Optimal Price Menu Design of Electric Vehicle Charging Stations PGMO days 2023

Alix Dupont^{1,2}, Yezekael Hayel¹, Jean-Baptiste Breal¹, Panagiotis Andrianesis³

¹LIA (Laboratoire d'Informatique d'Avignon), Avignon university

²EDF (Electricité de France) lab, Paris-Saclay

³DTU (Technical University of Denmark), Lyngby

November 28, 2023

Motivation

Context:

- Huge and quick development of Electric Vehicles (EVs)
- Increasing demand in power consumption for charging the EVs
- **Motivation**: Help a public Charging Station Operator (CSO) to:
 - maximize profit / social welfare
 - provide Demand Response¹(DR)
 - ensure a garanteed quality of charging service to the EV users

Figure: Source: Global EV Outlook 2023

Approach:

- Offer several charging power levels options to the EV users
- Dynamically adjust the charging prices considering electricity cost and the DR

¹Ex: french main distribution network operator Enedis yearly *call for tenders* for flexibility

1 Scenario: a bi-level approach EV / CSO

Model description for homogeneous EVs
 Charging choice model with rational EVs
 Profit and social welfare formulation and analysis

Optimization problems formulation for heterogeneous EVs

- 4 Demand response provision
- 5 Numerical illustration on a test-case

1 Scenario: a bi-level approach EV / CSO

- Model description for homogeneous EVs
 Charging choice model with rational EVs
 Duality of a science formulation and each
 - Profit and social welfare formulation and analysis

Optimization problems formulation for heterogeneous EVs

- 4 Demand response provision
- 5 Numerical illustration on a test-case

Scenario: a bi-level approach EV / CSO

Figure: Bi-level scheme of the model

- Charging menu K := {1, ..., K}: set of K charging options
- Each charging option:
 - a <u>constant</u> (over time) charging power
 - a per kWh charging price
- Charging power (fixed parameter) ordering:
 0 = P₀ < P₁ < P₂ < ... < P_K
- Dynamic charging prices, chosen by the CSO, $\nearrow w.r.t.$ power: $0 = \pi_0 \le \pi_1 \le \pi_2 \le ... \le \pi_K^2$

²In practice, higher charging rate incurs higher price, e.g. at *Charge Place Scotland Tariffs*

Scenario: a bi-level approach EV / CSO

Model description for homogeneous EVs
 Charging choice model with rational EVs
 Profit and social welfare formulation and analysis

Optimization problems formulation for heterogeneous EVs

- 4 Demand response provision
- 5 Numerical illustration on a test-case

EV characteristics and charging choice model

- Exogenous parking duration *d* (depends on the on-site activities).
- Utility function U(P) for charging at (constant) power P:

$$\begin{array}{ll} \displaystyle \frac{\partial U}{\partial P} > 0 & \leftarrow \mbox{ Increasing} \\ \displaystyle \frac{\partial^2 U}{\partial^2 P} < 0 & \leftarrow \mbox{ Concave } \ \ \mbox{ [Samadi et al. (2010)]} \end{array}$$

with option k

• EVs welfare for option
$$k : W_k^{EV}(\pi_k) := \underbrace{U(P_k)}_{\text{Utility for charging with option } k} - \underbrace{\pi_k P_k d}_{\substack{\text{total charging price}}}$$

Deterministic choice model: maximizing the individual welfare EVs choose the option k^* which maximize their individual welfare:

$$k^* := \arg \max_k \ W_k^{EV}(\pi_k).$$

Charging choice illustration

Figure: Illustration of the choice option *w.r.t.* the charging price menu in the case of 2 options

CSO's profit

• <u>Revenue</u> generated for the charging an EV:

• <u>Cost</u> incurred for charging an EV:

$$\mathsf{Cost} := \int_{t^{start}}^{t^{start} + d} \mathsf{elec_cost}_t \ P_{k^*} \ \mathsf{dt} = \underbrace{\bar{c}}_{\substack{\mathsf{Avg. elec. cost}\\ \mathsf{per kWh}}} \times \underbrace{P_{k^*} \ d}_{\substack{\mathsf{energy}\\ \mathsf{delivered}}}$$

CSO's profit per EV formulation

The profit per EV Π is difference between the revenue and the cost:

$$\Pi := \underbrace{(\pi_{k^*} - \bar{c})}_{K^*} \times \underbrace{P_{k^*} d}_{K^*}$$

profit per kWh energy sold

Optimal CSO's profit

<u>Profit</u>: $\Pi := (\pi_{k^*} - \bar{c}) \times P_{k^*} d.$

- The profit is <u>piece-wise linear</u> (with K + 1 pieces) w.r.t. the charging price vector π;
- The optimal CSO's profit is:

$$\Pi_i^{opt} := \left(\frac{U_{k_1} - U_{k_2}}{(P_{k_1} - P_{k_2}) d} - \bar{c}\right) P_{k^{opt}} d,$$

with

$$k^{opt} = \underset{k}{\arg \max (\pi_{k-1,k} - c) P_k d.}$$
option yielding to the maximal CSO's profit at maximum

Figure: Illustration of the choice option *w.r.t.* the charging price menu in the case of 2 options

Social welfare

Social welfare expression

The social welfare is the sum between the CSO's profit and the EV welfare:

$$W^{S} := \underbrace{U_{k^{*}} - \pi_{k^{*}} P_{k^{*}} d}_{\text{EV welfare}} + \underbrace{(\pi_{k^{*}} - \bar{c}) P_{k^{*}} d}_{\text{CSO's profit}} = \underbrace{U_{k^{*}}}_{\text{EV utility}} - \underbrace{\bar{c} P_{k^{*}} d}_{\text{CSO's cost}}.$$

- The social welfare is piece-wise constant (with K + 1 pieces) w.r.t. the charging price vector π;
- The optimal social welfare is:

$$\Gamma^{opt} := U_{k^{opt}} - P_{k^{opt}} d,$$

with
$$k^{opt} = \arg\max_{k} U_k - P_k d$$
.

1 Scenario: a bi-level approach EV / CSO

Model description for homogeneous EVs
 Charging choice model with rational EVs
 Duff and homogeneous former between the second second

Profit and social welfare formulation and analysis

Optimization problems formulation for heterogeneous EVs

- 4 Demand response provision
- 5 Numerical illustration on a test-case

EVs model with heterogeneity

EVs classes

EVs are clustered in a set of classes $\mathcal{I} = 1, ..., I$, where each EV class $i \in \mathcal{I}$ have a weight θ_i share the same:

- <u>utility</u> for each option: $\{U_{i,1}, U_{i,2}, ..., U_{i,K}\};$
- parking duration d_i.
- <u>choice set</u> K_i := {1,..., K_i} (with K_i the highest option s.t. the battery is not fully charged before depature)

dimensionality problem: The number of "combination of choices" is equal to $(K + 1)^{l}$ (= nb_options^{nb_classes}) \Rightarrow previous analytical method not usable

EV choice formulation

The choice of the EV class *i* is represented by a vector $\{a_{i,k}\}_k$, where:

$$a_{i,k} = \begin{cases} 1 & \text{if EV class } i \text{ choose option } k, \\ 0 & \text{otherwise.} \end{cases}$$

Mathematical formulation

Mathematically, $\forall i, k, a_{i,k} \in \{0, 1\}$, with [Lu et al. (2023)]:

$$\sum_{k} a_{i,k} = 1 \quad \forall i \in \mathcal{I}$$
(1)

$$W_{i,k}(\pi_k) + M \sum_{m \neq k} a_{i,m} \ge W_{i,k}(\pi_l) \quad \forall i \in \mathcal{I}, k, l \in \mathcal{K}_i, k \neq l,$$
 (2)

- (1): EVs choose one, and only one, option;
- (2): EVs choose the option maximizing their own welfare, using the *big M method*.

Alix Dupont

PGMO days 2023

CSO's expected profit

CSO's profit maximization problem formulation: the Base Case

$$\underset{\boldsymbol{a},\pi}{\operatorname{maximize}} \quad \boldsymbol{E}_{\boldsymbol{\theta}}[\boldsymbol{\Pi}] := \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}_i} \theta_i \, \boldsymbol{a}_{i,k} \, (\pi_k - \bar{c}_i) \, P_k \, d_i \tag{3}$$

such that:

$$\sum_{k} a_{i,k} = 1 \quad \forall i \in \mathcal{I}$$
$$W_{i}(\pi_{k}) + M \sum_{m \neq k} a_{i,m} \geq W_{i}(\pi_{l}) \quad \forall i \in \mathcal{I}, \ \forall k, l \in \mathcal{K}_{i}, k \neq l$$
$$\pi_{k-1} \leq \pi_{k} \quad \forall k \in \mathcal{K} \quad \leftarrow \text{Charging price} \nearrow w.r.t. \text{ power}$$

- (3) can be solved independently of each time slots;
- (3) can be linearized from a *MIQP* into a *MILP* by introducing a new continuous variable b_{i,k} := a_{i,k} π_k;
- *MILP* can be solved with commercial solvers like CPLEX.

PGMO days 2023

Social welfare

Social welfare maximization problem formulation: the Benchmark

$$\underset{\boldsymbol{a},\pi}{\operatorname{maximize}} \quad \boldsymbol{E}_{\boldsymbol{\theta}}[W^{S}] := \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}_{i}} \theta_{i} \, \boldsymbol{a}_{i,k} \, \left(U_{i,k} - \bar{c}_{i} \, P_{k} \, d_{i} \right) \tag{4}$$

such that:

$$\sum_{k} a_{i,k} = 1 \quad \forall i \in \mathcal{I}$$

$$W_{i}(\pi_{k}) + M \sum_{m \neq k} a_{i,m} \geq W_{i}(\pi_{l}) \quad \forall i \in \mathcal{I}, \ \forall k, l \in \mathcal{K}_{i}, k \neq l$$

$$\pi_{k-1} \leq \pi_{k} \quad \forall k \in \mathcal{K} \quad \leftarrow \text{Charging price} \nearrow w.r.t. \text{ power}$$

$$\sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}_{i}} \theta_{i} a_{i,k} (\pi_{k} - \bar{c}_{i}) P_{k} d_{i} \geq 0 \quad \leftarrow \text{CSO's profit} \geq 0$$

• (4) can be solved independently of each time slots;

Alix Dupont

PGMO days 2023

1 Scenario: a bi-level approach EV / CSO

Model description for homogeneous EVs
 Charging choice model with rational EVs
 Profit and social welfare formulation and analysis

Optimization problems formulation for heterogeneous EV

- 4 Demand response provision
- 5 Numerical illustration on a test-case

Demand response

Mechanism:

• Reducing the aggregate power consumption at the CS compared to the *Base Case*, for a given period of time;

Consequences:

• The optimization problem is not decentralized in time anymore: the choice of EVs have an impact on the consumption in the future.

A few notations

- *n_{i,t}*: expected nb of EV class *i* arriving at time slot *t*;
- λ_t^R (\leq/kW): remuneration for power reduction;
- \mathcal{T} : period considered of the day

Expected aggregated power consumption

• Exp. aggregated power \hat{P}_t at time t and with DR:

with $\delta_{i,t',t}$ indicating that the EV class *i* arriving at time *t'* is still charging at time *t*.

• Exp. aggregated power P_t^{Π} at time t and for the <u>Base Case</u>:

$$P_t^{\Pi} = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}_i} \sum_{t'=1}^t \underbrace{n_{i,t'}}_{\substack{\mathsf{Expected nb}\\ \text{of EV class } i}} \underbrace{a_{i,k}^{\Pi^{CSO}} P_k \, \delta_{i,t',t}}_{\substack{\mathsf{for EV class } i\\ \text{arriving at } t'}}.$$

Maximization problem

• Linearized from MIQP to MILP

1 Scenario: a bi-level approach EV / CSO

Model description for homogeneous EVs
 Charging choice model with rational EVs
 Profit and social welfare formulation and analysis

Optimization problems formulation for heterogeneous EVs

- 4 Demand response provision
- 5 Numerical illustration on a test-case

Test-case

- 4 charging options (low charging rates): $P_1 = 2.5$ kW; $P_2 = 5$ kW; $P_3 = 7.5$ kW; $P_4 = 10$ kW;
- Battery capacity: 50 kWh and SoC \in [20%, 80%];
- Quadratic utility function:

$$U_i(P) = \alpha_i \left(P d_i - \frac{1}{2} \beta_i (P_i d_i)^2 \right).$$

Table: Parameters of EV Classes

	Class i: K_i			Utility Parameters		
$SoC_i \setminus d_i$	1 h	2 h	3 h	4 h	α_i	β_i
10 kWh	1 : 4	2 : 4	3 : 4	4 : 3	0.425	0.017
20 kWh	5 : 4	6 : 4	7 : 2	8 : 2	0.35	0.021
30 kWh	9 : 4	10 : 2	11 : 1	12 : 1	0.275	0.027

• Demand response between 16:00 and 20:00 and time slots of 1 hour

15 / 19

Base Case and Benchmark: optimal charging price menu

Notations

- π^{CSO}_{opt}: optimal charging price menu for profit maximization;
- π^{W^S}_{opt}: optimal charging price menu for social welfare maximization;
- λ_t : electricity cost
- $\pi_{opt}^{CSO} > \pi_{opt}^{W^S}$
- <u>Base Case</u>: π_{opt}^{CSO} not sensitive to small changes in λ_t
- <u>Benchmark</u>: profit positive while $\pi_{opt}^{W^S} < \lambda_t$ for some charging options but profit

Figure: Hourly optimal price menu, Base Case and Benchmark

Demand response: charging price and aggregated power

Figure: Hourly optimal charging price for different DR remuneration

Figure: Hourly agg. power at optimum for different DR remuneration

- Charging prices \nearrow & agg. power $\searrow w.r.t. \lambda_t^R$.

Demand response: CSO's profit

	Profit (€)	↗ (%)
Base Case	1323.45	
$\lambda_t^R = 5$	1339.49	+ 1.21
$\lambda_t^R = 15$	1451.86	+ 9.7

Table: Aggregate CSO's expectedprofit over the day

Figure: Hourly profit (lower part: profit for energy; upper part: revenue from DR)

- Aggregated profit over time $\nearrow w.r.t.$ the DR remuneration λ_t^R
- Lower profit at 15:00 (before the DR period) for $\lambda_t^R = 15 \text{ c} \text{\in}/\text{kW}$

1 Scenario: a bi-level approach EV / CSO

Model description for homogeneous EVs
 Charging choice model with rational EVs
 Profit and social welfare formulation and analysis

Optimization problems formulation for heterogeneous EVs

- 4 Demand response provision
- 5 Numerical illustration on a test-case

Conclusion

Contributions

- Price menu design problem formulation at a public charging station that differentiates the options in the charging power rate;
- Analysis and computation of the optimal price menu for profit or social welfare maximization, with the provision of demand response to the electricity grid operator.

Perspectives

- Consider a bounded rationality model in the charging option choice by the EVs;
- Integrate robust optimization for the demand response;
- Take into account the limitation in the number of charging points.

Thank you for your attention

Contact: alix.dupont@edf.fr

References

- Lu, C., Wu, J., Cui, J., Xu, Y., Wu, C. & Gonzalez, M. C. (2023),
 'Deadline differentiated dynamic ev charging price menu design', *IEEE Transactions on Smart Grid* 14(1), 502–516.
- Samadi, P., Mohsenian-Rad, A.-H., Schober, R., Wong, V. W. & Jatskevich, J. (2010), Optimal real-time pricing algorithm based on utility maximization for smart grid, *in* 'IEEE International Conference on Smart Grid Communications', pp. 415–420.