).
Finally, if back-message mbk is not prohibited, either it is permitted by a specification for
this trace ω (i.e., permitS(ω,mbk)) or it was already permitted in the current store µ̂ (i.e.,
mbk ∈ µ̂). The function updin

S (ω, ν̂) is similar, but it is defined for the prohibited in-messages
store ν̂. An in-message min is prohibited first if the rules are not consistent. Then, if the
rules are consistent, the in-message min must not be permitted by this trace, and either it is
prohibited by a rule for this trace or the in-message was already prohibited in the current
store ν̂. The auxiliary predicates permitS(ω,m) and prohibitS(ω,m) formally capture these
conditions. The permitS(ω,m) predicate is true iff there is a rule r →m in the specification
S that permits a message m and a binding θ, such that the trace and the binding satisfy
the regular expression (ω, θ |= r), and the ground message permitted by the rule θ(m) is m.
The prohibitS(ω,m) predicate is analogous but for prohibit rules.

A key point is that the store-update functions updbk
S (ω, µ̂) and updin

S (ω, ν̂) are defined
only in terms of what is observable at the app-framework interface ω and stores of permitted
back-messages µ̂ and prohibited in-messages ν̂. Lifestate abstractions S do not depend on
framework or app expressions e, nor framework-internal state.

5 Dynamic Reasoning with Lifestates

Lifestates are precise and detailed abstractions of event-driven frameworks that simultaneously
specify the protocol that the app should observe and the callback control-flow assumptions
that an app can assume about the framework. The formal development of lifestates in the
above offers a clear approach for model validation and predictive-trace verification. In this
section, we define the model validation and verification problem and provide an intuition of

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:19

their algorithms using the formal development in the previous sections. For completeness of
presentation, we provide further details in the extended version [33].

Validating Lifestate Specifications. As documentation in a real framework implementation
like Android is incomplete and ambiguous, it is critical that framework abstractions have
a mechanism to validate candidate rules—in a manner independent of, say, a downstream
static or dynamic analysis.

We say that a specification S is valid for an observable trace ω if ω ∈ JSK. If a specification
S is not valid for a trace ω from a program e, then S is not a sound abstraction of e.

We can then describe an algorithm that checks if S is a valid specification for a trace
ω with a reduction to a model checking problem. Lifestate rules specify the behavior of
an unbounded number of objects through the use of symbolic variables ` ∈ SVar that are
implicitly universally quantified in the language and hence describe an unbounded number of
messages. However, as an observable trace ω has a finite number of ground messages, the set
of messages that we can use to instantiate the quantifiers is also finite. Thus, the validation
algorithm first “removes” the universal quantifier with the grounding process that transforms
the lifestate abstraction S to a ground abstraction S containing only ground rules.

The language JSK of a ground specification S can be represented with a finite transition
system since the set of messages in S is finite, and lifestate rules are defined using regular
expressions. We then pose the validation problem as a model checking problem that we
solve using off-the-shelf symbolic model checking tools [12]. The transition system that we
check is the parallel composition (i.e., the intersection of the languages of transition systems)
of the transition system that accepts only the trace ω and the transition system σ̂ −→ σ̂′

parametrized by the grounded lifestate abstraction S. The lifestate abstraction S is valid if
and only if the composed transition system reaches the last state of the trace ω.

Dynamic Lifestate Verification Because of the previous sections building up to lifestate
validation, the formulation of the dynamic verification is relatively straightforward and offers
a means to evaluate the expressiveness of lifestate specification.

We define the set of sub-traces of a trace ω = ω1 . . . ωl as Subω
def= {ω1, . . . , ωl}, where

ω′ ∈ Subω if ω′ is a substring of ω that represents the entire execution of a callback directly
invoked by an event handler. We consider the set J(ω1 + . . .+ωl)∗K of all the traces obtained
by repeating the elements in Subω zero-or-more times and Ωω,e

def= JeK∩ J(ω1 + . . .+ ωl)∗K its
intersection with the traces of the λlife program e.

Given an observable trace ω of the program e (i.e., ω ∈ JeK), the dynamic verification
problem consists of proving the absence of a trace ω′ ∈ Ωω,e that violates the application-
programming protocol. Since we cannot know the set of traces JeK for a λlife program e

(i.e., the set of traces for the app composed with the framework implementation), we cannot
solve the dynamic verification problem directly. Instead, we solve an abstract version of the
problem, where we use a lifestate specification S to abstract the framework implementation
〈Funfwk, λinit〉. Let Ωω,S

def= JSK ∩ J(ω1 + . . .+ ωl)∗K be the set of repetitions of the trace ω
that can be seen in the app-framework interface abstraction defined by S.

Given a trace ω ∈ JeK and a sound specification S, the abstract dynamic verification
problem consists of proving the absence of a trace ω′ ∈ Ωω,S that violates the application-
programming protocol. If we do not find any protocol violation using a specification S,
then there are no violations in the possible repetitions of the concrete trace ω. Observe
that the key verification challenge is getting a precise enough framework abstraction S that
sufficiently restricts the possible repetitions of the concrete trace ω.

ECOOP 2019

4:20 Lifestate: Event-Driven Protocols and Callback Control Flow

We reduce the abstract dynamic verification problem to a model checking problem in a
similar way to validation: we first generate the ground model S from the lifestate model S

and the trace ω. Then, we construct the transition system that only generates traces in the
set Ωω,S by composing the transition system obtained from the ground specification S and
the automaton accepting words in J(ω1 + . . .+ωl)∗K. This transition system satisfies a safety
property iff there is no trace ω ∈ Ωω,S that violates the protocol.

6 Empirical Evaluation

We implement our approach for Android in the Verivita tool that (i) instruments an Android
app to record observable traces, (ii) validates a lifestate model for soundness against a corpus
of traces, and (iii) assesses the precision of a lifestate model with dynamic verification. We
use the following research questions to demonstrate that lifestate is an effective language to
model event-driven protocols, and validation is a crucial step to avoid unsoundness.

RQ1 Lifestate Precision. Is the lifestate language adequate to model the callback control
flow of Android? The paper hypothesizes that carefully capturing the app-framework
interface is necessary to obtain precise protocol verification results.

RQ2 Lifestate Generality. Do lifestate models generalize across apps? We want to see if a
lifestate model is still precise when used on a trace from a new, previously unseen app.

RQ3 Model Validation. Is validation of callback control-flow models with concrete traces
necessary to develop sound models? We expect to witness unsoundnesses in existing
(and not validated) callback control-flow models and that validation is a crucial tool to
get sound models.

Additionally, we considered the feasibility of continuous model validation. The bottom line
is that we could validate 96% of the traces within a 6 minute time budget; we discuss these
results further in the extended version [33].

RQ1 : Lifestate Precision. The bottom line of Table 1 is that lifestate modeling is essential
to improve the percentage of verified traces to 83%—compared to 57% for lifecycle++ and
27% for lifecycle modeling.

Methodology. We collect execution traces from Android apps and compare the precision
obtained verifying protocol violations with four different callback control-flow models. The
first three models are expressed using different subsets of the lifestate language. The top model
is the least precise (but clearly sound) model where any callback can happen at all times, like
in the Automaton 6.a in Section 2. The lifecycle model represents the most precise callback
control-flow model that we can express only using back-messages, like in Automaton 6.b.
The lifestate model uses the full lifestate language, and hence also in-messages like in the
Automaton 6.d, to change the currently permitted back-messages. It represents the most
precise model that we can represent with lifestate. To faithfully compare the precision of the
formalisms, we improved the precision of the lifecycle and lifestate models minimizing the
false alarms from verification. And at the same time, we continuously run model validation to
avoid unsoundnesses, as we discuss below in RQ3 . As a result of this process, we modeled the
behavior of several commonly-used Android classes, including Activity, Fragment, AsyncTask,
CountdownTimer, View, PopupMenu, ListView, and Toolbar and their subclasses. Excluding similar
rules for subclasses, this process resulted in a total of 167 lifestate rules.

We further compare with an instance of a lifecycle++ model, which refines component
lifecycles with callbacks from other Android objects. Our model is a re-implementation of

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:21

the model used in FlowDroid [5] that considers the lifecycle for the UI components (i.e.,
Activity and Fragment) and bounds the execution of a pre-defined list of callback methods in
the active state of the Activity lifecycle, similarly to the example we show in Figure 2. We
made a best effort attempt to faithfully replicate the FlowDroid model (and discuss how we
did so in the extended version [33]).

To find error-prone protocols, we selected sensitive callins, shown in the first column of
Table 1, that frequently occur as issues on GitHub and StackOverflow [16, 41, 3, 36, 47, 46].
We then specify the lifestate rules to allow and disallow the sensitive callins.

To create a realistic trace corpus for RQ1 , we selected five apps by consulting Android
user groups to find those that extensively use Android UI objects, are not overly simple (e.g.,
student-developed or sample-projects apps), and use at least one of the sensitive callins. To
obtain realistic interaction traces, we recorded manual interactions from a non-author user
who had no prior knowledge of the internals of the app. The user used each app 10 times
for 5 minutes (on an x86 Android emulator running Android 6.0)—obtaining a set of 50
interaction traces. With this trace-gathering process, we exercise a wide range of behaviors
of Android UI objects that drives the callback control-flow modeling.

To evaluate the necessity and sufficiency of lifestate, we compare the verified rates (the
total number of verified traces over the total number of verifiable traces) obtained using each
callback control-flow model. We further measure the verification run time to evaluate the
trade-off between the expressiveness of the models and the feasibility of verification.

Discussion. In Table 1, we show the number of verified traces and the verified rates
broken down by sensitive callins and different callback control-flow models—aggregated over
all apps. As stated earlier, the precision improvement with lifestate is significant, essential to
get to 83% verified. We also notice that the lifecycle model is only slightly more precise than
the trivial top model (27% versus 22% verified rate). Even with unsoundnesses discussed
later, lifecycle++ is still worse than the lifestate model, with 57% of traces proven.

Lifestate is also expressive enough to prove most verifiable traces—making manual triage

Table 1 Precision of callback control-flow models. The sensitive callin column lists protocol
properties by the callin that crashes the app when invoked in a bad state. We collect a total of 50
traces from 5 applications with no crashes. The sensitive column lists the number of traces where
the application invokes a sensitive callin. To provide a baseline for the precision of a model, we
count the number of traces without a manually-confirmed real bug in the verifiable column. There
are four columns labeled verified showing the number and percentage of verifiable traces proved
correct using different callback control-flow models. The lifestate columns capture our contribution.
The lifecycle++ columns capture the current practice for modeling the Android framework. The bad
column lists the number of missed buggy traces and is discussed further in RQ2 .

properties non-crashing traces callback control-flow models
top lifecycle lifestate lifecycle++

sensitive sensitive verifiable verified verified verified verified bad
callin (n) (n) (n) (%) (n) (%) (n) (%) (n) (%) (n)
AlertDialog
dismiss 16 6 0 0 0 0 6 100 6 100 0
show 43 34 17 50 17 50 28 82 24 71 0
AsyncTask
execute 4 4 0 0 4 100 4 100 0 0 0
Fragment
getResources 10 10 0 0 0 0 10 100 4 40 0
getString 10 10 0 0 0 0 2 20 0 0 0
setArguments 19 19 1 5 1 5 19 100 13 68 0
total 102 83 18 22 22 27 69 83 47 57 0

ECOOP 2019

4:22 Lifestate: Event-Driven Protocols and Callback Control Flow

Table 2 The table shows the precision results for the 1577 non-crashing traces that contained
a sensitive callins from a total of 2202 traces that we collected from 121 distinct open source app
repositories. We note that lifestate takes slightly longer than lifecycle; for this reason, lifestate
performs slightly worse than lifecycle for execute. The bad column is 0 for models other than
lifecycle++ because of continuous validation. Note that out of 64 total buggy traces, lifecycle++
missed 27 bugs (i.e., had a 42% false-negative rate).

properties non-crashing traces callback control-flow models
top lifecycle lifestate lifecycle++

sensitive sensitive verifiable verified verified verified verified bad
callin (n) (n) (n) (%) (n) (%) (n) (%) (n) (%) (n)
AlertDialog
dismiss 94 59 54 92 54 92 54 92 58 98 3
show 145 144 125 87 124 86 125 87 127 88 0
AsyncTask
execute 415 415 0 0 415 100 412 99 262 63 0
Fragment
getResources 156 155 89 57 89 57 128 83 116 75 0
getString 220 193 124 64 124 64 134 69 131 68 24
setArguments 456 456 59 13 108 24 437 96 435 95 0
startActivity 91 91 0 0 0 0 12 13 19 21 0
total 1577 1513 451 30 914 60 1302 86 1148 76 27

of the remaining alarms feasible. We manually examined the 14 remaining alarms with the
lifestate model, and we identified two sources of imprecision: (1) an insufficient modeling of
the attachment of UI components (e.g., is a View in the View tree attached to a particular
Activity?), resulting in 13 alarms; (2) a single detail on how Android options are set in
the app’s XML, resulting in 1 alarm. The former is not fundamental to lifestates but a
modeling tradeoff where deeper attachment modeling offers diminishing returns on the
verified rate while increasing the complexity of the model and verification times. The latter
is an orthogonal detail for handling Android’s XML processing (that allows the framework
to invoke callbacks via reflection).

RQ2 : Lifestate Generality. The bottom line of Table 2 is that the lifestate model developed
for RQ1 as-is generalizes to provide precise results (with a verified rate of 86%) when used to
verify traces from 121 previously unseen apps. This result provides evidence that lifestates
capture general behaviors of the Android framework. While the lifecycle++ model verifies
76% of traces, it also misses 27 out of 64 buggy traces (i.e., has a 42% false-negative rate).

Methodology. To get a larger corpus, we cloned 121 distinct open source apps repositories
from GitHub that use at least one sensitive callin (the count combines forks and clones).
Then, we generated execution traces using the Android UI Exerciser Monkey [2] that interacts
with the app issuing random UI events (e.g., clicks, touches). We attempted to automatically
generate three traces for each app file obtained by building each app.

Discussion. From Table 2, we see that the lifestate verified rate of 86% in this larger
experiment is comparable with the verified rate obtained in RQ1 . Moreover, lifestate still
improves the verified rate with respect to lifecycle, which goes from 60% to 86%, showing
that the expressivity of lifestate is necessary.

Critically, the lifecycle++ model does not alarm on 42% of the traces representing real
defects. That is, we saw unsoundnesses of the lifecycle++ model manifest in the protocol
verification client.

The verified rate for the lifecycle model is higher in this larger corpus (60%) compared
to the rate in RQ1 (27%), and the precision improvement from the top abstraction is more

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:23

substantial (60% to 30% versus 27% to 22%). This difference is perhaps to be expected
when using automatically-generated traces that may have reduced coverage of app code and
bias towards shallower, “less interesting” callbacks associated with application initialization
instead of user interaction. In these traces, it is possible that UI elements were not exercised
as frequently, which would result in more traces provable solely with the lifecycle specification.
Since coverage is a known issue for the Android UI Exerciser Monkey [4]), it was critical to
have some evidence on deep, manually-exercised traces as in RQ1 .

Bug Triage. We further manually triage every remaining alarm from both RQ1 and RQ2 .
Finding protocol usage bugs was not necessarily expected: for RQ1 , we selected seemingly
well-developed, well-tested apps to challenge verification, and for RQ2 , we did not expect
automatically generated traces to get very deep into the app (and thus deep in any protocol).

Yet from the RQ1 triage, we found 2 buggy apps out of 5 total. These apps were
Puzzles [10] and SwiftNotes [13]. Puzzles had two bugs, one related to AlertDialog.show and
one for AlertDialog.dismiss. Swiftnotes has a defect related to AlertDialog.show.

In the RQ2 corpus, we found 7 distinct repositories with a buggy app (out of 121 distinct
repositories) from 64 buggy traces (out of 2202). We were able to reproduce bugs in 4 of
the repositories and strongly suspect the other 3 to also be buggy. Three of the buggy apps
invoke a method on Fragment that requires the Fragment to be attached. This buggy invocation
happens within unsafe callbacks. Audiobug [51] invokes getResources. NextGisLogger [35]
and Kistenstapeln [14] invoke getString. We are able to reproduce the Kistenstapeln bug.

Interestingly, one of the apps that contain a bug is Yamba [20], a tutorial app from a
book on learning Android [21]. We note that the Yamba code appears as a part of three
repositories where the code was copied (we only count these as one bug). The tutorial app
calls AlertDialog.dismiss when an AsyncTask is finishing and hence potentially after the
Activity object used in the AlertDialog is not visible anymore. We found similar defects
in several actively maintained open source apps where callbacks in an AsyncTask object
were used either to invoke AlertDialog.show or AlertDialog.dismiss. These apps included
OSM Tracker [22] and Noveldroid [44]. Additionally, we found this bug in a binary library
connected with the PingPlusPlus android app [38]. By examining the output of our verifier,
we were able to create a test to concretely witness defects in 4 of these apps.

RQ3 : Model Validation. The plot in Figure 11 highlights the necessity of applying model
validation: lifecycle++ based on a widely used callback control-flow model does not validate
(i.e., an unsoundness is witnessed) on 58% of 2183 traces (and the validation ran out of
memory for 19 out of the total 2202 traces).

Methodology. We first evaluate the need for model validation by applying our approach
to lifecycle++ and quantifying its discrepancies with the real Android executions.

Our first experiment validates the lifecycle++ model on all the traces we collected
(bounding each validation check to 1 hour and 4 GB of memory). We quantify the necessity
of model validation collecting for each trace if the model was valid and the length of the
maximum prefix of the trace that the model validates. Since there are already some known
limitations in the lifecycle++ model (e.g., components interleaving), we triage the results to
understand if the real cause of failure is a new mistake discovered with the validation process.

Our second experiment qualitatively evaluates the necessity of model validation to develop
sound lifestate specifications. To create a sound model, we started from the empty model
(without rules) and continuously applied validation to find and correct mistakes. In each
iteration: we model the callback control flow for a specific Android object; we validate the
current model on the entire corpus of traces (limiting each trace to one hour and 4 GB of

ECOOP 2019

4:24 Lifestate: Event-Driven Protocols and Callback Control Flow

Figure 11 Results of the validation of the lifecycle++ model on all the traces. We plot the
cumulative traces grouped by (intervals of) the number of steps validated. The number of traces are
further divided into categories, either indicating that validation succeeded, “no errors,” or the cause
of failure of the validation process.

memory); and when the model is not valid for a trace, we inspect the validation result and
repair the specification. We stop when the model is valid for all the traces. We then collected
the mistakes we found with automatic validation while developing the lifestate model. We
describe such mistakes and discuss how we used validation to discover and fix them.

Discussion: lifecycle++ Validation. From the first bar of the plot in Figure 11, we see
that the lifecycle++ model validates only 42% of the total traces, while validation fails in
the remaining cases (58%). The bar shows the number of traces that we validated for at
least one step, grouping them by validation status and cause of validation failure. From our
manual triage, we identified 4 different broad causes for unsoundness: i) outside the active
lifecycle: the model prohibits the execution of a callback outside the modeled active state of
the Activity; ii) wrong lifecycle automata: the model wrongly prohibits the execution of an
Activity or Fragment lifecycle callback; iii) wrong start of the Fragment lifecycle: the model
prohibits the start of the execution of the Fragment lifecycle; iv) no components interleaving:
the model prohibits the interleaved execution of callbacks from different Activity or Fragment

objects. The plot shows that the lifecycle++ model is not valid on 25% of the traces because it
does not model the interleaving of components (e.g., the execution of callbacks from different
Activity and Fragment objects cannot interleave) and the start of the Fragment lifecycle at
an arbitrary point in the enclosing Activity object. With FlowDroid, such limitations are
known and have been justified as practical choices to have feasible flow analyses [5]. But the
remaining traces, 33% of the total, cannot be validated due other reasons including modeling
mistakes. In particular, the FlowDroid model imprecisely captures the lifecycle automata
(for both Activity and Fragment) and erroneously confines the execution of some callbacks in
the active state of the lifecycle.

The other bars in the plot of Figure 11 show the number of traces we validated for more
than 25, 50, and 75 steps, respectively. In the plot, we report the total number of steps in the
execution traces that correspond to a callback or a callin that we either used in the lifestate
or the lifecycle++ model, while we remove all the other messages. From such bars, we see
that we usually detect the unsoundness of the lifecycle++ model “early” in the trace (i.e., in
the first 25 steps). This result is not surprising since most of the modeling mistakes we found
are related to the interaction with the lifecycle automata and can be witnessed in the first
iteration of the lifecycle. We further discovered that the lifecycle++ model mostly validates
shorter execution traces, showing that having sound models for real execution traces is more
challenging, which we discuss further in the extended version [33].

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:25

Discussion: Catching Mistakes During Modeling. We were able to obtain a valid lifestate
specification for over 99.9% of the traces in our corpus. That is, we were able to understand
and model the objects we selected in all but two traces.

Surprisingly, we identified and fixed several mistakes in our modeling of the Activity

and Fragment lifecycle that are due to undocumented Android behaviors. An example of
such behavior is the effect of Activity.finish and Activity.startActivity on the callback
control flow for the onClick callback. It is unsound to restrict the enabling of onClick
callbacks to the active state of the Activity lifecycle (i.e., between the execution of the
onResume and onPause callbacks). This is the behavior represented with blue edges in
Figure 2, what is typically understood from the Android documentation, and captured in
the existing callback control-flow models used for static analysis.

We implemented a model where onClick could be invoked only when its Activity was
running and found this assumption to be invalid on several traces. We inferred that the
mistake was due to the wrong “bounding” of the onClick callbacks in the Activity lifecycle
since in all the traces: i) the first callback that was erroneously disabled in the model was
the onClick callback; and ii) the onClick callback was disabled in the model just after the
execution of an onPause callback that appeared before in the trace, without an onResume
callback in between (and hence, outside the active state of the Activity.) It turns out that
both finish and startActivity cause the Activity to pause without preventing the pending
onClick invocations from happening, as represented in the red edges connected to onClick
in Figure 2. We validated such behaviors by writing and executing a test application and
finding its description in several Stack Overflow posts [49, 48]. The fix for this issue is to
detect the finishing state of the Activity and to not disable the onClick callback in this case.

7 Related Work

Several works [5, 8, 42, 45, 24, 40, 37, 43, 24] propose different callback control-flow models.
Many previous works, like FlowDroid [5] and Hopper [8], directly implement the lifecycle of
Android components. While the main intention of these tools is to implement the lifecycle
automata, in practice, they also encode some of the effects of callins invoked in the app code
in an ad-hoc manner. For example, FlowDroid determines if and where a callback (e.g.,
onClick) is registered using a pre-defined list of callin methods and an analysis of the app
call graph. Hopper implements the lifecycle callback control flow directly in a static analysis
algorithm that efficiently explores the interleaving of Android components. In contrast, our
work starts from the observation that reasoning about protocol violations requires capturing,
in a first-class manner, the effects that invoking a callin has on the future execution of
callbacks (and vice-versa).

Callback control-flow graphs [53] are graphs of callbacks generated from an application
and a manually written model of the framework. Perez and Le [37] generate callback control-
flow graphs with constraints relating program variables to callback invocations analyzing the
Android framework. Such models can indirectly capture callin effects via the predicates on the
program state. With lifestate, we carefully focus on what is observable at the app-framework
interface so that lifestate specifications are agnostic to the internal implementation details of
the framework. DroidStar [40] automatically learns a callback typestate automaton for an
Android object from a developer-specified set of transition labels using both callbacks and
callins symbols. Such automata specifically represent the protocol for a single object and,
differently from lifestate, their labels are not parameterized messages. A callback typestate
is thus a coarser abstraction than lifestate since it cannot express the relationships between

ECOOP 2019

4:26 Lifestate: Event-Driven Protocols and Callback Control Flow

different message occurrences that are required to describe multi-object protocols.
There exist other classes of framework models that represent different and complementary

aspects of the framework than the callback control flow captured by lifestate. For example,
Fuchs et al. [19] and Bastani et al. [6] represent the “heap properties” implicitly imposed
by the framework. EdgeMiner [11] and Scandal [29] model the registration of callbacks.
Droidel [9] also captures callback registration by modeling the reflection calls inside the
Android framework code. Similarly, Pasket [25] automatically learns implementations of
framework classes that behave according to particular design patterns.

While framework models have been extensively used to support static and dynamic
analysis, not much attention has been paid to validating that the models soundly capture
the semantics of the real framework. Wang et al. [52] recognized the problem of model
unsoundness—measuring unsoundnesses in three different Android framework models. Un-
soundnesses were found even using a much weaker notion of model validation than we do in
this work. A significant advantage of lifestates is that we can validate their correctness with
respect to any execution trace, obtained from arbitrary apps, because they speak generically
about the app-framework interface.

There exist several programming languages for asynchronous event-driven systems, such as
Tasks [18] and P [15]. In principle, such languages are general enough to develop event-driven
systems such as Android. The purpose of our formalization λlife is instead to provide a
formalization that captures the app-framework interface.

The protocol verification problem for event-driven applications is related to typestate
verification [34, 26, 17], but it is more complex since it requires reasoning about the asyn-
chronous interaction of both callbacks and callins. Dynamic protocol verification is similar
in spirit to dynamic event-race detection [32, 23, 7, 31], which predicts if there is an event
data-race from execution traces. However, a lifestate violation differs from, and is not directly
comparable to, an event data-race. A lifestate violation could manifest as a data race on a
framework-internal field, but more commonly it results from encountering an undesirable
run-time state within the framework.

8 Conclusion

We considered the problem of specifying event-driven application-programming protocols.
The key insight behind our approach is a careful distillation of what is observable at the
interface between the framework and the app. This distillation leads to the abstract notions
of permitted messages from the framework to the app (e.g., enabled callbacks) and prohibited
messages into the framework from the app (e.g., disallowed callins). Lifestate specification
then offers the ability to describe the event-driven application-programming protocol in
terms of this interface—capturing both what the app can expect of the framework and
what the app must respect when calling into the framework. We evaluated our approach
by implementing a dynamic lifestate verifier called Verivita and showed that the richness
of lifestates are indeed necessary to verify real-world Android apps as conforming to actual
Android protocols.

Acknowledgements. Many thanks to Edmund S.L. Lam, Chance Roberts, and Chou Yi
for help in gathering traces, as well as Alberto Griggio for a convenient tool for running tests.
We also thank Aleksandar Chakarov, Maxwell Russek, the Fixr Team, and the University of
Colorado Programming Languages and Verification (CUPLV) Group for insightful discussions,
as well as the anonymous reviewers for their helpful comments. This material is based on
research sponsored by DARPA under agreement number FA8750-14-2-0263.

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:27

References
1 Android Developers. The Activity lifecycle. https://developer.android.com/guide/

components/activities/activity-lifecycle.html, 2018.
2 Android Developers. UI/Application exerciser monkey. https://developer.android.com/

studio/test/monkey.html, 2018.
3 Android Topeka. Crash if rotate device right after press floating action button #4 Topeka for

Android. https://github.com/googlesamples/android-topeka/issues/4, 2015.
4 Yauhen Leanidavich Arnatovich, Minh Ngoc Ngo, Hee Beng Kuan Tan, and Charlie Soh.

Achieving high code coverage in android UI testing via automated widget exercising. In
Asia-Pacific Software Engineering Conference (APSEC), 2016.

5 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Programming
Language Design and Implementation (PLDI), 2014.

6 Osbert Bastani, Saswat Anand, and Alex Aiken. Specification inference using context-free
language reachability. In Principles of Programming Languages (POPL), 2015.

7 Pavol Bielik, Veselin Raychev, and Martin T. Vechev. Scalable race detection for Android ap-
plications. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
2015.

8 Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Selective control-flow abstrac-
tion via jumping. In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 2015.

9 Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. Droidel: A general approach
to Android framework modeling. In State of the Art in Program Analysis (SOAP), 2015.

10 Chris Boyle. Simon Tatham’s puzzles. https://github.com/chrisboyle/sgtpuzzles/blob/
658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/
sgtpuzzles/GamePlay.java#L183, 2014.

11 Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni
Vigna, and Yan Chen. EdgeMiner: Automatically detecting implicit control flow transitions
through the Android framework. In Network and Distributed System Security (NDSS), 2015.

12 Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuXmv symbolic
model checker. In Computer-Aided Verification (CAV), 2014.

13 Adrian Chifor. Swiftnotes. https://f-droid.org/en/packages/com.moonpi.swiftnotes/,
2015.

14 D120. Kistenstapeln. https://github.com/d120/Kistenstapeln-Android, 2015.
15 Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and

Damien Zufferey. P: safe asynchronous event-driven programming. In Programming Language
Design and Implementation (PLDI), 2013.

16 Martin Fietz. FeedRemover: already running - issue #1304 - AntennaPod/AntennaPod.
https://github.com/AntennaPod/AntennaPod/issues/1304, 2015.

17 Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. Effective
typestate verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol., 17(2),
2008.

18 Jeffrey Fischer, Rupak Majumdar, and Todd D. Millstein. Tasks: language support for
event-driven programming. In Partial Evaluation and Program Manipulation (PEPM), 2007.

19 Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Automated security
certification of Android applications. Technical Report CS-TR-4991, University of Maryland,
College Park, 2009.

20 Marko Gargenta. Yamba. https://github.com/learning-android/Yamba/blob/
429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/
StatusFragment.java, 2014.

ECOOP 2019

https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://github.com/googlesamples/android-topeka/issues/4
https://github.com/chrisboyle/sgtpuzzles/blob/658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/sgtpuzzles/GamePlay.java#L183
https://github.com/chrisboyle/sgtpuzzles/blob/658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/sgtpuzzles/GamePlay.java#L183
https://github.com/chrisboyle/sgtpuzzles/blob/658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/sgtpuzzles/GamePlay.java#L183
https://f-droid.org/en/packages/com.moonpi.swiftnotes/
https://github.com/d120/Kistenstapeln-Android
https://github.com/AntennaPod/AntennaPod/issues/1304
https://github.com/learning-android/Yamba/blob/429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/StatusFragment.java
https://github.com/learning-android/Yamba/blob/429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/StatusFragment.java
https://github.com/learning-android/Yamba/blob/429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/StatusFragment.java

4:28 Lifestate: Event-Driven Protocols and Callback Control Flow

21 Marko Gargenta and Masumi Nakamura. Learning Android. O’Reilly Media, 2014.
22 Nicolas Guillaumin. OSMTracker for Android. https://github.com/nguillaumin/

osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/
java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java, 2015.

23 Chun-Hung Hsiao, Cristiano Pereira, Jie Yu, Gilles Pokam, Satish Narayanasamy, Peter M.
Chen, Ziyun Kong, and Jason Flinn. Race detection for event-driven mobile applications. In
Programming Language Design and Implementation (PLDI), 2014.

24 Jinseong Jeon, Kristopher K. Micinski, and Jeffrey S. Foster. SymDroid: Symbolic execution for
Dalvik bytecode. Technical report, Department of Computer Science, University of Maryland,
College Park, 2012.

25 Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S. Foster, and Armando Solar-
Lezama. Synthesizing framework models for symbolic execution. In International Conference
on Software Engineering (ICSE), 2016.

26 Pallavi Joshi and Koushik Sen. Predictive typestate checking of multithreaded Java programs.
In Automated Software Engineering (ASE), 2008.

27 Vladislav Kaplun. Update RequestAsyncTask.java by kaplad - pull request #315 -
facebook/facebook-android-sdk. https://github.com/facebook/facebook-android-sdk/
pull/315, 2014.

28 Maria Kechagia and Diomidis Spinellis. Undocumented and unchecked: exceptions that spell
trouble. In Mining Software Repositories, (MSR), 2014.

29 Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. SCANDAL: Static analyzer for
detecting privacy leaks in Android applications. IEEE Mobile Security Technologies (MoST).,
2017.

30 Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-
Order and Symbolic Computation, 19(4), 2006.

31 Pallavi Maiya, Rahul Gupta, Aditya Kanade, and Rupak Majumdar. Partial order reduction
for event-driven multi-threaded programs. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2016.

32 Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race detection for Android applications.
In Programming Language Design and Implementation (PLDI), 2014.

33 Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang. Lifestate: Event-driven protocols and
callback control flow (extended version). CoRR, abs/, 2019.

34 Nomair A. Naeem and Ondrej Lhoták. Typestate-like analysis of multiple interacting objects.
In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). ACM,
2008.

35 NextGis. NextGisLogger. https://github.com/nextgis/nextgislogger, 2017.
36 OneBusAway. IllegalStateException: Fragment BaseMapFragment not attached to Activ-

ity #570 OneBusAway. https://github.com/OneBusAway/onebusaway-android/issues/570,
2016.

37 Danilo Dominguez Perez and Wei Le. Predicate callback summaries. In International
Conference on Software Engineering (ICSE), 2017.

38 PingPlusPlus. Ping Plus Plus. https://github.com/PingPlusPlus/pingpp-android, 2017.
39 Steve Pomeroy. The complete Android Activity/Fragment lifecycle v0.9.0. https://github.

com/xxv/android-lifecycle, 2014.
40 Arjun Radhakrishna, Nicholas V. Lewchenko, Shawn Meier, Sergio Mover, Krishna Chaitanya

Sripada, Damien Zufferey, Bor-Yuh Evan Chang, and Pavol Cerný. DroidStar: callback
typestates for Android classes. In International Conference on Software Engineering (ICSE),
2018.

41 Red Reader. Crash during commenting #467 RedReader. https://github.com/
QuantumBadger/RedReader/issues/467, 2017.

42 A. Rountev, D. Yan, S. Yang, H. Wu, Y. Wang, and H. Zhang. GATOR: Program analysis
toolkit for Android. http://web.cse.ohio-state.edu/presto/software/, 2017.

https://github.com/nguillaumin/osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java
https://github.com/nguillaumin/osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java
https://github.com/nguillaumin/osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java
https://github.com/facebook/facebook-android-sdk/pull/315
https://github.com/facebook/facebook-android-sdk/pull/315
https://github.com/nextgis/nextgislogger
https://github.com/OneBusAway/onebusaway-android/issues/570
https://github.com/PingPlusPlus/pingpp-android
https://github.com/xxv/android-lifecycle
https://github.com/xxv/android-lifecycle
https://github.com/QuantumBadger/RedReader/issues/467
https://github.com/QuantumBadger/RedReader/issues/467
http://web.cse.ohio-state.edu/presto/software/

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang 4:29

43 Atanas Rountev and Dacong Yan. Static reference analysis for GUI objects in Android software.
In Code Generation and Optimization (CGO), 2014.

44 sh1ro. NovelDroid. https://github.com/sh1r0/NovelDroid/blob/
f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/
noveldroid/SettingsFragment.java, 2016.

45 Eric Smith and Alessandro Coglio. Android platform modeling and Android app verification in
the ACL2 theorem prover. In Verified Software: Theories, Tools, and Experiments (VSTTE),
2015.

46 StackOverflow Post. Got exception: fragment already active. https://stackoverflow.com/
questions/10364478/got-exception-fragment-already-active, 2012.

47 StackOverflow Post. Alertdialog creating exception in android. https://stackoverflow.com/
questions/15104677/alertdialog-creating-exception-in-android, 2013.

48 StackOverflow Post. OnClickListener fired after onPause? https://stackoverflow.com/
questions/31432014/onclicklistener-fired-after-onpause, 2015.

49 StackOverflow Post. Android: click event after Activity.onPause(). https://stackoverflow.
com/questions/38368391/android-click-event-after-activity-onpause, 2016.

50 Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Software Eng., 12(1), 1986.

51 Matthias Urhahn. AudioBug. https://github.com/d4rken/audiobug, 2017.
52 Yan Wang, Hailong Zhang, and Atanas Rountev. On the unsoundness of static analysis for

Android GUIs. In State of the Art in Program Analysis (SOAP), 2016.
53 Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static control-flow

analysis of user-driven callbacks in Android applications. In International Conference on
Software Engineering (ICSE), 2015.

ECOOP 2019

https://github.com/sh1r0/NovelDroid/blob/f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/noveldroid/SettingsFragment.java
https://github.com/sh1r0/NovelDroid/blob/f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/noveldroid/SettingsFragment.java
https://github.com/sh1r0/NovelDroid/blob/f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/noveldroid/SettingsFragment.java
https://stackoverflow.com/questions/10364478/got-exception-fragment-already-active
https://stackoverflow.com/questions/10364478/got-exception-fragment-already-active
https://stackoverflow.com/questions/15104677/alertdialog-creating-exception-in-android
https://stackoverflow.com/questions/15104677/alertdialog-creating-exception-in-android
https://stackoverflow.com/questions/31432014/onclicklistener-fired-after-onpause
https://stackoverflow.com/questions/31432014/onclicklistener-fired-after-onpause
https://stackoverflow.com/questions/38368391/android-click-event-after-activity-onpause
https://stackoverflow.com/questions/38368391/android-click-event-after-activity-onpause
https://github.com/d4rken/audiobug

	1 Introduction
	2 Overview: Specifying and Modeling Lifestates
	2.1 Predict Violations from Recorded Interactions
	2.2 Specify Event-Driven Protocols and Model Callback Control Flow
	2.3 Event-Driven App-Framework Interfaces

	3 Defining Event-Driven Application-Programming Protocols
	3.1 Syntax: Enabling, Disabling, Allowing, and Disallowing
	3.2 Semantics: Protocol Violations
	3.3 Messages, Observable Traces, and the App-Framework Interface

	4 Specifying Protocols and Modeling Callback Control Flow
	5 Dynamic Reasoning with Lifestates
	6 Empirical Evaluation
	7 Related Work
	8 Conclusion

