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Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation

Sobihan Surendran*†, Adeline Fermanian†, Antoine Godichon-Baggioni*, and Sylvain Le Corff*

Abstract

Stochastic Gradient Descent (SGD) with adaptive steps is now widely used for training deep neural networks.
Most theoretical results assume access to unbiased gradient estimators, which is not the case in several recent deep
learning and reinforcement learning applications that use Monte Carlo methods. This paper provides a comprehensive
non-asymptotic analysis of SGD with biased gradients and adaptive steps for non-convex smooth functions. Our
study incorporates time-dependent bias and emphasizes the importance of controlling the bias of the gradient
estimator. In particular, we establish that Adagrad, RMSProp, and Adam with biased gradients converge to critical
points for smooth non-convex functions at a rate similar to existing results in the literature for the unbiased case.
Finally, we provide experimental results using Variational Autoenconders (VAE) that illustrate our convergence
results and show how the effect of bias can be reduced by appropriate hyperparameter tuning.

Keywords: Stochastic Optimization; Biased Stochastic Approximation; Monte Carlo Methods; Variational Autoen-
conders; Adam

1 Introduction

Stochastic Gradient Descent (SGD) algorithms are standard methods to train statistical models based on deep architec-
tures. Consider a general optimization problem:

θ∗ ∈ argmin
θ∈Rd

V(θ) , (1)

where V is the objective function. Then, gradient descent methods produce a sequence of parameter estimates as
follows: θ0 ∈ Rd and for all n ≥ 1,

θn+1 = θn − γn+1∇V(θn) ,

where ∇V denotes the gradient of V and for all n ≥ 1, γn > 0 is the learning rate. In many cases, it is not possible to
compute the exact gradient of the objective function, hence the introduction of vanilla Stochastic Gradient Descent,
defined for all n ≥ 1 by:

θn+1 = θn − γn+1∇̂V(θn) ,

where ∇̂V(θn) is an estimator of ∇V(θn). In deep learning, stochasticity emerges with the use of mini-batches, since it
is not feasible to compute gradients based on the entire dataset.

While these algorithms have been extensively studied, both theoretically and practically (see, e.g., Bottou et al.,
2018), many questions remain open. In particular, most results are based on the case where the estimator ∇̂V is
unbiased. Although this assumption is valid in the case of vanilla SGD, it breaks down in many common applications.
For example, zeroth-order methods used to optimize black-box functions (Nesterov and Spokoiny, 2017) in generative
adversarial networks (Moosavi-Dezfooli et al., 2017; Chen et al., 2017) have access only to noisy biased realizations of
the objective functions.

Furthermore, in reinforcement learning algorithms such as Q-learning (Jaakkola et al., 1993), policy gradient
(Baxter and Bartlett, 2001), and temporal difference learning (Bhandari et al., 2018; Lakshminarayanan and Szepesvari,
2018; Dalal et al., 2018), gradient estimators are often obtained using a Markov chain with state-dependent transition
probability. These estimators are then biased (Sun et al., 2018; Doan et al., 2020). Other examples of biased gradients
can be found in the field of generative modeling with Markov Chain Monte Carlo (MCMC) and Sequential Monte
Carlo (SMC) (Gloaguen et al., 2022; Cardoso et al., 2023). In particular, the Importance Weighted Autoencoder
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(IWAE) proposed by Burda et al. (2016), which is a variant of the standard Variational Autoencoder (VAE) (Kingma
and Welling, 2014), yields biased estimators.

In practical applications, vanilla SGD exhibits difficulties to calibrate the step sequences. Therefore, modern
variants of SGD employ adaptive steps that use past stochastic gradients or Hessians to avoid saddle points and deal
with ill-conditioned problems. The idea of adaptive steps was first proposed in the online learning literature by Auer
et al. (2002) and later adopted in stochastic optimization, with the Adagrad algorithm of Duchi et al. (2011). Adagrad
aims to normalize the gradient by introducing information about the square root of the inverse of the covariance of the
gradient.

We give non-asymptotic convergence guarantees for modern variants of SGD where both the estimators are biased
and the steps are adaptive. To our knowledge, existing results consider either adaptive steps but unbiased estimators or
biased estimators and non-adaptive steps. Indeed, many standard analyses for SGD (Moulines and Bach, 2011) and
SGD with adaptive steps (Duchi et al., 2011) require unbiased gradients to obtain convergence results. More recently,
convergence results have been obtained for SGD with biased gradients (Tadić and Doucet, 2011; Karimi et al., 2019;
Ajalloeian and Stich, 2020) but non-adaptive steps.

More precisely, our contributions are summarized as follows.

• We provide convergence guarantees for the Biased Adaptive Stochastic Approximation framework, under weak
assumptions on the bias and “Expected smoothness”. To the best of our knowledge, these are the first convergence
results in this framework to incorporate adaptive steps in the biased SA.

• In particular, we establish that Adagrad, RMSProp, and Adam with a biased gradient converge to a critical point
for non-convex smooth functions with a convergence rate of O(log n/

√
n + bn), where bn is related to the bias

at iteration n. However, we achieve an improved linear convergence rate with the Polyak-Łojasiewicz (PL)
condition.

• We provide a bound on the bias of IWAE, and illustrate our convergence results using this bound in the
experimental results and show how the effect of bias can be reduced by appropriate hyperparameter tuning.

• Finally, we present applications with biased gradients where the bias can be controlled and provide the im-
plications of our theorems in these applications, especially Stochastic Bilevel Optimization and Conditional
Stochastic Optimization but also self-normalized importance sampling estimators or coordinate sampling.

Organization of the paper. In Section 2, we introduce the setting of the paper and relevant related works. In
Section 3, we present the Adaptive Stochastic Approximation framework and the main assumptions for theoretical
results. In Section 4, we propose convergence rates for the risk in the PL condition case and the squared norm of
gradients without the PL condition in the context of Biased Adaptive Stochastic Approximation. Finally, we extend the
analysis to Adagrad, RMSProp, and Adam with biased gradients. We illustrate our results using VAE in Section 5. All
proofs are postponed to the appendix.

2 Setting and Related Works

Stochastic Approximation. Stochastic Approximation (SA) methods go far beyond SGD. They consist of sequential
algorithms designed to find the zeros of a function when only noisy observations are available. Indeed, Robbins and
Monro (1951) introduced the Stochastic Approximation algorithm as an iterative recursive algorithm to solve the
following integration equation:

h(θ) = Eπ [Hθ(X)] =
∫

X
Hθ(x)π(x)dx = 0 , (2)

where h is the mean field function, X is a random variable taking values in a measurable space (X,X), and Eπ is
the expectation under the distribution π. In this context, Hθ can be any arbitrary function. If Hθ(X) is an unbiased
estimator of the gradient of the objective function, then h(θ) = ∇V(θ). As a result, the minimization problem (1) is
then equivalent to solving problem (2), and we can note that SGD is a specific instance of Stochastic Approximation.
Stochastic Approximation methods are then defined as follows:

θn+1 = θn − γn+1Hθn (Xn+1) ,
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where the term Hθn (Xn+1) is the n-th stochastic update, also known as the drift term, and is a potentially biased estimator
of ∇V(θn). It depends on a random variable Xn+1 which takes its values in (X,X). In machine learning, V typically
represents theoretical risk, θ denotes model parameters, and Xn+1 stands for the data.

Adaptive Stochastic Gradient Descent. SGD can be traced back to Robbins and Monro (1951), and its averaged
counterpart was proposed by Polyak and Juditsky (1992). The non-asymptotic results of SGD in both convex and
strong convex cases can be found in Moulines and Bach (2011). Ghadimi and Lan (2013) prove the convergence of a
random iterate of SGD for nonconvex smooth functions, which was already suggested by the results of Bottou (1991).
They show that SGD with constant or decreasing stepsize γk = 1/

√
k converges to a stationary point of a non-convex

smooth function V at a rate of O(1/
√

n) where n is the number of iterations.
Most adaptive first-order methods, such as Adam (Kingma and Ba, 2015), Adadelta (Zeiler, 2012), RMSProp

(Tieleman et al., 2012), and NADA (Dozat, 2016), are based on the blueprint provided by the Adagrad family of
algorithms. The first known work on adaptive steps for non-convex stochastic optimization, in the asymptotic case, was
presented by Kresoja et al. (2017). Ward et al. (2020) proved that Adagrad converges to a critical point for non-convex
objectives at a rate of O(log n/

√
n) when using a scalar adaptive step. In addition, Zou et al. (2018) extended this proof

to multidimensional settings. More recently, Défossez et al. (2020) focused on the convergence rates for Adagrad and
Adam. Furthermore, several modified versions of Adam have been proposed, such as AMSGRAD (Zaheer et al., 2018)
and YOGI (Reddi et al., 2018).

Biased Stochastic Approximation. The asymptotic results of Biased Stochastic Approximation have been
studied by Tadić and Doucet (2011). The non-asymptotic analysis of Biased Stochastic Approximation can be found
in the reinforcement learning literature, especially in the context of temporal difference (TD) learning, as explored
by Bhandari et al. (2018); Lakshminarayanan and Szepesvari (2018); Dalal et al. (2018). The case of non-convex
smooth functions has been studied by Karimi et al. (2019). The authors establish convergence results for the mean field
function at a rate of O(log n/

√
n + b), where b corresponds to the bias and n to the number of iterations. For strongly

convex functions, the convergence of SGD with biased gradients can be found in Ajalloeian and Stich (2020), who
consider a constant step size. This analysis applies specifically to the case of Martingale noise.

In Khaled and Richtárik (2020); Demidovich et al. (2024), a novel assumption known as “Expected smoothness” is
introduced, which is the weakest assumption compared to the existing literature in the biased SGD setting. The authors
provide convergence results in the case of non-convex smooth functions. Convergence results with assumptions on
the control of bias and MSE can be found Liu and Tajbakhsh (2023); Dieuleveut et al. (2023). Applications of biased
gradients can be found in bilevel optimization Ji et al. (2021); Grazzi et al. (2023); Huang et al. (2021) and conditional
stochastic optimization Hu et al. (2020, 2021b). Moreover, biased gradients are also used in various other applications
(Hu et al., 2021a; Li and Wai, 2022; Beznosikov et al., 2023; Liu and Tajbakhsh, 2023). Finally, Alacaoglu and Lyu
(2023) studied convergence results of biased gradients with Adagrad in the Markov Chain case, focusing on the norm of
the gradient of the Moreau envelope while assuming the boundedness of the objective function. Our analysis provides
non-asymptotic results in a more general setting, for a wide variety of objective functions and adaptive algorithms and
treating both the Martingale and Markov chain cases.

3 Adaptive Stochastic Approximation

3.1 Framework

Consider the optimization problem (1) where the objective function V is assumed to be differentiable. In this paper, we
focus on the following Stochastic Approximation (SA) algorithm with adaptive steps: θ0 ∈ Rd and for all n ≥ 0,

θn+1 = θn − γn+1AnHθn (Xn+1) , (3)

where γn+1 > 0 and An is a sequence of symmetric and positive definite matrices. In a context of biased gradient
estimates, choosing

An =

[
δId +

( 1
n + 1

n∑
k=0

Hθk (Xk+1)Hθk (Xk+1)⊤
)]−1/2

can be assimilated to the full Adagrad algorithm (Duchi et al., 2011). However, computing the square root of the
inverse becomes expensive in high dimensions, so in practice, Adagrad is often used with diagonal matrices. This
approach has been shown to be particularly effective in sparse optimization settings. Denoting by Diag(A) the matrix
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formed with the diagonal terms of A and setting all other terms to 0, Adagrad with diagonal matrices is defined in our
context as:

An =
[
δId + Diag(H̄n(X0:n+1, θ0:n))

]−1/2 , (4)

where

H̄n(X0:n+1, θ0:n) =
1

n + 1

n∑
k=0

Hθk (Xk+1)Hθk (Xk+1)⊤.

In RMSProp (Tieleman et al., 2012), H̄n(X0:n+1, θ0:n) in (4) is an exponential moving average of the past squared
gradients. It is defined by:

(1 − ρ)
n∑

k=0

ρn−kHθk (Xk+1)Hθk (Xk+1)⊤,

where ρ is the moving average parameter. Furthermore, when An is a recursive estimate of the inverse Hessian, it
corresponds to the Stochastic Newton algorithm (Boyer and Godichon-Baggioni, 2023).

3.2 Assumptions

Consider the following assumptions necessary to establish our theoretical results.

H1 There exists a constant µ > 0 such that for all θ ∈ Rd,

2µ
(
V(θ) − V

(
θ∗

))
≤ ∥∇V(θ)∥2.

H1 corresponds to the Polyak-Łojasiewicz condition, which is weaker than strong convexity and remains satisfied
even when the function is non-convex. The PL condition has been extensively studied theoretically (Karimi et al.,
2016) and has been verified in many applications, such as over-parameterized deep networks (Du et al., 2019) and
Linear Quadratic Regulator models (Fazel et al., 2018).

H2 The objective function V is L-smooth. For all (θ, θ′) ∈ Rd × Rd,∥∥∥∇V(θ) − ∇V
(
θ′
)∥∥∥ ≤ L

∥∥∥θ − θ′∥∥∥ .
This assumption is crucial to obtain our convergence rate and is very common (see, e.g., Moulines and Bach, 2011;
Bottou et al., 2018). Under this assumption, for all (θ, θ′) ∈ Rd × Rd,

V (θ) ≤ V
(
θ′
)
+

〈
∇V

(
θ′
)
, θ − θ′

〉
+

L
2

∥∥∥θ − θ′∥∥∥2
.

H3 (i) There exist two non-increasing positive sequences (λn)n≥1 and (rn)n≥1 such that: E[∇V(θn)T AnHθn(Xn+1)] ≥
λn+1

(
E

[
∥∇V(θn)∥2

]
− rn+1

)
.

(ii) Expected smoothness: there exist a non-increasing non-negative sequence (σ2
n)n≥1, and positive constants

σ̃1, σ̃2 such that: E[∥Hθn(Xn+1)∥2] ≤ σ2
n + σ̃1E[∥∇V(θn)∥2] + σ̃2E[V(θn) − V(θ∗)].

In this assumption, for all n ∈ N, rn+1 represents the bias, and λn+1 may depend on the minimum eigenvalue of An.
In Demidovich et al. (2024, Theorem 2), it has been demonstrated that this assumption is weaker than the alternatives
used in the literature on biased SGD setting. We have adapted these assumptions with adaptive steps. It is important to
note that the first point of Assumption 3 depends on the application (objective function V) and on the adaptive algorithm
(matrix An) that we want to use. The purpose of this assumption is to provide a more general framework that covers all
possible applications and adaptive algorithms. In the biased SGD setting, if the bias term ∥E[Hθn(Xn+1) | Fn]−∇V(θn)∥
is bounded by b̃n+1, we can easily verify the first point of H3 by considering λn+1 = 1/2 and rn+1 = b̃2

n+1/2. We show
in Section 4.3 that this assumption is also verified in algorithms such as Adagrad and RMSProp. This assumption can
be easily verified in many applications such as self-normalized importance sampling (Agapiou et al., 2017), sequential
Monte Carlo (Del Moral et al., 2010; Olsson and Westerborn, 2017), zeroth order methods (Nesterov and Spokoiny,
2017), bilevel optimization (Ji et al., 2021), and conditional stochastic optimization (Hu et al., 2020). The second point
of H3 is a weaker assumption compared to bounding the variance of the noise term. Applications where we can verify
these assumptions are discussed in Appendix D.

We consider also an additional assumption on An. Let ∥A∥ be the spectral norm of a matrix A.
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H4 There exists (βn)n≥1 such that for all n ∈ N,

∥An∥ := λmax(An) ≤ βn+1.

In our setting, since An is assumed to be a symmetric matrix, the spectral norm is equal to the largest eigenvalue.
H4 plays a crucial role, as the estimates may diverge when this assumption is not satisfied. Given a sequence {βn}n∈N,
one way to ensure that H4 is satisfied is to replace the random matrices An with

Ãn =
min{∥An∥, βn+1}

∥An∥
An. (5)

It is then clear that ∥Ãn∥ ≤ βn+1. Furthermore, in most cases, especially for Adagrad, RMSProp and Stochastic
Newton algorithm, control of λmax (An) in H4 is satisfied. For example, in Adagrad and RMSProp, in (4), we have
λmax (An) ≤ δ−1/2. Instead of using a constant regularization term, we can also choose a decreasing regularization term,
such as δ = β−2

n+1.

4 Convergence Results

4.1 Convergence under PL-condition

In this section, we study the convergence rate of SGD with biased gradients and adaptive steps in the convex case. We
give below a simplified version of the bound we obtained on the risk and refer to Theorem A.2 in the appendix for a
formal statement with explicit constants.

Theorem 4.1. Let θn ∈ Rd be the n-th iterate of the recursion (3) and γn = Cγn−γ, βn = Cβnβ, λn = Cλn−λ with
Cγ > 0,Cβ > 0, and Cλ > 0. Assume that γ, β, λ ≥ 0 and γ + λ < 1. Then, under H1 - H4, we have:

E
[
V (θn) − V(θ∗)

]
= O

(
n−γ+2β+λ + rn

)
. (6)

The rate obtained is classical and shows the tradeoff between a term coming from the adaptive steps (with a
dependence on γ, β, λ) and a term rn which depends on the control of the bias. To minimize the right hand-side of (6),
we would like to have β = λ = 0. However, this would require much stronger assumptions. For example, in the case of
Adagrad and RMSProp, the gradients would need to be bounded, which will be discussed later.

We stress that Theorem 4.1 applies to any adaptive algorithm of the form (3), with the only assumption being
Assumption 4 on the eigenvalues of An. Without any information on these eigenvalues, the choice that βn ∝ nβ and
λn ∝ n−λ allows us to remain very general.

To illustrate Theorem 4.1 and the impact of bias, we consider in Figure 1 a simple least squares objective function
V(θ) = ∥Aθ∥2/2 in dimension d = 10. We artificially add to every gradient a zero-mean Gaussian noise and a bias term
rn = Crn−r at each iteration n. We use Adagrad with a learning rate γ = 1/2, β = 0 and λ = 0. Then, the bound of
Theorem 4.1 is of the form O(n−1/2 + n−r). First, note that the impact of a constant bias term (rn = 1) never vanishes.
From rn = 1 to rn = n−1/2, the effect of the bias decreases until a threshold is reached where there is no significant
improvement. The convergence rate in the case rn = n−1/2 is then the same as in the case without bias, illustrating the
fact that in this case the dominating term comes from the learning rate.

Finally, note that non-adaptive SGD is a particular case of Theorem 4.1. Thus, our theorem gives new results also
in the non-adaptive case with generic step sizes and biased gradients with decreasing bias.

4.2 Non-convex smooth case

In the non-convex smooth case, the theoretical results are based on a randomized version of Stochastic Approximation
as described by Nemirovski et al. (2009); Ghadimi and Lan (2013); Karimi et al. (2019). In classical SA, the update
(3) is performed a fixed number of times n, and the quantity of interest is the last parameter θn. On the other hand, in
Randomized Stochastic Approximation, we introduce a random variable R which takes its values in {1, . . . , n} and the
quantity of interest is θR. We stress that this procedure is a technical tool for the proofs, in practical applications we
will always use classical SA.

The following theorem provides a bound in expectation on the gradient of the objective function V , which is the
best results we can have given that no assumption is made about existence of a global minimum of V .
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Figure 1: Value of V(θn) − V(θ∗) with Adagrad for different values of rn = n−r and a learning rate γn = n−1/2. The
dashed curve corresponds to the expected convergence rate O(n−1/4) for r = 1/4 and O(n−1/2) for r ≥ 1/2.

Theorem 4.2. Assume that H2-H4 hold. Assume also that for all k ≥ 0, we have γk+1 ≤ λk+1/(σ̃1Lβ2
k+1). For any

n ≥ 1, let R ∈ {0, . . . , n} be a discrete random variable such that:

P(R = k) :=
wk+1γk+1λk+1∑n
j=0 w j+1γ j+1λ j+1

.

where wk+1 =
∏k+1

j=1(1 + σ̃2δ j)−1 with δ j = Lγ2
jβ

2
j/2. Then,

E
[
∥∇V (θR)∥2

]
≤ 2

V∗n + α1,n + α2,n∑n
j=0 w j+1γ j+1λ j+1

,

where

α1,n =

n∑
k=0

wk+1γk+1λk+1rk+1, α2,n =

n∑
k=0

wk+1δk+1σ
2
k ,

and V∗n = E[V(θ0) − wn+1V(θ∗)].

If σ̃2 = 0, Theorem 4.2 recovers the asymptotic rate of convergence obtained by Karimi et al. (2019) with respect
to the hyperparameters γ, β, and λ and the bias. We can observe that if γ ≤ λ + 2β, the condition on (γk)k≥1 can be met
simply by tuning Cγ. In particular, if An = Id, the requirement on the step sizes can be expressed as γk+1 ≤ 1/(σ̃1L).

We give below the convergence rates obtained from Theorem 4.2 under the same assumptions on γn, βn and λn as
in the PL case.

Corollary 4.3. Assume that H2-H4 hold. Let γn = Cγn−γ, βn = Cβnβ, λn = Cλn−λ with Cγ > 0,Cβ > 0, and Cλ > 0.
Assume that γ, β, λ ≥ 0 and γ + λ < 1. Then, if σ̃2 = 0, we have:

E
[
∥∇V (θR)∥2

]
=


O

(
n−γ+λ+2β + bn

)
if ϑ < 1/2 ,

O
(
nγ+λ−1 + bn

)
if ϑ > 1/2 ,

O
(
nγ+λ−1log n + bn

)
if ϑ = 1/2 ,

with ϑ = γ − β. and where the bias term bn comes from rn and can be constant or decreasing. In the latter case, writing
rn = Crn−r, we have:

bn =


O

(
n−r) if r + λ + γ < 1 ,

O
(
nγ+λ−1

)
if r + λ + γ > 1 ,

O
(
nγ+λ−1 log n

)
if r + λ + γ = 1 .
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In practice, the value of r is known in advance while the other parameters can be tuned to achieve the optimal rate
of convergence. In any scenario, we can never achieve a bound of O(1/

√
n + bn), and the best rate we can achieve is

O(log n/
√

n+ bn) if and only if γ = 1/2, β = 0 and λ = 0. In this case, all eigenvalues of An must be bounded both from
below and above. In the context of decreasing bias, if r ≥ 1/2, the bias term contributes to the speed of the algorithm.
Otherwise, the other term is the leading term of the upper bound. However, in both cases, the best achievable bound is
O(log n/

√
n) if r ≥ 1/2.

Bounded Gradient Case. Now, we provide the convergence analysis of Randomized Adaptive Stochastic
Approximation with a bounded stochastic update. Consider the following additional assumption about the stochastic
update.

H5 The stochastic update is bounded, i.e., there exists M ≥ 0 such that for all n ∈ N,∥∥∥Hθn (Xn+1)
∥∥∥ ≤ M.

It is important to note that under H3, this is equivalent to bounding the stochastic gradient of the objective function.
Corollary 4.4 provides a bound on the gradient of the objective function V , which is similar to Theorem 4.2.

Corollary 4.4. Assume that H2-H5 hold. Let γn = Cγn−γ, βn = Cβnβ, λn = Cλn−λ with Cγ > 0,Cβ > 0, and Cλ > 0.
Assume that γ, β, λ ≥ 0 and γ + λ < 1. For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random variable.
Then,

E
[
∥∇V (θR)∥2

]
≤

V∗n + α
′
1,n + LM2α′2,n/2
√

n
,

where V∗n is defined in Theorem 4.2, α′1,n =
∑n

k=0 γk+1λk+1rk+1 and α′2,n =
∑n

k=0 γ
2
k+1β

2
k+1.

Importantly, in Corollary 4.4, there are no assumptions on the step sizes, and we obtain a better bound than in
Theorem 4.2.

4.3 Application to Adagrad and RMSProp

In this section, we provide the convergence analysis of Adagrad and RMSProp with a biased gradient estimator.

Remark 4.5. Under H5, for all eigenvalues λ of An, the adaptive matrix in Adagrad or RMSProp, it holds that
(M2 + δ)−1/2 ≤ λ ≤ δ−1/2, i.e., H4 is satisfied with λ = 0 and β = 0.

Corollary 4.6. Assume that H2 and H5 hold. Let γn = cγn−1/2 and An denote the adaptive matrix in Adagrad or
RMSProp. For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random variable. Suppose that for any n ≥ 1,
there exist positive constants α and Cα such that:∥∥∥E [

Hθn (Xn+1) |Fn
]
− ∇V (θn)

∥∥∥ ≤ Cαn−α. (7)

Then,

E
[
∥∇V (θR)∥2

]
= O

(
log n
√

n
+ bn

)
.

The bias bn is explicitly given in Appendix A.

Since we do not have information about the global minimum of the objective function V , Corollary 4.6 establishes
the rate of convergence of Adagrad and RMSProp with biased gradient to a critical point for non-convex smooth
functions. In the case of an unbiased gradient, we obtain the same bound as in Zou et al. (2018), under the same
assumptions:

E
[
∥∇V (θR)∥2

]
= O

(
log n
√

n

)
.

If the bias is of the order O(n−1/4), the algorithm achieves the same convergence rate as in the case of an unbiased
gradient.
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4.4 Adam with Biased gradients

Here, we provide the convergence analysis of Adam with a biased gradient estimator. Since Adam uses an exponential
moving average of past gradients instead of the current gradient, it changes the analysis of the convergence of this
algorithm slightly. The exponential moving average of past squared gradients is defined by:

mn = (1 − ρ1)
n∑

k=0

ρn−k
1 Hθk (Xk+1),

where ρ1 is the moving average parameter. Under Assumption 5, we can control the minimum and maximum
eigenvalues, as it has the same eigenvalues of An as in RMSProp.

Input: Initial point θ0, maximum number of iterations n, step sizes {γk}k≥1, momentum parameters ρ1, ρ2 ∈ [0, 1)
and regularization parameter δ ≥ 0.
Set m0 = 0,V0 = 0.
for k = 0 to n − 1 do

Compute the stochastic update Hθk (Xk+1).
mk = ρ1mk−1 + (1 − ρ1)Hθk (Xk+1)
Vk = ρ2Vk−1 + (1 − ρ2)Hθk (Xk+1)Hθk (Xk+1)⊤

Ak =
[
δId + Diag(Vk)

]−1/2

θk+1 = θk − γk+1Akmk

end for
Output: (θk)1≤k≤n

Algorithm 1: Adam with Biased gradients

Theorem 4.7. Let γn = cγn−1/2, An denote the adaptive matrix in Adam and ρ1 ∈ [0, 1). For any n ≥ 1, let R ∈ {0, . . . , n}
be a uniformly distributed random variable. Then, under H2, H3(i), H5,

E
[
∥∇V (θR)∥2

]
= O

(
log n
√

n
+ bn

)
,

where the term bn corresponds to the bias which comes from rn in H3(i). Choosing rn = Crn−r, we get:

bn =


O

(
n−r) if r < 1/2,

O
(
n−1/2

)
if r > 1/2,

O
(
n−1/2 log n

)
if r = 1/2.

If the bias is of the order O(n−1/4), we achieve a convergence rate of O(n−1/2 log n), similar to that of Adagrad and
RMSProp. It’s worth noting that our results are also applicable to SGD momentum by taking An = Id.

4.5 Some Applications

In this section, we propose different settings illustrating the range of application of our theoretical results.

• The first examples that we use to illustrate our results are IWAE and bias-reduced IWAE (BR-IWAE). In
Appendix B, we provide details on IWAE, BR-IWAE, and several other bias reduction techniques. We also
establish a bias control for IWAE in Theorem 5.1 which allows to obtain a convergence analysis.

• We also discuss the implications of our convergence results for Stochastic Bilevel Optimization and Conditional
Stochastic Optimization in Appendix C. Specifically, Theorem C.4 and Theorem C.6 establish the convergence
results in Stochastic Bilevel Optimization and Conditional Stochastic Optimization, respectively.

• We also give other examples in which the bias of the estimator can be controlled, such as Self-Normalized
Importance Sampling (Appendix D.1), Sequential Monte Carlo Methods (Appendix D.2), Policy Gradient
(Appendix D.3), Zeroth-Order Gradient (Appendix D.4), and Coordinate Sampling (Appendix D.5).
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5 Experiments

In this section, we illustrate our theoretical results in the context of deep VAE. The experiments were conducted
using PyTorch (Paszke et al., 2017), and the source code can be found here*. In generative models, the objective is to
maximize the marginal likelihood defined as:

log pθ(x) = logEpθ(·|x)

[
pθ(x,Z)
pθ(Z|x)

]
,

where (x, z) 7→ pθ(x, z) is the complete likelihood, x are the observations and Z is the latent variable. Under some
simple technical assumptions, by Fisher’s identity, we have:

∇θ log pθ(x) =
∫
∇θ log pθ(x, z)pθ(z | x)dz. (8)

However, in most cases, the conditional density z 7→ pθ(z | x) is intractable and can only be sampled. Variational
Autoencoders introduce an additional parameter ϕ and a family of variational distributions z 7→ qϕ(z | x) to approximate
the true posterior distribution. Parameters are estimated by maximizing the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Eqϕ(·|x)

[
log

pθ(x,Z)
qϕ(Z|x)

]
=: LELBO(θ, ϕ; x).

The Importance Weighted Autoencoder (IWAE) (Burda et al., 2016) is a variant of the VAE that incorporates importance
weighting to obtain a tighter ELBO. The IWAE objective can be written as follows:

LIWAE
k (θ, ϕ; x) = Eq⊗k

ϕ (·|x)

log
1
k

k∑
ℓ=1

pθ(x,Z(ℓ))
qϕ(Z(ℓ)|x)

 ,
where k corresponds to the number of samples drawn from the variational posterior distribution. The estimator of the
gradient of ELBO in IWAE corresponds to the biased estimator of the gradient of the marginal log likelihood log pθ(x).
The following theorem provides the bias of this estimator.

Theorem 5.1. Let X ⊆ Rdx and Z ⊆ Rdz denote the data space and the latent space, respectively. Assume that for all
θ ∈ Θ ⊂ Rd, x ∈ X and z ∈ Z, there exist M such that:∥∥∥∇θ log pθ(x, z)

∥∥∥ ≤ M(x),

Then, for all θ ∈ Θ, ϕ ∈ Φ and x ∈ X, there exists a constant C > 0 such that:∥∥∥∥Eq⊗k
ϕ (·|x)

[
∇̂θL

IWAE
k (θ, ϕ; x) − ∇θV(θ)

]∥∥∥∥ ≤ C
k
,

where ∇θV(θ) and ∇̂θLIWAE
k (θ, ϕ; x) are defined in (9).

Since bias has an impact on convergence rates, we propose to use one of the bias reduction techniques, the Biased
Reduced Importance Weighted Autoencoder (BR-IWAE) (Cardoso et al., 2022), which is detailed in Appendix B.

Dataset. We conduct our experiments on the CIFAR-10 dataset (Krizhevsky et al., 2009), which is a widely used
dataset for image classification tasks. Additional experiments are provided in Appendix E.

Model. We use a Convolutional Neural Network (CNN) architecture with the Rectified Linear Unit (ReLU)
activation function for both the encoder and the decoder. The latent space dimension is set to 100. Further details of the
model are provided in Appendix E. We estimate the log-likelihood using the VAE, IWAE, and BR-IWAE models, all of
which are trained for 100 epochs. Training is conducted using Adagrad, RMSProp and Adam with a decaying learning
rate.

For the first experiment, we set a constant bias, i.e., we use k = 5 samples in both IWAE and BR-IWAE, while
restricting the maximum iteration of the MCMC algorithm to 5 for BR-IWAE. The test losses are presented in Figure 2.
We show the negative log-likelihood on the test dataset for VAE, IWAE, and BR-IWAE with Adagrad, RMSProp and

*URL hidden during review process
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Figure 2: Negative Log-Likelihood on the test set for Different Generative Models with Adagrad, RMSProp, and Adam
on the CIFAR-10 Dataset. Bold lines represent the mean over 5 independent runs.

Adam. As expected, we observe that IWAE outperforms VAE, while BR-IWAE outperforms IWAE by reducing bias in
both cases.

To illustrate our results, we choose to incorporate a time-dependent bias that decreases by choosing a bias of order
O(n−α) at iteration n as in (7). The bias of the estimator of the gradient in IWAE is of the order O(1/k), where k is
the number of importance weights. Therefore, choosing the bias of order O(n−α) is equivalent to using nα samples
at iteration n, to estimate the gradient. This procedure is detailed in Appendix B. We vary α only for IWAE for
computational efficiency and plot the following quantities.

• In Figures 3 and 4, the gradient squared norm ∥∇V(θn)∥2 to illustrate the convergence rate.

• In Figure 5, the Negative Log-Likelihood along iterations.

Figures 3 and 4 illustrate our results, while the other figures are meant to confirm the behavior of test loss with
different values of α. All figures are plotted on a logarithmic scale for better visualization. It is important to note that
all figures are in respect to epochs, whereas here, n represents the iteration (number of updates of the gradient).
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10
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n
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2

n 1/4

log(n)/ n

1/ n

= 1/8
= 1/4
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Figure 3: Value of ∥∇V(θn)∥2 in IWAE with Adagrad. Bold lines represent the mean over 5 independent runs.

Note that the dashed curve corresponds to the expected convergence rate O(n−1/4) for α = 1/8 and O(log n/
√

n) for
α = 1/4 and for α = 1/2. We can clearly observe that for each of the cases, fast convergence is achieved when n is
sufficiently large. There are several possible explanations for this rapid convergence with a decreasing time-dependent
bias. First, we may be able to improve the upper bound by obtaining for instance a better bound for the bias.
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Figure 4: Value of ∥∇V(θn)∥2 in IWAE with RMSProp and Adam. Bold lines represent the mean over 5 independent
runs.
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Figure 5: Negative Log-Likelihood on the test set on the CIFAR-10 Dataset for IWAE with Adagrad, RMSProp, and
Adam. Bold lines represent the mean over 5 independent runs.

Our experiments show similar results for Adagrad, RMSProp and Adam in terms of convergence rates, although
Adam performs slightly better due to the incorporation of momentum. We consistently observe the impact of bias,
although it tends to be relatively small, as the bias correction terms may help mitigate bias in the moving averages.

It is clear that with a larger α, convergence in both squared gradient norm and negative log-likelihood is faster.
However, beyond a certain threshold for α, we observe that the rate of convergence does not change significantly. Since
choosing a larger α induces an additional computational cost, it is crucial to select an appropriate value of α, that
achieves fast convergence without being too computationally costly.

6 Discussion

This paper provides a non-asymptotic analysis of Biased Adaptive Stochastic Approximation with and without the PL
condition in the non-convex smooth setting. We derive a convergence rate of O(log n/

√
n + bn) for non-convex smooth

functions, where bn corresponds to the time-dependent decreasing bias, and an improved linear convergence rate with
the Polyak-Łojasiewicz (PL) condition. We also establish that Adagrad, RMSProp, and Adam with biased gradients
converge to critical points for non-convex smooth functions. Our results provide insights on hyper-parameters tuning to
achieve fast convergence and reduce computational time.
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Impact Statements

This paper presents work aimed at advancing the field of Machine Learning. Our work may have several potential
societal consequences, but we do not believe any of them require specific highlighting in this context.
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Défossez, A., Bottou, L., Bach, F., and Usunier, N. (2020). A simple convergence proof of Adam and Adagrad. arXiv
preprint arXiv:2003.02395.

Del Moral, P., Doucet, A., and Singh, S. S. (2010). A backward particle interpretation of Feynman-Kac formulae.
ESAIM: Mathematical Modelling and Numerical Analysis, 44(5):947–975.
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A Convergence Proofs

A.1 Proof of Theorem 4.1

We first establish a technical lemma which is essential for the proof.

Lemma A.1. Let (δn)n≥0 , (γn)n≥1 , (ηn)n≥1, and (vn)n≥1 be some positive sequences satisfying the following assumptions.
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• The sequence δn follows the recursive relation:

δn ≤ (1 − 2ωγn + ηnγn) δn−1 + vnγn,

with δ0 ≥ 0 and ω > 0.

• Let n0 = inf {n ≥ 1 : ηn ≤ ω}, then for all n ≥ n0 + 1, we assume that ωγn ≤ 1.

Then, for all n ∈ N,

δn ≤ exp

−ω n∑
k=n/2

γk

 exp

2 n∑
k=1

ηkγk

 (δ0 + 2 max
1≤k≤n

vk

ηk

)
+

1
ω

max
n/2≤k≤n

vk.

The proof is given in Godichon-Baggioni and Tarrago (2023).

Theorem A.2. Let θn ∈ Rd be the n-th iterate of recursion (3). Under H1-H 4,

E
[
V (θn) − V(θ∗)

]
≤

E [
V (θ0) − V(θ∗)

]
+ 2 max

1≤k≤n

λk+1vk

β2
k+1γk+1

 exp

−µ2
n∑

k=n/2

λk+1γk+1


× exp

2 n∑
k=1

Ckβ
2
k+1γ

2
k+1

 + 2
µ

max
n/2≤k≤n

vk,

where

Ck = max

1,
µ2λ2

k+1(
2σ̃2L + 4σ̃1L2) β2

k+1

 and vk = rk+1 +
Lσ2

k

2
β2

k+1

λk+1
γk+1.

with the convention Ck = 1 if σ̃1 = σ̃2 = 0.

Proof. As V is L smooth (Assumption H2) and using the recursion (3) of Adaptive SA, we obtain:

V (θn+1) ≤ V (θn) + ⟨∇V (θn) | θn+1 − θn⟩ +
L
2
∥θn+1 − θn∥

2

≤ V (θn) − γn+1
〈
∇V (θn) | AnHθn (Xn+1)

〉
+

Lγ2
n+1

2
∥An∥

2
∥∥∥Hθn (Xn+1)

∥∥∥2

Writing Vn = V (θn) − V(θ∗), we get

Vn+1 ≤ Vn − γn+1
〈
∇V (θn) | AnHθn (Xn+1)

〉
+

L
2
γ2

n+1β
2
n+1

∥∥∥Hθn (Xn+1)
∥∥∥2
.

Then, using H3,

E [Vn+1] ≤ E [Vn] − γn+1E
[〈
∇V (θn) | AnHθn (Xn+1)

〉]
+

L
2
γ2

n+1β
2
n+1

(
σ̃2E[Vn] + σ̃1E[∥∇V (θn)∥2] + σ2

n

)
≤

(
1 +
σ̃2L

2
β2

n+1γ
2
n+1

)
E[Vn] + γn+1λn+1rn+1 − γn+1

(
λn+1 −

σ̃1L
2
γn+1β

2
n+1

)
E[∥∇V (θn)∥2]

+
Lσ2

n

2
γ2

n+1β
2
n+1.

Furthermore, since V satisfies the Polyak-Łojasiewicz condition (H1) and since ∥∇V (θn)∥2 ≤ 2LVn (H2),

E [Vn+1] ≤
(
1 − µλn+1γn+1 +

(
σ̃2L

2
+ σ̃1L2

)
β2

n+1γ
2
n+1

)
E [Vn] + γn+1λn+1rn+1 +

Lσ2
n

2
γ2

n+1β
2
n+1

By choosing γ̄n+1 = λn+1γn+1, we get:

E [Vn+1] ≤
1 − µγ̄n+1 +

(
σ̃2L

2
+ σ̃1L2

) β2
n+1

λ2
n+1

γ̄2
n+1

E [Vn] + γ̄n+1rn+1 +
Lσ2

n

2
β2

n+1

λn+1
γ̄n+1γn+1.
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In order to satisfy the assumptions of Lemma A.1, consider Cn = max
{
1, (µ2λ2

n+1)/((2σ̃2L + 4σ̃1L2)β2
n+1)

}
, and since

Cn ≥ 1, we have:

E [Vn+1] ≤
1 − µγ̄n+1 +

Cnβ
2
n+1

λ2
n+1

γ̄2
n+1

E [Vn] + γ̄n+1rn+1 +
Lσ2

n

2
β2

n+1

λn+1
γ̄n+1γn+1.

Now, using lemma A.1 by choosing:

δn = E [Vn] , ηn =
Cnβ

2
n+1

λ2
n+1

γ̄n+1, ω =
µ

2
, vn = rn+1 +

Lσ2
n

2
β2

n+1

λn+1
γn+1,

we have:

E
[
V (θn) − V(θ∗)

]
≤

E [
V (θ0) − V(θ∗)

]
+ 2 max

1≤k≤n

vkλ
2
k+1

β2
k+1γ̄k+1

 e−
µ
2
∑n

k=n/2 γ̄k+1e2
∑n

k=1 Ckβ
2
k+1γ̄

2
k+1/λ

2
k+1

+
2
µ

max
n/2≤k≤n

{vk} ,

which concludes the proof by choosing γ̄n+1 = λn+1γn+1. □

A.2 Proof of Theorem 4.2

By H2, V is L-smooth and using the recursion (3) of Adaptive SA together with a Taylor expansion, we obtain:

V (θk+1) ≤V (θk) + ⟨∇V (θk) | θk+1 − θk⟩ +
L
2
∥θk+1 − θk∥

2 ,

which yields

V (θk+1) ≤ V (θk) − γk+1
〈
∇V (θk) | AkHθk (Xk+1)

〉
+ δk+1

∥∥∥Hθk (Xk+1)
∥∥∥2
,

with δk+1 = Lγ2
k+1β

2
k+1/2. Using Assumptions H3 and H4,

E[V(θk+1)] ≤ E[V(θk)] − γk+1λk+1E[∥∇V(θk)∥2] + γk+1λk+1rk+1 + δk+1σ
2
k

+ δk+1
(
σ̃1E[∥∇V(θk)∥2] + σ̃2E

[
V (θk) − V

(
θ∗

)])
.

Therefore,

γk+1

(
λk+1 −

Lσ̃1

2
γk+1β

2
k+1

)
E[∥∇V (θk)∥2] ≤ (1 + σ̃2δk+1)

(
E [V (θk)] − V

(
θ∗

))
−

(
E [V (θk+1)] − V

(
θ∗

))
+ γk+1λk+1rk+1 + δk+1σ

2
k .

Let us now consider the sequence of weights wk defined by w0 = 1 and wk =
∏k

j=1

(
1 + σ̃2δ j

)−1
. Then,

wk+1γk+1

(
λk+1 −

Lσ̃1

2
γk+1β

2
k+1

)
E[∥∇V (θk)∥2] ≤ wk

(
E[V (θk)] − V

(
θ∗

))
− wk+1

(
E [V (θk+1)] − V

(
θ∗

))
+ wk+1γk+1λk+1rk+1 + wk+1δk+1σ

2
k .

In the sequel, let us now denote Vn = [V (θn)] − V (θ∗), so that

n∑
k=0

wk+1γk+1λk+1

1 − Lσ̃1γk+1β
2
k+1

2λk+1

E [
∥∇V (θk)∥2

]
≤ wnE [Vn] − wn+1E [Vn+1] +

1
2

n∑
k=0

wk+1γk+1λk+1rk+1

+

n∑
k=0

wk+1δk+1σ
2
k .
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Then, given that γk+1 ≤ λk+1/(Lσ̃1β
2
k+1), we have

1
2
E

 n∑
k=0

wk+1γk+1λk+1 ∥∇V (θk)∥2
 ≤ w0E [V0] − wn+1E [Vn+1] +

1
2

n∑
k=0

wk+1γk+1λk+1rk+1 +

n∑
k=0

wk+1δk+1σ
2
k .

Consequently, by definition of the discrete random variable R,

E
[
∥∇V (θR)∥2

]
=

n∑
k=0

wk+1
γk+1λk+1E

[
∥∇V (θk)∥2

]∑n
j=0 w j+1γ j+1λ j+1

≤ 2
E [V0] − wn+1E [Vn+1] +

∑n
k=0 wk+1γk+1rk+1 +

∑n
k=0 wk+1δk+1σ

2
k∑n

j=0 w j+1γ j+1λ j+1
,

which concludes the proof by noting that Vn+1 ≥ V (θ∗).

A.3 Proof of Corollary 4.3

The proof is a direct consequence of the fact that for a sufficiently large n:

n∑
k=1

1
ks =


O

(
n−s+1

)
if 0 ≤ s < 1 ,

O (1) if s > 1 ,
O

(
log n

)
if s = 1 .

A.4 Proof of Corollary 4.4

By Assumption H2, V is L-smooth and using recursion (3) of Adaptive SA same as Theorem 4.2, we obtain:

V (θk+1) ≤ V (θk) + ⟨∇V (θk) | θk+1 − θk⟩ +
L
2
∥θk+1 − θk∥

2

≤ V (θk) − γk+1
〈
∇V (θk) | AkHθk (Xk+1)

〉
+

Lγ2
k+1

2
∥Ak∥

2
∥∥∥Hθk (Xk+1)

∥∥∥2
,

which, using H5 yields:

V (θk+1) ≤ V (θk) − γk+1
〈
∇V (θk) | AkHθk (Xk+1)

〉
+

L
2
γ2

k+1β
2
k+1M2.

Using H3,

E[V(θk+1)|Fk] ≤ V(θk) − γk+1λn+1∥∇V(θk)∥2 + γk+1λk+1rk+1 +
LM2

2
γ2

k+1β
2
k+1 .

Therefore,

γk+1λk+1 ∥∇V (θk)∥2 ≤ V (θk) − E [V (θk+1) |Fk] + γk+1λk+1rk+1 +
LM2

2
γ2

k+1β
2
k+1,

and
n∑

k=0

γk+1λk+1E
[
∥∇V (θk)∥2

]
≤ E [V (θ0) − V (θn+1)] +

n∑
k=0

γk+1λk+1rk+1 +
LM2

2

n∑
k=0

γ2
k+1β

2
k+1.

Consequently, by definition of the discrete random variable R,

E
[
∥∇V (θR)∥2

]
=

1
n

n∑
k=0

E
[
∥∇V (θk)∥2

]
≤

n∑
k=0

γk+1λk+1
√

n
E

[
∥∇V (θk)∥2

]
≤

V0,n +
∑n

k=0 γk+1λk+1rk+1 + LM2 ∑n
k=0 γ

2
k+1β

2
k+1/2

√
n

,

where V0,n = E[V(θ0) − V(θn+1)], which conclude the proof by noting that V(θn+1) ≥ V(θ∗).
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A.5 Proof of Corollary 4.6

Here, we consider the case where the regularization is non-increasing, i.e. where δ = βn+1. The constant case is strictly
analogous.

Adagrad

• Lower bound for the smallest eigenvalue of An. By assumption H5, we have:∥∥∥∥∥∥∥ 1
n + 1

n∑
k=0

Hθk (Xk+1)Hθk (Xk+1)⊤
∥∥∥∥∥∥∥ ≤ M2.

This implies that:

λmin(An) = λmax

β−2
n+1Id + Diag

 1
n + 1

n∑
k=0

Hθk (Xk+1)Hθk (Xk+1)⊤

−1/2

≥ (β−2
1 + M2)−1/2.

• Upper bound for the largest eigenvalue of An.

λmax(An) = λmin

β−2
n+1Id + Diag

 1
n + 1

n∑
k=0

Hθk (Xk+1)Hθk (Xk+1)⊤

−1/2

≤ βn+1.

Therefore, by setting λn+1 = (β−2
1 + M2)−1/2 and βn = Cβnβ, we have λ = 0 and one can arbitrarily choose β (one

can take β = 0 for the constant regularization case).
RMSProp

• Lower bound for the smallest eigenvalue of An. By assumption H5, we have:

∥Vn∥ ≤ (1 − ρ)
n∑

k=1

ρn−k
∥∥∥Hθk (Xk+1)

∥∥∥2
≤ M2(1 − ρ)

n∑
k=1

ρn−k ≤ M2,

where we used the fact that
∑n

k=1 ρ
n−k ≤ (1 − ρ)−1. This implies that:

λmin(An) = λmax
(
β−2

n+1Id + Diag (Vn)
)−1/2

≥ (β−2
1 + M2)−1/2.

• Upper bound for the largest eigenvalue of An. Note that

λmax(An) = λmin
(
β−2

n+1Id + Diag (Vn)
)−1/2

≤ βn+1.

Verifying Assumption 3(i) for Adagrad. Using the tower property, we have:

E
[〈
∇V (θn) |AnHθn (Xn+1)

〉]
= E

[
E

[〈
∇V (θn) |AnHθn (Xn+1)

〉
|Fn

]]
,

where (Fn)n≥0 represents the filtration generated by the random variables (θ0, {Xk}k≤n). Let Ãn be an adaptive Fn-
measurable matrix. Then,

E
[〈
∇V (θn) |AnHθn (Xn+1)

〉
|Fn

]
=

〈
∇V (θn) |ÃnE

[
Hθn (Xn+1) |Fn

]〉︸                                  ︷︷                                  ︸
Treated as in SGD but with λmin(Ãn)

+ E
[〈
∇V (θn) |(An − Ãn)Hθn (Xn+1)

〉
|Fn

]︸                                            ︷︷                                            ︸
Control error between An and Ãn

.

We only verify Assumption H3(i) for Adagrad algorithm since it is analogous to RMSProp. Consider An given by:

An =

diag

β−2
n+1Id +

1
n + 1

n∑
k=0

Hθk (Xk+1) Hθk (Xk+1)⊤

−1/2

.
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First, writing

Ãn =

diag

β−2
n+1Id +

1
n + 1

n−1∑
k=0

Hθk (Xk+1) Hθk (Xk+1)⊤


−1/2

and denoting by A[i] the i-th element of the diagonal of a matrix A, we have

An[i] − Ãn[i] = u−1/2
n

(
v1/2

n − u1/2
n

)
v−1/2

n ≤ 0,

where un = β
−2
n+1 +

∑n
k=0

(
Hθk (Xk+1) [i]

)2 /(n + 1) and vn = β
−2
n+1 +

∑n−1
k=0

(
Hθk (Xk+1) [i]

)2 /(n + 1). Then, since un ≥ vn,

An[i] − Ãn[i] =
vn − un

√
unvn

(√
un +

√
vn

) ≥ − 1
n + 1

(
Hθn (Xn+1) [i]

)2 1
2vn

3/2 ≥ −
β3

n+1

n + 1
(
Hθn (Xn+1) [i]

)2 .

Since the bias of Hθn (Xn+1) is bounded by b̃n := Cαn−α,

E
[〈
∇V (θn) |AnHθn (Xn+1)

〉
|Fn

]
=

〈
∇V (θn) |ÃnE

[
Hθn (Xn+1) |Fn

]〉
+ E

[〈
∇V (θn) |(An − Ãn)Hθn (Xn+1)

〉
|Fn

]
≥ λmin

(
Ãn

)
∥∇V (θn)∥2 − λmax

(
Ãn

)
∥∇V (θn)∥ b̃n − ∥∇V (θn)∥

β3
n+1

n + 1
E

[∥∥∥Hθn (Xn+1)
∥∥∥3
|Fn

]
.

As Hθn (Xn+1) and the gradient of V are uniformly bounded by M, λmin(Ãn) ≥ (β−2
1 + M2)−1/2, so that

E
[〈
∇V (θn) |AnHθn (Xn+1)

〉
|Fn

]
≥

1√
β−2

1 + M2
∥∇V (θn)∥2 − βn+1Mb̃n − M4 β

3
n+1

n + 1
,

and Assumption H3(i) is satisfied with λn+1 = (β−2
1 + M2)−1/2 and rn+1 = Mβ2

n+1b̃2
n/λn+1 + M4β3

n+1/(n + 1).

A.6 Proof of Theorem 4.7

Proof. The proof of this theorem is inspired by Reddi et al. (2018) and Tong et al. (2022), considering biased gradient
estimators and decreasing step sizes. For simplicity, we use V̂k = max(V̂k−1,Vk) instead of Vk, which is known as
AMSGRAD (Reddi et al., 2018). The operation max(D1,D2) for diagonal matrices D1 and D2 is defined as the matrix
formed by taking the maximum between the diagonal elements of D1 and D2. Let θ̃k+1 = θk+1 + κ (θk+1 − θk), for
k ≥ 1, κ ∈ [0, 1) and mk = ρ1mk−1 + (1 − ρ1)gk with gk = Hθk (Xk+1). Using the recursion of Adam, we have:

θ̃k+1 − θ̃k = (1 + κ)θk+1 − (1 + 2κ)θk + κθk−1 = (1 + κ) (θk+1 − θk) − κ (θk − θk−1)

= −(1 + κ)γk+1Akmk + κγkAk−1mk−1.

Choosing κ = ρ1/(1 − ρ1), we can rewrite it as:

θ̃k+1 − θ̃k = κ (γkAk−1 − γk+1Ak) mk−1 − γk+1Akgk.

By Assumption H2, V is L-smooth, using the recursion of Adam together with a Taylor expansion with θ̃k, we
obtain:

V
(
θ̃k+1

)
≤ V

(
θ̃k

)
+

〈
∇V

(
θ̃k

)
| θ̃k+1 − θ̃k

〉
+

L
2

∥∥∥θ̃k+1 − θ̃k
∥∥∥2

≤ V
(
θ̃k

)
− γk+1

〈
∇V

(
θ̃k

)
| Akgk

〉
+ κ

〈
∇V

(
θ̃k

)
| (γkAk−1 − γk+1Ak) mk−1

〉
+ Lγ2

k+1 ∥Akgk∥
2

+ Lκ2 ∥(γkAk−1 − γk+1Ak) mk−1∥
2

≤ V
(
θ̃k

)
+ T1,k + T2,k + T3,k + T4,k,

where

T1,k = −γk+1 ⟨∇V (θk) | Akgk⟩ + Lγ2
k+1 ∥Akgk∥

2 ,

T2,k = −γk+1
〈
∇V

(
θ̃k

)
− ∇V (θk) | Akgk

〉
,

T3,k = κ
〈
∇V

(
θ̃k

)
| (γkAk−1 − γk+1Ak) mk−1

〉
,

T4,k = Lκ2 ∥(γkAk−1 − γk+1Ak) mk−1∥
2 .
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Note first that
n∑

k=1

E
[
T1,k

]
= −

n∑
k=1

γk+1E
[
⟨∇V (θk) | Akgk⟩

]
+ L

n∑
k=1

γ2
k+1E

[
∥Akgk∥

2
]

≤ −Cλ
n∑

k=1

γk+1E
[
∥∇V (θk)∥2

]
+Cλ

n∑
k=1

γk+1rk+1 + L
n∑

k=1

γ2
k+1E

[
∥Akgk∥

2
]
,

where Cλ = (δ + M2)−1/2.
For the second term, using the inequality xy ≤ x2/2 + y2/2 for all x, y, and the smoothness of V , we get:

n∑
k=1

E
[
T2,k

]
= −

n∑
k=1

E
[〈
∇V

(
θ̃k

)
− ∇V (θk) | γk+1Akgk

〉]
≤

1
2

n∑
k=1

E
[∥∥∥∥∇V

(
θ̃k

)
− ∇V (θk)

∥∥∥∥2]
+

1
2

n∑
k=1

E
[
∥γk+1Akgk∥

2
]

≤
L2

2

n∑
k=1

E
[∥∥∥θ̃k − θk∥∥∥2

]
+

n∑
k=1

γ2
k+1

2
E

[
∥Akgk∥

2
]

≤
κ2L2

2

n∑
k=1

E
[
∥θk − θk−1∥

2
]
+

n∑
k=1

γ2
k+1

2
E

[
∥Akgk∥

2
]

≤
κ2L2

2

n∑
k=1

γ2
kE

[
∥Ak−1mk−1∥

2
]
+

n∑
k=1

γ2
k+1

2
E

[
∥Akgk∥

2
]
.

For the third term, using the boundedness of the gradient of V and the fact that ∥mk∥ ≤ M by Lemma A.3, we have:
n∑

k=1

E
[
T3,k

]
= κ

n∑
k=1

E
[〈
∇V

(
θ̃k

)
| (γkAk−1 − γk+1Ak) mk−1

〉]
≤ κM2

d∑
i=1

n∑
k=1

E
[
γkAk−1[i] − γk+1Ak[i]

]
≤ κM2

d∑
i=1

E
[
γ1A0[i] − γn+1An[i]

]
≤ κM2dCγ,

where in the second inequality, we used the fact that γk and Ak are decreasing since we use V̂k = max(V̂k−1,Vk). For
the last term, using the boundedness of the gradient of V yields:

n∑
k=1

E
[
T4,k

]
= Lκ2

n∑
k=1

E
[
∥(γkAk−1 − γk+1Ak) mk−1∥

2
]

≤ Lκ2M2
d∑

i=1

n∑
k=1

E
[
(γkAk−1[i] − γk+1Ak[i])2

]
≤ Lκ2M2

d∑
i=1

n∑
k=1

E
[
(γkAk−1[i])2 − (γk+1Ak[i])2

]
≤ Lκ2M2dC2

γ,

where we used the inequality (x − y)2 ≤ x2 − y2 when x ≥ y in the second last inequality.
Combining all these terms, we finally obtain:

Cλ
n∑

k=1

γk+1E
[
∥∇V (θk)∥2

]
≤ V∗ +Cλ

n∑
k=1

γk+1rk+1 + L
n∑

k=1

γ2
k+1E

[
∥Akgk∥

2
]
+

n∑
k=1

γ2
k+1

2
E

[
∥Akgk∥

2
]

+ κM2dCγ + Lκ2M2dC2
γ +
κ2L2

2

n∑
k=1

γ2
kE

[
∥Ak−1mk−1∥

2
]
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where V∗ = E[V(θ0) − V(θ∗)] ≥ E[V(θ0) − V(θ̃n+1)]. Choosing γn = n−1/2 and using Lemma A.3 and Chen et al. (2022,
Lemma 24) yields

n∑
k=1

γ2
k+1E

[
∥Akmk∥

2
]
≤ (1 − ρ1)

n∑
k=1

γ2
k+1E

[
∥Akgk∥

2
]
≤ (1 − ρ1)dC2

γ log
(
1 +

nM2

δ

)
= O

(
d log n

)
.

Therefore, by dividing both sides by Cλn−1/2, we obtain

1
n

n∑
k=1

E
[
∥∇V (θk)∥2

]
= O

(
1
√

n
+

d log n
√

n
+

d
√

n
+ bn

)
,

which concludes the proof. □

Lemma A.3. Let γk+1 ≤ γk for all k ≥ 0 and let Ak be the adaptive matrix defined by (δId + V̂k)−1/2, where
V̂k = max(V̂k−1,Vk), similar to AMSGRAD. Assume that ρ1 ∈ [0, 1). Then, for all k ≥ 0:

∥mk∥
2 ≤ M2 and

n∑
k=1

γ2
k+1E

[
∥Akmk∥

2
]
≤ (1 − ρ1)

n∑
k=1

γ2
k+1 ∥Akgk∥

2 .

Proof. For the first inequality, we have:

∥mk∥ =

∥∥∥∥∥∥∥(1 − ρ1)
k∑
ℓ=1

ρk−ℓ
1 gℓ

∥∥∥∥∥∥∥ ≤ (1 − ρ1)
k∑
ℓ=1

ρk−ℓ
1 ∥gℓ∥ ≤ M(1 − ρ1)

∑
ℓ≥0

ρℓ1 ≤ M,

where we used the fact that
∑
ℓ≥0 ρ

ℓ
1 = 1/(1− ρ1). For the second inequality, using the fact that γk and Ak are decreasing

since we use V̂k = max(V̂k−1,Vk), we can write:

n∑
k=1

γ2
k+1 ∥Akmk∥

2 =

n∑
k=1

γ2
k+1

∥∥∥∥∥∥∥Ak(1 − ρ1)
k∑
ℓ=1

ρk−ℓ
1 gℓ

∥∥∥∥∥∥∥
2

≤ (1 − ρ1)2
n∑

k=1

γ2
k+1

k∑
ℓ=1

ρk−ℓ
1 ∥Aℓgℓ∥2

≤ (1 − ρ1)2
n∑

k=1

k∑
ℓ=1

ρk−ℓ
1 γ

2
ℓ+1 ∥Aℓgℓ∥

2

≤ (1 − ρ1)2
n∑
ℓ=1

n∑
k=ℓ

ρk−ℓ
1 γ

2
ℓ+1 ∥Aℓgℓ∥

2 ,

which concludes the proof. □

A.7 The Impact of regularization parameter δ in Adam

In our case, we have a dependence on δ in the logarithm, which is common for adaptive algorithms. The regularization
parameter δ, originally introduced to avoid the zero denominator issue when Vk approaches 0, is often overlooked.
However, it has been empirically observed that the performance of adaptive methods can be sensitive to the choice of
this parameter, especially when a very small δ is used, which has resulted in performance issues in some applications.

In practice, δ is typically chosen as 10−8. In our convergence rate analysis, even though the logarithm of δ−1 is
small, it still impacts the convergence rate. A larger δ will lead to a better convergence rate, while a smaller δ will
preserve stronger adaptivity. We need to find a better compromise between the convergence rate and the adaptivity to
choose δ. In (Zaheer et al., 2018; Reddi et al., 2018; Tong et al., 2022), it was shown that by choosing δ between 10−3

and 10−1, better results were obtained in some applications of deep learning.
Furthermore, several modified versions of Adam have been proposed, such as AMSGRAD (Zaheer et al., 2018)

and YOGI (Reddi et al., 2018) with the discussion of the regularization parameter δ. The authors of Tong et al. (2022)
proposed a new modified version of Adam called SADAM to represent the calibrated ADAM using the softplus
function. In this algorithm, they define V̂k = softplus

(√
Vk

)
while other terms remain unchanged. Since we have:

V̂k = softplus
( √

Vk
)
=

1
b

log
(
1 + eb

√
Vk

)
≈

1
b

log
(
eb
√

Vk
)
=

√
Vk,

where b is the parameter to control for achieving a better convergence rate. In this case, we have λmax(Ak) ≤ b/ log 2,
which is similar to δ−1/2 in Adagrad and Adam. Additionally, they demonstrate that b ≈ 50 appears to be a good choice
based on the empirical observations.
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B IWAE / BR-IWAE

B.1 Importance Weighted Autoencoder (IWAE)

In this section, we elaborate on the IWAE procedure within our framework to illustrate its convergence rate. First, let’s
recall some basics of IWAE. The IWAE objective function is defined as:

LIWAE
k (θ, ϕ; x) = Eq⊗k

ϕ (·|x)

log
1
k

k∑
ℓ=1

pθ(x,Z(ℓ))
qϕ(Z(ℓ)|x)

 ,
where k corresponds to the number of samples drawn from the encoder’s approximate posterior distribution. Denoting
V as the objective function, i.e., V(θ) = log pθ(x), the gradient of V and the estimator of the gradient of the ELBO of
the IWAE objective are given by:

∇θV(θ) = ∇θ log pθ(x) = Epθ(·|x)
[
∇θ log pθ(x, z)

]
,

∇̂θL
IWAE
k (θ, ϕ; x) =

k∑
ℓ=1

w(ℓ)∑k
ℓ=1 w(ℓ)

∇θ log pθ(x, z(ℓ)),
(9)

where w(ℓ) =
pθ(x,z(ℓ))
qϕ(z(ℓ) |x) the unnormalized importance weights.

B.1.1 Proof of Theorem 5.1

Proof. The proof is adapted from Agapiou et al. (2017, Theorem 2.1). By definition,

∇̂θL
IWAE
k (θ, ϕ; x) − ∇θV(θ) =

∑k
ℓ=1 w(ℓ)

(
∇θ log pθ(x, z(ℓ)) − Epθ(·|x)

[
∇θ log pθ(x, z)

])∑k
ℓ=1 w(ℓ)

.

Writing H̃(x, z(ℓ)) = ∇θ log pθ(x, z(ℓ)) − Epθ(·|x)
[
∇θ log pθ(x, z)

]
, yields

∇̂θL
IWAE
k (θ, ϕ; x) − ∇θV(θ) =

∑k
ℓ=1 w(ℓ)H̃(x, z(ℓ))∑k

ℓ=1 w(ℓ)
.

Since Eqϕ(·|x)[wH̃(x, z)] = 0, we have:

∇̂θL
IWAE
k (θ, ϕ; x) − ∇θV(θ) =

1
k
∑k
ℓ=1 w(ℓ)H̃(x, z(ℓ)) − Eqϕ(·|x)

[
wH̃(x, z)

]
1
k
∑k
ℓ=1 w(ℓ)

.

As
∑k
ℓ=1 w(ℓ)H̃(x, z(ℓ))/k is an unbiased estimator of Eqϕ(·|x)

[
wH̃(x, z)

]
,

Eq⊗k
ϕ (·|x)

[
∇̂θL

IWAE
k (θ, ϕ; x) − ∇θV(θ)

]
= Eq⊗k

ϕ (·|x)


 1

1
k
∑k
ℓ=1 w(ℓ)

−
1

Eqϕ(·|x) [w]


1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ)) − Eqϕ(·|x)
[
wH̃(x, z)

]
 ,

so that

Eq⊗k
ϕ (·|x)

[
∇̂θL

IWAE
k (θ, ϕ; x) − ∇θV(θ)

]
= Eq⊗k

ϕ (·|x)


(

1
k
∑k
ℓ=1 w(ℓ)H̃(x, z(ℓ)) − Eqϕ(·|x)

[
wH̃(x, z)

]) (
Eqϕ(·|x) [w] − 1

k
∑k
ℓ=1 w(ℓ)

)
Eqϕ(·|x) [w] 1

k
∑k
ℓ=1 w(ℓ)

 .
Therefore, ∥∥∥∥Eq⊗k

ϕ (·|x)

[
∇̂θL

IWAE
k (θ, ϕ; x) − ∇θV(θ)

]∥∥∥∥ ≤ A1 + A2,
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where

A1 =

∥∥∥∥∥Eq⊗k
ϕ (·|x)

[(
∇̂θL

IWAE
k (θ, ϕ; x) − ∇θV(θ)

)
1{

2
k
∑k
ℓ=1 w(ℓ)>Eqϕ(·|x)[w]

}]∥∥∥∥∥ ,
A2 =

∥∥∥∥∥Eq⊗k
ϕ (·|x)

[(
∇̂θL

IWAE
k (θ, ϕ; x) − ∇θV(θ)

)
1{

2
k
∑k
ℓ=1 w(ℓ)≤Eqϕ(·|x)[w]

}]∥∥∥∥∥ .
Note that

A1 ≤

∥∥∥∥∥∥∥Eq⊗k
ϕ (·|x)

 2
Eqϕ(·|x) [w]2

1
k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ)) − Eqϕ(·|x)
[
wH̃(x, z)

]
Eqϕ(·|x) [w] −

1
k

k∑
ℓ=1

w(ℓ)



∥∥∥∥∥∥∥

≤
2

Eqϕ(·|x) [w]2Eq⊗k
ϕ (·|x)


∥∥∥∥∥∥∥1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ)) − Eqϕ(·|x)
[
wH̃(x, z)

]∥∥∥∥∥∥∥
∥∥∥∥∥∥∥1

k

k∑
ℓ=1

w(ℓ) − Eqϕ(·|x) [w]

∥∥∥∥∥∥∥


≤
2

Eqϕ(·|x) [w]2Eq⊗k
ϕ (·|x)


∥∥∥∥∥∥∥1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ)) − Eqϕ(·|x)
[
wH̃(x, z)

]∥∥∥∥∥∥∥
2

1/2

× Eq⊗k
ϕ (·|x)


1

k

k∑
ℓ=1

w(ℓ) − Eqϕ(·|x) [w]


2

1/2

,

where we used Cauchy-Schwarz inequality in the last inequality. On the other hand,

Eq⊗k
ϕ (·|x)


1

k

k∑
ℓ=1

w(ℓ) − Eqϕ(·|x) [w]


2 = V

1
k

k∑
ℓ=1

w(ℓ)

 ≤ Eqϕ(·|x)
[
w2

]
k

,

and

Eq⊗k
ϕ (·|x)


∥∥∥∥∥∥∥1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ)) − Eqϕ(·|x)
[
wH̃(x, z)

]∥∥∥∥∥∥∥
2

= Tr

V
1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ))


 ≤ 4dM2

Eqϕ(·|x)
[
w2

]
k

.

Finally, we deduce that

A1 ≤
2

Eqϕ(·|x) [w]2

1
√

k
Eqϕ(·|x)

[
w2

]1/2 2
√

dM
√

k
Eqϕ(·|x)

[
w2

]1/2
=
Eqϕ(·|x)

[
w2

]
Eqϕ(·|x) [w]2

4
√

dM
k
.

Using the assumption on the boundedness of
∥∥∥∇θ log pθ(x, z)

∥∥∥ and the Markov inequality, we obtain:

A2 ≤ 2MP

21
k

k∑
ℓ=1

w(ℓ) ≤ Eqϕ(·|x) [w]


≤ 2MP

2
1

k

k∑
ℓ=1

w(ℓ) − Eqϕ(·|x) [w]

 ≤ −Eqϕ(·|x) [w]


≤ 2MP


∣∣∣∣∣∣∣1k

k∑
ℓ=1

w(ℓ) − Eqϕ(·|x) [w]

∣∣∣∣∣∣∣ ≥ Eqϕ(·|x) [w]

2

 ≤ Eqϕ(·|x)
[
w2

]
Eqϕ(·|x) [w]2

8M
k
,

which concludes the proof. □
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Input: Initial point θ0, maximum number of iterations n, step sizes {γk}k≥1 and a hyperparameter α ≥ 0 to control
the bias and MSE.
for k = 0 to n − 1 do

Compute the stochastic update ∇θ,ϕLIWAE
kα (θk, ϕk; Xk+1) using kα samples from the variational posterior

distribution and adaptive steps Ak.
Set θk+1 = θk − γk+1Ak∇θL

IWAE
kα (θk, ϕk; Xk+1) and ϕk+1 = ϕk − γk+1Ak∇ϕL

IWAE
kα (θk, ϕk; Xk+1).

end for
Output: (θk)1≤k≤n

Algorithm 2: Adaptive Stochastic Approximation for IWAE

B.2 BR-IWAE

In this section, we provide additional details on the Biased Reduced Importance Weighted Autoencoder (BR-IWAE). In
IWAE, instead of estimating the gradient of the ELBO with respect to θ via the Monte Carlo method, we estimate the
gradient of the true objective function Epθ(·|x)

[
∇θ log pθ(x, z)

]
using the BR-SNIS estimator (Cardoso et al., 2022). This

estimator aims to reduce the bias of self-normalized importance sampling estimators without increasing the variance.
Input: Maximum number of iterations tmax for MCMC and number of samples k from the variational distribution
qϕ(· | x).
Initialization: Draw z̃0 from the variational distribution qϕ(· | x).
for t = 0 to tmax − 1 do

Draw It+1 ∈ {1, . . . , k} uniformly at random and set zIt+1
t+1 = z̃t.

Draw z1:k\{It+1}

t+1 independently from the variational distribution qϕ(· | x).
Compute the unnormalized importance weights:

w(ℓ)
t+1 =

pθ(x, z(ℓ)
t+1)

qϕ(z
(ℓ)
t+1|x)

∀ℓ ∈ {1, . . . , k}.

Normalize importance weights:

ω(ℓ)
t+1 =

w(ℓ)
t+1∑N

ℓ=1 w(ℓ)
t+1

∀ℓ ∈ {1, . . . , k}.

Select z̃t+1 from the set z1:k
t+1 by choosing zℓt+1 with probability ω(ℓ)

t+1.
end for
Output:

(
z1:k

t

)
1≤t≤tmax

and
(
ω1:k

t

)
1≤t≤tmax

.

Algorithm 3: BR-IWAE Gradient Estimator
The BR-SNIS estimator of Epθ(·|x)

[
∇θ log pθ(x, z)

]
is given by:

∇̂θ log pθ(x, z1:k
t0:tmax

) =
1

tmax − t0

tmax∑
t=t0+1

k∑
ℓ=1

ω(ℓ)
t ∇θ log pθ(x, zℓt ),

where t0 corresponds to a burn-in period. By Cardoso et al. (2022, Theorem 4) the bias of this estimator decreases
exponentially with t0. The BR-IWAE algorithm proceeds in two steps, which are repeated during optimization:

• Update the parameter ϕ as in the IWAE algorithm, that is, for all n ≥ 1:

ϕn+1 = ϕn − γn+1An∇ϕL
IWAE
k (θn, ϕn; Xn+1).

• Update the parameter θ by estimating (8) using BR-SNIS as detailed in Algorithm 3:

ϕn+1 = ϕn − γn+1An∇̂θ log pθ(Xn+1, z1:k
t0:tmax

).

B.3 Some Other Techniques for Reducing Bias

In the previous section, we discussed one technique for reducing bias, BR-IWAE. Here, we provide an overview of
some other bias reduction techniques within our context. First, the jackknife bias-corrected estimator (Nowozin, 2018)
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is defined as:
LJackknife(θ, ϕ; x) = kLIWAE

k (θ, ϕ; x) − (k − 1)LIWAE
k−1 (θ, ϕ; x),

which achieves a reduced bias of O(k−2). This can also be generalized to have a bias of order O(k−m) for some m ≥ 1
by considering:

LJackknife
k,m =

m∑
j=0

c(k,m, j)LIWAE
k− j ,

where the coefficients c(k,m, j) are given as

c(k,m, j) = (−1) j (k − j)m

(m − j)! j!
.

The Delta method Variational Inference (DVI) (Teh et al., 2006) is defined by:

LDVI
k = Eq⊗k

ϕ (·|x)

log
1
k

k∑
ℓ=1

w(ℓ) +
s̄2

k

2kw̄k

 ,
where

w(ℓ) =
pθ(x, z(ℓ))
qϕ(z(ℓ)|x)

, w̄k =
1
k

k∑
ℓ=1

w(ℓ) and s̄2
k =

1
k − 1

k∑
ℓ=1

(w(ℓ) − w̄k)2.

The Monte Carlo estimator of the Delta method Variational Inference objective achieves a reduced bias of O(k−2). Some
other techniques for reducing bias include the iterated bootstrap for bias correction, the debiasing lemma (McLeish,
2011), and Multi-Level Monte Carlo and its variants (Hu et al., 2021b).

C Implications of Our Theorem in Bilevel Optimization and Conditional Stochastic
Optimization

C.1 Stochastic Bilevel Optimization

We consider the Stochastic Bilevel Optimization problem given by:

min
θ∈Rd

V(θ) = Eξ
[
f (θ, ϕ∗(θ); ξ)

]
(upper-level) (10)

subject to
ϕ∗(θ) ∈ argmin

ϕ∈Rq
Eζ

[
g(θ, ϕ; ζ)

]
(lower-level)

where the upper and inner level functions f and g are both jointly continuously differentiable and ξ and ζ are random
variables. The goal of equation (10) is to minimize the objective function V with respect to θ, where ϕ∗(θ) is obtained
by solving the lower-level minimization problem. This bilevel problem involves many machine learning problems with
a hierarchical structure, which include hyper-parameter optimization Franceschi et al. (2018), metalearning Finn et al.
(2017), policy optimization Hong et al. (2023) and neural network architecture search Liu et al. (2018). The gradient of
the objective function V is given by:

∇V(θ) = ∇θ f (θ, ϕ∗(θ)) − ∇θϕg(θ, ϕ∗(θ))v∗,

where v∗ is the solution of the following linear system:

∇2
ϕg(θ, ϕ∗(θ))v = ∇ϕ f (θ, ϕ∗(θ)).

Instead of computing v∗, the solution of the linear system above, Ji et al. (2021); Chen et al. (2021) proposes a method
to estimate v∗. This estimation introduces bias in the gradient of the objective function.

H6 For all θ ∈ Rd, g(θ, ϕ) is strongly convex with respect to ϕ with parameter µg > 0.

26



H7 (Regularity Lipschitz condition) Assume that f , ∇ f , ∇g, ∇2g are respectively Lipschitz continuous with Lipschitz
constants ℓ f ,0, ℓ f ,1, ℓg,1 and ℓg,2.

Assumptions H6 and H7 are the same assumptions used in Chen et al. (2021) to obtain the convergence results
with SGD. Furthermore, these two assumptions ensure that the first- and second-order derivatives of f and g, as well as
the solution mapping ϕ∗(θ), are well-behaved.

Proposition C.1. (Chen et al. (2021, Lemma 2.2)) Under Assumption 6, we have:

∇V(θ) = ∇θ f
(
θ, ϕ∗(θ)

)
− ∇2

θϕg
(
θ, ϕ∗(θ)

) [
∇2
ϕg

(
θ, ϕ∗(θ)

)]−1
∇ϕ f

(
θ, ϕ∗(θ)

)
.

Due to the dependence of the minimizer of the lower-level problem ϕ∗(θ), obtaining an unbiased estimate of ∇V(θ)
is challenging. To address this, we replace ϕ∗(θ) in the gradient with y and define

∇̄θ f (θ, ϕ) := ∇θ f (θ, ϕ) − ∇2
θϕg(θ, ϕ)

[
∇2
ϕg(θ, ϕ)

]−1
∇ϕ f (θ, ϕ).

Furthermore, by estimating
[
∇2
ϕg(θ, ϕ)

]−1
, we define the stochastic update Hk (Chen et al., 2021) as follows:

Hk =∇θ f (θk, ϕk+1; ξk) − ∇2
θϕg

(
θk, ϕ; ζ

(0)
k

)  N
ℓg,1

N′∏
i=1

(
I −

1
ℓg,1
∇2
ϕg

(
θk, ϕk+1; ζ(i)

k

))∇ϕ f (θk, ϕk+1; ξk) ,

where N′ is drawn from {1, . . . ,N} uniformly at random and
{
ζ(1), . . . , ζ(N′)

}
are i.i.d. samples.

Input: Initial points θ0, ϕ0, maximum number of iterations for the upper-level n and for the lower-level T and step
sizes {γk, γ̃k}k≥1.
for k = 0 to n − 1 do

Set ϕk,0 = ϕk.
for t = 0 to T − 1 do
ϕk,t+1 = ϕk,t − γ̃k+1∇ϕg

(
θk, ϕk,t; ζk,t

)
end for
Set ϕk+1 = ϕk,T .
Compute the stochastic update Hk and adaptive matrix Ak.
θk+1 = θk − γk+1AkHk

end for
Output: (θk, ϕk)1≤k≤n

Algorithm 4: Algorithm for the Stochastic Bilevel Optimization

In Algorithm 4, we perform T steps of SGD on the lower-level variable ϕk before updating the upper-level variable
θk using adaptive methods such as Adagrad, RMSProp, or Adam.

Lemma C.2. (Ghadimi and Wang (2018, Lemma 2.2)) Under Assumptions H6 and H7, for all (θ, θ′) ∈
(
Rd

)2
, we have:∥∥∥∇V (θ) − ∇V

(
θ′
)∥∥∥ ≤ LV

∥∥∥θ − θ′∥∥∥ ,
with the constant LV is given by

LV = ℓ f ,1 +
ℓg,1

(
ℓ f ,1 + L f

)
µg

+
ℓ f ,0

µg

(
ℓg,2 +

ℓg,1ℓg,2

µg

)
,

and L f is defined as L f = ℓ f ,1 +
ℓg,1ℓ f ,1
µg
+
ℓ f ,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
.

Lemma C.3. Under Assumptions H6 and H7, the following inequalities hold:

∥∇V (θk) − E [Hk | Fk]∥2 ≤ 2L2
f

∥∥∥ϕk+1 − ϕ
∗ (θk)

∥∥∥2
+ 2b̃2

k ,∥∥∥∇̄θ f (θ, ϕ)
∥∥∥ ≤ ℓ f ,0 +

ℓg,1ℓ f ,0

µg
,

where L f = ℓ f ,1 +
ℓg,1ℓ f ,1
µg
+
ℓ f ,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
and b̃k = ℓg,1ℓ f ,1

1
µg

(
1 − µg

ℓg,1

)N
.
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Proof. For the bias term, we have:

∥∇F (θk) − E [Hk | Fk]∥2 =
∥∥∥∇̄ f

(
θk, ϕ

∗ (θk)
)
− ∇̄ f (θk, ϕk+1) + ∇̄ f (θk, ϕk+1) − E [Hk | Fk]

∥∥∥2

≤ 2
∥∥∥∇̄ f

(
θk, ϕ

∗ (θk)
)
− ∇̄ f (θk, ϕk+1)

∥∥∥2
+ 2

∥∥∥∇̄ f (θk, ϕk+1) − E [Hk | Fk]
∥∥∥2

≤ 2L2
f

∥∥∥ϕk+1 − ϕ
∗ (θk)

∥∥∥2
+ 2b̃2

k ,

where we used Ghadimi and Wang (2018, Lemma 2.2) for the first term and Hong et al. (2023, Lemma 11) for the
second term.

For the second inequality, we have:∥∥∥∇̄θ f (θ, ϕ)
∥∥∥ = ∥∥∥∥∥∇θ f (θ, ϕ) − ∇2

θϕg(θ, ϕ)
[
∇2
ϕg(θ, ϕ)

]−1
∇ϕ f (θ, ϕ)

∥∥∥∥∥
≤ ∥∇θ f (θ, ϕ)∥ +

∥∥∥∇2
θϕg(θ, ϕ)

∥∥∥ ∥∥∥∥∥[∇2
ϕg(θ, ϕ)

]−1
∥∥∥∥∥ ∥∥∥∇ϕ f (θ, ϕ)

∥∥∥
≤ ℓ f ,0 +

ℓg,1ℓ f ,0

µg
.

□

Theorem C.4. Consider the Bilevel Optimization problem defined in Algorithm 4. Let γn = cγn−1/2 and γ̃n = cγ̃n−1/2/T.
For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random variable. Assume the boundedness of the variance
of the estimators of ∇ f , ∇g, and ∇2g. Then, under Assumptions H6 and H7, we have:

E
[
∥∇V (θR)∥2

]
= O

(
log n
√

n
+ bn

)
.

Proof. By using Lemma C.3, V is smooth and Lemma C.3, the bias and the gradient of V are bounded. Using our
Corollary 4.6, we obtain:

E
[
∥∇V (θR)∥2

]
= O

(
log n
√

n
+ bn

)
,

where

bn = O

∑n
k=0 γk+1b̃2

k +
∑n

k=0 γk+1 ∥ϕk+1 − ϕ
∗ (θk)∥2

√
n

 .
Then, with Ghadimi and Wang (2018, Lemma 2.3) and Chen et al. (2021, Lemma 3), we derive:

bn = O

∑n
k=0 γk+1b̃2

k
√

n
+

1
√

n

 .
□

C.2 Conditional Stochastic Optimization

We now consider a class of Conditional Stochastic Optimization:

min
θ∈Rd

V(θ) := Eξ
[
fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
, (11)

where fξ(·) : Rq → R depends on the random vector ξ and gη(·, ξ) : Rd → Rq is a vector-valued function dependent on
both random vectors ξ and η. The inner expectation is taken with respect to the conditional distribution of η given ξ.
Given certain conditions on the regularity of these functions, the gradient of V as defined in (11) can be expressed as:

∇V(θ) = Eξ
[(
Eη|ξ

[
∇gη(θ, ξ)

])⊤
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
.

Constructing an unbiased stochastic estimator of this gradient can be both costly and, in some cases, impractical.
Instead, we opt for a biased estimator of ∇V(θ), using just one sample ξ and m i.i.d. samples {η j}

m
j=1 from the conditional

distribution of η given ξ:

∇̂V(θ; ξ, {η j}
m
j=1) :=

 1
m

m∑
j=1

∇gη j(θ, ξ)


⊤

∇ fξ

 1
m

m∑
j=1

gη j(θ, ξ)

 .
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H8 For all ξ and η, assume that fξ(·), ∇ fξ(·), gη(·, ξ), and ∇gη(·, ξ) are respectively Lipschitz continuous with
Lipschitz constants ℓ f ,0, ℓ f ,1, ℓg,0 and ℓg,1.

H9 For all θ and ξ, we assume that Eη|ξ
[∥∥∥∥gη(θ, ξ) − Eη|ξ

[
gη(θ, ξ)

]∥∥∥∥2]
≤ σ2

g.

Lemma C.5. (Hu et al. (2020, Lemma 2.2)) Under Assumptions H8 and H9, the following holds:

∥∥∥∥E [
∇̂V(θ; ξ, {η j}

m
j=1)

]
− ∇V(θ)

∥∥∥∥2
≤
ℓ2g,0ℓ

2
f ,1σ

2
g

m
.

Theorem C.6. Consider the Conditional Stochastic Optimization problem defined in (11). Let γn = cγn−1/2, An denote
the adaptive matrix in Adam and ρ1 ∈ [0, 1). For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random
variable. Then, under Assumptions H8 and H9, we have:

E
[
∥∇V (θR)∥2

]
= O

(
log n
√

n
+ bn

)
,

where bn is defined by writing mk as the number of conditional samples at iteration k:

bn = O


∑n

k=0
mk√

k
√

n

 .
Proof. Smoothness of V:∥∥∥∇V(θ) − ∇V(θ′)

∥∥∥ = ∥∥∥∥∥Eξ [(Eη|ξ [∇gη(θ, ξ)
])T
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
− Eξ

[(
Eη|ξ

[
∇gη(θ′, ξ)

])T
∇ fξ

(
Eη|ξ

[
gη(θ′, ξ)

])]∥∥∥∥∥
≤

∥∥∥∥∥Eξ [(Eη|ξ [∇gη(θ, ξ)
])T
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
− Eξ

[(
Eη|ξ

[
∇gη(θ′, ξ)

])T
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]∥∥∥∥∥
+

∥∥∥∥∥Eξ [(Eη|ξ [∇gη(θ′, ξ)
])T
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
− Eξ

[(
Eη|ξ

[
∇gη(θ′, ξ)

])T
∇ fξ

(
Eη|ξ

[
gη(θ′, ξ)

])]∥∥∥∥∥
≤

∥∥∥∥∥Eξ [(Eη|ξ [∇gη(θ, ξ)
]
− Eη|ξ

[
∇gη(θ′, ξ)

])T
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]∥∥∥∥∥
+

∥∥∥∥∥Eξ [(Eη|ξ [∇gη(θ′, ξ)
])T (
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])
− ∇ fξ

(
Eη|ξ

[
gη(θ′, ξ)

]))]∥∥∥∥∥
≤ Eξ

[∥∥∥∥Eη|ξ [∇gη(θ, ξ)
]
− Eη|ξ

[
∇gη(θ′, ξ)

]∥∥∥∥ ∥∥∥∥∇ fξ
(
Eη|ξ

[
gη(θ, ξ)

])∥∥∥∥]
+ Eξ

[∥∥∥∥Eη|ξ [∇gη(θ′, ξ)
]∥∥∥∥ ∥∥∥∥∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])
− ∇ fξ

(
Eη|ξ

[
gη(θ′, ξ)

])∥∥∥∥]
≤ ℓg,1ℓ f ,0

∥∥∥θ − θ′∥∥∥ + ℓg,0ℓ f ,1Eξ

[∥∥∥∥Eη|ξ [gη(θ, ξ)] − Eη|ξ [gη(θ′, ξ)]∥∥∥∥]
≤ ℓg,1ℓ f ,0

∥∥∥θ − θ′∥∥∥ + ℓ2g,0ℓ f ,1
∥∥∥θ − θ′∥∥∥ .

Boundness of ∇V:

∥∇V(θ)∥ =
∥∥∥∥∥Eξ [(Eη|ξ [∇gη(θ, ξ)

])T
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]∥∥∥∥∥
≤ Eξ

[∥∥∥∥Eη|ξ [∇gη(θ, ξ)
]∥∥∥∥ ∥∥∥∥∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])∥∥∥∥] ≤ ℓg,0ℓ f ,0

We conclude the proof using Lemma C.5. □

These results can also be extended to the Federated Conditional Stochastic Optimization problem (Wu et al., 2024),
which is defined by:

min
θ∈Rd

V(θ) =
1
L

L∑
ℓ=1

Eξℓ
[
f ℓξℓ

(
Eηl |ξℓ

[
gℓηℓ(θ, ξℓ)

])]
,
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where Eξℓ f ℓξℓ(·) : Rq → R is the outer-layer function on the ℓ-th device with the randomness ξℓ, and Eηℓ |ξℓg
ℓ
ηℓ

(·, ξℓ) :
Rd → Rq is the inner-layer function on the ℓ-th device with respect to the conditional distribution of ηℓ given ξℓ. If the
functions f ℓξℓ(·) and gℓηℓ(·, ξℓ) for all L devices verify Assumptions H8 and H9, we obtain the same convergence rate.

The following Table 1 provides a comprehensive summary of the key points, including the verification of our
assumptions and the convergence results obtained in both Stochastic Bilevel Optimization and Conditional Stochastic
Optimization.

Table 1: Stochastic Bilevel Optimization and Conditional Stochastic Optimization with our biased adaptive SA
framework.

Applications Stochastic Bilevel Optimization Conditional Stochastic Optimization

Problem minθ∈Rd V(θ) = Eξ
[
f (θ, ϕ∗(θ); ξ)

]
minθ∈Rd V(θ) = Eξ

[
fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
subject to ϕ∗(θ) ∈ argmin

ϕ∈Rq
Eζ

[
g(θ, ϕ; ζ)

]
Gradient ∇θ f (θ, ϕ∗(θ)) − ∇θϕg(θ, ϕ∗(θ))v∗ Eξ

[(
Eη|ξ

[
∇gη(θ, ξ)

])T
∇ fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
Lipchitz Constant (A2) ℓ f ,1 +

ℓg,1(ℓ f ,1+L f )
µg

+
ℓ f ,0

µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
ℓg,1ℓ f ,0 + ℓ

2
g,0ℓ f ,1

Bias bound (A3) ℓg,1ℓ f ,1
1
µg

(
1 − µg

ℓg,1

)N ℓ2g,0ℓ
2
f ,1σ

2
g

m

Gradient Bound (A5) ℓ f ,0 +
ℓg,1ℓ f ,0

µg
ℓg,0ℓ f ,0

Convergence O

(
log n
√

n + bn

)
O

(
log n
√

n + bn

)

D Some Other Examples of Biased Gradients with Control on Bias

In this section, we explore examples of applications using biased gradient estimators while having control over the bias.

D.1 Self-Normalized Importance Sampling

Let π be a probability measure on a measurable space (X,X). The objective is to estimate π( f ) = Eπ[ f (X)] for a
measurable function f : X → Rd such that π(| f |) < ∞. Assume that π(dx) ∝ w(x)λ(dx), where w is a positive weight
function and λ is a proposal probability distribution, and that λ(w) =

∫
w(x)λ(dx) < ∞. For a function f : X → Rd

such that π(| f |) < ∞, the identity

π( f ) =
λ(ω f )
λ(ω)

, (12)

leads to the Self-Normalized Importance Sampling (SNIS) estimator:

ΠN f
(
X1:N

)
=

N∑
i=1

ωi
N f

(
Xi

)
, ωi

N =
w

(
Xi

)
∑N
ℓ=1 w

(
Xℓ

) ,
where X1:N =

(
X1, . . . , XN

)
are independent draws from λ and the ωi

N are called the normalized weights. Agapiou
et al. (2017) shows that the bias of SNIS estimator can be expressed as:

∥∥∥∥E [
ΠN f

(
X1:N

)
− π( f )

]∥∥∥∥ ≤ 12
N

λ
(
ω2

)
λ(ω)2 .

This particular type of estimator can be found in the Importance Weighted Autoencoder (IWAE) framework (Burda
et al., 2016), as illustrated in B. The estimator of the gradient of ELBO in IWAE corresponds to the biased SNIS
estimator of the gradient of the marginal log likelihood log pθ(x). Consequently, based on these results, both the bias
and Mean Squared Error (MSE) are of order O(1/k), where k corresponds to the number of samples drawn from the
variational posterior distribution.
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D.2 Sequential Monte Carlo Methods

We focus here in the task of estimating the parameters, denoted as θ, in Hidden Markov Models. In this context, the
hidden Markov chain is denoted by (Xt)t≥0. The distribution of X0 has density χ with respect to the Lebesgue measure
µ and for all t ≥ 0, the conditional distribution of Xt+1 given X0:t has density mθ(Xt, ·). It is assumed that this state
is partially observed through an observation process (Yt)0≤t≤T . The observations Y0:t are assumed to be independent
conditionally on X0:t and, for all 0 ≤ t ≤ T , the distribution of Yt given X0:t depends on Xt only and has density gθ(Xt, ·)
with respect to the Lebesgue measure. The joint distribution of hidden states and observations is given by

pθ(x0:T , y0:T ) = χ(x0)gθ(x0, y0)
T−1∏
t=0

mθ(xt, xt+1)gθ(xt+1, yt+1).

Our objective is to maximize the likelihood of the model:

pθ(y0:T ) =
∫

pθ(x0:T , y0:T ) dx0:T .

To use a gradient-based method for this maximization problem, we need to compute the gradient of the objective
function. Under simple technical assumptions, by Fisher’s identity,

∇θ log pθ(y0:T ) =
∫
∇θ log pθ(x0:T , y0:T )pθ(x0:T |y0:T )dx0:T

= Ex0:T∼pθ(.|y0:T )
[
∇θ log pθ(x0:T , y0:T )

]
= Ex0:T∼pθ(.|y0:T )

T−1∑
t=0

st,θ (xt, xt+1)

 ,
where st,θ (x, x′) = ∇θ log{mθ (x, x′) gθ (x, yt+1)} for t > 0 and by convention s0,θ (x, x′) = ∇θ log gθ (x, y0). Given that
the gradient of the log-likelihood represents the smoothed expectation of an additive functional, one may opt for Online
Smoothing algorithms to mitigate computational costs. The estimation of the gradient ∇θ log pθ(y0:T ) is given by:

Hθ (y0:T ) =
N∑

i=1

ωi
T

ΩT
τiT,θ,

where {τiT,θ}
N
i=1 are particle approximations obtained using particles {

(
ξiT , ω

i
T

)
}Ni=1 targeting the filtering distribution ϕT ,

i.e. the conditional distribution of xT given y0:T . In the Forward-only implementation of FFBSm (Del Moral et al.,
2010), the particle approximations {τiT,θ}

N
i=1 are computed using the following formula, with an initialization of τi0 = 0

for all i ∈ ⟦1,N⟧:

τit+1,θ =

N∑
j=1

ω
j
t mθ(ξ

j
t , ξ

i
t+1)∑

ℓ=1 ω
ℓ
t mθ(ξℓt , ξ

i
t+1)

{
τ

j
t,θ + st,θ(ξ

j
t , ξ

i
t+1)

}
, t ∈ N.

The estimator of the gradient Hθ (y0:T ) computed by the Forward-only implementation of FFBSm is biased. The
bias and MSE of this estimator are of order O (1/N) (Del Moral et al., 2010), where N corresponds to the number of
particles used to estimate it. Using alternative recursion methods to compute {τiT,θ}

N
i=1 results in different algorithms,

such as the particle-based rapid incremental smoother (PARIS) (Olsson and Westerborn, 2017) and its pseudo-marginal
extension Gloaguen et al. (2022) and Parisian particle Gibbs (PPG) (Cardoso et al., 2023). In such cases, one can also
control the bias and MSE of the estimator.

D.3 Policy Gradient for Average Reward over Infinite Horizon

Consider a finite Markov Decision Process (MDP) denoted as (S,A,R, P), where S represents the state space, A
denotes the action space, R : S×A → [0,Rmax] is a reward function, and P is the transition model. The agent’s decision-
making process is characterized by a parametric family of policies {πθ}θ∈Rd , employing the soft-max parameterization.
The reward function is given by:

V(θ) := E(S ,A)∼vθ [R(S , A)] =
∑

(s,a)∈S×A

vθ(s, a)R(s, a),
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where vθ represents the unique stationary distribution of the state-action Markov Chain sequence {(S t, At)}t≥1 generated
by the policy πθ. Let λ ∈ (0, 1) be a discount factor and T be sufficiently large, the estimator of the gradient of the
objective function V is given by:

Hθ (S 1:T , A1:T ) = R (S T , AT )
T−1∑
i=0

λi∇ log πθ (AT−i; S T−i) ,

where (S 1:T , A1:T ) := (S 1, A1, . . . , S T , AT ) is a realization of state-action sequence generated by the policy πθ. It’s
important to note that this gradient estimator is biased, and the bias is of order O(1 − λ) (Karimi et al., 2019).

D.4 Zeroth-Order Gradient

Consider the problem of minimizing the objective function V . The zeroth-order gradient method is particularly valuable
in scenarios where direct access to the gradient of the objective function is challenging or computationally expensive.
The zeroth-order gradient oracle obtained by Gaussian smoothing (Nesterov and Spokoiny, 2017) is given by:

Hθ (X) =
V(θ + τX) − V(θ)

τ
X, (13)

where τ > 0 is a smoothing parameter and X ∼ N(0, Id) a random Gaussian vector. Nesterov and Spokoiny (2017,
Lemma 3) provide the bias of this estimator:

∥E [Hθ (X)] − ∇V (θ) ∥ ≤
τ

2
L(d + 3)3/2. (14)

The application of these zeroth-order gradient methods can be found in generative adversarial networks (Moosavi-
Dezfooli et al., 2017; Chen et al., 2017).

D.5 Compressed Stochastic Approximation: Coordinate Sampling

The coordinate descent method is based on the iteration:

θn+1 = θn − γn+1Hθn (Xn+1) jn e jn ,

where {e1, . . . , ed} is the canonical basis of Rd and Hθn (Xn+1) j is the j-th coordinate of the gradient. The randomized
coordinate selection rule chooses jn uniformly from the set {1, 2, . . . , d}. Alternatively, the Gauss-Southwell selection
rule (Nutini et al., 2015) uses:

jn+1 := argmax
j∈{1,...,d}

|Hθn (Xn+1) j |.

This corresponds to a greedy selection procedure since at each iteration we choose the coordinate with the largest
directional derivative. Another approach to choosing jn is Coordinate Sampling (Leluc and Portier, 2022), a variant of
the stochastic gradient descent algorithm that incorporates a selection step by sampling to perform random coordinate
descent. The distribution of ζn+1, which selects the coordinate, is characterized by the probability weights vector
(w(1)

n , . . . ,w
(d)
n ) defined as:

w( j)
n = P(ζn+1 = j|Fn), j ∈ {1, . . . , d}.

This distribution of ζn+1 is referred to as the coordinate sampling policy. The Stochastic Coordinate Gradient Descent
algorithm is defined by:

θn+1 = θn − γn+1D(ζn+1)Hθn (Xn+1) ,

where D(k) = eke⊤k ∈ R
d×d has its entries equal to 0 except for the (k, k) entry, which is 1. Observe that the distribution

of the random matrix D(ζn+1) is fully characterized by the matrix Dn = E[D(ζn+1)|Fn] = Diag(w(1)
n , . . . ,w

(d)
n ). In this

context, An represents a diagonal matrix Dn where the diagonal terms characterize the probability weights for sampling
each coordinate. These weights typically depend on preceding iterations and even on current gradients. In this case, we
always have βn+1 ≤ 1 and to control the minimum eigenvalue, we only require a lower bound on the probability weights.
This method can be easily extended to incorporate biased gradients and adaptive steps by introducing Ān = DnAn,
where An represents the adaptive matrix as before, and Dn is the matrix of probability weights.
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E Additional Experimental Details

E.1 Experiment with a Synthetic Time-Dependent Bias

In this setup, we consider a simple least squares objective function V(θ) = ∥Aθ∥2/2 in dimension d = 10, where A is a
positive matrix ensuring convexity. We introduce zero-mean Gaussian noise with variance σ2 = 0.01 to every gradient
and artificially include the bias term rn at each iteration. We explore different values of rn ∈ {1, n−1/4, n−1/2, n−1, n−2, 0},
where rn = 1 corresponds to constant bias, rn = 0 for an unbiased gradient, and the others exhibit decreasing bias.
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Figure 6: Value of ∥∇V(θn)∥2 with Adagrad for different values of rn.

In Figure 6, we observe the convergence rate of the squared norm of the gradient. Similar to Figure 1, we notice the
impact of bias on the squared norm of the gradient. When r ≥ 1/2, we observe nearly the same convergence rate as in
the case of an unbiased gradient.

E.2 Additional Experiments in IWAE

In this section, we provide detailed information about the experiments on CIFAR-10. We also conduct additional
experiments on the FashionMNIST dataset. For all experiments, we use Adagrad, RMSProp, and Adam with a learning
rate decay given by γn = Cγ/

√
n, where Cγ = 0.01 for Adagrad and Cγ = 0.001 for RMSProp and Adam. The

momentum parameters are set to ρ1 = 0.9 and ρ2 = 0.999, and the regularization parameter δ is fixed at 5 × 10−2. The
impact of this regularization parameter will be illustrated later.

Datasets. We conduct our experiments on two datasets: FashionMNIST (Xiao et al., 2017) and CIFAR-10. The
FashionMNIST dataset is a variant of MNIST and consists of 28x28 pixel images of various fashion items, with 60,000
images in the training set and 10,000 images in the test set. CIFAR-10 consists of 32x32 pixel images categorized into
10 different classes. The dataset is divided into 60,000 images in the training set and 10,000 images in the test set.

Models. For FashionMNIST, we use a fully connected neural network with a single hidden layer consisting of 400
hidden units and ReLU activation functions for both the encoder and the decoder. The latent space dimension is set to
20. We use 256 images per iteration (235 iterations per epoch). For CIFAR-10 and CIFAR-100, we use a Convolutional
Neural Network (CNN) architecture with 3 Convolutional layers and 2 fully connected layers with ReLU activation
functions. The latent space dimension is set to 100. For both datasets, we use 256 images per iteration (196 iterations
per epoch).

We estimate the log-likelihood using the VAE, IWAE, and BR-IWAE models, all of which are trained for 100
epochs. Training is conducted using the SGD, SGD with momentum, Adagrad, RMSProp, and Adam algorithms with a
decaying learning rate, as mentioned before. For SGD, we employ the clipping method to clip the gradients to prevent
excessively large steps.

For this experiment, we set k = 5 samples in both IWAE and BR-IWAE, while restricting the maximum iteration
of the MCMC algorithm to 5 and the burn-in period to 2 for BR-IWAE. For comparison, we estimate the Negative
Log-Likelihood using these three models with SGD, SGD with momentum, Adagrad, RMSProp, and Adam, and the
results are presented in Table 2. Similar to the case of CIFAR-10, we observe that IWAE outperforms VAE, while
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BR-IWAE outperforms IWAE by reducing bias in all cases. The adaptive methods surpass SGD, and momentum
further improves their performances. Consequently, Adam excels among all algorithms due to its adaptive steps and
momentum.

Table 2: Comparison of Negative Log-Likelihood on the FashionMNIST Test Set (Lower is Better).

Algorithm VAE IWAE BR-IWAE

SGD 247.2 244.9 244.0
SGD with momentum 244.6 240.2 238.4

Adagrad 245.8 241.4 240.5
RMSProp 242.6 239.3 237.8

Adam 240.3 237.8 236.1

Similarly, as we did in the case of CIFAR-10, we incorporate a time-dependent bias that decreases by choosing a
bias of order O(n−α) at iteration n. We vary the value of α for both FashionMNIST and CIFAR-100.
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Figure 7: IWAE on the FashionMNIST Dataset with Adagrad for different values of α. Bold lines represent the mean
over 5 independent runs.
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Figure 8: IWAE on the FashionMNIST Dataset with RMSProp for different values of α. Bold lines represent the mean
over 5 independent runs.
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Figure 9: IWAE on the FashionMNIST Dataset with Adam for different values of α. Bold lines represent the mean
over 5 independent runs.

All figures are plotted on a logarithmic scale for better visualization and with respect to the number of epochs. The
dashed curve corresponds to the expected convergence rate O(n−1/4) for α = 1/8, and O(log n/

√
n) for α = 1/4, as

well as for α = 1/2, just as in the case of CIFAR-10. We can clearly observe that for all cases, convergence is achieved
when n is sufficiently large. In the case of the FashionMNIST dataset, the bound seems tight, and the convergence rate
of O(n−1/2) does not seem to be possible to reach, in contrast to the case of CIFAR-10 where the curves corresponding
to α = 1/4 and α = 1/2 approach the O(n−1/2) convergence rate. For all figures, with a larger α, the convergence in
both the squared gradient norm and negative log-likelihood occurs more rapidly.

The effect of Cγ.
Figure 10 illustrates the convergence in both the squared gradient norm and the negative log-likelihood for

Cγ = 0.001 and Cγ = 0.01 in Adagrad. In the case of the squared gradient norm, we have only plotted the results for
Cγ = 0.001 for better visualization, and the plot for Cγ = 0.01 was already presented in Figure 3. It is clear that when
Cγ is set to 0.001, the convergence of the negative log-likelihood is slower. Similarly, the convergence in the squared
gradient norm for Cγ = 0.001 achieves convergence, but it is slower compared to the case of Cγ = 0.01.
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Figure 10: IWAE on the CIFAR-10 Dataset with Adagrad for different values of α and Cγ. Bold lines represent the
mean over 5 independent runs.

The Impact of regularization parameter δ.
In Section A.7, we discussed the impact of the regularization parameter δ in Adam. It has been empirically observed

that the performance of adaptive methods can be sensitive to the choice of this parameter. Here, we illustrate the
impact of this regularization parameter in IWAE. To achieve this, we plot the test loss for different sets of values for
δ ∈ {10−8, 10−5, 10−3, 10−2, 5 × 10−2, 10−1} in Figure 11.
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Figure 11: IWAE on the CIFAR-10 Dataset with Adam for different values of δ. Lines represent the mean over 5
independent runs.

As shown in (Zaheer et al., 2018; Reddi et al., 2018; Tong et al., 2022), we observe the same impact in IWAE and
get better results with δ = 5 × 10−2.

The Impact of Bias over Time.
Our experiments illustrate the negative log-likelihood with respect to epochs, and we observed that a higher value

of α leads to faster convergence. The key point to consider when tuning α is that while convergence may be faster
in terms of iterations, it may lead to higher computational costs. To illustrate this, we set a fixed time limit of 1000
seconds and tested different values of α, plotting the test loss as a function of time in Figure 12. It is clear that with
α = 1/8, the convergence is always slower, whereas choosing α = 1/4 achieves faster convergence than α = 1/2.
While the difference may seem small here, with more complex models, the disparity becomes significant. Therefore, it
is essential to tune the value of α to attain fast convergence and reduce computational time.
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Figure 12: Negative Log-Likelihood on the test set of the CIFAR-10 Dataset for IWAE with Adagrad (on the left)
RMSProp (on the right) for Different Values of α over time (in seconds). Bold lines represent the mean over 5
independent runs.

In this paper, all simulations were conducted using the Nvidia Tesla T4 GPU. The total computing hours required
for the results presented in this paper are estimated to be around 100 to 200 hours of GPU usage.
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