
HAL Id: hal-04434932
https://hal.science/hal-04434932

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Investigating two variants of the Sequence-Dependent
Robotic Assembly Line Balancing Problem by means of

a split-based approach
Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre

To cite this version:
Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre. Investigating two variants of the
Sequence-Dependent Robotic Assembly Line Balancing Problem by means of a split-based approach.
International Journal of Production Research, 2022, 61 (7), �10.1080/00207543.2022.2062266�. �hal-
04434932�

https://hal.science/hal-04434932
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Investigating two variants of the Sequence-Dependent Robotic
Assembly Line Balancing Problem by means of a split-based
approach

Youssef Lahrichia, Laurent Deroussib, Nathalie Grangeonb and Sylvie Norreb

aHuManis laboratory of EM Strasbourg Business School, 61 avenue de la Forêt Noire,
F-67000, Strasbourg, France; bUniversité Clermont-Auvergne, CNRS, Mines de
Saint-Étienne, LIMOS, 63000 Clermont-Ferrand, France

ARTICLE HISTORY
Compiled January 17, 2022

ABSTRACT
The Robotic Assembly Line Balancing Problem (RALBP) is a joint optimization
problem that is concerned with assigning both assembly operations and robots to
workstations that are placed within a straight line. The objective of RALBP-2 is
to minimize the cycle time which is the maximum time spent on a workstation
by the product being assembled. Sequence-dependent setup times are considered
which raises the problem of sequencing the operations assigned to each workstation.
Both the durations of the operations and the setup times depend on the robot. Two
different variants are identified from literature. The first variant assumes that, given
a set of types of robots, each type of robot can be assigned to multiple workstations
without any limitation. Given a set of robots, the second variant forces each robot to
be assigned to at most one workstation. Both assumptions are studied in this paper.
The particular case of a given giant sequence of operations is solved thanks to a
polynomial optimal algorithm. The latter algorithm, called split, is then embedded
in a metaheuristic framework that explores the space of giant sequences. Benchmark
data sets from literature are considered in the experimental section. A comparative
study with other methods from literature shows the competitiveness of the suggested
approach.

KEYWORDS
Assembly line balancing; robotic assembly line; sequence-dependent setup times;
polynomial case; metaheuristic.

1. Introduction

We have been assisting for years to the growing robotization of production lines. Ac-
cording to the international federation of robotics, a 14% increase is observed each year
in terms of operational industrial robot jobs. Robots are replacing increasingly humans
in repetitive or hard manufacturing tasks. They offer many benefits in the context of
manufacturing:

• Accuracy: the more and more manufacturing tasks require cutting edge precision
beyond the reach of a human operator.

Corresponding author: Y. Lahrichi. Email: youssef.lahrichi.contact@gmail.com

• Quality: robots allow better monitoring of quality to help reduce the quantity of
waste and inconsistent products.

• Cost: despite higher setup cost, robots give a higher return on investment since
their performance is much higher. Besides, robots do not require any train-
ing/learning cost.

Assembly lines, which follow this robotization trend, first appeared at the beginning
of the 20th century in the factories of Ford Motor. They introduced an important
innovation in how to organize the work in a workshop. Indeed, the operations are
divided between the operators who are placed along a flow line. The economic interests
of assembly lines are considerable, among which, an important increase in productivity.
This allowed a rapid development of assembly lines all along the 20th century. These
were often used for mass-production of inexpensive products. Even today, with the
change in the economic model, assembly lines continue to adapt to new societal and
industrial challenges.

Assembly lines are typically composed of a series of workstations connected by a
material handling system. The product is processed in each workstation, then is moved
to the next workstation thanks to a conveyor. A set of assembly operations is assigned
to each workstation. The workload of a workstation designates the sum of the durations
of the operations assigned to it. The cycle time represents the largest workload among
all workstations. It is the maximum time spent on a workstation by the product being
assembled. The cycle time can also be described as the duration separating the exit
of two assembled products from the last workstation of the assembly line. The smaller
the cycle time is, the more products are processed by the line. For this reason, the
cycle time is considered as an indicator of efficiency.

Balancing an assembly line refers to the decision problem of assigning the opera-
tions to the workstations. In practice, some constraints must be respected. Precedence
constraints are frequently encountered. They link pairs of operations such that one
operation must precede another, which means that it must be assigned either to the
same workstation or to a workstation placed before on the line. Type II assembly line
balancing problems are considered in this paper. They are concerned with minimizing
the cycle time with a given maximum number of workstations.

In the context of robotic assembly lines, different robots are available to perform the
operations. The durations of the operations depend on the type of robot selected for the
workstation. The Robotic Assembly Line Balancing Problem (RALBP) is concerned
with simultaneously assigning operations and robots to workstations. RALBP appears
to be well justified with regards to the growing robotization of assembly lines under
the "Industry 4.0" era. We consider the problem under two different assumptions:

• First variant: a set of types of robots is given and the same type of robots can
be selected for more than one workstation without any limitation.

• Second variant: a set of robots is given and each robot can be assigned to at most
one workstation.

In the context of the first variant, the decision-maker designs the line based on the
types of robots sold by his Original Equipment Manufacturer (OEM). While in the
second variant, the decision-maker designs the line based on an existing fleet of robots.

Sequence-dependent setups are encountered in many workshop problems
[Allahverdi et al.(2008)]. Setups are necessary to provide for tool change or
product handling that can occur between two operations. Sequence-dependent
setups in the context of assembly lines were only considered recently in

2

[Andres, Miralles, and Pastor(2008)]. [Scholl, Boysen, and Fliedner(2013)] cite some
interesting situations where sequence-dependent setup times are encountered in the
context of assembly lines:

• In many industries where large products are manufactured, the operations are
performed on different positions of the workpiece. This may require the operator
to move between the positions where the consecutive operations are performed.
[Scholl, Boysen, and Fliedner(2013)] reports that this walking distance can go up
to 10 meters in the context of automotive industry. Alongside with the walking
distances of the operators, time to withdraw a part from a container may be
required. Scholl reports that for a major German car manufacturer, this walking
and withdrawal time takes about 15% of the cycle time.

• Machine-tools often use a single tool at a time. Setup times depending on the se-
quence of operations are required to change the tool if two consecutive operations
require different tools.

• In situations where operations require the workpiece to be put in a specific posi-
tion, setup is needed for handling the piece between two consecutive operations
requiring different positions.

• In many specific situations, a delay must be considered between two operations
(for example after gluing or painting).

These last elements justify that the setup times cannot be neglected. Besides, the
setup times very often depend on the sequence of operations.

[Andres, Miralles, and Pastor(2008)] define the Sequence-Dependent Simple Assem-
bly Line Balancing Problem (SDSALBP). SDSALBP raises the decision of sequencing
the operations in each workstation in addition to the balancing decision. The two
decisions must be addressed jointly.

The present paper deals with sequence-dependent setup times in the context of
the robotic assembly line balancing problem, i.e., the Sequence-Dependent Robotic
Assembly Line Balancing Problem (SDRALBP-2).

The related literature and the contribution of the paper are presented in the next
section. Then, we describe both variants of the problem thanks to an illustrative exam-
ple. The split-based resolution approach is described for the first variant in the fourth
section, then it is adapted for the second variant of the problem in the fifth section.
Computational experiments, general conclusions and perspective research directions
are given in the last sections.

2. Literature review

The Simple Assembly Line Balancing Problem (SALBP) is a well-established combi-
natorial optimization problem that was first defined by [Salveson(1955)]. It has been
studied for decades under various assumptions and constraints, a comprehensive taxon-
omy can be found in [Battaïa and Dolgui(2013)]. The Robotic Assembly Line Balanc-
ing Problem (RALBP) has been much less extensively studied. It was first introduced
by [Rubinovitz, Bukchin, and Lenz(1993)]. Two different variants of the problem are
identified in literature:

• In the first variant [V1], we are given a set of types of robots. Each type
of robots can be selected for multiple workstations without any limi-
tation: [Rubinovitz, Bukchin, and Lenz(1993)], [Yoosefelahi et al.(2012)],

3

[Nilakantan et al.(2015)], [Çil, Mete, and Ağpak(2016)],
[Borba, Ritt, and Miralles(2018)].

• In the second variant [V2], we are given a set of robots each of which can be
assigned to at most one workstation: [Levitin, Rubinovitz, and Shnits(2006)],
[Gao et al.(2009)], [Janardhanan et al.(2019)].

The problem is more often studied under its first variant since it is the original problem
statement introduced by [Rubinovitz, Bukchin, and Lenz(1993)].

The second variant can be of industrial relevance when the decision-maker has a
limited fleet of robots. It is a generalization of the first variant since the set of robots
can contain robots of the same type. Both variants are studied in the frame of the
paper.

The incompatibility between a robot and an operation can be addressed by consid-
ering that the corresponding duration is infinite.

Even if the seminal paper ([Rubinovitz, Bukchin, and Lenz(1993)]) con-
siders minimizing the number of workstations with a given cycle time
(RALBP-1), most papers consider the objective of minimizing the cycle time
(RALBP-2): [Levitin, Rubinovitz, and Shnits(2006)], [Nilakantan et al.(2015)],
[Borba and Ritt(2014)], [Janardhanan et al.(2019)]. Some authors consider
the latter objective jointly with the objective of minimizing the cost
of the robots ([Yoosefelahi et al.(2012)]) or the number of workstations
([Çil, Mete, and Ağpak(2016)]).

Table 1 summarizes some important papers in RALBP literature and situates the
present paper. The objective considered is either the cycle time (C), the number of
workstations (# St) or the cost of the robots used. Most papers consider minimizing
the cycle time. Sequence-dependent setup times have been rarely considered in the
context of robotic assembly lines.

Table 1. Literature review.

Paper Objective Sequence-dependent Variant
C # St Cost setup times V1 V2

[Rubinovitz, Bukchin, and Lenz(1993)] ✓ ✓
[Levitin, Rubinovitz, and Shnits(2006)] ✓ ✓

[Gao et al.(2009)] ✓ ✓
[Yoosefelahi et al.(2012)] ✓ ✓ ✓
[Nilakantan et al.(2015)] ✓ ✓

[Çil, Mete, and Ağpak(2016)] ✓ ✓ ✓ ✓
[Borba, Ritt, and Miralles(2018)] ✓ ✓

[Janardhanan et al.(2019)] ✓ ✓ ✓
This paper ✓ ✓ ✓ ✓

The Robotic Assembly Line Balancing Problem is similar to existing problems from
the manual-manned assembly line literature where a double assignment of operations
and workers to the workstations is encountered. There can be several reasons justifying
that the two latter assignments must be tackled jointly. For example, the durations of
the operations may depend on the worker: in this particular context, the problem is
(mathematically) equivalent to the RALBP. The problem is known as the Assembly
Line Worker Assignment and Balancing Problem (ALWABP), it has been defined in
[Miralles et al.(2008)]. They consider the balancing problem alongside with the assign-
ment of a set of workers with different capabilities to the workstations. In the context
of ALWABP, the worker is a limited resource: each worker can be assigned at most
once.

Many authors deal with the RALBP by means of metaheuristics: for example

4

[Levitin, Rubinovitz, and Shnits(2006)] suggest a genetic algorithm for the RALBP-
2. A solution is represented by three vectors: a vector that represents a sequence of
operations, a vector that represents the workstations and a vector that represents the
robots. However, only the first vector is involved in the genetic algorithm. A heuristic
is suggested to build a solution from a sequence of operations (giant sequence). The
same encoding-decoding technique is adopted in [Nilakantan et al.(2015)].

To the best of our knowledge, [Janardhanan et al.(2019)] is the only paper from
literature that deals with the robotic assembly line balancing problem with sequence-
dependent setup times. The authors consider the problem only under the second vari-
ant. Metaheuristic algorithms are applied to minimize the cycle time. The authors use
a permutation of operations and a permutation of robots to encode a solution. To
decode those two permutations and build a solution, the authors use a procedure of
exponential-time complexity. This bad complexity is due to the fact that all values of
cycle time are tested in the worst case.

Contribution of this paper

The paper presents the following novelties:

• For the first variant of the problem, a polynomial case (fixed giant sequence) is
solved thanks to a split algorithm. To the best of our knowledge, this particular
case has not been solved yet in literature, not even for the problem without setup
times. Split is then integrated in a metaheuristic. On instances without setup
times, the experiments show that the split-based approach can find optimal solu-
tions and clearly outperforms a method from literature [Nilakantan et al.(2015)].

• For the second variant of the problem, the split algorithm is adapted to decode the
permutations of operations and robots that encode a solution. This polynomial-
time algorithm stands out from the procedure of [Janardhanan et al.(2019)] that
is of exponential-time complexity. The experiments show that the split-based
approach outperforms the method from [Janardhanan et al.(2019)].

We have previously used the split algorithm to solve a different balancing problem
that considers parallel workstations and the minimization of the number of machines
in [Lahrichi et al.(2021)].

In the conference paper [Lahrichi et al.(2020)], we have succinctly described the
method for the first variant of the considered problem. In the present paper, the ap-
proach is presented in more details. Many improvements on the method have been
integrated. Besides, the second variant of the problem is also studied which allows to
compare with [Janardhanan et al.(2019)]. More experimental results are presented.

3. Problem statement

In this section, the first and the second variant of the problem are explained thanks to
illustrative examples.

3.1. First variant

The Robotic Assembly Line Balancing Problem (RALBP) is concerned with simul-
taneously assigning a set of operations to a set of workstations placed along a serial

5

assembly line and assigning to each workstation a robot type. The duration of an op-
eration depends on the type of robot used. Sequence-dependent setup times tri,j should
be considered if operation i is performed just before operation j in some workstation
equipped by a robot of type r. We note that the setup times depend on the robot type
and raise an additional decision: the sequencing decision that consists of sequencing the
operations in each workstation. The first variant of the Sequence-Dependent Robotic
Assembly Line Balancing Problem (SDRALBP-2) can be stated as follows:

• Data:
◦ The set of operations, the set of workstations and the set of types of robots.
◦ Precedence relations.
◦ A maximum number of workstations.
◦ The durations and the setup times.

• Decisions:
◦ Balancing decision: Assign the operations to the workstations.
◦ Selection decision: Select a type of robot for each workstation.
◦ Sequencing decision: Sequence the operations in each workstation.

• Constraints:
◦ Precedence constraints.
◦ The maximum number of workstations constraint.

• Objective:
◦ Minimize the cycle time C which is the maximum workload among the

workstations.

The notations used in the remainder of the paper are introduced in Table 2.

Table 2. Notations.

n Number of operations
N Set of operations: {1, 2, . . . , n}

smax Maximum number of workstations
S Set of workstations, indexed on {1, 2, . . . , smax}
P Set of couples (i, j) ∈ N2 such that i precedes j
C Cycle time
nr The number of robot categories or types
R The set of robot types: {1, 2, . . . , nr}
dri The duration of operation i when it is performed on

a workstation equipped with robot type r
tri,j The setup time between operations i and j

when i is performed just before j on a
workstation equipped with robot type r

We give a numerical example for the first variant of the problem. It will be used in the
remainder of the paper. A product needs 8 operations in order to be assembled. Three
types of robots are considered. The precedence graph, the durations and the setup
times are given respectively in Figure 1, Table 3 and Table 4. A maximum number of
stations is given: smax = 3.

The solution depicted in Figure 2 represents a feasible solution with three work-
stations. Operations 2, 1 and 3 are assigned to workstation 1, operations 4 and 5 are
assigned to workstation 2 and operations 7, 6 and 8 are assigned to workstation 3. A
robot of type 2 is used in the first and the third workstation. A robot of type 1 is used
in the second workstation.

The workloads are calculated as follows:

6

Figure 1. Caption: Precedence graph. Alt text: A precedence graph with eight operations.

Table 3. Durations.

Operation
Robot type 1 2 3

1 10 15 45
2 15 12 18
3 12 15 30
4 25 20 75
5 30 25 90
6 70 10 15
7 43 65 19
8 36 74 25

Table 4. Sequence-dependent setup times.

t1i,j 1 2 3 4 5 6 7 8

1 - 7 4 1 7 1 7 5
2 4 - 2 4 2 6 8 5
3 9 5 - 3 2 7 9 4
4 4 4 3 - 2 8 9 4
5 1 8 6 1 - 9 4 3
6 9 5 2 7 4 - 3 6
7 6 8 4 2 6 3 - 7
8 5 3 4 7 4 2 9 -

(Robot 1)

t2i,j 1 2 3 4 5 6 7 8

1 - 4 2 8 2 8 4 6
2 9 - 5 3 6 4 8 1
3 8 9 - 1 4 5 5 3
4 6 5 2 - 9 2 8 3
5 4 9 6 7 - 8 4 3
6 5 6 8 7 3 - 3 7
7 3 2 7 6 4 2 - 2
8 4 4 2 9 6 4 6 -

(Robot 2)

t3i,j 1 2 3 4 5 6 7 8

1 - 9 1 8 9 2 3 6
2 1 - 3 8 2 7 9 8
3 3 9 - 2 7 9 7 1
4 1 9 4 - 7 9 3 7
5 1 9 6 5 - 3 2 2
6 4 6 7 3 8 - 9 2
7 3 1 9 1 6 2 - 7
8 7 8 6 9 2 7 3 -

(Robot 3)

• Workload of workstation 1: W1 = d22 + t22,1 + d21 + t21,3 + d23 + t23,2 = 62.
• Workload of workstation 2: W2 = d14 + t14,5 + d15 + t15,4 = 58.
• Workload of workstation 3: W3 = d27 + t27,6 + d26 + t26,8 + d28 + t28,7 = 164.

The cycle time of the solution is C = Max{W1,W2,W3} = 164.

7

Figure 2. Caption: A feasible solution for the first variant. Alt text: An assembly line with 3 stations. A
robot of type 2 is used in the first and third stations, a robot of type 1 is used in the second station.

In workstation 2, the assigned operations are 4 and 5. The best choice for workstation
2 under this assignment of operations is robot type 1. Indeed, even if robot type 2 gives
the best durations for operations 4 and 5, the small setup-times on robot type 1 catch
up with this gap.

3.2. Second variant

With regards to the second variant of the problem, instead of having a set of types
of robots each of which can be assigned to multiple workstations, we now have a set
of robots each of which can be assigned to at most one workstation. In this context,
the input slightly changes: the set of robot types is replaced by the set of robots. We
keep the same notations R and nr respectively for the set of robots and the number
of robots. Because it is now assumed that each robot can be assigned to at most one
workstation, the solution depicted in Figure 2 is no longer feasible. We give a feasible
solution for this second assumption in Figure 3.

Figure 3. Caption: A feasible solution for the second variant. Alt text: An assembly line with 3 stations.
Robot 2, robot 1 and robot 3 are used respectively in the first, the second and the third stations.

4. A split-based resolution approach for the first variant of the problem

For many balancing problems, for example [Levitin, Rubinovitz, and Shnits(2006)] and
[Nilakantan et al.(2015)], a particular case is identified: the case where an overall se-
quence of operations is imposed.

8

Next subsection is intended to solve this particular case of a given sequence of op-
erations thanks to a novel polynomial algorithm called split. In the second subsection,
split is embedded in a metaheuristic.

Split is inspired to us from an homonym method developed by [Beasley(1983)] for
the Vehicle Routing Problem (VRP). The VRP is concerned with assigning a set of
costumers to a set of vehicles initially located within a depot. The objective is to
minimize the total distance travelled by the vehicles. [Beasley(1983)] considers a fixed
"giant tour" of costumers. He proves that finding an optimal solution respecting a given
giant tour is polynomial. It is equivalent to a shortest path problem in some auxiliary
graph. [Prins(2004)] has then used split as a decoding procedure in a metaheuristic
which has led to the best-known VRP method for many years. Similar researches
were conducted afterwards: [Prins, Lacomme, and Prodhon(2014)]. Split is efficient in
a Sequence-First Cluster-Second approach, because it allows to optimally determine
the clusters of costumers, given an initial giant tour. We propose here an original way to
adapt ideas from VRP to the Sequence-Dependent Robotic Assembly Line Balancing
Problem-2 (SDRALBP-2).

Split relies on an auxiliary graph and a procedure to compute the optimal path.
Before presenting the general scheme of split, we give some definitions.

Definition 4.1. (Giant sequence) Given an instance with n operations, a giant se-
quence is a permutation of all the operations: σ = (σ1, σ2, . . . , σn) where σi is the
operation at position i of the sequence.

Definition 4.2. (A solution satisfying a giant sequence) A solution X is said to
satisfy a giant sequence σ = (σ1, σ2, . . . , σn) if for all σi, σj such that i < j either σi
and σj are assigned to the same workstation in X or the workstation to which σi is
assigned, is situated before the workstation to which σj is assigned. When σi and σj
are assigned to the same workstation, σi must be sequenced before σj . In other words,
the operations must be assigned to the workstations and sequenced while respecting
the order given by σ.

Definition 4.3. (Compatible giant sequence) We say that σ is a compatible giant se-
quence with respect to an instance if there exists at least one feasible solution satisfying
σ.

Many solutions satisfying a given giant sequence could exist. More precisely, there are
an exponential number of solutions respecting a given giant sequence. It corresponds
to the different possible ways to cut a giant sequence:

(
n−1

smax−1

)
. Split gives an optimal

solution respecting σ in polynomial time.

4.1. A polynomial case: fixed sequence of operations

Given a giant sequence σ and an instance I, the optimal solution satisfying σ can be
obtained thanks to the search of an optimal path in an appropriate auxiliary graph
denoted HI(σ). We describe next the construction of the auxiliary graph HI(σ).

In the remainder of the subsection, we suppose that the giant sequence is fixed, it
is denoted: σ = (σ1, σ2, . . . , σn).

9

4.1.1. Auxiliary graph

The graph HI(σ) = (V,A) is a directed graph, composed of a set of nodes V and a set
of arcs A. The set of nodes V is composed of the set of operations N to which we add
an additional node that can be seen as a fictitious operation σ0 = 0: V = N ∪{0}. The
set of arcs A is composed of all arcs (σi, σj) such that i < j. An arc (σi, σj) can be
interpreted as a workstation to which the subsequence (σi+1, σi+2, . . . , σj) is assigned.
Besides, HI(σ) is weighted. The weight of the arc (σi, σj) is given by:

cσi,σj
= Minr∈R {

j∑
k=i+1

drσk
+

j−1∑
k=i+1

trσk,σk+1
+ trσj ,σi+1

}

cσi,σj
indicates the time that is needed to process the subsequence of operations:

(σi+1, σi+2, . . . , σj). We point out that we could take any robot type that minimizes
the workload of the considered workstation.

Theorem 4.4. The auxiliary graph can be constructed within O(n3.nr).

Proof. The time complexity for constructing the auxiliary graph is equivalent to the
complexity for computing the weight ci,j for each arc (i, j) ∈ A. The sum

∑j
k=i+1 d

r
σk
+∑j−1

k=i+1 t
r
σk,σk+1

+ trσj ,σi+1
can be computed within O(n). It must be computed for each

robot. This rises up the complexity to O(n.nr). The number of arcs is bounded by n2

which gives the complexity: O(n.nr.n
2) = O(n3.nr).

4.1.2. A constrained min-max path

In the graph thus constructed, a path from the node 0 to the node σn corresponds to
a solution of the problem.

Indeed, a path {(0, σi1), (σi1 , σi2), (σi2 , σi3), . . . , (σik−1
, σik), (σik , σn)} corresponds to

the solution where the subsequence (σ1, σ2, . . . , σi1) is assigned to the first workstation,
(σ1+i1 , . . . , σi2) is assigned to the second workstation,. . . and (σ1+ik , . . . , σn) is assigned
to the last workstation. More precisely, there is a bijection between the space of feasible
solutions satisfying the giant sequence σ and the paths from 0 to σn in HI(σ). Besides,
the objective value of a solution (the cycle time) matches the maximum weight of an
arc in the corresponding path in HI(σ).

To obtain an optimal solution with respect to a giant sequence σ, we can compute
a path from 0 to σn in HI(σ) that minimizes the maximum weight of an arc and that
uses no more than smax arcs.

The problem of finding a path, between a given pair of vertices, that minimizes the
maximum weight of an arc, is known in graph theory as the min-max path problem
(also known as the bottleneck path [Chechik et al.(2016)]).

This problem is polynomial since a shortest path algorithm can be adapted to com-
pute a min-max path. We are dealing with a constrained min-max path because the
path should not exceed smax arcs.

Algorithm 1 is proposed to compute the constrained min-max path in HI(σ). The
algorithm is based on labels that keep track of the cycle time and the number of arcs.
A label l = (a, b) represents a partial solution, a and b denote respectively the cycle
time and the number of workstations used so far by the partial solution. A list Li of
labels is associated to the node σi. A label (a, b) dominates a label (a′, b′) if a ≤ a′ and

10

b ≤ b′ (weak domination).
The propagation of label (at, bt) through the arc (σt, σi) gives the label (ai, bi) =

(Max{at, cσt,σi
}, bt + 1): the maximum between at and ct,i gives the cycle time, the

number of workstations bt is incremented by 1.

Algorithm 1 Split for the first variant of SDRALBP-2
INPUT (I,σ) where I is an instance of SDRALBP-2 and σ is a compatible giant
sequence.
OUTPUT X: An optimal solution (with the minimal cycle time C∗) respecting σ if
there exists a feasible solution

1: Build the graph HI(σ)
2: L0 := {(0, 0)}
3: for t = 1 to n do
4: Lt := ∅
5: end for
6: for t = 0 to n− 1 do
7: for i = t+ 1 to n (Propagate labels from Lt) do
8: for all (at, bt) ∈ Lt do
9: if (bt < smax − 1 or i = n) then

10: (ai, bi) := (Max{at, cσt,σi
}, bt + 1)

11: if (ai, bi) is not dominated by any label belonging to Li then
12: Li := Li ∪ {(ai, bi)}
13: if (ai, bi) dominates some element (a′i, b

′
i) ∈ Li then

14: Li := Li\{(a′i, b′i)}
15: end if
16: end if
17: end if
18: end for
19: end for
20: end for
21: if Ln ̸= ∅ then
22: C∗ := Min(ai,bi)∈Ln

(ai)
23: Decode the path of cost C∗ to build X
24: end if
25: return X

Theorem 4.5. The algorithm runs in O(n4).

Proof. The dominance rule ensures that |Li| ≤ smax. The algorithm performs domi-
nance tests for each 3-tuple (label of origin node, arc, label of destination node). Thus,
it runs in O(m.s2max) where m is the number of arcs in the graph. Since smax ≤ n and
m ≤

∑n
k=1 k = n(n+1)

2 , split runs in O(n4).

4.1.3. Illustrative example

We consider the giant sequence σ = (1, 2, 3, 4, 5, 6, 7, 8) for the instance described in
Subsection 3.1. Split is applied to compute the optimal solution satisfying σ. The
auxiliary graph is represented in Figure 4.

11

Figure 4. Caption: Auxiliary graph. Alt text: A directed acyclic graph with nine nodes. The graph is weighted
and the robot types are written below the weights. The path (0,4),(4,6),(6,8) is highlighted in red.

An optimal path, i.e. a min-max path with at most three arcs, is highlighted in red
in Figure 4. The optimal path corresponds to an optimal solution with a cycle time of
78. It is represented in Figure 5.

Figure 5. Caption: Optimal solution satisfying the sequence σ = (0, 1, 2, 3, 4, 5, 6, 7, 8). Alt text: An assembly
line with 3 stations. Robots of type 1, 2 and 3 are used in the first, the second and the third stations.

4.2. An approach of type Sequence-First Balance-And-Select-Second

In this subsection, split is used as a decoding procedure in a metaheuristic. A solu-
tion is encoded as a giant sequence and split is used to decode it. This approach can
be described to be of type "Sequence-First Balance-And-Select-Second". Indeed, the
sequencing of operations is first performed by computing a giant sequence. Then, the
balancing and the selection decisions are optimally solved by applying split to the giant
sequence. The space of giant sequences is explored using a metaheuristic.

This split-based encoding-decoding scheme significantly reduces the search space.
We denote it by [σ, split]. Split acts as an aggressive and efficient guidance technique
which allows, for a given sequence, to solve in polynomial time all the other decision
subproblems.

12

Theorem 4.6. The encoding-decoding technique [σ, split] preserves an optimal solu-
tion for the robotic assembly line balancing problem.

Proof. Any optimal solution X can be represented by a giant sequence σX . The
execution of split on σX yields either X or any other solution with equivalent objective
value since split returns an optimal solution corresponding to a giant sequence.

The previous theorem shows that the set of optimal solutions has non-empty inter-
section with the set of solutions given by split (Figure 6).

Figure 6. Caption: Split versus heuristic decoder. Alt text: The space of giant sequences is represented smaller
next to the space of feasible solutions. Split maps a giant sequence to an optimal solution while an heuristic
decoder maps the same giant solution to a sub-optimal solution.

In Figure 6, the space of giant sequences is voluntarily represented smaller than the
space of solutions. Split gives an optimal solution when the giant sequence encodes an
optimal solution. A heuristic decoder does not guarantee the same. All what remains
is searching for a "good" giant sequence by means of metaheuristics.

To demonstrate the superiority of the encoding-decoding technique, we choose a
quite simple metaheuristic framework and compare it with more sophisticated meta-
heuristics from literature that use a different encoding-decoding technique in the exper-
iments section. An iterated local search is used. This metaheuristic has been introduced
in [Dong, Huang, and Chen(2009)]. It has been proven to be efficient for recent bal-
ancing problems [Abdous(2019)], [Lahrichi et al.(2021)]. The pseudo-algorithm of the
split-based iterated local search is given in Algorithm 2.

An initial compatible giant sequence σ is computed first (line 1), the corresponding
(optimal) solution is given by split (line 2). A local search is performed with a given
maximum number of visited neighbors (LS-MAX). A neighboring giant sequence σ′

of σ is then computed (line 7). The corresponding (optimal) solution is given by split
(line 8). Each time a neighbor with (strictly) better objective value is reached, the
counter is set to 0 (line 12). When a local search terminates, the best recorded solution
is perturbed by some perturbation move and the obtained solution is used as a starting
solution for the next local search (lines 20-21). A given number of iterated local searches
is performed (ILS-MAX).

13

Algorithm 2 Split-based metaheuristic for the first variant of SDRALBP-2
INPUT An instance of SDRALBP-2, ILS-MAX, LS-MAX.
OUTPUT X∗: A local-optimal solution.

1: Compute an initial compatible giant sequence: σ
2: Build a solution X from σ thanks to split: X := Split[σ]
3: [X∗, σ∗] := [X,σ]
4: for k = 1 to ILS-MAX do
5: Iter := 1
6: while Iter ≤ LS-MAX do
7: Compute a neighboring giant sequence: σ′ := Insertion[σ]
8: Build a solution from σ′ thanks to split: X ′ := Split[σ′]
9: if Cycle time of X ′ ≤ Cycle time of X then

10: [X,σ] := [X ′, σ′]
11: if Cycle time of X ′ < Cycle time of X then
12: Iter := 0
13: end if
14: end if
15: Iter := Iter + 1
16: end while
17: if Cycle time of X ≤ Cycle time of X∗ then
18: [X∗, σ∗] := [X,σ]
19: end if
20: Apply perturbation: σ := Perturbation[σ∗]
21: Update the solution: X := Split[σ]
22: end for
23: return X∗

Algorithm 2 relies on a procedure that computes an initial compatible giant sequence
(line 1). Any giant sequence respecting precedence constraints is compatible since the
solution with a single workstation containing all the giant sequence is feasible. A giant
sequence respecting precedence constraints is computed greedily by starting with a
random operation without predecessors then by taking at each step a random operation
whose predecessors have already been included in the sequence.

The neighborhood move (line 7) stands for an insertion move where an operation is
randomly selected and inserted in a different position. The latter move is applied in
such a way that precedence constraints are respected.

The perturbation move stands for applying the neighborhood move three times.
During the local search, a new auxiliary graph must be built for each new visited

neighbor. To accelerate the algorithm, only parts of the graph that are subject to
change are reprocessed. Since we use an insertion move, when an operation at position
i is moved to some position j:

• If j > i: Arcs (σa, σb) such that (b ≤ i − 1) or (a ≥ j) or (a ≥ i and b ≤ j − 1)
remain unchanged.

• If i > j: Arcs (σa, σb) such that (b ≤ j − 1) or (a ≥ i) or (a ≥ j and b ≤ i − 1)
remain unchanged.

To accelerate the split procedure during the local search, some labels are pruned
if their cycle times exceed the best-known cycle time. We note that this speeding-

14

up technique preserves the optimality of split since all the labels deleted during the
execution of split cannot yield any optimal solution.

5. Adaptation of the split-based approach for the second variant of the
problem

To deal with the second variant of the problem, the main issue is to ensure that each
robot is assigned at most once. The split algorithm is not directly applicable since it
can assign the same robot to more than one workstation.

To adapt split not to use the same robot in more than one workstation, we use
a permutation of robots alongside with the giant sequence of operations to encode a
solution. The permutation does not contain the same robot more than once. During
the execution of split, the robots are assigned in the order given by the permutation
of robots.

Next subsection is devoted to the description of split for the second variant of the
problem. In the second subsection, we explain how it is embedded in a metaheuristic.

5.1. A polynomial case: fixed sequence of operations and fixed
permutation of robots

We suppose that we have, alongside with a fixed giant sequence of operations σ =
(σ1, σ2, . . . , σn), a fixed permutation of robots π = (π1, π2, . . . , πsmax

). We compute
next the optimal solution that respects σ such that the kth workstation uses the robot
at position k in π, i.e., πk.

5.1.1. Auxiliary multi-graph

HI(σ) = (V,A) is a directed weighted multi-graph defined by its set of vertices V
and its multi-set1 of arcs A. The set of vertices does not change from previously:
V = N ∪ {σ0 = 0}.

As it is a multi-graph, the same arc (same source and same destination) can be
present more than once in the graph. The set of arcs A contains nr occurrences of the
arcs (σi, σj) such that i < j. The occurrences of an arc (σi, σj) are labelled from 1 to
nr. We denote (σi, σj)r ∈ A the occurrence number r of arc (σi, σj), i.e., the occurrence
representing the robot r.

The arc (σi, σj)r represents a workstation equipped with robot r to which the oper-
ations from σi+1 to σj are assigned. The weight of an arc (σi, σj)r is given by:

w((σi, σj)r) =

j∑
k=i+1

drσk
+

j−1∑
k=i+1

trσk,σk+1
+ trσj ,σi+1

w((σi, σj)r) represents the time required to perform the subsequence (σi+1, . . . , σj)
on robot r.

Theorem 5.1. The auxiliary multi-graph can be constructed within O(n3.nr).

1In a multi-set, an element can be present more than once, the multiplicity defines the number of copies of
an element in the set

15

Proof. The sum
∑j

k=i+1 d
r
σk
+
∑j−1

k=i+1 t
r
σk,σk+1

+trσj ,σi+1
can be computed within O(n).

It must be computed for each arc (i, j)r. The number of arcs is bounded by nr.n
2 which

gives the complexity: O(n.nr.n
2) = O(n3.nr).

5.1.2. A constrained min-max path

An optimal solution respecting the giant sequence of operations σ and the permutation
of robots π can be found by computing a path from σ0 to σn in HI(σ) that minimizes
the maximum weight of an arc. The path is constrained not to exceed smax arcs and
to respect the permutation π, i.e., it must be ensured that the kth arc of the path uses
the robot πk for 1 ≤ k ≤ smax. Algorithm 1 can be adapted to compute such a path.
Line 10 must be replaced by the two following lines:

r := πbt+1

(ai, bi) := (Max{at, w((σt, σi)r)}, bt + 1)

The first instruction is intended to determine the robot to be used according to π.
The second instruction corresponds to label propagation. It is intended to compute the
workload of the next workstation. The time complexity of the split algorithm does not
change.

5.2. An approach of type Sequence-And-Select-First Balance-Second

In this subsection, split is used as a decoding procedure in a metaheuristic. A solution is
encoded by a giant sequence of operations σ and a permutation of robots π. Split is used
to decode (σ, π). Thus, the approach could be described to be of type "Sequence-And-
Select-First Balance-Second". Indeed, the sequencing of operations and the selection
of robots are first performed by computing respectively σ and π. Then, the balancing
decision is optimally solved by applying split to (σ, π).

We adapt the metaheuristic from the previous section. The local search on the space
of giant sequences of operations (with a fixed permutation of robots) is alternated
with a local search on the permutations of robots (with a fixed giant sequence of
operations). This latter local search is applied each time a neighbor with better or
equivalent objective value is obtained. The pseudo-algorithm is described in Algorithm
3.

Algorithm 3 relies on a local search on the permutations of robots with a fixed giant
sequence of operations (lines 13, 15). It is described in Algorithm 4. Algorithm 3 relies
on a procedure that computes an initial compatible giant sequence and an initial per-
mutation of robots: (σ, π) (line 1). The giant sequence of operations is computed by
generating a random giant sequence of operations σ respecting precedence constraints.
The initial permutation of robots could be computed by taking any random permuta-
tion of robots. However, we propose A heuristic to compute a permutation of robots
yielding good solutions:

(1) Compute a solution for the first variant of the problem by applying Algorithm 1
on σ. This solution may not be admissible for the second variant of the problem
since it may assign the same robot to multiple workstations.

(2) While there exists a robot r assigned to more than one workstation in X

16

Algorithm 3 Split-based metaheuristic for the second variant of SDRALBP-2
INPUT An instance of SDRALBP-2, ILS-MAX, LS-MAX, Max-Neighbors-1,
Max-Neighbors-2.
OUTPUT X∗: A local-optimal solution.

1: Compute an initial compatible giant sequence and an initial permutation of robots:
(σ, π)

2: Build a solution X from (σ, π) thanks to split: X := Split[σ, π]
3: [X∗, σ∗, π∗] := [X,σ, π]
4: for k = 1 to ILS-MAX do
5: Iter := 1
6: while Iter ≤ LS-MAX do
7: Compute a neighboring giant sequence: σ′ := Insertion[σ]
8: Build a solution from σ′ thanks to split: X ′ := Split[σ′, π]
9: if Cycle time of X ′ ≤ Cycle time of X then

10: [X,σ] := [X ′, σ′]
11: if Cycle time of X ′ < Cycle time of X then
12: Iter := 0
13: π := LocalSearchOnRobots[X,σ, π,Max-Neighbors-1]
14: else
15: π := LocalSearchOnRobots[X,σ, π,Max-Neighbors-2]
16: end if
17: end if
18: Iter := Iter + 1
19: end while
20: if Cycle time of X ≤ Cycle time of X∗ then
21: [X∗, σ∗, π∗] := [X,σ, π]
22: end if
23: Apply perturbation: σ := Perturbation[σ∗]
24: Update the solution: X := Split[σ, π]
25: end for
26: return X∗

(a) Keep the robot r on the workstation that has the biggest workload among
the workstations that use r.

(b) For all the other workstations using r, choose the best robot not already
assigned.

(3) Extract the permutation of robots from X to use it as an initial permutation of
robots π.

Algorithm 3 relies on a local search on the permutations of robots with a fixed giant
sequence of operations (lines 13, 15). It is described in Algorithm 4. In the latter,
a swap move is used to generate a neighboring permutation of robots. It consists of
selecting randomly two robots in the permutation and swapping them.

The split-based resolution method is experimented for both variants of the problem
in the next section.

17

Algorithm 4 LocalSearchOnRobots
INPUT X,σ, π,Max-Neighbors: respectively a solution, its corresponding giant
sequence of operations, its corresponding permutation of robots and a maximum
number of visited neighbors.
OUTPUT π: A local-optimal permutation of robots.

1: Iter := 0
2: while Iter ≤ Max-Neighbors do
3: Compute a neighboring permutation of robots: π′ := Swap[π]
4: Build a solution from (σ, π′) thanks to split: X ′ := Split[σ, π′]
5: if Cycle time of X ′ ≤ Cycle time of X then
6: [X,π] := [X ′, π′]
7: if Cycle time of X ′ < Cycle time of X then
8: Iter := Max-Neighbors
9: end if

10: end if
11: Iter := Iter + 1
12: end while
13: return π

6. Computational experiments

In this section, we conduct experiments in order to evaluate the split-based resolution
method on benchmark instances from literature. The experiments were held on a ba-
sic computer equipped with a 8GB in RAM and a 1.6 GHz Intel Core i5 processor.
Algorithms were implemented with JAVA 8 using ECLIPSE.

We consider the well-known instances of the Robotic Assembly Line Balancing Prob-
lem from [Gao et al.(2009)]. Those instances do not include sequence-dependent setup
times. Setups were lately added by [Janardhanan et al.(2019)]. The authors suggest
two new sets of instances derived from [Gao et al.(2009)]: instances with low setup
times and instances with high setup times. Low setup times are generated (randomly
and uniformly) between 0 and 0.25×mini,r{dri } while high setup times are generated
between 0 and 0.75×mini,r{dri }.

To the best of our knowledge, [Janardhanan et al.(2019)] is the only study published
in literature dealing with the robotic assembly line balancing problem with sequence-
dependent setup times with the objective of minimizing the cycle time. This latter
study considers the second variant of the problem. It is used to evaluate our method
in the next subsection.

6.1. Second variant of the problem

Several population-based metaheuristics are suggested in [Janardhanan et al.(2019)].
The authors use the same encoding technique than ours (giant sequence + permutation
of robots) but use a different decoding procedure. This latter is greedy and described as
A heuristic in [Janardhanan et al.(2019)]. It is of exponential-time complexity. Thus,
it is interesting to compare our results with [Janardhanan et al.(2019)] to decide the
relevance of using split as a decoding procedure.

[Janardhanan et al.(2019)] perform 30 random replications for each suggested meta-
heuristic. The best obtained results are given in their paper. The authors explicitly give

18

the value of the obtained cycle time only for instances with the number of operations
up to 70. Only those instances are considered in this subsection. For bigger instances,
[Janardhanan et al.(2019)] give another indicator from which we cannot derive the
cycle time.

The experiments in [Janardhanan et al.(2019)] are performed on a super computer
composed of a cluster of computers with a total capacity exceeding 60GB in RAM
while we use a basic computer with 8GB in RAM. Therefore, it is not relevant to
compare the CPU times of our method with those of [Janardhanan et al.(2019)] due
this big gap in computing capacity. Our method converges in few minutes for most
instances. The detailed CPU times are given in Table 5. They are roughly the same
for instances without setup times, with low setup times or with high setup times.

Table 5. Approximate CPU
times.

Instance CPU time
n smax(= nr) in seconds
11 4 0
25 3 1

4 1
6 3
9 4

35 4 7
5 13
7 22
12 40

53 5 82
7 128
10 190
14 245

70 7 600
10 1100
14 1900
19 2300

The split-based metaheuristic depends on the parameters that are used in Algorithm
3. These parameters were fixed experimentally. They are given in Table 6.

Table 6. Split-based meta-
heuristic parameters.

ILS-MAX 10
LS-MAX n2 ∗ 5

Max-Neighbors-1 n2
r

Max-Neighbors-2 nr

Table 7 shows the results on instances without setup times. The objective values
from [Janardhanan et al.(2019)] are given in the table. They stand for the minimum
cycle time over 30 random replications of the method. We also give the minimum
cycle time over 30 random replications of our split-based iterated local search. The
maximum, the mean and the standard deviation are also given. Comparison with
[Janardhanan et al.(2019)] should be done by considering the min column. For each in-
stance, if a method gives a better solution, it is highlighted in bold. Results on instances
with low and high setup times are given in Tables 8 and 9.

We notice from Tables 7, 8 and 9 that, generally, our method gives better results
than [Janardhanan et al.(2019)]. We also notice that the relative performance of the
method improves as the instances get bigger. Besides, the split-based method performs
better on instances with setup times relatively to [Janardhanan et al.(2019)]. It is even
more effective as the setup times get bigger. We could explain the latter by the fact

19

Table 7. Results on instances without setup times.

Instance [Janardhanan et al.(2019)] Our results
n smax(= nr) min min max mean Std deviation
11 4 128 128 128 128.0 0
25 3 503 503 520 505.26 5.77

4 327 327 331 329.46 1.25
6 213 213 214 213.16 0.37
9 121 123 127 124.93 1.15

35 4 449 450 461 453.23 2.02
5 344 344 377 358.73 14.08
7 222 222 238 232.83 4.75
12 112 112 116 113.8 1.37

53 5 559 554 562 556.16 2.03
7 320 320 327 323.5 2.86
10 239 230 247 239.46 5.11
14 162 158 165 163.26 1.82

70 7 448 451 469 456.93 4.95
10 271 271 281.0 275.6 2.61
14 201 199 207 203.43 1.89
19 152 151 157 153.5 1.5

Table 8. Results on instances with low setup times.

Instance [Janardhanan et al.(2019)] Our results
n smax(= nr) min min max mean Std deviation
11 4 137 137 138 137.03 0.17
25 3 516 516 535 517.03 3.38

4 346 346 347 346.03 0.17
6 227 227 227 227 0
9 131 130 132 131.7 0.64

35 4 462 458 487 465.16 7.00
5 355 355 392 375.36 13.31
7 237 233 246 241.63 3.80
12 118 118 123 120.03 1.04

53 5 574 570 580 571.63 2.56
7 334 331 337 334.03 1.88
10 256 242 259 251.06 5.97
14 170 168 175 172.6 1.40

70 7 469 464 484 472.26 4.95
10 282 280 295 287.23 3.59
14 211 206 216 212.46 2.70
19 158 156 165 160.4 1.66

Table 9. Results on instances with high setup times.

Instance [Janardhanan et al.(2019)] Our results
n smax(= nr) min min max mean Std deviation
11 4 152 152 171 160.1 5.71
25 3 579 579 590 582.13 3.82

4 380 380 399 382.4 5.31
6 242 242 248 245.43 2.80
9 142 141 146 143.36 1.22

35 4 494 487 512 498.36 7.48
5 392 388 430 403.7 12.62
7 261 259 276 265.03 4.85
12 131 129 136 132.63 1.81

53 5 619 614 633 622.96 6.24
7 359 357 372 364.26 5.01
10 276 277 285 279.83 2.17
14 185 185 194 191.43 2.13

70 7 507 492 519 508.4 6.71
10 309 302 318 309.8 4.10
14 233 226 240 232.93 3.01
19 175 173 181 176.7 1.67

that the heuristic decoder used in [Janardhanan et al.(2019)] is a greedy heuristic. It

20

assigns the operations greedily to workstations which does not give the optimal solution
respecting a giant sequence when sequence-dependent setup times are considered.

We also notice that the standard deviation of the split-based method is low which
demonstrates the robustness of the method.

We notice from Table 5 that the CPU times of the suggested method are low for
instances with low number of operations and low number of robots. However, we notice
that CPU times increase drastically for higher number of operations or higher number
of robots. This is due to the complexity of the split algorithm that depends on these
two factors. This can be cited as a limit of the method.

6.2. First variant of the problem

No author has already studied the first variant of the problem with sequence-dependent
setup times. Only papers dealing with the basic Robotic Assembly Line Balancing
Problem (without setup times) are available. Since our method could also be applied
to null setup times, we choose to compare our method with latest resolution methods
from the literature of the basic RALBP. We must note however that our method is not
dedicated to this particular problem. Two latest resolution approaches were selected
from literature, one exact method and one approximate method:

• [Borba, Ritt, and Miralles(2018)]: it is an exact approach extending the branch
and bound from [Sewell and Jacobson(2012)] to the RALBP without setup times.
This method has been shown to be efficient and solves to optimality instances
with a number of operations going up to 89.

• [Nilakantan et al.(2015)]: it is an approximate method implementing a bio-
inspired metaheuristic. The same encoding technique (giant sequence) is used.
The authors use A heuristic to decode the giant sequence. A particular attention
should be carried out to comparison with this method since it can evaluate the
relevance of using split as a decoding procedure.

We recall that for this particular assumption, only a giant sequence is used to encode
a solution since split is able to compute an optimal permutation of robots and an
optimal balancing given a fixed giant sequence. 10 iterated local searches are performed.
For each local search, the maximum number of visited neighbors is n2 ∗ 5. Only one
random replication of the method is considered.

Table 10 gives the results on instances without setup times. For each method, the
cycle time is given in the table.

Table 10. No setup instances.

Instance [Nilakantan et al.(2015)] [Borba, Ritt, and Miralles(2018)] Our results
n smax(= nr) (optimal solution)
25 3 503 503 503

4 327 291 291
6 200 194 194
9 110 109 109

35 4 341 341 341
5 332 329 329
7 211 201 201
12 103 93 93

53 5 449 449 449
7 294 283 283
10 221 203 203
14 142 134 134

21

We notice from Table 10 that, even if the method presented in this paper is not
dedicated to the RALBP without setup times, it retrieved all the considered opti-
mal solutions from [Borba, Ritt, and Miralles(2018)]. Besides, the split-based method
clearly outperforms the population-based metaheuristic from [Nilakantan et al.(2015)].

Table 11 gives the results on instances with low and high setup times.

Table 11. Results on instances with low and
high setup.

Instance Low setup High setup
n smax(= nr)
25 3 516 579

4 310 343
6 206 215
9 117 121

35 4 352 376
5 335 365
7 208 222
12 100 113

53 5 461 486
7 289 314
10 213 241
14 143 155

As expected, we notice from Table 11 that the objective values (cycle times) get
higher as setup times grow. The latter justifies that sequence-dependent setup times
cannot be neglected and should be considered in the model of the Robotic Assembly
Line Balancing Problem.

The CPU times of the suggested approach for the first variant are given in Table
12.

Table 12. Approximate CPU
times.

Instance CPU time
n smax(= nr) in seconds
11 4 <0.1
25 3 0.1

4 0.3
6 1.0
9 1.5

35 4 4.1
5 6.5
7 7
12 13

53 5 32
7 44
10 65
14 92

7. Conclusion and perspectives

We have studied in this paper two variants of the robotic assembly line balancing
problem with sequence-dependent setup times. A new approach is presented. This
hybrid approach relies on an optimal path algorithm (split) intended to solve the
particular case of a given giant sequence of operations. Split is then integrated in a
metaheuristic framework. This encoding-decoding technique significantly reduces the
size of the space search and preserves an optimal solution.

22

An experimental study is conducted on literature data for both variants of
the problem. The considered instances have different characteristics (without setup
times, with low setup times and with high setup times). The results show that
the split-based approach clearly outperforms at least two methods from literature:
[Nilakantan et al.(2015)] and [Janardhanan et al.(2019)].

From a managerial insight, this research offers to the decision-maker a decision
support tool that can help addressing jointly the balancing, the robot selection, and
the operation sequencing problems. The suggested method is simple and generic. New
industrial constraints can be integrated easily.

This research offers many perspective research directions that could be categorized
within two classes:

• Perspectives relative to the split-based approach:
◦ Split can be embedded in more sophisticated metaheuristics. In a genetic

algorithm for example, a chromosome can be encoded as a giant sequence
and split can be used as a fitness evaluation function.

◦ It can be quite beneficial for future research to accelerate split. This can be
done by setting up new upper bounds that can be used to prune unpromising
labels.

• Perspectives relative to application problems:
◦ We focus in this paper on an efficiency-driven objective. However, it can be

easy to study another objective together with the cycle time, for example the
number of stations. Indeed, the labels used in split represent non-dominated
solutions relative to these two objectives.

◦ Robots are quite beneficial in the context of assembly lines but their ener-
getic consumption is a real industrial issue. Split could be investigated for
the objective of minimizing the energetic consumption.

◦ The cooperation of humans and robots in the context of assembly lines is a
hot topic in industry and research. It raises new objectives like ergonomics
that can be investigated by means of a split-based approach.

Data Availability Statement

The data that support the findings of this study are available from the corresponding
author, Y.L., upon reasonable request.

Acknowledgement

The authors acknowledge the support received from the Agence Nationale de la
Recherche of the French government through the program "Investissements d’Avenir"
(16-IDEX-0001 CAP 20-25).

References

[Abdous(2019)] Abdous, Mohammed Amine. 2019. “Optimal design of manufacturing
systems with ergonomics: application to assembly lines.” PhD diss., Lyon.

23

[Allahverdi et al.(2008)] Allahverdi, Ali, CT Ng, TC Edwin Cheng, and Mikhail Y
Kovalyov. 2008. “A survey of scheduling problems with setup times or costs.”
European journal of operational research 187 (3): 985–1032.

[Andres, Miralles, and Pastor(2008)] Andres, Carlos, Cristobal Miralles, and Rafael
Pastor. 2008. “Balancing and scheduling tasks in assembly lines with sequence-
dependent setup times.” European Journal of Operational Research 187 (3): 1212–
1223.

[Battaïa and Dolgui(2013)] Battaïa, Olga, and Alexandre Dolgui. 2013. “A taxonomy
of line balancing problems and their solution approaches.” International Journal
of Production Economics 142 (2): 259–277.

[Beasley(1983)] Beasley, John E. 1983. “Route first—cluster second methods for vehicle
routing.” Omega 11 (4): 403–408.

[Borba and Ritt(2014)] Borba, Leonardo, and Marcus Ritt. 2014. “A heuristic and a
branch-and-bound algorithm for the assembly line worker assignment and balanc-
ing problem.” Computers & Operations Research 45 (1): 87–96.

[Borba, Ritt, and Miralles(2018)] Borba, Leonardo, Marcus Ritt, and Cristóbal Mi-
ralles. 2018. “Exact and heuristic methods for solving the robotic assembly line
balancing problem.” European Journal of Operational Research 270 (1): 146–156.

[Chechik et al.(2016)] Chechik, Shiri, Haim Kaplan, Mikkel Thorup, Or Zamir, and
Uri Zwick. 2016. “Bottleneck paths and trees and deterministic graphical games.”
In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[Çil, Mete, and Ağpak(2016)] Çil, Zeynel Abidin, Süleyman Mete, and Kürşad Ağpak.
2016. “A goal programming approach for robotic assembly line balancing problem.”
IFAC-PapersOnLine 49 (12): 938–942.

[Dong, Huang, and Chen(2009)] Dong, Xingye, Houkuan Huang, and Ping Chen. 2009.
“An iterated local search algorithm for the permutation flowshop problem with
total flowtime criterion.” Computers & Operations Research 36 (5): 1664–1669.

[Gao et al.(2009)] Gao, Jie, Linyan Sun, Lihua Wang, and Mitsuo Gen. 2009. “An effi-
cient approach for type II robotic assembly line balancing problems.” Computers
& Industrial Engineering 56 (3): 1065–1080.

[Janardhanan et al.(2019)] Janardhanan, Mukund Nilakantan, Zixiang Li, Grzegorz
Bocewicz, Zbigniew Banaszak, and Peter Nielsen. 2019. “Metaheuristic algorithms
for balancing robotic assembly lines with sequence-dependent robot setup times.”
Applied Mathematical Modelling 65: 256–270.

[Lahrichi et al.(2020)] Lahrichi, Youssef, Laurent Deroussi, Nathalie Grangeon, and
Sylvie Norre. 2020. “A min-max path approach for balancing robotic assembly lines
with sequence-dependent setup times.” In International Conference on Modeling,
Optimization and Simulation (MOSIM), 10.

[Lahrichi et al.(2021)] Lahrichi, Youssef, Nathalie Grangeon, Laurent Deroussi, and
Sylvie Norre. 2021. “A new split-based hybrid metaheuristic for the reconfigurable
transfer line balancing problem.” International Journal of Production Research 59
(4): 1127–1144.

[Levitin, Rubinovitz, and Shnits(2006)] Levitin, Gregory, Jacob Rubinovitz, and Boris
Shnits. 2006. “A genetic algorithm for robotic assembly line balancing.” European
Journal of Operational Research 168 (3): 811–825.

[Miralles et al.(2008)] Miralles, Cristóbal, José P García-Sabater, Carlos Andrés, and
Manuel Cardós. 2008. “Branch and bound procedures for solving the assembly line
worker assignment and balancing problem: Application to sheltered work centres
for disabled.” Discrete Applied Mathematics 156 (3): 352–367.

24

[Nilakantan et al.(2015)] Nilakantan, J Mukund, Sivalinga Govinda Ponnambalam,
N Jawahar, and Ganesan Kanagaraj. 2015. “Bio-inspired search algorithms to solve
robotic assembly line balancing problems.” Neural Computing and Applications 26
(6): 1379–1393.

[Prins(2004)] Prins, Christian. 2004. “A simple and effective evolutionary algorithm
for the vehicle routing problem.” Computers & operations research 31 (12): 1985–
2002.

[Prins, Lacomme, and Prodhon(2014)] Prins, Christian, Philippe Lacomme, and Caro-
line Prodhon. 2014. “Order-first split-second methods for vehicle routing problems:
A review.” Transportation Research Part C: Emerging Technologies 40: 179–200.

[Rubinovitz, Bukchin, and Lenz(1993)] Rubinovitz, Jacob, Joseph Bukchin, and Ehud
Lenz. 1993. “RALB–A heuristic algorithm for design and balancing of robotic
assembly lines.” CIRP annals 42 (1): 497–500.

[Salveson(1955)] Salveson, Melvin E. 1955. “The assembly line balancing problem.”
The Journal of Industrial Engineering 18–25.

[Scholl, Boysen, and Fliedner(2013)] Scholl, Armin, Nils Boysen, and Malte Flied-
ner. 2013. “The assembly line balancing and scheduling problem with sequence-
dependent setup times: problem extension, model formulation and efficient heuris-
tics.” OR spectrum 35 (1): 291–320.

[Sewell and Jacobson(2012)] Sewell, Edward C, and Sheldon H Jacobson. 2012. “A
branch, bound, and remember algorithm for the simple assembly line balancing
problem.” INFORMS Journal on Computing 24 (3): 433–442.

[Yoosefelahi et al.(2012)] Yoosefelahi, A, M Aminnayeri, H Mosadegh, and H Davari
Ardakani. 2012. “Type II robotic assembly line balancing problem: An evolution
strategies algorithm for a multi-objective model.” Journal of Manufacturing Sys-
tems 31 (2): 139–151.

25

	Introduction
	Literature review
	Problem statement
	First variant
	Second variant

	A split-based resolution approach for the first variant of the problem
	A polynomial case: fixed sequence of operations
	Auxiliary graph
	A constrained min-max path
	Illustrative example

	An approach of type Sequence-First Balance-And-Select-Second

	Adaptation of the split-based approach for the second variant of the problem
	A polynomial case: fixed sequence of operations and fixed permutation of robots
	Auxiliary multi-graph
	A constrained min-max path

	An approach of type Sequence-And-Select-First Balance-Second

	Computational experiments
	Second variant of the problem
	First variant of the problem

	Conclusion and perspectives

