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Abstract

This article addresses online variational estimation in state-space models. We focus on learning the
smoothing distribution, i.e. the joint distribution of the latent states given the observations, using a vari-
ational approach together with Monte Carlo importance sampling. We propose an efficient algorithm for
computing the gradient of the evidence lower bound (ELBO) in the context of streaming data, where obser-
vations arrive sequentially. Our contributions include a computationally efficient online ELBO estimator,
demonstrated performance in offline and true online settings, and adaptability for computing general ex-
pectations under joint smoothing distributions.

1 Introduction

This article considers online variational estimation problems in state-space models (SSMs), where the ob-
servations YO;,E] depend on a hidden Markov chain denoted by Xj.;. In this setting, a classical goal is to learn
the smoothing distribution, which is the conditional distribution of X¢.; given Yy.;. A popular approach to
approximate such a posterior distribution is to rely on particle smoothing, see |Chopin et al.| (2020) and the
references therein, but the latter suffers from the curse of dimensionality in the state dimension Bengtsson
et al.| (2008)), which has recently motivated the use of variational inference as an alternative. Here, the poste-
rior distribution is approximated by a distribution ¢}),, depending on some unknown parameter A € A. This
parameter is then trained by maximizing the evidence lower bound (ELBO):

q())\:t(XO:t) ’

where py.; is the joint distribution of the hidden states and the observations. Classical optimization proce-
dures rely on the gradient of £ with respect to . Most associated works can be divided into two categories.
On the one hand, a large body of methods are only amenable to offline estimation Krishnan et al.| (2017);
Lin et al.| (2018a); Johnson et al.| (2016), i.e. one needs to have access the entire sequence of observations
Y.+ beforehand to compute the ELBO and its gradients. On the other hand, some methods provide online
procedures via alternative variational objectives which depart from (I)) using additional assumptions on the
state dependencies under the variational law Marino et al.| (2018); Dowling et al.| (2023)). In this paper, we

L) = E, |log 1))

n all the paper, @+ is a short-hand notation for (@, . . . , ay).



propose an efficient algorithm to update the actual gradient of £} in the context of streaming data, when
observations arrive on the fly and are processed only once.

* We propose a computationally efficient online estimator of the ELBO when the variational distribution
has a Markov structure. Contrary to computationally intensive Sequential or Markov Chain Monte
Carlo methods, our algorithm relies on simple i.i.d samples from the variational distribution.

» Experimentally, we demonstrate the performance of our estimators in the offline setting, and assess its
performance in online settings with many observations to learn time series representations.

* The proposed algorithm is not limited to the online computation and optimization of the ELBO and can
be directly adapted to compute more general expectations under distributions admitting a Markovian
structure.

2 Model and learning task

Consider a SSM where the hidden Markov chain in R% is denoted by (X¢)>0. The distribution of X has
density x with respect to the Lebesgue measure ;1 and for all £ > 0, the conditional distribution of X4
given Xy.; has density my(X¢,-). In SSMs, it is assumed that this state is partially observed through an
observation process (Y7)o< < taking on values in R% . The observations Yj.; are assumed to be independent
conditionally on X.; and, for all 0 < ¢ < 7, the distribution of Y; given X.; depends on X only and has
density g;(X¢,-) with respect to the Lebesgue measure. The whole model is then defined by the joint
distribution of hidden states and observations:

t

pO:t(xO:ta yO:t) = H gs (xsfla Tg, ys)a
s=0

where £ (xs_1, %5, Ys) = My (Ts—1,2s)gs(Ts—1,ys) for s > Land lo(x_1,20,%0) := x(Z0)g0(Z0,Yo)-

2.1 Smoothing in latent data models
A classical learning task in SSMs is state inference, which is to estimate the smoothing distribution, i.e., the
conditional p.d.f. of X.; given Yj.;. This distribution is given by

¢0:t (Io:t) X pO:t(:rO:h yO:t) .

The marginal at time ¢ of this joint distribution is known as the filtering distribution at time t, and its density
w.r.t. the Lebesgue measure is written ¢;. It is straightforward to express the joint smoothing density through
the following backward factorization:

t
Go:t (20:6) = Ge(e) [ [ bs11s (s wom1) - 2

s=1
where, for 1 < s < ¢,

o ms(xsflaxs)¢sfl(‘rsfl)
bs_l\scxs,xs*l) N fms(xsfhxs)gssfl(l'sfl)dfsfl’ (3)




referred to as the backward kernels, provide the conditional p.d.f. of X1 given (X, Yo.s—1). It is worth
noting that (3) emphasizes the Markov structure of the smoothing distribution. Unfortunately, this distribu-
tion lacks generally a closed-form expression due to the integral in the denominator and the intractability of
the filtering distributions.

2.2 Backward sequential variational inference

In variational approaches the smoothing distribution ¢q.; is approximated by choosing a candidate in a
parametric family {gQ., } xea, referred to as the variational family, where A is a parameter set.

A critical point therefore lies in the form of the variational family. Motivated by the Markov structure of
the smoothing distribution, most works impose structure on the variational family via a factorized decompo-
sition of g\, over xo.;. A variational counterpart of (2)), introduced in the work of Campbell et al. (2021), is

to define
t

Q())\;t(l'O:t) = Qt)\(xt) H qz\fl\s(fﬂsaxsfl) s “)

s=1

where qg\ (resp. q;\71|3(xsv -)) are user-chosen p.d.f. whose parameters depend on Yp.; (resp. Yp.s—1). A

key advantage of this factorization is that it respects the true dependencies involved in (3). Additionally,
Chagneux et al.| (2024) established an upper bound on the error when expectations w.r.t. the smoothing
distribution are approximated by expectations w.r.t. variational distributions satisfying this backward factor-
ization. In the following, we consider variational distributions satisfying {@). Variational inference Blei et al.
(2017)) then consists in learning the best A by maximizing the ELBO given in (I). This is typically done via
gradient ascent algorithms that requires to compute the gradient of the ELBO. The next sections depict a
new algorithm to approximate this gradient recursively.

3 Recursion for the gradient of the ELBO

For concise notations, WriteE]

- log fo(x—1,%0,%0) ift =0,
ftk(xt—lal‘t) = { lOg Lo(@e—1,2¢,Yt) ift>0 5)

4y, (xeme1)
and f3,(wo.¢) = ZZ:O M1, 25). Then,
L} =By, [fo:(Xo:) — log g (X)) -
In the following results, all gradients are computed w.r.t. \.
Proposition 3.1. The ELBO and its gradient satisfy:
Ly = Eqx [H}M(X1)] — E, [log ¢ (X+)] 6)
VLY =Eg [{Viegq! - HYHX) + GH(X)] @)

where H})(x) is a function from R% to R satisfying the recursion

Hp () = Egx @) [Ht)\fl(thl) + J;{\(thlvfft)] ; ®)

2The dependency of each term ft)‘ on y; is omitted to lighten the notations.



with H) (zo) = f(x_1,20), and G} (x,) is a function from R% to A satisfying G} (o) = 0 and
G =Epp | ey |Gl (Xi1) + Viog @iy, Xem )Yy (Xema, )] ©)

with H) | (zy_1, ) = H) (zi-1) + fM@e_1, 20).
Proof. The proof is postponed to Appendix [A] O

For a fixed sequence of length ¢, recursive computation of V £} therefore consists in (i) computing recur-
sively VH} (;) from O to ¢ using the recursions of Proposition and (i1) computing the final expectation
(7). As this final expectation is w.r.t. the chosen variational distribution ¢;", standard Monte Carlo sampling
can be used to approximate it. It remains to approximate online the intermediate functions H;(z;) and
G?(x), involving conditional expectations with respect to the kernels qf‘_ll ;- Note that these kernels aim to
approximate the true backward kernels b,_1;, which depend only on observations Yy.;_1, i.e., only on the
past, and hence, are prone to online learning.

4 Approximation of the gradient

4.1 Offline computation

For the sake of clarity, we ﬁrst depict the algorithm for a fixed size sequence of observations Yj.7. For a
fixed A\, we use Proposition [3.1[to compute VD\ We suppose we have access to a sequence of variational
distributions (¢;');>0 and (g 1] +)¢>1 which can be evaluated and sampled from easily. The choice of such
sequences is discussed in Section 5]

Initialization.  Simulate a N-sample {¢]}1<j<n e @, set Hy' = HNEY), Gy? = GY(g)) = 0. The
key point for the propagation step is that these two functionals are known (at ¢ = 0) only on a finite support.

Recursive approximation of H and G}. At time ¢, simulate a N-sample {&/}1<;<n %7 g}, HM (€D)

and G} (&!) are approximated respectively by:

N
AN =3, (HY + FME€D) (10)
Jj=1
N A~ . . . A . ~ . .
G =2 w {G + Viogaly (et &) (B + FAE1€D) } an
where R o . 4
y G (605 §1) /a4 (6
wk,z,j _ t l\t(gt ft 1)/ t l(ft 1) (12)

ST G ()

Estimators and are self-normalized importance sampling (SNIS) estimators of equations (8] and
(). Equation (T2) gives the shared importance weights of these estimator. It is worth noting that we cannot
do direct Monte Carlo approximations of (8)-(9) by simulating samples from qt)‘_l‘ . (€1, -), as the functionals

H} | and G} | would have no approximation on such samples. The use of importance sampling is thus



mandatory to update the approximations. It is known, though, that performance of such estimator strongly
rely on the importance distribution. Section [5|proposes an efficient implementation to link the proposal dis-
tribution ¢; to the target qt/\—ll . The self-normalization in is motivated by computational considerations
as it reduces the variance of the estimator in our simulation settings.

Estimators at final time. At final time 7', simulate a N-sample {£5}1<;<n o 3, compute A" and
G2 using (T0)-(TT), and approximate the ELBO and its gradient with:

N
1 s .
Ly =~ > {H —logar(sh)] . (13)
=1
Spoa 1 S Argiy L M AN
VL = NZ{VlOgQT(gT)'HT +G7r } : (14)
i=1

Note that an appealing alternative to estimator (T4) would be to perform auto-differentiation of estimator
(13), as it would avoid to perform the recursion (TI). However, in our setting, this approach is flawed
because the approximation (I0) is biased due the SNIS. Building gradients via auto-differentiation of a
biased estimator can lead to catastrophic divergence, especially in the case of ELBO maximization which is
based on an upper bound. Typically, the auto-differentiation will lead to the parameters that maximize the
bias of the approximation.

4.2 Online computation
In the online computation framework, we aim at approximating the gradient at each time ¢, using the new

observation, and updating the current parameter \; using this gradient.

Initialization.  Starting from an initial guess Ao, the initialization is the same as in Section[4.1] Then the
first gradient is approximated with:

@Eé‘o— ZVlogq ) ’\01+G>‘“.

Then, A is set by updating Ay using this gradient, typically by setting A\; = Ao + 70653‘0 for some step
size vg.

Recursive approximation of H,'* and G}*. At time ¢, simulate a N-sample {&h<i<n el @
H(€1) and G (€7) are approximated respectively by:

N

=y (A ) "
j=1

Gi\t; Zw;\"’l"g{ At 1’J+V10gqt 1|t(§t7§t 1)( )\t I’J f (ggfl’gtl))} ’ (16)



where

- q;\i1|t<£t’§t 1)/q)\t 1(@ 1)
e Zivzl qtil\t(gmgt 1)/q/\t (& 1)

Equations (T3)-(T7) are almost identical to (I0)-(T2). The key difference is presence of quantities, on the
right hand sides of (T3)-(16), that were computed with \;_1, thus introducing new approximations. These
approximations, which are commonly made in recursive maximum likelihood settings, are mandatory for
practical implementation of online learning. Section[7] shows that these approximation, which would make
theoretical study more complex, still lead to good results in practice.

a7

5 Computational considerations

Defining backward kernels using forward potentials. Equations (12)) and (T7) suggest that the perfor-
mance of the proposed algorithm would strongly rely on the definition of varlatlonal distributions, and on
the link between qugl and qt)‘jl v We therefore introduce additional structure in the variational family given

by @), using potential functions 1 : R% x R% — R to link these distributions. Specifically, we prescribe
that, for all ¢ > 1,

P .
Gy (e we) o g7 (@) (w1, 2) (18)

The functions 1/1;\‘ can be made arbitrarily complex, such that, for all ¢, the backward variational kernel
q;\jll , has arbitrarily complex dependencies w.r.t x;.

Backward sampling. = Computing the backward weights of has the drawback of a O(N?) com-
plexity due to the computation normalizing constant, which can be prohibitive when N is large (typi-
cally for high dimensional state spaces). One solution, introduced by |Olsson et al.| (2017) in the con-
text of particle smoothing, is the backward sampling. At t, given &L, sample 1ndependent1y M indexes
Jiseees j m € {1,..., N} from the multinomial distribution with weights {@ "’ Y t} j<n and replace (I5)

by Z 1 (H] H)MY A f t(&l* |, €1))/M. |Olsson et al.| (2017) showed that M can be much smaller than
N (_ty_plcally, M = 2), and then, this can lead to great improvement in complexity. Here, noting that
ﬁ)i‘ffl ;K5 Y&, &) |, the backward sampling step is done with an accept-reject mechanism without
having to compute the normalizing constant of the weights. We refer the reader to |Olsson et al.| (2017),

Gloaguen et al.|(2022) and |Dau and Chopin| (2022)) for alternative backward sampling approach.

Parameterization of variational distributions. In practice, employing the backward factorization under
decomposition (I8) in the online setting requires explicit parameterization, for all ¢ > 0, of a distribution
g7 and a potential 1} (not necessarily normalized) both of which depend on observations up to time ¢ at
most. For computational efficiency, each g} is chosen as a p.d.f. from a parametric distribution within the
exponential family. This family is denoted as P = { P, },,c¢ where 1) is the corresponding natural parameter
and € the parameter space for this family (typically be the family of Gaussian distributions defined on R%
in our experiments). Let ;' be the parameter of ¢;'. To ensure that distributions q;‘_” ; belong to the same
family, we impose that

P (w1, 1) = exp (77 (1) - T(x4-1))



where 77 (x;) = l\/ILPA(a:t and T'(z;—_1) are a natural parameter and a sufficient statistic for the family P.
Then, thanks to (I8), ¢ |, (2, ) will be a p.d.f. from P with natural parameter 7' ;, = 7"y + 7;". In

this convenient setting, the backward kernels qt’\f1| ; can have arbitrarily complex dependencies on x; while
their p.d.f is analytically derived from the potentials. This eliminates the necessity to calculate normalizing
constants (required, for instance, when computing (T6)), all the while avoiding the reduction of these kernels
to mere transformations or linearizations (e.g., linear-Gaussian kernels). For the parameters of ¢;' two main
approaches exist.

s Amortized schemes where the parameters of ¢; are updated using a parameterized mapping at every
time ¢. This can be done using intermediate quantities a; € A (where A is a user-defined space),
such that a; = MLP’\(at_l, yt), and 0} = MLP’\(at). Initialization is performed using a random
parameter a_1, which may be fixed or learnt. Amortized schemes are computationally efficient (as
knowledge from previous predictions is used to produce the current parameters), but require manually
defining complex mappings. The recursions may be analytical (and not rely on a MLP), for example
when g7, is the smoothing distribution of a linear-Gaussian, or when conjugacy is further leveraged to
update the parameters (ﬂi\)tzo (see Appendix . Whatever the case, while the number of parameters
becomes independent of ¢, the computational burden of the backpropagation through the states (a)s<¢
grows linearly with ¢. To prevent this, a solution is to truncate backpropagation, i.e. to assume that
(a2)s<t—n is independent of A for some A.

s Non-amortized schemes where each ¢;* and 1" have their own parameter 7; and 7j;, not related to those
at time ¢ — 1. In this case, the optimized vector A contains the parameters (7);)¢>0, and the number
of parameters then grows linearly with ¢. This scheme modifies equation () (see Appendix [B] for
details).

Variance reduction of the gradient estimator. Equations (7) and (9) involve computing expectations of
score functions, i.e. expectations of the form E,x [Vlog ¢*(X) - f(X)] , for some p.d.f. ¢*(X). As stud-
ied in Mohamed et al.| (2020)), direct Monte Carlo estimation of the score-function yields high variance and
should typically not be used without a proper variance reduction technique. The most straightforward ap-
proach is to design a control variate. Exploiting the fact that [ [V log ¢M(X )] = 0, the target expectation
is then equal to E;» [V log ¢* (X)) (f(X) —Egx [f(X)])]. Fortunately, Monte Carlo estimates of E,»[H}*] and

qum [H} |(Xi_1) + f}(Xi_1,2,)] are directly given as byproducts of algorithm of Section , namely

by N~! Zfil H} and {H}""},<;<n. Our methodology comes built-in with variance reduction without
the need to recompute additional quantities. As an alternative to this variance reduction technique, a natural
consideration arises regarding the potential use of the reparametrization trick, as it often results in Monte
Carlo estimators with lower variance compared to those obtained using the score function. However, im-
plementing the reparametrization trick in this context necessitates expressing VL as an expectation with
respect to a random variable Zj.; that does not depend on A. Moreover, the recursive expression of this
expectation at time ¢ + 1 must be derivable from its predecessor, which poses a non-trivial challenge. For
example, in the classical case where qq.; is the p.d.f. of a multivariate Gaussian random variable with mean
p and variance X, and the expectation is taken w.r.t. Zo.; ~ N (0, Iy, « (t+1))> such a recursion is not feasible
as the ELBO is no longer an additive functional when Xy, is replaced by p + »3i Z0:t.

Appendix [F] provides the full algorithm using the backward sampling approach and the control variate
estimate.

3MLP is used to denote a multi-layer perceptron.



6 Related work

Sequential Monte Carlo smoothing. = The presented methodology draws from recent advances in se-
quential Monte Carlo (SMC methods) for SSMs, especially by i) proposing Monte Carlo approach for the
approximation of conditional expectations under the backward kernels, and ii) introducing the structure (I8))
to link qf_tf and q;\jl‘ . As a major difference, though, we emphasize that here, all Monte Carlo samples are
obtained by i.i.d. sampling, avoiding the selection/mutation steps of SMC, which lead to dependant samples
over time. We refer the reader to |Douc et al.| (2014)) (Section 11) for a presentation of the general concepts
underpinning this class of algorithms, and |Olsson et al.| (2017), Gloaguen et al.| (2022) and [Dau and Chopin
(2022)) for recent works on this class of algorithms. It is worth noting here that the algorithm proposed here
can actually be implemented for every expectations of any additive functional as defined in these references,
and not only the ELBO or it’s gradient.

Sequential variational inference.  In sequential variational inference, early works tackling smoothing
focus on offline scenarios with a forward factorization different from the one used here|Johnson et al.|(2016);
Krishnan et al.| (2017); [Lin et al.| (2018b); Marino et al.| (2018). A drawback of forward factorizations
is the incompatibility with online setting. |Campbell et al.|(2021)) provides the first work which explores
online variational additive smoothing for recursive computation of the ELBO and its gradients. The main
difference with our approach is the way to approximate conditional expectations with respect to backward
kernels. The authors rely on functional approximations of the conditional expectations at each timestep. The
major drawback of this solution is that it requires running an inner optimization (to learn the best regression
function as a proxy of the target conditional expectation) at every iteration t, which may be very costly, and
requires an additional choice of the regression functions.

Recently, (Chagneux et al.| (2024) established the first theoretical result on error control in sequential
variational inference, building upon the backward factorization proposed in |[Campbell et al.| (2021). This
result, coupled with the potential for online learning, serves as motivation for our algorithm.

A distinct line of research Marino et al.| (2018)); Zhao and Park| (2020); |Dowling et al.|(2023) chooses to
trade smoothing for filtering by targeting the marginal distributions (¢ )¢<o at each timestep with variational
distributions ¢;* that depend only on the observations up to ¢. A distinctive trait of these works is the
additional assumption that, at ¢, g;' is a good approximation of ¢; which can be used in further timesteps to
learn the next approximations. In practice, this can hardly be verified especially under Gaussian variational
families. That said, some of the ideas proposed in these works may be relevant for the smoothing problem,
which we discuss more extensively as a perspective in Section [§]

7 Experiments

7.1 Linear-Gaussian HMM

We first evaluate our algorithm on a Linear-Gaussian HMM, which admits analytical smoothing distribution.
such that optimal smoothing is available. We set:

XONN(/'LOaQO)v Xt:AXt71+Vt7t217
Yi=BXi+e,t20,

where v, and ¢; are Gaussian centered noises with unknown variances ) and R, and pug, Qo, A and B are
unknown parameters with appropriate dimensions. In this case the Kalman smoothing recursions yield the



smoothing distribution, which is a Gaussian distribution. It is then possible to choose a variational model
parameterized by A which gets arbitrarily close to the true posterior by prescribing that each ¢} is the p.d.f.
of a Gaussian distribution and qZ\—1| ; 1s a Gaussian kernel with linear dependance on x;. In this case, the

ELBO can also be computed recursively in closed-form because the conditional expectations (H, 3),20 are
quadratic forms.

Learning in an offline setting. ~ We first evaluate our algorithm on a sequence of fixed-length 7" to show-
case that the proposed framework indeed enables to perform a gradient ascent algorithm. As an oracle
baseline, we can compute the closed-form ELBO and its associated gradient via the reparameterization
trick. As an alternative, an unbiased offline Monte Carlo estimate of the ELBO is obtained by drawing
trajectoires using the backward dynamics given by the kernels (q?_1| . )t<7 and using the reparameterization
trick to obtain is gradient. We refer to this method as backward MC. To compare the methods at hand, we
evaluate our ability to perform gradient-ascent to optimize the ELBO with respect to A. For our recursive
method, we choose A = 2 to truncate the backpropagation, as we observe that A < 2 prevents our method
from converging altogether, while A > 2 only improves convergence speed by a small margin. The exper-
iment is run using 10 different parameters for the generative model, d, = d, = 10, T = 500 and N = 2
for the two methods involving Monte Carlo sampling. Figure [1| displays the evolution of the ELBO using
both approaches. It shows the convergence of our score-based solution to the correct optimum given by the
analytical computations. This is particularly appealing and notably demonstrates that our online gradient-
estimation method may perform well using few samples. In practice, we observe that the variance reduction
introduced in Section [3]is crucial in reaching such performance. Finally, despite the added cost of updating
the intermediate quantities for the gradients at each timestep, we observe that the computational times of our
solution is about 2.5 time slower than the optimization based on the oracle gradient computed analytically
(in average, 89.5 ms per gradient step for our method, 37.1 for the oracle method). We want to emphasize
here that we do not advocate for our method in the context of offline learning (hence for time series of small
length).

Online learning from streaming data. In a second setting, we keep the same generative and variational
models and dimensionality but generate a large sequence of 7' = 500000 observations and simulate the
optimization of the joint ELBO £7.. The purpose here is to update the variational parameters online, i.e. by

discarding already seen data at each step. In the context of stochastic optimization, since £}, = ZtT:O L) —
L} | (with the convention £*; = 0), the right quantity to optimize becomes V{L} — £ ;}. In practice
we update \;;; by setting:

)\t+1 =\ + V41 (VE;\’ — VEZ\iEI) R (19)

in order to avoid recomputing the previous gradien In Figure we plot the evolution of the ELBO through
this optimization process.

7.2 Chaotic recurrent neural network.
We now consider the model used in|Campbell et al.| (2021), where X ~ N (0,Q), and, for t > 1:

A
X=X 1+ - (vWtanh (Xy—1) — X¢—1) + 1
Y, =Xi+e,t>0,

4This approximation is typically made in traditional recursive maximum likelihood methods
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Figure 1: Evolution of £3./T computed with three different methods and with three different types of
gradients estimates. Full lines: means of the 10 replicates. Shaded lines: standard deviations of the 10
replicates.

iid. . . . e . e .
where 7 "X N(0, Q) is an isotropic Gaussian distribution and ¢ is a Student-¢ distribution, these two dis-

tributions being mutually independent. The hyperparameters chosen are the ones of Campbell et al.| (2021))

(see Appendix [E.IJ).

Learning in an offline setting.  Again, we start by evaluating the performance of our gradients against
the backward trajectory sampling approach run on the same model, for a sequence of fixed length T = 500
with d, = d, = 5. For the variational family, we choose the setting presented in the section |5 where a
linear-Gaussian kernels with parameters (A*, Q) is used both to update the distributions (¢;\);>0 and the
backward kernels. We run gradient-ascent on A by performing gradient steps using the quantity Vﬁ% /T
approximated via backward trajectory sampling and via our score-based method. As before, we use the
same hyperparameters and optimization schemes for both methods. Table[T]reports the performance against
the true states, averaged over dimensions, i.e. the quantity

L s | 1w 712
A *(K
M =23 = > (#W -Ey, [xP])
t=1 T k=1

Recursive gradients in the offline setting. Even when we have access to an entire sequence of observa-
tions yo.7, it can still be beneficial to use the recursive gradients approach for faster convergence. Indeed,
when gradients are only available after processing the whole batciﬂ the best we can do at optimization given

3i.e. the whole set of observation

10



O 25/

-

W —501

0 200000 400000

Iteration

X

£

©

[Vp]

i)

3 . . .

" 0 200 400
Timestep

Figure 2: Top: evolution of %Eﬁ during the online learning. Bottom: evaluation on a test sequence of 500
observations from the same generative model (over 1 particular dimension, in black) for parameters obtained
at iterations 1 (red), 10, 000 (green) and 500, 000 (blue).

Gradients A% (x1072) Avg. time
I | A%, | |

Score-based 13.5 £ 0.7 (12.2) 173 ms
Backward sampling || 11.9 + 0.4 (11.4) 17 ms

Table 1: RMSE between the true states 2} and the predicted marginal means IE%;T [X:] and average time
per gradient step. ’

a fixed number of observations 7" is to update the parameter with
AL — (k) 7k+1V£%(k> 7 (20)

where one such update is usually referred to as an “epoch”, and A(¥) is the value of estimated parameter after
k epochs. Using the recursive gradients, one may perform 7" intermediate updates within an epoch using

(k) AR
A, = A 44 ) {w?;l v } , @)

and

)\ék+1) _ )\gfc) 7
i.e. inside one epoch we optimize A recursively on the observations. We compare the two options by
optimizing on 10 different sequences of 7' = 500 observations, performing 10 epochs on each, using updates
of the form (20) for the backward trajectory sampling approach and using updates of the form (2I) with our
score-based approach. Figure@, displays the epoch-wise training curves for each method with d,, = d,, = 5,
where we observe that optimizing with intermediate updates of (21)) converges faster overall.
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Figure 3: Evolution of £7./T for A = M%) when performing with temporal updates inside an epoch (via
recursive gradients) or without (as in Figure , k € {0,...,50}. The full lines are the average over the 10
different runs, the shaded lines are the standard deviations across these runs.

Comparison with|Campbell et al.|(2021). The proposed method of this paper mainly differs from|Camp-
bell et al.[(2021) in the way we approximate the backward statistics H;' by using a recursive sampling
approach rather than a regression approach. In order to compare the two approaches, we reproduce the ex-
periment of appendix B.2 of |(Campbell et al.| (2021)), where the authors evaluate their ability to predict the
hidden state one step backward (therefore performing 1-step smoothing).

Specifically, we aim at evaluating the quality of our approach to estimate the conditional law of X;_1
given Y., and of X, given Y., by evaluating eqtu [X:—1] and Eq? [X:], where X is learnt using the same
setting as (Campbell et al.[(2021), i.e. a non-amortized scheme (see Non-amortized schemes, Section E] and
Appendix [B). The details of implementation are given in Appendix [E.I|

Table 2] reports the average 1-step smoothing errors and filtering errors, i.e. the quantities

T—1 d
1 1 IS k «(k)\ 2
K;Ef) = T-1 E (Eq?—lzt |:Xt(—)1:| - xtgl))
t=1 k=1
and
T da
2 1 1 & k #(k)) 2
=23 (2 [ - i)
t=1 T k=1

when training our method in these two settings with d, = d, = 5. We also report the errors the computa-
tional times for the two methods averaged over 8 runs using 8 different generative models (hence 8 different
sequences).



Method Smooth. Filt. Time

B Ours 8.9(0.2) | 10.3(0.2) 1 ms
_gCampbell et al.j2021) 9.2(0.2) | 10.3(0.2) | 4.8 ms

Table 2: RMSE (x10~2) between the true states =} and eqlu [X¢—1] (column Smooth.) and qu\ [X¢]
(Filt.) (with the standard error), and average time per gradient step.

Sequence || Smoothing RMSE | Filtering RMSE

Training 0.281 0.311
Eval 0.278 (£ 0.01) 0.305 (£ 0.014)

Table 3: Smoothing and filtering RMSE values for the training sequence and other sequences drawn from
the same generative model, when A is learnt online.

One can see that for comparable results, our approach based on Monte Carlo for estimating the backward
expectation is about 5 times faster than the regression approach.

Online learning from streaming data.  Finally, we evaluate the performance in the true online setting
when training on a sequence of 7' = 100, 000 observations using parameter updates of the form of (T9). We
choose d, = d, = 10 and N = 100 particles. To parameterize 3., we use the amortized model presented
at the beginning of this section. Table [3| provides the smoothing and filtering RMSE against the true states
at the end of optimization. We also show the inference performance on new sequences generated under the
same generative model. The results clearly highlight that the fitted A is relevant for new sequences, and
illustrates the performance of our method in the amortized setting. This scheme is then appealing when one
wants to train a single model on a long stream of incoming data, then re-use it for offline state inference on
new sequences of arbitrary length.

8 Discussion

For future research, we identify two directions that could benefit from further investigation. First, we have
only implemented the versions of our algorithm that rely on exponentially conjugated potentials, and as such
more general parameterizations need to be evaluated. In practice, when the forward potentials (1;\);>¢ are
arbitrarily parameterized functions, it is expected that more flexible joint variational approximations can be
obtained, and hence better results under complex nonlinear models.

Then, a more thorough analysis could be conducted to study the proper stepwise objective to optimize
in situations where parameter updates are performed at every timestep. In this work, we have relied on
the decomposition £} = S2'_, £} — £} | as a justification to solve the optimization problem in \ via
online stochastic gradient updates which maximize the ELBO over time. In contrast, works like [Zhao
and Park| (2020); |Dowling et al.| (2023)) develop an online variational optimization procedure by deriving
lower bounds on the incremental likelihood. In practice, these solutions depart from the original ELBO and
formulate intermediate optimization problems at each timestep by deriving a single step” ELBO from the
Kullback-Leibler divergence between ¢; and ¢;' at each ¢ > 0. As such, they do not target the smoothing
distributions, and a joint variational distribution on the state sequence Xj.; is only available in mean-field
form ¢, = Hi:o q2, which does not capture dependencies between the states. In Dowling et al.[(2023),
however, the focus is put on learning the true model transitions, and they introduce a “hybrid” version of
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Figure 4: Top: evolution of %LA? during the online learning. Bottom: evaluation on a test sequence of 5,000
observations from the same generative model (over 1 particular dimension, in grey) for parameters obtained
at iterations 1 (red), 10, 000 (green) and 100, 000 (blue).

the predictive distribution of X; given Yy, defined as ;' (z;) = eqll [m4(X¢—1,z¢)] forall ¢ > 0, which
is used to propagate the variational distributions. In the context of smoothing, we may similarly design
variational backward kernels which rely on the true dynamics, i.e. for all z; € R, q{\,w(ﬂﬁu XTpo1) X

@ 1 (x¢—1)m¢(z¢_1, ), in which case the normalizing constant is precisely g (z;) as defined above.
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A Proof of proposition 3.1]

We start by the definition of the ELBO:

A I pO:t(XO:t7YO:t)
Lt _Eqazt log 7q(/)\,t(X0:t)
[ t
ls(Xs—1, X5, Y
=B, |log = HS:Ot ( X 1 : 1 by @) and @)
L qi (Xt)Hs:1 qS,uS(Xmefl)
Mt
ES(X8717XS7YYS> by : A
=E log —logq; (X Posing ¢* o(zo,2z_1) =1
[t
=Ep | fA(Xe1, X)) —log qg(Xt)] By the defintion (3]
Ls=0

-Ep [log CIZ\(Xt)]

=Ep | Y fA(Xe1, X,)

t ‘

— / {Z ;)\(Is—laxs)} qf)\(:rt) H qi\_l‘s(l's, Is_l)dl'l . dLEt — ]qu\ [10g qt/\(Xt)]
s=0 s=1

=E, [H)(X0)] — Eg [log ' (X)]

t t
H,)‘(xt) = / {Zfs)‘(o:s_l,xs)} H qi‘_l‘s(xs,xs_l)dzl coodry_q = E‘IS;(f,_l)u [f(it(XO:t—laxt)} )
s=0

s=1

with g, the function defined in Section , and qg‘:(t_l)lt(xo:t_l, ) = HZ:1 qg‘_lls(xs, Xs—1) is a p.d.f,
for every x;, for Xg.;—1. Then, notice that:

t—1 t—1
H{\(mt) = / (/ {Zfs)\(%—h%) + ft)‘(it—l,ft)} H qi_l\s(:rs,xs_l)dwl . --diﬂt—2> qg‘_l\t(fﬁuxt—l)dxt—l

s=0 s=1
_ A ) A
= / (th(xtfl) + fi (xt,hmt)) G (@r, mp—1)da

=E, {Ht{l(xt,l) +ft*(Xt71,Xt)} :

1t
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This development then shows the given expression of the ELBO and the recursion over H;'. Consider the
gradient of the ELBO, with respect to \.

VL) = VE [HNX,)] — VE, [log ¢ (Xy)]
= V/ (H?(xt) —log qt)‘(xt)) q (z;)dxy
— / (VH?‘(a:t) — Vlog qt)‘(xt)) qt)‘(xt)dxt + / (Ht’\(xt) - logqt)‘(xt)) Vqt)‘(a:t)dxt
=0
=E, [VH)X))] —Egp [Vieg g (Xi)] + / (H7 (x:) —log ¢\ (24)) V (log ;' (x+)) @7 (1)
= ]eqx [VH?‘(Xt) + (H{\(xt) —log qi‘(xt)) x V log qt’\(xt)] ,

where E » [V1og ¢;'(X;)] = 0is justified by the fact that E,» [Vlog ¢ (X)) = [ Va7 (x)dx; = 0.
Now, if we denote G (z;) = VH} ().

qé:(t—l)‘t |:f0>\:t(X0:t717 Z‘t):l

HVIqué\?(t—l)n X fé\:t} (XO:t—l,-T?t)} +E

[vfo)\:t(Xo:t—h xt)] .

A A
90.(t—1) |t 0.(t—1)t

Here, it turns out thatEI, by definition of £, :
vfé\t (XO:tfh xt) =-V IOg Q[))\;(tfl)”(XO:tfh -Tt)7
therefore, the expectation of this term is equal to 0, and:

G () = P [{Vlog 0:t—1)j X f())\:t} (XO:t—l’l“t)} ~

Finally, it remains to show the wanted recursion for G7 (;):

Gz =Egp , [(vlogqé\:(t—Z)\t—l(XOit—l) +VI0gqt>\—1\t(Xt—1axt)) (foA;t_l(XO:t—l) +ft)\(Xt—l>$t)>}

22)
=B, ,, (Gl (X)) (23)
+Ep Vit (Keen @) (B [Rea(Koa)] + R (Keev,m)] @4
FEy [P Kene) x By V108 @ gy (Xou)] ] - 25)

On the inner expectation of (24) we recognize H;* ; and [23) is again equal to 0. We therefore have the
wanted result:

Gar) = Eq{\_ |:Gt)\—1(Xt—1) + Vlog qt)\_l\t(Xt—laxt) X (Ht)\_l(Xt—l) + ft)\(Xt—lvxt))} .

5This would not be the case for another additive functional than the one of the ELBO.

1t
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B Details on the non amortized scheme

In the non amortized scheme, A is a set of disjoint parameters, each of them corresponding to a specific
time step. Namely A = {\° ..., A!} . In the notations of the article, the estimate \;_; of \ after having
processed observations yo.;—1 is an estimate of the set { A0 )\t’l}. Therefore, the gradient of the ELBO
will only be with respect to A. This affects the expression of the statistic G7*, and one can see in equations
(22)-(23) that the term (23)) will now be 0 when the gradient is taken w.r.t. . This means that this term no
longer has to be propagated. Indeed, as we set qf‘il‘t(xt, ZTyo1) X q;‘jl (xt,l)z/)t)‘t (z¢—1, ), the gradient
of the ELBO w.r.t. \* will be
VaL) =E, [Eqv [v log ¢ (X¢) % F (Xo1, X¢)

t—1]t

+ Ve loth)\:l\t(thlal't) X (H:\iil(thl) + ft/\t(thl’Xt))H ’

This gradient will be estimated using Monte Carlo in the same way as in the algorithm. In|Campbell et al.
(2021)), the inner conditional expectation is estimated with a regression approach of Appendix [D]instead of
importance sampling as in our approach.

C Using exponential conjugacy to process observations

To further reduce the computational cost, one may actually leverage exponential conjugacy both to update
the parameters of the distributions (g;')¢>0 and to derive the parameters of the backward kernels (g, , 10)e0-
This is possible, for example, whenever P is the Gaussian family. Denoting 77 the function such that 7* (x;_1)
is the natural parameter vector of the linear-Gaussian kernel A/ (A’\xt,l, Q/\), and q_ﬁ"\(xt,l, x¢) the density
of that latter kernel evaluated at z, then closed form updates can be derived for all parameters at any timestep
when choosing

« i = Ep | [7N(Xe—1)] + 7, where 7, = MLP*(y;) is a natural parameter. Here, the expectation
on the right hand side is analogous to the predict step in Kalman filtering, but assimilation of the
observation can involve a complex nonlinear mapping, as originally proposed inJohnson et al.|(2016).

o YM@y_1,21) < GMay_1, ), in which case ¥} (-, 2,) is still conjugated to ¢ ; for any z;, and the
parameters of qt)‘_l‘ , can be derived as explained above simply by deriving the natural parameter which
makes ¢ (-, ;) conjugated to ¢ |.

In this setting the backward kernels are linear and Gaussian, and the only neural network involved in the

variational approximation is used to assimilate the observations. Additionally, the parameters (A*, Q*) are
shared between the updates for (g;');>0 and those for (qg\—ut)tzl’ which is analogous to the true model re-

cursions where the forward transition kernels are involved both in the filtering recursions and in the definition
of the backward kernels.

D Functional regression

Here, we recall the alternate option used in |(Campbell et al.|(2021) to propagate approximation of the back-
ward expectations. Denoting F = {g :RP — Rdz,Eq? llg(Xe)l2] < oo}, H)(z) satisfies (by definition
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of conditional expectation):

H} = argﬁ;iHqufl_t(Xt_l,xt)||9(Xt) — [HX (X)) + (X1, X))o,
g€ )

which provides a regressive objective for learning an approximation of H}. In practice authors restrict
the minimization problem to a subset of F, a parametric family of functions (typically, a neural network)
parameterized by 7, belonging to I' C R%, and learn this by approximating the expectation with Monte
Carlo method. Namely, the authors propose to estimate H; by H. f/‘t where

1 & -
o = argmin 3 IHY(E) = [H3,, (651) + Re(6tr, &)z (26)
v k=1

where {(&_1, gg’)}izl _y isaniid. sample under the variational joint distribution of (X;_y, X;) which

has density ¢;* 1., = ¢{'q; ;- Upon convergence, H13, is then used in the successive recursions (in the type

of (13).

E Experiments settings

E.1 Appendix for section[7.2]

Parameters for the chaotic RNN We choose the same hyperparameters than|Campbell et al.| (2021) with
A = 0.001, 7 = 0.025, v = 2.5, 2 degrees of freedom and a scale of 0.1 for the Student-¢ distribution, and
define @ = diag(0.01).

Implementation settings for the comparison with Campbell et al.[(2021) Each )\’ contains the param-
eter n; = (e, X¢) of the distribution qg‘t ~ N(u¢, ;) and the parameter 77; of the function zp;\t. For
this latter function, we match the number of parameters of (Campbell et al. (2021) by defining wtx (z,y) =
exp (M:(y) - T'(x)) with 74 (y) = (G1,1(y), Me,2) where y — 7,.1(y) is a multi-layer perceptron with 100
neurons from R% to R%, and 7}, » is a negative definite matrix. We follow the optimization schedules of
Campbell et al.|(2021)) with K = 500 gradient steps at each timestep.

F Full algorithm with backward sampling and control variate
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Algorithm 1 One iteration of the online gradient ascent algorithm (for ¢ > 1) in the amortized scheme
Require:

* Previous statistics {G)“ o fIt’\jl’i N

* Previous samples {&/_;} Y ;;

* Intermediate quantity a;_; (see Section [5| Parameterization of variational distributions);
¢ Current parameter estimate \;;

* Step size , for the gradient optimization procedure;

¢ New observation ;.

Ensure: {G’At o ﬁ’\t i}z 1> Att1, G
Compute at MLP? t(ap—1,Yt)-
Compute 7} = MLP*(a,), the parameters of ¢;* and sample {¢/}N | i.i.d. with distribution ¢;"*.
fori=1toi= N do
Compute 77" = MLP™ (¢7)
for j =1toj = M do
// Backward sampling step, M is the number of backward samples
Sample (jx)1<r<m R Cat({w;\j’f[f}lgg\r) with the weights of (T7).
end for
Compute // Recall that each term ft’\t depends on y;.

M

]'—j[t)‘t’i _ %Z{Hh 1:Jk +f>\f( 17&)} ,

1
M 4

éi\mi: {G)\t 1jk+V10gqt 1|t( t—1> t) (ﬁt)\tih]k f)\t(gt 1s t) HN Z)} .

HMS i

// Note the dlﬁ‘erence with (16) and the inclusion of control variate H for the computation of G
V4 Vqt 1] t( Tk 1, &) is typically computed with automatic differentiation

end for
N

N
) Ny 1 A
¥ {GA“ +Vlog g, (&) (Ht* 52 :Ht)‘“k>} .
k=1

i=1

At = N b2

// Note the difference with and the inclusion of control variate % Ef\il f[t)‘ ot for the computation of
vi}
/' V log qf‘ TH(EY) is typically computed with automatic differentiation
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