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Dupont, Hayel, Jiménez, Wan, Beaude PGMO days December 1, 2021 1 / 23



Model: Mathematical description

Characteristics of Electric Vehicules (EVs)

Random time of arrivals: follows a Poisson process of parameter λ.

Random need in energy when arriving at the station B to have a fully
charged battery: follows an exponential law of parameter µ.

Capa: Capacity of the battery,
SoCarr : State of Charge of the battery when arriving,
B = Capa− SoCarr .

Random parking time D (⊥⊥ B): follows an exponential law of
parameter ν.
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Model: Mathematical description

Characteristics of a Charging Station (CS)

pmax: Maximum power delivered for an EV.

Np: Number of parking spaces.

α: Proportion of the number of parking spaces that deliver maximum
power pmax simultaneously.
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Model: Mathematical description

Notations

Zt : Number of charging EVs at the CS at time t.

Ct : Number of EVs with full battery, i.e not charging, at the CS at
time t.

Qt := Zt + Ct : total number of EVs at the CS at time t.

Power scheduling

Each arriving EVs immediately starts to charge with power:

p(Zt) = pmax ×
min(αNp,Zt)

Zt
.

Remark

Total power pT at the CS: pT = pmax × αNp.
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Model: Number of charging EVs

Notation

z̄ = Average number of charging EVs in stationary regime.

Fixed point equation for z̄ given by [1]

z̄ = min(λ, νNp)E
[
min

(
D,

B

pmax
max(1,

z̄

αNp
)

)]
. (1)

Proposition [Avg nb of charging EVs]:

In stationary regime, the average number of charging EVs is:

z̄ =

{
min(λ,νNp)
ν+pmaxµ

if ν
ν+pmaxµ

≤ α or λ
ν+pmaxµ

≤ αNp,
min(λ,νNp)−pmaxµαNp

ν else.
(2)

Idea of the proof : Resolution of the fixed point equation 1.
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Model: Probability to leave with a fully charged battery

Proposition [Probability to leave with a fully charged battery]:

In stationary regime, the expected probability P̄ to leave the CS with a
fully charged battery is given by:

P̄ =
pmaxµ

νmax(1, z̄
αNp

) + pmaxµ

=

{
pmaxµ

ν+pmaxµ
if ν

ν+pmaxµ
≤ α or λ ≤ αNp(ν + pmaxµ),

pmaxµαNp

min(θλ,νNp)
else.

(3)

Ideas of the proof:

P̄ is the probability that the time to get fully charged is less than the

parking time: P̄ = IP
(

B
pmax

max(1, z̄
αNp

) < D
)
.

B
pmax

max(1, z̄
αNp

) and D follow exponential distributions.
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Model: Probability to leave with a fully charged battery

If ν
ν+pmaxµ

≤ α, then

∀λ ∈ R+, P̄ =
pmaxµ

ν + pmaxµ
.
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Model: Probability to leave with a fully charged battery

If ν
ν+pmaxµ

> α, then

P̄ =

{
pmaxµ

ν+pmaxµ
if λ ≤ αNp(ν + pmaxµ),

pmaxµαNp

min(θλ,νNp)
if λ > αNp(ν + pmaxµ).
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Game: Definition

Setting of the game

EVs choose CS 1 with probability θ.

Criterion of choice: highest probability P̄ of leaving with a fully
charged battery.
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Game: Definition

Notation

i ∈ {1, 2}
N i
p: Number of parking spaces at CS i .

αi : Proportion of the number of parking spaces that can deliver
maximum power simultaneously at CS i .

pmax: Common to the two CSs.

z̄i : Stationary average number of charging EVs at CS i .

pi : Power available for a charging EVs at CS i .

P̄i : Probability of leaving CS i with a fully charged battery.

Arriving process at station i

EVs arrive at station i according to a Poisson process of parameter

λi :=

{
θλ if i = 1,
(1− θ)λ if i = 2.
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Game: Definition

Definition of the game Γ

N := [0, 1]: Continuum of nonatomic players, which are the EVs;

A := {CS1,CS2}: Set of pure actions;

S := ∆[A] = [0, 1]: Set of mixed strategies over the two pure actions;

Same utility function u for all the players:

u(θ, θ̄) := θ × P̄1(θ̄) + (1− θ)× P̄2(1− θ̄),

where θ̄ is the average strategy used by the players.
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Game: Equilibrium

In decentralized system, EVs individually choose their best strategy.

An equilibrium is a situation where no player has an incentive to
unilaterally change her strategy.

Definition [Equilibrium]:

An equilibrium is a set identical mixed-strategies θeq s.t.

∀θ ∈ [0, 1], u(θeq, θeq) ≥ u(θ, θeq). (4)

Definition [Set of equilibria]:

The set of equilibria Seq is:

Seq = {θeq ∈ [0, 1], θeq verify (4)}.
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Game: Equilibrium

Proposition [Characterization]:

The set of equilibrium Seq is:

Seq = {θeq ∈ [0, 1], P̄1(θeq) = P̄2(1− θeq)}. (5)

Proposition [Existence and convexity]:

The set of equilibrium Seq is non-empty and convex.

Proposition [Unicity]:

There exist a constant P̄eq s.t.

∀θeq ∈ Seq, P̄eq = P̄1(θeq) = P̄2(1− θeq).
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Game: Equilibrium

Proposition [Expression of P̄eq]:

At equilibrium, the probability P̄eq for any EV to leave a CS with a full
battery is given by:

P̄eq =



pmaxµ
ν+pmaxµ

if

max(α1, α2) ≥
ν

ν + pmaxµ
,

or α1N
1
p + α2N

2
p ≥ λ

ν + pmaxµ
,

pmaxµ
λ (α1N

1
p + α2N

2
p) if


max(α1, α2) <

ν
ν+pmaxν

,

α1N
1
p + α2N

2
p < λ

ν+pmaxµ
,

N1
p + N2

p > λ
ν ,

max(α1, α2) >
ν
λ(α1N

1
p + α2N

2
p),

pmaxµ
ν max(α1, α2) else.

(6)
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Game: PoA

In centralized system, a centralized CS operator chooses the CS for the
EVs to optimize their utility:

Uopt = max
θ∈[0,1]

u(θ, θ) = max
θ∈[0,1]

θ × P̄1(θ) + (1− θ)× P̄2(1− θ).

Price of Anarchy [2] (PoA)

The PoA quantify the
inefficiency of the
decentralized system in
comparison of the centralized
system:

PoA :=
Uopt

u(θeq, θeq)

=
Uopt

P̄eq
(≥ 1).

(7)
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Game: PoA

Denote, for any couple (i , j) ∈ {(1, 2), (2, 1)}, the following values:{
γi = αiN

i
p +

ν
ν+pmaxµ

N j
p,

Ai =
pmax µαj

ν (1− αiN
i
p
ν+pmax µ

λ ) + αiN
i
p
pmax µ

λ .

Proposition [PoA]:

Condition (8) is a necessary and sufficient condition such that PoA = 1.

max(α1, α2) ≥
ν

ν + pmaxµ
or min(γ1, γ2) ≥

λ

ν + pmaxµ
(8)

Proposition [Bounds on the PoA]:

Suppose condition (8) does not hold. Then

PoA < max(

ν
ν+pmaxµ

min(α1, α2)
, 2).
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Optimization of the QoS: Problem formulation

Context

The two CSs are geographically close,

they are connected to the same node of the grid,

they have to share a limited total quantity of power for the two
stations.

Problem formulation

max
(α1,α2)∈[0,1]2

P̄eq, (9)

s.t. α1N
1
p + α2N

2
p ≤ C , (10)

with C ∈ [1,N1
p + N2

p ].
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Optimization of the QoS: Resolution

Proposition [Expression of P̄eq at optimum]:

The optimal value P̄opt
eq of P̄eq (9) under constraint (10) is:

P̄opt
eq =



pmaxµ
ν+pmaxµ

if C ≥ min(λ,min(N1
p ,N

2
p )ν)

ν+pmaxµ
, (a)

pmaxµ
λ C if

{
C < λ

ν+pmaxµ
,

min(N1
p ,N

2
p) >

λ
ν ,

(b)

pmaxµ
ν

C
min(N1

p ,N
2
p )

if

{
C <

min(N1
p ,N

2
p )ν

ν+pmaxµ
, (c)

min(N1
p ,N

2
p) ≤ λ

ν .

(11)

(a): High resource in power.

(b): Low resource in power but high number of parking spaces.

(c): Low resource in power and in quantity of parking spaces.
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Usecase

Value parameters

λ = 20: EVs arrive in average every 3 minutes;

µ = 1
30 : EVs need in average 30kWh to have a fully charged battery;

ν = 1
2 : EVs stay in the CS 2h in average;

N1
p = 5, N2

p = 30: There are respectively 5 and 30 parking spaces at
CS 1 and 2;

pmax = 7: The maximum charging power for the EVs is 7kW.

Dupont, Hayel, Jiménez, Wan, Beaude PGMO days December 1, 2021 19 / 23



Usecase: Values of P̄eq at equilibrium

P̄eq increasing in max(α1, α2).
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Usecase: Optimization problem

Sopt
eq ≈ {(α1, α2) ∈ [0, 1]2, α1 > 0.68, α2 ≤ 19

30 − α1
1
6}.
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Usecase: PoA

max(α1, α2) > 0.68 ⇒ PoA = 1.

Low values of α1 and α2, α1 ≈ α2 ⇒ More power sharing between
the EVs ⇒ Decentralized system inefficient.

Dupont, Hayel, Jiménez, Wan, Beaude PGMO days December 1, 2021 22 / 23



Table of Contents

1 Model in the case of 1 CS

2 Non-cooperative queueing game

3 Optimization of the QoS at equilibrium under constrained power
capacity

4 Numerical simulations

5 Conclusion
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Conclusion

Main idea

The decentralized system is more efficient in particular when one of the
two coefficients α1 or α2 is sufficiently high (in comparison of the parking
time and the need in energy).

Perspectives

Study other types of power scheduling (ex: FIFO (First In First Out));

Study other optimization criteria;

Take into account the probability of being rejected;

Take into account the price (for the EVs as well as for the charging
stations);

Give more information to the EVs (ex: number of charging EVs,
current power available) [3];

Other probability laws for B or D (ex: normal or uniform).
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Thank you for your attention
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Appendix: Model (Number of charging EVs)

If ν
ν+pmaxµ

≤ α, then

∀λ ∈ R+, z̄ =
min(λ, νNp)

ν + pmaxµ
≤ αNp.
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Appendix: Model (Number of charging EVs)

If ν
ν+pmaxµ

> α, then

z̄ =

{
min(λ,νNp)
ν+pmaxµ

≤ αNp if λ ≤ αNp(ν + pmaxµ),
min(λ,νNp)−pmaxµαNp

ν > αNp if λ > αNp(ν + pmaxµ).
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Appendix: classification of the game Γ

Characteristics of the game

A non-atomic game[4] : The decision of a single EVs have no impact
on the decision of the others EVs.

A congestion game[5]: The decision of an EV to choose station i
depends on the proportion of other EVs which choose station i . the
incentive to choose station i is decreasing in the proportion of EVs
choosing station i .

An unobservable game[4]: EVs don’t have any information on the
number of charging EVs in the stations when arriving.
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Appendix: Proof1

Proposition [Characterization]:

The set of equilibrium Seq is:

Seq = {θeq ∈ [0, 1], P̄1(θeq) = P̄2(1− θeq)}. (12)

Ideas of the proof: Let S̃eq = {θeq ∈ [0, 1], P̄1(θeq) = P̄2(1− θeq)}.
S̃eq ⊆ Seq: Immediate.

Seq ⊆ S̃eq:

Suppose θ̃ s.t P̄1(θ̃) > P̄2(θ̃). Then θ̃ = 1.
P̄1(1) ≤ P̄2(0). Contradictory.
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Appendix: Proof2

Proposition [Existence and convexity]:

The set of equilibrium Seq is non-empty and convex

Ideas of the proof: Let h := θ ∈ [0, 1] 7→ P̄1(θeq)− P̄2(1− θeq) ∈ [0, 1].

h is continuous and decreasing.

h(0) ≥ 0 and h(1) ≤ 0.
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Appendix: Proof3

Proposition [Expression of P̄eq]:

At equilibrium, the probability P̄eq for any EV to leave a station with a full
battery is given by:

P̄eq =



pmaxµ
ν+pmaxµ

if

max(α1, α2) ≥
ν

ν + pmaxν
,

or α1N
1
p + α2N

2
p ≥ λ

ν + pmaxµ
,

pmaxµ
λ (α1N

1
p + α2N

2
p) if


max(α1, α2) <

ν
ν+pmaxν

,

α1N
1
p + α2N

2
p < λ

ν+pmaxµ
,

N1
p + N2

p > λ
ν ,

max(α1, α2) ≤ ν
λ(α1N

1
p + α2N

2
p),

pmaxµ
ν max(α1, α2) else.

(13)

Ideas of the proof: Solution of P̄1(θ) = P̄2(1− θ).
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Appendix: Proof4

Proposition: The optimal value P̄opt
eq of P̄eq (9) under constraint (10) is:

P̄opt
eq =



pmaxµ
ν+pmaxµ

if C ≥ min(λ,min(N1
p ,N

2
p )ν)

ν+pmaxµ
, (a)

pmaxµ
λ C if

{
C < λ

ν+pmaxµ
,

min(N1
p ,N

2
p) >

λ
ν ,

(b)

pmaxµ
ν

C
min(N1

p ,N
2
p )

if

{
C <

min(N1
p ,N

2
p )ν

ν+pmaxµ
, (c)

min(N1
p ,N

2
p) ≤ λ

ν ,

(14)

Steps of the proof:

Replace constraint (10) by constraint α1N
1
p + α2N

2
p = C .

Express P̄eq as a function of α1 (similarly α2).

Find the optimal α1.

Notice that P̄opt
eq is increasing in C , so that the optimal values of (9)

under the inequality (10) is the same as under the equality constraint
α1N

1
p + α2N

2
p = C .
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Appendix: Equilibrium of the game in situation 1

P̄eq = pmaxµ
ν+pmaxµ

if max(α1, α2) ≥ ν
ν+pmaxν

or α1N
1
p + α2N

2
p ≥ λ

ν+pmaxµ
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Appendix: Equilibrium of the game in situation 2

Otherwise,

P̄eq = pmaxµ
λ (α1N

1
p + α2N

2
p) if

{
N1
p + N2

p > λ
ν

max(α1, α2) >
ν
λ(α1N

1
p + α2N

2
p)
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Appendix: Equilibrium of the game in situation 3

Otherwise, P̄eq = pmaxµ
ν max(α1, α2).
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