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Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation

Sobihan Surendran∗†, Adeline Fermanian†, Antoine Godichon-Baggioni∗, and Sylvain Le Corff∗

Abstract

Stochastic Gradient Descent (SGD) with adaptive steps is now widely used for training deep neural
networks. Most theoretical results assume access to unbiased gradient estimators, which is not the case in
several recent deep learning and reinforcement learning applications that use Monte Carlo methods. This
paper provides a comprehensive non-asymptotic analysis of SGD with biased gradients and adaptive steps
for convex and non-convex smooth functions. Our study incorporates time-dependent bias and emphasizes
the importance of controlling the bias and Mean Squared Error (MSE) of the gradient estimator. In
particular, we establish that Adagrad and RMSProp with biased gradients converge to critical points
for smooth non-convex functions at a rate similar to existing results in the literature for the unbiased
case. Finally, we provide experimental results using Variational Autoenconders (VAE) that illustrate our
convergence results and show how the effect of bias can be reduced by appropriate hyperparameter tuning.

Keywords: Stochastic Optimization, Biased Stochastic Approximation, Monte Carlo Methods, Variational
Autoenconders

1 Introduction

Stochastic Gradient Descent (SGD) algorithms are standard methods to train statistical models based on
deep architectures. Consider a general optimization problem:

θ∗ ∈ argmin
θ∈Rd

V (θ) , (1)

where V is the objective function. Then, gradient descent methods produce a sequence of parameter estimates
as follows: θ0 ∈ Rd and for all n ≥ 1,

θn+1 = θn − γn+1∇V (θn) ,

where ∇V denotes the gradient of V and for all n ≥ 1, γn > 0 is the learning rate. In many cases, it is not
possible to compute the exact gradient of the objective function, hence the introduction of vanilla Stochastic
Gradient Descent, defined for all n ≥ 1 by:

θn+1 = θn − γn+1∇̂V (θn) ,

where ∇̂V (θn) is an estimator of ∇V (θn). In deep learning, stochasticity emerges with the use of mini-batches,
since it is not feasible to compute gradients based on the entire dataset.

While these algorithms have been extensively studied, both theoretically and practically (see, e.g., Bottou
et al., 2018), many questions remain open. In particular, most results are based on the case where the

estimator ∇̂V is unbiased. Although this assumption is valid in the case of vanilla SGD, it breaks down
in many common applications. For example, zeroth-order methods used to optimize black-box functions
(Nesterov and Spokoiny, 2017) in generative adversarial networks (Moosavi-Dezfooli et al., 2017; Chen et al.,
2017) have access only to noisy biased realizations of the objective functions.

Furthermore, in reinforcement learning algorithms such as Q-learning (Jaakkola et al., 1993), policy
gradient (Baxter and Bartlett, 2001), and temporal difference learning (Bhandari et al., 2018; Lakshmi-
narayanan and Szepesvari, 2018; Dalal et al., 2018), gradient estimators are often obtained using a Markov
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chain with state-dependent transition probability. These estimators are then biased (Sun et al., 2018; Doan
et al., 2020). Other examples of biased gradients can be found in the field of generative modeling with
Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) (Gloaguen et al., 2022; Cardoso
et al., 2023). In particular, the Importance Weighted Autoencoder (IWAE) proposed by Burda et al. (2015),
which is a variant of the standard Variational Autoencoder (VAE) (Kingma and Welling, 2013), yields biased
estimators.

In practical applications, vanilla SGD exhibits difficulties to calibrate the step sequences. Therefore,
modern variants of SGD employ adaptive steps that use past stochastic gradients or Hessians to avoid saddle
points and deal with ill-conditioned problems. The idea of adaptive steps was first proposed in the online
learning literature by Auer et al. (2002) and later adopted in stochastic optimization, with the Adagrad
algorithm of Duchi et al. (2011). Adagrad aims to normalize the gradient by introducing information about
the square root of the inverse of the covariance of the gradient.

We give non-asymptotic convergence guarantees for modern variants of SGD where both the estimators
are biased and the steps are adaptive. To our knowledge, existing results consider either adaptive steps but
unbiased estimators or biased estimators and non-adaptive steps. Indeed, many standard analyses for SGD
(Moulines and Bach, 2011) and SGD with adaptive steps (Duchi et al., 2011) require unbiased gradients
to obtain convergence results. More recently, convergence results have been obtained for SGD with biased
gradients (Tadić and Doucet, 2011; Karimi et al., 2019; Ajalloeian and Stich, 2020) but non-adaptive steps.

More precisely, we present convergence guarantees for SGD with biased gradients and adaptive steps,
under weak assumptions on the bias and Mean Squared Error (MSE) of the estimator. In many scenarios,
it is indeed possible to control these quantities, as recently shown for example for Importance Sampling
and Sequential Monte Carlo methods (Agapiou et al., 2017; Cardoso et al., 2022, 2023). In particular, we
establish that Adagrad and RMSProp with a biased gradient converge to a critical point for non-convex
smooth functions with a convergence rate of O(log n/

√
n + bn), where bn is related to the bias at iteration n.

However, for convex functions, we achieve an improved convergence rate of O(1/
√
n + bn). Our theoretical

results provide us with hyperparameter tuning procedures to effectively eliminate the bias term, resulting in
improved convergence rates of O(log n/

√
n) and O(1/

√
n) respectively.

Organization of the paper. In Section 2, we introduce the setting of the paper and relevant related
works. In Section 3, we present the Adaptive Stochastic Approximation framework and the main assumptions
for theoretical results. In Section 4, we propose convergence rates for the risk in the convex case and the
squared norm of gradients for non-convex smooth functions in the context of Biased Adaptive Stochastic
Approximation. Finally, we extend the analysis to Adagrad and RMSProp with biased gradients. We
illustrate our results using VAE in Section 5. All proofs are postponed to the appendix.

2 Setting and Related Works

Stochastic Approximation. Stochastic Approximation (SA) methods go far beyond SGD. They consist
of sequential algorithms designed to find the zeros of a function when only noisy observations are available.
Indeed, Robbins and Monro (1951) introduced the Stochastic Approximation algorithm as an iterative
recursive algorithm to solve the following integration equation:

h(θ) = Eπ [Hθ(X)] =

∫
X
Hθ(x)π(x)dx = 0 , (2)

where h is the mean field function, X is a random variable taking values in a measurable space (X,X ), and
Eπ is the expectation under the distribution π. In this context, Hθ can be any arbitrary function. If Hθ(X)
is an unbiased estimator of the gradient of the objective function, then h(θ) = ∇V (θ). As a result, the
minimization problem (1) is then equivalent to solving problem (2), and we can note that SGD is a specific
instance of Stochastic Approximation. Stochastic Approximation methods are then defined as follows:

θn+1 = θn − γn+1Hθn (Xn+1) ,

where the term Hθn (Xn+1) is the n-th stochastic update, also known as the drift term, and is a potentially
biased estimator of ∇V (θn). It depends on a random variable Xn+1 which takes its values in (X,X ). In
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machine learning, V typically represents theoretical risk, θ denotes model parameters, and Xn+1 stands for
the data. The gradient estimator generally corresponds to the gradient of the empirical risk when data is
assumed to be independent and identically distributed. In a reinforcement learning setting, an agent interacts
with an environment to learn an optimal policy based on some parameters θ, taking actions, receiving
rewards, and updating its policy according to observed outcomes. Here, V represents the reward function, θ
denotes policy parameters, and Xn+1 represents state-action sequences.

Adaptive Stochastic Gradient Descent. SGD can be traced back to Robbins and Monro (1951), and its
averaged counterpart was proposed by Polyak and Juditsky (1992). The convergence rates of algorithms for
convex optimization problems rely primarily on the strong convexity of the objective function, as established
by Nemirovskij and Yudin (1983). The non-asymptotic results of SGD in the context of non-convex smooth
functions can be found in Moulines and Bach (2011). Ghadimi and Lan (2013) prove the convergence of a
random iterate of SGD for nonconvex smooth functions, which was already suggested by the results of Bottou
(1991). They show that SGD with constant or decreasing stepsize γk = 1/

√
k converges to a stationary point

of a non-convex smooth function V at a rate of O(1/
√
n) where n is the number of iterations.

Most adaptive first-order methods, such as Adam (Kingma and Ba, 2014), Adadelta (Zeiler, 2012),
RMSProp (Tieleman et al., 2012), and NADA (Dozat, 2016), are based on the blueprint provided by the
Adagrad family of algorithms. The first known work on adaptive steps for non-convex stochastic optimization,
in the asymptotic case, was presented by Kresoja et al. (2017). Ward et al. (2020) proved that Adagrad
converges to a critical point for non-convex objectives at a rate of O(log n/

√
n) when using a scalar adaptive

step. In addition, Zou et al. (2018) extended this proof to multidimensional settings. More recently, Défossez
et al. (2020) focused on the convergence rates for Adagrad and Adam.

Biased Stochastic Approximation. The asymptotic results of Biased Stochastic Approximation have
been studied by Tadić and Doucet (2011). The non-asymptotic analysis of Biased Stochastic Approximation
can be found in the reinforcement learning literature, especially in the context of temporal difference (TD)
learning, as explored by Bhandari et al. (2018); Lakshminarayanan and Szepesvari (2018); Dalal et al. (2018).
The case of non-convex smooth functions has been studied by Karimi et al. (2019). The authors establish
convergence results for the mean field function at a rate of O(log n/

√
n + b), where b corresponds to the

bias and n to the number of iterations. For strongly convex functions, the convergence of SGD with biased
gradients can be found in Ajalloeian and Stich (2020), who consider a constant step size. This analysis
applies specifically to the case of Martingale noise. Biased Stochastic Approximation with Markov noise
has also been investigated by Li and Wai (2022). The authors focused on performative prediction problems,
where the objective function is the expected value of a loss. They assumed the smoothness of V , along with
specific assumptions regarding the existence of a bounded solution of the Poisson equation and additional
Lipschitz properties. Our analysis provides non-asymptotic results in a more general setting, for a wide
variety of objective functions and treating both the Martingale and Markov chain cases.

3 Adaptive Stochastic Approximation

3.1 Framework

Consider the optimization problem (1) where the objective function V is assumed to be differentiable. In
this paper, we focus on the following Stochastic Approximation (SA) algorithm with adaptive steps: θ0 ∈ Rd

and for all n ≥ 0,
θn+1 = θn − γn+1AnHθn (Xn+1) , (3)

where γn+1 > 0 and An is a sequence of symmetric and positive definite matrices. Let (Fn)n≥0 be the
filtration generated by the random variables (θ0, {Xk}k≤n) and assume that for all n ≥ 0, An is Fn-measurable.
In a context of biased gradient estimates, choosing

An =

[
δId +

( 1

n

n−1∑
k=0

Hθk (Xk+1)Hθk (Xk+1)
⊤
)]−1/2

can be assimilated to the full Adagrad algorithm (Duchi et al., 2011). However, computing the square root
of the inverse becomes expensive in high dimensions, so in practice, Adagrad is often used with diagonal

3



matrices. This approach has been shown to be particularly effective in sparse optimization settings. Denoting
by Diag(A) the matrix formed with the diagonal terms of A and setting all other terms to 0, Adagrad with
diagonal matrices is defined in our context as:

An =
[
δId + Diag(H̄n(X0:n, θ0:n−1))

]−1/2
, (4)

where

H̄n(X0:n, θ0:n−1) =
1

n

n−1∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤ .

In RMSProp (Tieleman et al., 2012), H̄n(X0:n, θ0:n−1) in (4) is an exponential moving average of the past
squared gradients. It is defined by:

(1 − ρ)
n−1∑
k=0

ρn−kHθk(Xk+1)Hθk(Xk+1)
⊤,

where ρ is the moving average parameter. Furthermore, when An is a recursive estimate of the inverse
Hessian, it corresponds to the Stochastic Newton algorithm (Boyer and Godichon-Baggioni, 2023).

3.2 Assumptions

We state below the main assumptions necessary to our theoretical results.

Assumption 1. The objective function V is convex and there exists a constant µ > 0 such that:

2µ (V (θ) − V (θ∗)) ≤ ∥∇V (θ)∥2, ∀θ ∈ Rd.

The second condition of Assumption 1 corresponds to the Polyak- Lojasiewicz condition. Furthermore,
Assumption 1 is a weaker assumption compared to the function being strongly convex. In machine learning,
this assumption holds true for linear regression, logistic regression and Huber loss when the Hessian at the
minimizer is positive. If this condition is not met, we can add a regularization term to the loss in the form of
µ∥θ∥2/2, where µ represents the regularization parameter.

Assumption 2. The objective function V is L-smooth. For all (θ, θ′) ∈
(
Rd
)2

,∥∥∇V (θ) −∇V
(
θ′
)∥∥ ≤ L

∥∥θ − θ′
∥∥ .

This assumption is crucial to obtain our convergence rate and is very common (see, e.g., Moulines and

Bach, 2011; Bottou et al., 2018). Under this assumption, for all (θ, θ′) ∈
(
Rd
)2

,

V (θ) ≤ V
(
θ′
)

+
〈
∇V

(
θ′
)
, θ − θ′

〉
+

L

2

∥∥θ − θ′
∥∥2 .

Assumption 3. For all n ∈ N, there exists rn ≥ 0 and σ2
n ≥ 0 such that:

(i) Bias:
∥∥E[Hθn(Xn+1) | Fn] −∇V (θn)

∥∥ ≤ rn.

(ii) Mean Squared Error (MSE):

E
[
∥Hθn (Xn+1) −∇V (θn)∥2 | Fn

]
≤ σ2

n.

In this assumption, the sequences rn and σ2
n control the bias and MSE without any specific assumption

regarding their dependence on n, making our setting very general. This assumption can be verified, for
example, when the gradient estimator follows the form of Self-Normalized Importance Sampling (SNIS)
(Agapiou et al., 2017) or in various Monte Carlo applications as discussed in Appendix C. Furthermore,
the first point of Assumption 3 is satisfied by a wide range of discrete-time stochastic processes, including
i.i.d. random sequences and Markov chains, with some additional assumptions. In the case where {Xn, n ∈ N}
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is an i.i.d. sequence, this can be easily verified by considering rn as the difference between the gradient and
the mean field function defined in (2). If h(θn) = ∇V (θn), i.e., for SGD with unbiased gradient estimators,
the second point is equivalent to ensuring that the variance of the noise term is bounded. In this context,
this assumption is standard, see for example Moulines and Bach (2011); Ghadimi and Lan (2013). In our
particular case, however, it accounts for the time-dependent variance of the noise term.

We consider also an additional assumption on An. Let ∥A∥ be the spectral norm of a matrix A.

Assumption 4. For all n ∈ N, there exists βn, λn > 0 such that:

∥An∥ = λmax(An) ≤ βn+1 and λmin (An) ≥ λn+1.

In our setting, since An is assumed to be a symmetric matrix, the spectral norm is equal to the largest
eigenvalue. Assumption 4 plays a crucial role, as the estimates may diverge when this assumption is not
satisfied. Given a sequence {βn}n∈N, one way to ensure that Assumption 4 is satisfied is to replace the
random matrices An with

Ãn =
min{∥An∥, βn+1}

∥An∥
An. (5)

It is then clear that ∥Ãn∥ ≤ βn+1. Furthermore, in most cases, especially for Adagrad and Stochastic Newton
algorithm, control of λmin (An) in Assumption 4 is satisfied, as discussed by Godichon-Baggioni and Tarrago
(2023, Section 3.2.1).

4 Convergence Results

4.1 Convex case

In this section, we study the convergence rate of SGD with biased gradients and adaptive steps in the convex
case. We give below a simplified version of the bound we obtained on the risk and refer to Theorem A.2 in
the appendix for a formal statement with explicit constants.

Theorem 4.1. Let θn ∈ Rd be the n-th iterate of the recursion (3) and γn = Cγn
−γ , βn = Cβn

β, λn = Cλn
−λ

with Cγ > 0, Cβ > 0, and Cλ > 0. Assume that γ, β, λ ≥ 0 and γ + λ < 1. Then, under Assumptions 1 − 4,
we have:

E [V (θn) − V (θ∗)]= O
(
n−γ+2β+λ + bn

)
, (6)

where the bias term bn can be constant or decreasing. In the latter case, writing rn = n−α, we have:

bn = O
(
n−2α+2β+2λ

)
.

The rate obtained is classical and shows the tradeoff between a term coming from the adaptive steps
(with a dependence on γ, β, λ) and a term bn which depends on the control of the bias rn. To minimize
the right hand-side of (6), we would like to have β = λ = 0. However, this would require much stronger
assumptions. For example, in the case of Adagrad and RMSProp, the gradients would need to be bounded,
which will be discussed later.

We stress that Theorem 4.1 applies to any adaptive algorithm of the form (3), with the only assumption
being Assumption 4 on the eigenvalues of An. Without any information on these eigenvalues, the choice that
βn ∝ nβ and λn ∝ n−λ allows us to remain very general.

An interesting example where we can control the bias term rn is the case of Monte Carlo methods. In this
scenario, the bias depends on a number N of samples used to estimate the gradient and is usually of order
1/N , see for instance Agapiou et al. (2017); Del Moral et al. (2010); Cardoso et al. (2023). It can therefore
be controlled by choosing a different number of samples Nn at each iteration n ≥ 1. To obtain a bias of order
O(n−α) at iteration n, we simply select Nn = nα. This idea will be further developed in Section 5.

To illustrate Theorem 4.1 and the impact of bias, we consider in Figure 1 a simple least squares objective
function V (θ) = ∥Aθ∥2/2 in dimension d = 10. We artificially add to every gradient a zero-mean Gaussian
noise and a bias term rn = n−α at each iteration n. We use Adagrad with a learning rate γ = 1/2, β = 0
and λ = 0. Then, the bound of Theorem 4.1 is of the form O(n−1/2 + n−2α). First, note that the impact of
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a constant bias term (rn = 1) never vanishes. From rn = 1 to rn = n−1/4, the effect of the bias decreases
until a threshold is reached where there is no significant improvement. The convergence rate in the case
rn = n−1/4 is then the same as in the case without bias, illustrating the fact that in this case the dominating
term comes from the learning rate.

0 2000 4000 6000 8000 10000
Epochs

10 1

100
V(

n)
V(

* )

n 1/2

n 1/4

rn = 1
rn = n 1/8

rn = n 1/4

rn = n 1/2

rn = n 1

rn = 0

Figure 1: Value of V (θn)−V (θ∗) with Adagrad for different values of rn = n−α and a learning rate γn = n−1/2.
The dashed curve corresponds to the expected convergence rate O(n−1/4) for α = 1/8 and O(n−1/2) for
α ≥ 1/4.

Finally, note that non-adaptive SGD is a particular case of Theorem 4.1. Thus, our theorem gives new
results also in the non-adaptive case with generic step sizes and biased gradients, while the only existing
results in the literature assume constant step sizes (Ajalloeian and Stich, 2020).

4.2 Non-convex smooth case

In the non-convex smooth case, the theoretical results are based on a randomized version of Stochastic
Approximation as described by Nemirovski et al. (2009); Ghadimi and Lan (2013); Karimi et al. (2019). In
classical SA, the update (3) is performed a fixed number of times n, and the quantity of interest is the last
parameter θn. On the other hand, in Randomized Stochastic Approximation, we introduce a random variable
R which takes its values in {1, . . . , n} and the quantity of interest is θR. We stress that this procedure is a
technical tool for the proofs, in practical applications we will always use classical SA.

The following theorem provides a bound in expectation on the gradient of the objective function V , which
is the best results we can have given that no assumption is made about existence of a global minimum of V .

Theorem 4.2. Assume that for all k ≥ 0, we have γk+1 ≤ λk+1/(6Lβ2
k+1). For any n ≥ 1, let R ∈ {0, . . . , n}

be a discrete random variable, independent of {Fn, n ∈ N}, such that:

P(R = k) :=
γk+1λk+1∑n
j=0 γj+1λj+1

.

Then, under Assumptions 2 − 4, we have:

E
[
∥∇V (θR)∥2

]
≤ 3

V ∗ + α1,n/2 + Lα2,n∑n
j=0 γj+1λj+1

,

where

α1,n =
n∑

k=0

γk+1β
2
k+1r

2
k/λk+1, α2,n =

n∑
k=0

γ2k+1β
2
k+1σ

2
k,

and V ∗ = E[V (θ0) − V (θ∗)].
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Theorem 4.2 recovers the asymptotic rate of convergence obtained by Karimi et al. (2019) but with
explicit bounds with respect to the hyper-parameters γ, β, λ and the bias. We can observe that if γ ≤ λ+ 2β,
the condition on (γk)k≥1 can be met simply by tuning Cγ . In particular, if An = Id, the requirement on the
step sizes can be expressed as γk+1 ≤ 1/(6L).

We give below the convergence rates obtained from Theorem 4.2 under the same assumptions on γn, βn
and λn as in the convex case.

Corollary 4.3. Let γn = Cγn
−γ , βn = Cβn

β, λn = Cλn
−λ with Cγ > 0, Cβ > 0, and Cλ > 0. Assume that

γ, β, λ ≥ 0 and γ + λ < 1. Then, under Assumptions 2 − 4, we have:

E
[
∥∇V (θR)∥2

]
=


O
(
n−γ+λ+2β + bn

)
if ϑ < 1/2 ,

O
(
nγ+λ−1 + bn

)
if ϑ > 1/2 ,

O
(
nγ+λ−1log n + bn

)
if ϑ = 1/2 ,

with ϑ = γ−β and where the bias term bn can be constant or decreasing. In the latter case, writing rn = n−α,
we have:

bn =


O
(
nβ−2α

)
if 2α < 1 − γ + λ + 2β ,

O
(
nγ+λ−1

)
if 2α > 1 − γ + λ + 2β ,

O
(
nγ+λ−1 log n

)
if 2α = 1 − γ + λ + 2β .

In practice, the value of α is known in advance while the other parameters can be tuned to achieve the
optimal rate of convergence. In any scenario, we can never achieve a bound of O(1/

√
n + bn), and the best

rate we can achieve is O(log n/
√
n + bn) if and only if γ = 1/2, β = 0 and λ = 0. In this case, all eigenvalues

of An must be bounded both from below and above. In the context of decreasing bias, if α ≥ 1/4, the bias
term contributes to the speed of the algorithm. Otherwise, the other term is the leading term of the upper
bound. However, in both cases, the best achievable bound is O(log n/

√
n) if α ≥ 1/4.

Bounded Gradient Case. Now, we provide the convergence analysis of Randomized Adaptive
Stochastic Approximation with a bounded stochastic update. Consider the following additional assumption
about the stochastic update.

Assumption 5. The stochastic update is bounded, i.e., there exists M ≥ 0 such that for all n ∈ N,

∥Hθn (Xn+1)∥ ≤ M.

It is important to note that under Assumption 3, this is equivalent to bounding the stochastic gradient of
the objective function. Corollary 4.4 provides a bound on the gradient of the objective function V , which is
similar to Theorem 4.2.

Corollary 4.4. Let γn = Cγn
−γ , βn = Cβn

β, λn = Cλn
−λ with Cγ > 0, Cβ > 0, and Cλ > 0. Assume that

γ, β, λ ≥ 0 and γ + λ < 1. For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random variable.
Then, under Assumptions 2 − 4, 5, we have:

E
[
∥∇V (θR)∥2

]
≤

2V ∗ + α1,n + LM2α′
2,n√

n
,

where V ∗, α1,n are defined in Theorem 4.2 and α′
2,n =

∑n
k=0 γ

2
k+1β

2
k+1.

Importantly, in Corollary 4.4, there are no assumptions on the step sizes, and we obtain a better bound
than in Theorem 4.2.

4.3 Application to Adagrad and RMSProp

In this section, we provide the convergence analysis of Adagrad and RMSProp with a biased gradient
estimator.

Remark 4.5. Under Assumption 5, for all eigenvalues λ of An, the adaptive matrix in Adagrad or RMSProp,
it holds that (M2 + δ)−1/2 ≤ λ ≤ δ−1/2, i.e., Assumption 4 is satisfied with λ = 0 and β = 0.
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Corollary 4.6. Let γn = cγn
−1/2 and An denote the adaptive matrix in Adagrad or RMSProp. For any

n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random variable. Then, under Assumptions 2, 3, 5, we
have:

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
.

The bias bn is explicitly given in Appendix A.

Since we do not have information about the global minimum of the objective function V , Corollary 4.6
establishes the rate of convergence of Adagrad and RMSProp with biased gradient to a critical point for
non-convex smooth functions. In the case of an unbiased gradient, we obtain the same bound as in Zou et al.
(2018), under the same assumptions:

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n

)
.

If the bias is of the order O(n−1/4), the algorithm achieves the same convergence rate as in the case of an
unbiased gradient.

5 Experiments

In this section, we illustrate our theoretical results in the context of deep VAE. The experiments were
conducted using PyTorch (Paszke et al., 2017), and the source code can be found here∗. In generative models,
the objective is to maximize the marginal likelihood defined as:

log pθ(x) = logEpθ(·|x)

[
pθ(x, Z)

pθ(Z|x)

]
,

where (x, z) 7→ pθ(x, z) is the complete likelihood, x are the observations and Z is the latent variable. Under
some simple technical assumptions, by Fisher’s identity, we have:

∇θ log pθ(x) =

∫
∇θ log pθ(x, z)pθ(z | x)dz. (7)

However, in most cases, the conditional density z 7→ pθ(z | x) is intractable and can only be sampled.
Variational Autoencoders introduce an additional parameter ϕ and a family of variational distributions
z 7→ qϕ(z | x) to approximate the true posterior distribution. Parameters are estimated by maximizing the
Evidence Lower Bound (ELBO):

log pθ(x) ≥ Eqϕ(·|x)

[
log

pθ(x, Z)

qϕ(Z|x)

]
=: LELBO(θ, ϕ;x).

The Importance Weighted Autoencoder (IWAE) (Burda et al., 2015) is a variant of the VAE that incorporates
importance weighting to obtain a tighter ELBO. The IWAE objective can be written as follows:

LIWAE
k (θ, ϕ;x) = Eq⊗k

ϕ (·|x)

[
log

1

k

k∑
ℓ=1

pθ(x, Z
(ℓ))

qϕ(Z(ℓ)|x)

]
,

where k corresponds to the number of samples drawn from the variational posterior distribution. The
estimator of the gradient of ELBO in IWAE corresponds to the biased Self-Normalized Importance Sampling
(SNIS) estimator of the gradient of the marginal log likelihood log pθ(x). As a consequence of the results of
Agapiou et al. (2017), both the bias and Mean Squared Error (MSE) are of order O(1/k). Since the bias
has an impact on the convergence rates, we propose to use the Biased Reduced Self-Normalized Importance
Sampling (BR-SNIS) algorithm, proposed by Cardoso et al. (2022), to the IWAE estimator, resulting in the
Biased Reduced Importance Weighted Autoencoder (BR-IWAE). The BR-IWAE algorithm (Cardoso et al.,
2022) proceeds in two steps, which are repeated during optimization:

∗URL hidden during review process
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• Update the parameter ϕ as in the IWAE algorithm, that is, for all n ≥ 1:

ϕn+1 = ϕn − γn+1An∇ϕLIWAE
k (θn, ϕn;Xn+1).

• Update the parameter θ by estimating (7) using BR-SNIS as detailed in Appendix B.

Dataset. We conduct our experiments on the CIFAR-10 dataset (Krizhevsky et al., 2009), which is a
widely used dataset for image classification tasks. CIFAR-10 consists of 32x32 pixel images categorized into
10 different classes. The dataset is divided into 60,000 images in the training set and 10,000 images in the
test set. Additional experiments are provided in Appendix B.

Model. We use a Convolutional Neural Network (CNN) architecture with the Rectified Linear Unit
(ReLU) activation function for both the encoder and the decoder. The latent space dimension is set to 100.
Further details of the model are provided in Appendix B. We estimate the log-likelihood using the VAE,
IWAE, and BR-IWAE models, all of which are trained for 100 epochs. Training is conducted using Adagrad
and RMSProp with a decaying learning rate.
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Figure 2: Negative Log-Likelihood on the test set for Different Generative Models with Adagrad and
RMSProp on the CIFAR-10 Dataset. Bold lines represent the mean over 5 independent runs.

In this section, we exclusively use Adagrad and RMSProp algorithms to illustrate the results of Section 4.3
and we do not conduct a comparison with SGD. For the first experiment, we set a constant bias, i.e., we
use k = 5 samples in both IWAE and BR-IWAE, while restricting the maximum iteration of the MCMC
algorithm to 5 for BR-IWAE. The test losses are presented in Figure 2. We show the negative log-likelihood
on the test dataset for VAE, IWAE, and BR-IWAE with Adagrad and RMSProp. As expected, we observe
that IWAE outperforms VAE, while BR-IWAE outperforms IWAE by reducing bias in both cases.

To illustrate our results, we choose to incorporate a time-dependent bias that decreases by choosing a bias
of order O(n−α) at iteration n. The bias of the estimator of the gradient in IWAE is of the order O(1/k),
where k is the number of importance weights. Therefore, choosing the bias of order O(n−α) is equivalent to
using nα samples at iteration n, to estimate the gradient. This procedure is detailed in Appendix B. We
vary α only for IWAE for computational efficiency and plot the following quantities.

• In Figures 3 and 4, the gradient squared norm ∥∇V (θn)∥2 to illustrate the convergence rate.

• In Figure 5, the Negative Log-Likelihood along iterations.

Figures 3 and 4 illustrate our results, while the other figures are meant to confirm the behavior of test
loss with different values of α. All figures are plotted on a logarithmic scale for better visualization. It is
important to note that all figures are in respect to epochs, whereas here, n represents the iteration (number
of updates of the gradient).

Note that the dashed curve corresponds to the expected convergence rate O(n−1/4) for α = 1/8 and
O(log n/

√
n) for α = 1/4 and for α = 1/2. We can clearly observe that for each of the cases, fast convergence

9
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Figure 3: Value of ∥∇V (θn)∥2 in IWAE with Adagrad for different values of α. Bold lines represent the
mean over 5 independent runs.

0 20 40 60 80 100
Epochs

100

101

102

V
(

n
)

2

= 1/8 (RMSProp)
= 1/4 (RMSProp)
= 1/2 (RMSProp)
= 1/8 (Adam)
= 1/4 (Adam)
= 1/2 (Adam)

Figure 4: Value of ∥∇V (θn)∥2 in IWAE with RMSProp and Adam for different values of α. Bold lines
represent the mean over 5 independent runs.

is achieved when n is sufficiently large. There are several possible explanations for this rapid convergence
with a decreasing time-dependent bias. First, we may be able to improve the upper bound by obtaining for
instance a better bound for the bias.

Our experiments show similar results for Adagrad and RMSProp in terms of convergence rates, although
RMSProp performs slightly better. However, Adam’s behavior is somewhat more intricate due to the
incorporation of momentum. Nevertheless, we consistently observe the impact of bias, although it tends to
be relatively small, as the bias correction terms may help mitigate bias in the moving averages.

It is clear that with a larger α, convergence in both squared gradient norm and negative log-likelihood
is faster. However, beyond a certain threshold for α, we observe that the rate of convergence does not
change significantly. Since choosing a larger α induces an additional computational cost, it is crucial to select
an appropriate value of α, that achieves fast convergence without being too computationally costly. One
approach to choose such a value for α is to plot the test loss with respect to time, which is shown in Figure 6
for Adagrad. Although α = 1/2 seems to have faster convergence in terms of iterations in Figure 5, the best
rate in terms of time in Figure 6 is α = 1/4. We obtain similar results for RMSProp, see Appendix B.
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Figure 5: Negative Log-Likelihood on the test set on the CIFAR-10 Dataset for IWAE with Adagrad and
RMSProp for Different Values of α. Bold lines represent the mean over 5 independent runs.
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Figure 6: Negative Log-Likelihood on the test set of the CIFAR-10 Dataset for IWAE with Adagrad for
Different Values of α over time (in seconds). Bold lines represent the mean over 5 independent runs.

6 Discussion

This paper provides a comprehensive non-asymptotic analysis of Biased Adaptive Stochastic Approximation
for both convex and non-convex smooth functions. We derive a convergence rate of O(1/

√
n + bn) for convex

functions and O(log n/
√
n+bn) for non-convex smooth functions, where bn corresponds to the time-dependent

decreasing bias. We also establish that Adagrad and RMSProp with biased gradients converges to critical
points for non-convex smooth functions. Our results provide insights on hyper-parameters tuning to achieve
fast convergence and reduce unnecessary computational time.

We intend to investigate whether the eigenvalues control conditions can be satisfied in practical settings,
such as in the case of Stochastic Newton or Gauss Newton methods. We conducted additional comparisons
with Adam to propose practical insights. However, a possible extension of our work is to extend our theoretical
results to Adam.
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de la parole. PhD thesis, Paris 11.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311.

Boyer, C. and Godichon-Baggioni, A. (2023). On the asymptotic rate of convergence of stochastic newton
algorithms and their weighted averaged versions. Computational Optimization and Applications, 84(3):921–
972.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519.

Cardoso, G., Idrissi, Y. J. E., Le Corff, S., Moulines, É., and Olsson, J. (2023). State and parameter learning
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A Proofs

A.1 Proof of Theorem 4.1

We first establish a technical lemma which is essential for the proof.

Lemma A.1. Let (δn)n≥0 , (γn)n≥1 , (ηn)n≥1, and (vn)n≥1 be some positive sequences satisfying the following
assumptions.

• The sequence δn follows the recursive relation:

δn ≤ (1 − 2ωγn + ηnγn) δn−1 + vnγn,

with δ0 ≥ 0 and ω > 0.

• Let n0 = inf {n ≥ 1 : ηn ≤ ω}, then for all n ≥ n0 + 1, we assume that ωγn ≤ 1.

Then, for all n ∈ N,

δn ≤ exp

−ω

n∑
k=n/2

γk

 exp

(
2

n∑
k=1

ηkγk

)(
δ0 + 2 max

1≤k≤n

vk
ηk

)
+

1

ω
max

n/2≤k≤n
vk.

The proof is given in Godichon-Baggioni and Tarrago (2023). We will present the detailed version of
Theorem 4.1.

Theorem A.2. Let θn ∈ Rd be the n-th iterate of the recursion (3). Under Assumptions 1 − 4, we have:

E [V (θn) − V (θ∗)] ≤

(
E [V (θ0) − V (θ∗)] +

1

L2
max
1≤k≤n

λk+1vk
β2
k+1γk+1

)
exp

−µ

2

n∑
k=n/2

λk+1γk+1


exp

(
4L2

n∑
k=1

Ckβ
2
k+1γ

2
k+1

)
+

2

µ
max

n/2≤k≤n
vk,

where

Ck = max

{
1,

µ2λ2
k+1

8L2β2
k+1

}
and vk =

1

2

Lβ2
k+1r

2
k

µλ2
k+1

+ Lσ2
k

β2
k+1

λk+1
γk+1.

Proof. As V is L smooth (Assumption 2) and using the recursion (3) of Adaptive SA, we obtain:

V (θn+1) ≤ V (θn) + ⟨∇V (θn) | θn+1 − θn⟩ +
L

2
∥θn+1 − θn∥2

≤ V (θn) − γn+1 ⟨∇V (θn) | AnHθn (Xn+1)⟩ +
Lγ2n+1

2
∥An∥2 ∥Hθn (Xn+1)∥2

≤ V (θn) − γn+1 ⟨∇V (θn) | AnHθn (Xn+1)⟩ +
Lγ2n+1

2
β2
n+1 ∥Hθn (Xn+1) −∇V (θn) + ∇V (θn)∥2 .

Using that for all x, y ≥ 0, ∥x + y∥2 ≤ 2
(
∥x∥2 + ∥y∥2

)
, and writing Vn = V (θn) − V (θ∗), we get

Vn+1 ≤ Vn − γn+1 ⟨∇V (θn) | AnHθn (Xn+1)⟩ + Lγ2n+1β
2
n+1

(
∥Hθn (Xn+1) −∇V (θn)∥2 + ∥∇V (θn)∥2

)
.
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Then, using Assumption 3, and since ∥∇V (θn)∥2 ≤ 2LVn (Assumption 1 and 2),

E [Vn+1 | Fn] ≤
(
1 + 2L2β2

n+1γ
2
n+1

)
Vn − γn+1 ⟨∇V (θn) | An (E [Hθn (Xn+1) | Fn] −∇V (θn))⟩

− γn+1 ⟨∇V (θn) | An∇V (θn)⟩ + Lσ2
nγ

2
n+1β

2
n+1

≤
(
1 + 2L2β2

n+1γ
2
n+1

)
Vn + γn+1βn+1rn ∥∇V (θn)∥ − γn+1 ⟨∇V (θn) | An∇V (θn)⟩

+ Lσ2
nγ

2
n+1β

2
n+1

≤
(
1 + 2L2β2

n+1γ
2
n+1

)
Vn +

1

2an
γn+1βn+1r

2
n + anLγn+1βn+1Vn

− γn+1 ⟨∇V (θn) | An∇V (θn)⟩ + Lσ2
nγ

2
n+1β

2
n+1,

where the second last inequality is due to the Cauchy-Schwarz inequality. In the last inequality, we used
∥∇V (θn)∥2 ≤ 2LVn and the inequality xy ≤ x2/(2an) + any

2/2 where an is defined below. Furthermore,
since V satisfies the Polyak- Lojasiewicz condition (Assumption 1),

⟨∇V (θn) | An∇V (θn)⟩ ≥ λmin (An) ∥∇V (θn)∥2 ≥ 2λn+1µVn.

Finally, choosing an = (µλn+1)/(Lβn+1) we obtain:

E [Vn+1] ≤
(
1 − µλn+1γn+1 + 2L2β2

n+1γ
2
n+1

)
E [Vn] +

1

2

Lβ2
n+1r

2
n

µλn+1
γn+1 + Lσ2

nγ
2
n+1β

2
n+1.

By choosing γ̄n+1 = λn+1γn+1, we get:

E [Vn+1] ≤
(

1 − µγ̄n+1 + 2L2β
2
n+1

λ2
n+1

γ̄2n+1

)
E [Vn] +

1

2

Lβ2
n+1r

2
n

µλ2
n+1

γ̄n+1 + Lσ2
n

β2
n+1

λ2
n+1

γ̄2n+1.

In order to satisfy the assumptions of Lemma A.1, consider Cn = max
{

1, (µ2λ2
n+1)/(8L2β2

n+1)
}

, and since
Cn ≥ 1, we have:

E [Vn+1] ≤
(

1 − µγ̄n+1 + 2L2Cnβ
2
n+1

λ2
n+1

γ̄2n+1

)
E [Vn] +

1

2

Lβ2
n+1r

2
n

µλ2
n+1

γ̄n+1 + Lσ2
n

β2
n+1

λ2
n+1

γ̄2n+1.

Now, using lemma A.1 by choosing:

δn = E [Vn] , ηn = 2L2Cnβ
2
n+1

λ2
n+1

γ̄n+1, ω =
µ

2
, vn =

1

2

Lβ2
n+1r

2
n

µλ2
n+1

+ Lσ2
n

β2
n+1

λ2
n+1

γ̄n+1,

we have:

E [V (θn) − V (θ∗)] ≤

(
E [V (θ0) − V (θ∗)] +

1

L2
max
1≤k≤n

vkλ
2
k+1

β2
k+1γ̄k+1

)
e−

µ
2

∑n
k=n/2 γ̄k+1e

4L2
∑n

k=1

Ckβ2k+1

λ2
k+1

γ̄2
k+1

+
2

µ
max

n/2≤k≤n
{vk} ,

which concludes the proof by replacing γ̄n+1 = λn+1γn+1.

A.2 Proof of Theorem 4.2

By Assumption 2, V is L-smooth and using the recursion (3) of Adaptive SA together with a Taylor expansion,
we obtain:

V (θk+1) ≤V (θk) + ⟨∇V (θk) | θk+1 − θk⟩ +
L

2
∥θk+1 − θk∥2 ,

which yields

V (θk+1) ≤ V (θk) − γk+1 ⟨∇V (θk) | Ak∇V (θk)⟩ − γk+1 ⟨∇V (θk) | Ak (Hθk (Xk+1) −∇V (θk))⟩
+ δk+1

(
∥Hθk (Xk+1) −∇V (θk)∥2 + ∥∇V (θk)∥2

)
,
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with δk+1 = Lγ2k+1β
2
k+1. By the Cauchy-Schwarz inequality, and using Assumptions (3) and (4),

E[V (θk+1)|Fk] ≤ V (θk) + γk+1βk+1rk∥∇V (θk)∥ − γk+1λmin(Ak)∥∇V (θk)∥2 + δk+1(σ
2
k + ∥∇V (θk)∥2).

Therefore,

γk+1

(
λk+1 −

λk+1

2
− Lγk+1β

2
k+1

)
∥∇V (θk)∥2 ≤ V (θk) − E [V (θk+1) |Fk] +

γk+1β
2
k+1r

2
k

2λk+1
+ δk+1σ

2
k.

and

n∑
k=0

γk+1λk+1

(
1

2
−

Lγk+1β
2
k+1

λk+1

)
E
[
∥∇V (θk)∥2

]
≤ E [V (θ0) − V (θn+1)] +

1

2

n∑
k=0

γk+1β
2
k+1r

2
k

λk+1
+

n∑
k=0

δk+1σ
2
k.

Then, given that γk+1 ≤ λk+1/(6Lβ2
k+1), we have

1

3
E

[
n∑

k=0

γk+1λk+1 ∥∇V (θk)∥2
]
≤ E [V (θ0) − V (θn+1)] +

1

2

n∑
k=0

γk+1β
2
k+1r

2
k

λk+1
+

n∑
k=0

δk+1σ
2
k .

Consequently, by definition of the discrete random variable R,

E
[
∥∇V (θR)∥2

]
=

n∑
k=0

γk+1λk+1E
[
∥∇V (θk)∥2

]
∑n

j=0 γj+1λj+1

≤ 3
V0,n + 1

2

∑n
k=0 γk+1β

2
k+1r

2
k/λk+1 +

∑n
k=0 δk+1σ

2
k∑n

j=0 γj+1λj+1
,

where V0,n = E[V (θ0) − V (θn+1)], which concludes the proof by noting that V (θn+1) ≥ V (θ∗).

A.3 Proof of Corollary 4.3

The proof is a direct consequence of the fact that for a sufficiently large n:

n∑
k=1

1

ks
=


O
(
n−s+1

)
if 0 ≤ s < 1 ,

O (1) if s > 1 ,

O (log n) if s = 1 .

A.4 Proof of Corollary 4.4

By Assumption 2, V is L-smooth and using recursion (3) of Adaptive SA same as Theorem 4.2, we obtain:

V (θk+1) ≤ V (θk) + ⟨∇V (θk) | θk+1 − θk⟩ +
L

2
∥θk+1 − θk∥2

≤ V (θk) − γk+1 ⟨∇V (θk) | AkHθk (Xk+1)⟩ +
Lγ2k+1

2
∥Ak∥2 ∥Hθk (Xk+1)∥2 ,

which, using Assumption (5) yields:

V (θk+1) ≤ V (θk) − γk+1 ⟨∇V (θk) | Ak∇V (θk)⟩ − γk+1 ⟨∇V (θk) | Ak (Hθk (Xk+1) −∇V (θk))⟩

+
L

2
γ2k+1β

2
k+1M

2.

By the Cauchy-Schwarz inequality, and using Assumptions (3) and (4),

E[V (θk+1)|Fk] ≤ V (θk) − γk+1λmin(Ak)∥∇V (θk)∥2 + γk+1βk+1rk∥∇V (θk)∥ +
LM2

2
γ2k+1β

2
k+1

≤ V (θk) − γk+1λk+1∥∇V (θk)∥2 + γk+1βk+1rk∥∇V (θk)∥ +
LM2

2
γ2k+1β

2
k+1 .
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Therefore,

γk+1

(
λk+1 −

λk+1

2

)
∥∇V (θk)∥2 ≤ V (θk) − E [V (θk+1) |Fk] +

γk+1β
2
k+1r

2
k

2λk+1
+

LM2

2
γ2k+1β

2
k+1,

and

1

2

n∑
k=0

γk+1λk+1E
[
∥∇V (θk)∥2

]
≤ E [V (θ0) − V (θn+1)] +

1

2

n∑
k=0

γk+1β
2
k+1r

2
k

λk+1
+

LM2

2

n∑
k=0

γ2k+1β
2
k+1.

Consequently, by definition of the discrete random variable R,

E
[
∥∇V (θR)∥2

]
=

1

n

n∑
k=0

E
[
∥∇V (θk)∥2

]
≤

n∑
k=0

γk+1λk+1√
n

E
[
∥∇V (θk)∥2

]
≤

2V0,n +
∑n

k=0 γk+1β
2
k+1r

2
k/λk+1 + LM2

∑n
k=0 γ

2
k+1β

2
k+1√

n
,

where V0,n = E[V (θ0) − V (θn+1)], which conclude the proof by noting that V (θn+1) ≥ V (θ∗).

A.5 Proof of Corollary 4.6

Adagrad

• Upper bound for the largest eigenvalue of An. By assumption (5), we have:∥∥∥∥∥ 1

n

n−1∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤

∥∥∥∥∥ ≤ M2.

This implies that:

λmin(An) = λmax

(
δId + Diag

(
1

n

n−1∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤

))−1/2

≥ (δ + M2)−1/2.

• Lower bound for the smallest eigenvalue of An.

λmax(An) = λmin

(
δId + Diag

(
1

n

n−1∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤

))−1/2

≤ δ−1/2.

Therefore, by setting λn+1 = 1/
√
δ + M2 and βn+1 = 1/

√
δ, we have λ = 0 and β = 0. The proof is

completed by applying Corollary 4.4 and then Corollary 4.3.
RMSProp

• Upper bound for the largest eigenvalue of An. By assumption (5), we have:

∥Vn∥ ≤ (1 − ρ)
n∑

k=1

ρn−k ∥Hθk(Xk+1)∥2 ≤ M2(1 − ρ)
n∑

k=1

ρn−k ≤ M2,

where we used the fact that
∑n

k=1 ρ
n−k ≤ (1 − ρ)−1. This implies that:

λmin(An) = λmax (δId + Diag (Vn))−1/2 ≥ (δ + M2)−1/2.

• Lower bound for the smallest eigenvalue of An.

λmax(An) = λmin (δId + Diag (Vn))−1/2 ≤ δ−1/2.
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The bias term bn is given by:

bn =


O
(
n−2α

)
if α < 1/4 ,

O
(
n−1/2

)
if α > 1/4 ,

O
(
n−1/2 log n

)
if α = 1/4 .

B Additional Experimental Details

B.1 Experiment with a Synthetic Time-Dependent Bias

In this setup, we consider a simple least squares objective function V (θ) = ∥Aθ∥2/2 in dimension d = 10,
where A is a positive matrix ensuring convexity. We introduce zero-mean Gaussian noise with variance
σ2 = 0.01 to every gradient and artificially include the bias term rn at each iteration. We explore different
values of rn ∈ {1, n−1/8, n−1/4, n−1/2, n−1, 0}, where rn = 1 corresponds to constant bias, rn = 0 for an
unbiased gradient, and the others exhibit decreasing bias.
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Figure 7: Value of ∥∇V (θn)∥2 with Adagrad for different values of rn.

In Figure 7, we observe the convergence rate of the squared norm of the gradient. Similar to Figure 1, we
notice the impact of bias on the squared norm of the gradient. When α ≥ 1/4, we observe nearly the same
convergence rate as in the case of an unbiased gradient.

B.2 Importance Weighted Autoencoder (IWAE)

In this section, we elaborate on the IWAE procedure within our framework to illustrate its convergence rate.
First, let’s recall some basics of IWAE. The IWAE objective function is defined as:

LIWAE
k (θ, ϕ;x) = Eq⊗k

ϕ (·|x)

[
log

1

k

k∑
ℓ=1

pθ(x, Z
(ℓ))

qϕ(Z(ℓ)|x)

]
=: Eq⊗k

ϕ (·|x)

[
L̃IWAE
k (θ, ϕ;x)

]
,

where k corresponds to the number of samples drawn from the encoder’s approximate posterior distribution.
The gradient of the empirical estimate of the IWAE objective is given by:

∇ϕ,θL̃IWAE
k (θ, ϕ;x) =

k∑
l=1

w(l)∑k
m=1w

(m)
∇ϕ,θ logw(l),

where w(l) = pθ(x,z
(l))

qϕ(z(l)|x)
the unnormalized importance weights. This expression corresponds exactly to the

biased SNIS estimator of the gradient of the marginal log likelihood log pθ(x).
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Algorithm 1 Adaptive Stochastic Approximation for IWAE

Input: Initial point θ0, maximum number of iterations n, step sizes {γk}k≥1 and a hyperparameter α ≥ 0
to control the bias and MSE.
for k = 0 to n− 1 do

Compute the stochastic update ∇θ,ϕLIWAE
kα (θk, ϕk;Xk+1) using kα samples from the variational posterior

distribution and adaptive steps Ak.
Set θk+1 = θk − γk+1Ak∇θLIWAE

kα (θk, ϕk;Xk+1) and ϕk+1 = ϕk − γk+1Ak∇ϕLIWAE
kα (θk, ϕk;Xk+1).

end for
Output: (θk)1≤k≤n

B.3 BR-IWAE

In this section, we provide additional details on the Biased Reduced Importance Weighted Autoencoder
(BR-IWAE). Let π be a probability measure on a measurable space (X,X ). The objective is to estimate π(f) =
Eπ[f(X)] for a measurable function f : X → R such that π(|f |) < ∞. Assume that π(dx) ∝ w(x)λ(dx), where
w is a positive weight function and λ is a proposal probability distribution, and that λ(w) =

∫
w(x)λ(dx) < ∞.

We first introduce the algorithm i-SIR (iterated Sampling Importance Resampling), described in Algorithm 2,
which was proposed by Tjelmeland (2004).

Algorithm 2 i-SIR algorithm

Input: Maximum number of iterations n, number of particles N , a proposal probability distribution λ
and a positive weight function w.
Initialization: Draw Y0 from the proposal distribution λ.
for k = 0 to n− 1 do

Draw Ik+1 ∈ {1, . . . , N} uniformly at random and set X
Ik+1

k+1 = Yk.

Draw X
1:N\{Ik+1}
k+1 independently from the proposal distribution λ.

Compute the normalized importance weights:

ωi
k+1 =

w
(
Xi

k+1

)∑N
ℓ=1w

(
Xℓ

k+1

) ∀i ∈ {1, . . . , N}.

Select Yk+1 from the set X1:N
k+1 by choosing Xi

k+1 with probability ωi
k+1.

end for
Output:

(
X1:N

k

)
1≤k≤n

and
(
ω1:N
k

)
1≤k≤n

.

The BR-SNIS estimator of (Cardoso et al., 2022) aims at reducing the bias of self-normalized importance
sampling estimators without increasing the variance. The proposed estimator of π(f) is given by:

Π(n0,n),N (f) =
1

n− n0

n∑
ℓ=n0+1

N∑
i=1

ωi
ℓf
(
Xi

ℓ

)
,

where n0 corresponds to a burn-in period. All the importance weights in Π(n0,n),N (f) are obtained similarly
as in the i-SIR algorithm so that its computational complexity is easily controlled. In addition, by Cardoso
et al. (2022, Theorem 4) the bias of the BR-SNIS estimator decreases exponentially with n0.

Therefore, we propose to use this approach in the context of IWAE. To estimate (7) for the update
in BR-IWAE algorithm, we use the BR-SNIS estimator with: π : z 7→ pθ(x, z), λ : z 7→ qϕ(z | x), f : z 7→
∇θ log pθ(x, z) and w : z 7→ pθ(x, z)/qϕ(z|x).

B.4 Additional Experiments in IWAE

In this section, we provide detailed information about the experiments on CIFAR-10. We also conduct
additional experiments on the FashionMNIST and CIFAR-100 datasets. For all experiments, we use Adagrad
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and RMSProp with a learning rate decay given by γn = Cγ/
√
n, where Cγ = 0.01 for Adagrad and Cγ = 0.001

for RMSProp.
Datasets. We conduct our experiments on three datasets: FashionMNIST (Xiao et al., 2017), CIFAR-10

and CIFAR-100. The FashionMNIST dataset is a variant of MNIST and consists of 28x28 pixel images of
various fashion items, with 60,000 images in the training set and 10,000 images in the test set. CIFAR-100 is
a dataset similar to CIFAR-10 but with 100 different classes (instead of 10).

Models. For FashionMNIST, we use a fully connected neural network with a single hidden layer
consisting of 400 hidden units and ReLU activation functions for both the encoder and the decoder. The
latent space dimension is set to 20. We use 256 images per iteration (235 iterations per epoch). For CIFAR-10
and CIFAR-100, we use a Convolutional Neural Network (CNN) architecture with 3 Convolutional layers and
2 fully connected layers with ReLU activation functions. The latent space dimension is set to 100. For both
datasets, we use 256 images per iteration (196 iterations per epoch). We do not employ any acceleration
methods, such as adding momentum during training.

We estimate the log-likelihood using the VAE, IWAE, and BR-IWAE models, all of which are trained
for 100 epochs. Training is conducted using the SGD, Adagrad, and RMSProp algorithms with a decaying
learning rate, as mentioned before. For SGD, we employ the clipping method to clip the gradients at a
specified threshold, which is fixed at 10000, in order to prevent excessively large steps.
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Figure 8: Negative Log-Likelihood for Different Generative Models with Adagrad (on the left) and RMSProp
(on the right) on the FashionMNIST Dataset. Bold lines represent the mean over 5 independent runs.

For this experiment, we set k = 5 samples in both IWAE and BR-IWAE, while restricting the maximum
iteration of the MCMC algorithm to 5 and the burn-in period to 2 for BR-IWAE. The test losses for Adagrad
and RMSProp are illustrated in 8. More precisely, the figure shows the negative log-likelihood on the training
and test datasets for VAE, IWAE, and BR-IWAE with Adagrad and RMSProp. Similar to the case of
CIFAR-10, we observe that IWAE outperforms VAE, while BR-IWAE outperforms IWAE by reducing bias
in both cases. For comparison, we estimate the Negative Log-Likelihood using these three models with SGD,
Adagrad and RMSProp, and the results are presented in Table 1.

Table 1: Comparison of Negative Log-Likelihood on the FashionMNIST Test Set (Lower is Better).

Algorithm VAE IWAE BR-IWAE

SGD 247.2 244.9 244.0
Adagrad 245.8 241.4 240.5
RMSProp 242.6 239.3 237.8

Similarly, as we did in the case of CIFAR-10, we incorporate a time-dependent bias that decreases
by choosing a bias of order O(n−α) at iteration n. We vary the value of α for both FashionMNIST and
CIFAR-100.
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Figure 9: IWAE on the FashionMNIST Dataset with Adagrad for different values of α. Bold lines represent
the mean over 5 independent runs.

0 20 40 60 80 100
Epochs

10 1

100

V(
n)

2

n 1/4

log(n)/ n

1/ n

= 1/8
= 1/4
= 1/2

0 20 40 60 80 100
Epochs

2.4

2.5

2.6

2.7

2.8

2.9

3

Te
st

 lo
ss

 (x
10

e2
)

= 1/8
= 1/4
= 1/2

Figure 10: IWAE on the FashionMNIST Dataset with RMSProp for different values of α. Bold lines represent
the mean over 5 independent runs.
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Figure 11: IWAE on the CIFAR-100 Dataset with Adagrad for different values of α. Bold lines represent the
mean over 5 independent runs.
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Figure 12: IWAE on the CIFAR-100 Dataset with RMSProp for different values of α. Bold lines represent
the mean over 5 independent runs.

All figures are plotted on a logarithmic scale for better visualization and with respect to the number
of epochs. The dashed curve corresponds to the expected convergence rate O(n−1/4) for α = 1/8, and
O(log n/

√
n) for α = 1/4, as well as for α = 1/2, just as in the case of CIFAR-10. We can clearly observe

that for all cases, convergence is achieved when n is sufficiently large. In the case of the FashionMNIST
dataset, the bound seems tight, and the convergence rate of O(n−1/2) does not seem to be possible to reach,
in contrast to the case of CIFAR-100 where the curves corresponding to α = 1/4 and α = 1/2 approach the
O(n−1/2) convergence rate. For all figures, with a larger α, the convergence in both the squared gradient
norm and negative log-likelihood occurs more rapidly.

The effect of Cγ.
Figure 13 illustrates the convergence in both the squared gradient norm and the negative log-likelihood

for Cγ = 0.001 and Cγ = 0.01 in Adagrad. In the case of the squared gradient norm, we have only plotted
the results for Cγ = 0.001 for better visualization, and the plot for Cγ = 0.01 was already presented in Figure
3. It is clear that when Cγ is set to 0.001, the convergence of the negative log-likelihood is slower. Similarly,
the convergence in the squared gradient norm for Cγ = 0.001 achieves convergence, but it is slower compared
to the case of Cγ = 0.01.
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Figure 13: IWAE on the CIFAR-10 Dataset with Adagrad for different values of α and Cγ . Bold lines
represent the mean over 5 independent runs.

The Impact of Bias over Time.
Our experiments illustrate the negative log-likelihood with respect to epochs, and we observed that

a higher value of α leads to faster convergence. The key point to consider when tuning α is that while
convergence may be faster in terms of iterations, it may lead to higher computational costs. To illustrate
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this, we set a fixed time limit of 1000 seconds and tested different values of α, plotting the test loss as a
function of time in Figure 14. It is clear that with α = 1/8, the convergence is always slower, whereas
choosing α = 1/4 achieves faster convergence than α = 1/2. While the difference may seem small here, with
more complex models, the disparity becomes significant. Therefore, it is essential to tune the value of α to
attain fast convergence and reduce computational time.
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Figure 14: Negative Log-Likelihood on the test set of the CIFAR-10 Dataset for IWAE with RMSProp for
Different Values of α over time (in seconds). Bold lines represent the mean over 5 independent runs.

In this paper, all simulations were conducted using the Nvidia Tesla T4 GPU. The total computing hours
required for the results presented in this paper are estimated to be around 50 to 100 hours of GPU usage.

C Some Examples of Biased Gradients

In this section, we explore examples of applications using biased gradient estimators while having control
over the bias.

C.1 Self-Normalized Importance Sampling

Let π be a probability measure on a measurable space (X,X ). The objective is to estimate π(f) = Eπ[f(X)]
for a measurable function f : X → Rd such that π(|f |) < ∞. Assume that π(dx) ∝ w(x)λ(dx), where w is a
positive weight function and λ is a proposal probability distribution, and that λ(w) =

∫
w(x)λ(dx) < ∞.

For a function f : X → Rd such that π(|f |) < ∞, the identity

π(f) =
λ(ωf)

λ(ω)
, (8)

leads to the Self-Normalized Importance Sampling (SNIS) estimator:

ΠNf
(
X1:N

)
=

N∑
i=1

ωi
Nf
(
Xi
)
, ωi

N =
w
(
Xi
)∑N

ℓ=1w (Xℓ)
,

where X1:N =
(
X1, . . . , XN

)
are independent draws from λ and the ωi

N are called the normalized weights.
Agapiou et al. (2017) shows that the bias of SNIS estimator can be expressed as:∥∥E [ΠNf

(
X1:N

)
− π(f)

]∥∥ ≤ 12

N

λ
(
ω2
)

λ(ω)2
.

This particular type of estimator can be found in the Importance Weighted Autoencoder (IWAE) framework
(Burda et al., 2015), as illustrated in B. The estimator of the gradient of ELBO in IWAE corresponds to
the biased SNIS estimator of the gradient of the marginal log likelihood log pθ(x). Consequently, based on
these results, both the bias and Mean Squared Error (MSE) are of order O(1/k), where k corresponds to the
number of samples drawn from the variational posterior distribution.
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C.2 Sequential Monte Carlo Methods

We focus here in the task of estimating the parameters, denoted as θ, in Hidden Markov Models. In this
context, the hidden Markov chain is denoted by (Xt)t≥0. The distribution of X0 has density χ with respect
to the Lebesgue measure µ and for all t ≥ 0, the conditional distribution of Xt+1 given X0:t has density
mθ(Xt, ·). It is assumed that this state is partially observed through an observation process (Yt)0≤t≤T . The
observations Y0:t are assumed to be independent conditionally on X0:t and, for all 0 ≤ t ≤ T , the distribution
of Yt given X0:t depends on Xt only and has density gθ(Xt, ·) with respect to the Lebesgue measure. The
joint distribution of hidden states and observations is given by

pθ(x0:T , y0:T ) = χ(x0)gθ(x0, y0)

T−1∏
t=0

mθ(xt, xt+1)gθ(xt+1, yt+1).

Our objective is to maximize the likelihood of the model:

pθ(y0:T ) =

∫
pθ(x0:T , y0:T ) dx0:T .

To use a gradient-based method for this maximization problem, we need to compute the gradient of the
objective function. Under simple technical assumptions, by Fisher’s identity,

∇θ log pθ(y0:T ) =

∫
∇θ log pθ(x0:T , y0:T )pθ(x0:T |y0:T )dx0:T

= Ex0:T∼pθ(.|y0:T ) [∇θ log pθ(x0:T , y0:T )]

= Ex0:T∼pθ(.|y0:T )

[
T−1∑
t=0

st,θ (xt, xt+1)

]
,

where st,θ (x, x′) = ∇θ log{mθ (x, x′) gθ (x, yt+1)} for t > 0 and by convention s0,θ (x, x′) = ∇θ log gθ (x, y0).
Given that the gradient of the log-likelihood represents the smoothed expectation of an additive functional,
one may opt for Online Smoothing algorithms to mitigate computational costs. The estimation of the
gradient ∇θ log pθ(y0:T ) is given by:

Hθ (y0:T ) =
N∑
i=1

ωi
T

ΩT
τ iT,θ,

where {τ iT,θ}Ni=1 are particle approximations obtained using particles {
(
ξiT , ω

i
T

)
}Ni=1 targeting the filtering

distribution ϕT , i.e. the conditional distribution of xT given y0:T . In the Forward-only implementation of
FFBSm (Del Moral et al., 2010), the particle approximations {τ iT,θ}Ni=1 are computed using the following

formula, with an initialization of τ i0 = 0 for all i ∈ J1, NK:

τ it+1,θ =
N∑
j=1

ωj
tmθ(ξ

j
t , ξ

i
t+1)∑

ℓ=1 ω
ℓ
tmθ(ξ

ℓ
t , ξ

i
t+1)

{
τ jt,θ + st,θ(ξ

j
t , ξ

i
t+1)

}
, t ∈ N.

The estimator of the gradient Hθ (y0:T ) computed by the Forward-only implementation of FFBSm is
biased. The bias and MSE of this estimator are of order O (1/N) (Del Moral et al., 2010), where N
corresponds to the number of particles used to estimate it. Using alternative recursion methods to compute
{τ iT,θ}Ni=1 results in different algorithms, such as the particle-based rapid incremental smoother (PARIS)
(Olsson and Westerborn, 2017) and its pseudo-marginal extension Gloaguen et al. (2022) and Parisian particle
Gibbs (PPG) (Cardoso et al., 2023). In such cases, one can also control the bias and MSE of the estimator.

C.3 Policy Gradient for Average Reward over Infinite Horizon

Consider a finite Markov Decision Process (MDP) denoted as (S,A, R, P ), where S represents the state
space, A denotes the action space, R : S ×A → [0, Rmax] is a reward function, and P is the transition model.
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The agent’s decision-making process is characterized by a parametric family of policies {πθ}θ∈Rd , employing
the soft-max parameterization. The reward function is given by:

V (θ) := E(S,A)∼vθ [R(S,A)] =
∑

(s,a)∈S×A

vθ(s, a)R(s, a),

where vθ represents the unique stationary distribution of the state-action Markov Chain sequence {(St, At)}t≥1

generated by the policy πθ. Let λ ∈ (0, 1) be a discount factor and T be sufficiently large, the estimator of
the gradient of the objective function V is given by:

Hθ (S1:T , A1:T ) = R (ST , AT )
T−1∑
i=0

λi∇ log πθ (AT−i;ST−i) ,

where (S1:T , A1:T ) := (S1, A1, . . . , ST , AT ) is a realization of state-action sequence generated by the policy
πθ. It’s important to note that this gradient estimator is biased, and the bias is of order O(1 − λ) (Karimi
et al., 2019).

C.4 Zeroth-Order Gradient

Consider the problem of minimizing the objective function V . The zeroth-order gradient method is partic-
ularly valuable in scenarios where direct access to the gradient of the objective function is challenging or
computationally expensive. The zeroth-order gradient oracle obtained by Gaussian smoothing (Nesterov and
Spokoiny, 2017) is given by:

Hθ (X) =
V (θ + τX) − V (θ)

τ
X, (9)

where τ > 0 is a smoothing parameter and X ∼ N (0, Id) a random Gaussian vector. Nesterov and
Spokoiny (2017, Lemma 3) provide the bias of this estimator:

∥E [Hθ (X)] −∇V (θ) ∥ ≤ τ

2
L(d + 3)3/2. (10)

The application of these zeroth-order gradient methods can be found in generative adversarial networks
(Moosavi-Dezfooli et al., 2017; Chen et al., 2017).
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