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Combining additivity and active subspaces for high-dimensional Gaussian process modeling

Gaussian processes are a widely embraced technique for regression and classification due to their good prediction accuracy, analytical tractability and built-in capabilities for uncertainty quantification. However, they suffer from the curse of dimensionality whenever the number of variables increases. This challenge is generally addressed by assuming additional structure in the problem, the preferred options being either additivity or low intrinsic dimensionality. Our contribution for high-dimensional Gaussian process modeling is to combine them with a multi-fidelity strategy, showcasing the advantages through experiments on synthetic functions and datasets.

Introduction

As a surrogate modeling option, Gaussian processes (GPs), also known as kriging, enjoy widespread use across applied scientific domains, including engineering, machine learning and physics (see e.g., [START_REF] Williams | Gaussian processes for machine learning[END_REF][START_REF] Gramacy | Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences[END_REF]. Appreciated for their efficiency on small datasets, GPs offer a full predictive distribution in closed form and are readily accessible from numerous software packages. Nonetheless, the case of many input variables remains one of the most challenging topic in GP modeling, and particularly in its use within Bayesian optimization (BO) (see e.g., [START_REF] Garnett | Bayesian optimization[END_REF]. The root of the issue is that the typical covariance kernels employed in applications, e.g., the squared exponential or Matérn ones, hinge on Euclidean and absolute distances between data points, as discussed, e.g., by [START_REF] Wilson | Deep kernel learning[END_REF]. As the dimension increases, so do the distances between designs. Hence, in high-dimensional spaces, GP predictions predominantly operate in the extrapolation regime, where the selection of a trend (or mean function) is critical, see e.g., [START_REF] Journel | When do we need a trend model in kriging?[END_REF].

Among possible structural assumptions to scale with respect to the number of variables, three main categories have emerged. The first one is to identify the most important variables and then reduce the problem dimensionality. This adaptive variable selection is applied for instance by [START_REF] Cao | Scalable Gaussian-process regression and variable selection using Vecchia approximations[END_REF], while remaining efficient in both the number of variables and dimensions through the use of the Vecchia approximation, which restricts the conditioning set of each observations to only a few designs. A second, more general approach, entails assuming that the problem has a low intrinsic dimensionality, meaning that the variation of the function is concentrated on a few directions only. This is also referred to as using linear embeddings [START_REF] Wang | Bayesian optimization in high dimensions via random embeddings[END_REF]; [START_REF] Garnett | Active learning of linear embeddings for Gaussian processes[END_REF] or active subspaces (AS, [START_REF] Constantine | Active subspace methods in theory and practice: applications to kriging surfaces[END_REF][START_REF] Eriksson | Scalable global optimization via local Bayesian optimization[END_REF]. Hence, both approach avoid dealing directly with high-dimensional distances. A third perspective is to consider additive decompositions of the function, where components involve only a few variables, thereby limiting the degree of interaction between variables, see e.g., [START_REF] Duvenaud | Additive Gaussian processes[END_REF]; [START_REF] Durrande | Additive kernels for Gaussian process modeling[END_REF]; [START_REF] Rolland | High-dimensional Bayesian optimization via additive models with overlapping groups[END_REF]; [START_REF] Lu | Additive Gaussian processes revisited[END_REF]. [START_REF] Ginsbourger | On ANOVA decompositions of kernels and Gaussian random field paths[END_REF], decomposes a regular product Gaussian kernel into ANOVA terms allowing the resulting GP to undergo a similar decomposition. The originality is to separate elements into additive and ortho-additive components (i.e., that capture all the non-additive parts). For a more comprehensive review of high-dimensional GPs and BO, we refer to [START_REF] Malu | Bayesian optimization in high-dimensional spaces: A brief survey[END_REF]; [START_REF] Binois | A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization[END_REF].

Here we focus on these two promising avenues that have been explored separately: the use of linear embeddings and of additive models. Each approach comes with its own set of strengths and limitations. Linear embeddings offer great scalability and allow capturing complex interactions, but only as long as the intrinsic dimension is low. Besides, the intrinsic dimension is generally not know before hand and the method is very sensitive to its estimation, as it is to the choice of the embedding. Additive models typically capture very well the main trends from high-dimensional data. However, as the number of possible interactions terms makes the full inference combinatorially intractable, with too many hyperparameters, it is common practice to limit the number of interactions to a manageable few, which severely limits the expressivity of those models. Additional concerns may arise in BO due to the vanishing variance at unexplored locations [START_REF] Durrande | Additive kernels for Gaussian process modeling[END_REF].

Given the distinct relative advantages of each approach -namely the scalability and interpretability offered by additive GPs and the ability to capture high-order interactions through AS-based GPs -we aim to propose a hybrid model that incorporates the strengths of both. As each can capture the features of the other, with high-order interactions or large intrinsic dimensionality, combining them is not trivial. To address identifiability issues, we introduce orthogonality by adopting a multi-fidelity approach, typically used when inexpensive yet coarse approximations of the target function are available, see e.g., [START_REF] Kennedy | Predicting the output from a complex computer code when fast approximations are available[END_REF]; [START_REF] Brevault | Overview of Gaussian process based multifidelity techniques with variable relationship between fidelities, application to aerospace systems[END_REF]. In a nutshell, our model will consider two fidelity levels: a coarse level corresponding to a first order additive model and a high-fidelity level by a GP on an active subspace whose dimension is learned.

Our contributions are the following:

• We concentrate on two efficient structural assumptions for high-dimensional GP modeling, namely additivity and linear embeddings. We further detail their respective strengths and weaknesses, plus the complexity of a naive combination.

• We develop a multi-fidelity approach designed to efficiently perform this combination, capturing additive and linear embedding contributions.

• For AS-based GPs, we discuss inference of the intrinsic dimension within one-or twostage methods.

• We conduct a thorough comparison of our multi-fidelity method against baselines within an extensive benchmark comprising test functions and datasets. Our findings confirm that the multi-fidelity approach improves over a standard GP when either additivity or active subspaces are present. Importantly, the performance does not degrade when such structures are absent.

Background

We want to fit a Gaussian process model of f :

X ⊂ R d → R when d is relatively large.
What large means depends on the dataset size and the complexity of the problem at hand. In the derivative free black-box context, it is generally considered that ten variables problems already fall within the realm of high dimensionality. We briefly outline Gaussian process regression, the additive and linear embedding versions, before introducing the multi-fidelity model.

Gaussian Processes Regression

Given n ∈ N input designs x (i) ∈ X with corresponding observations f (x (i) ) = y i (possibly noisy), GPs are a form of spatial modeling that only depends on a mean and a covariance function. Typically, the mean function is taken to be zero, and all the modeling effort is placed on the covariance function k. From this GP prior, the posterior distribution is another GP and the prediction at any x follows:

Y (x)|(x, y i ) 1≤i≤n ∼ N (m n (x), s 2 n (x))
where, see e.g., [START_REF] Williams | Gaussian processes for machine learning[END_REF]; [START_REF] Gramacy | Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences[END_REF]:

m n (x) = k(x) ⊤ K -1 y, s 2 n (x) = k(x, x) -k(x) ⊤ K -1 k(x) with y := (y 1 , . . . , y n ), k(x) := (k(x, x (i) )) 1≤i≤n , K := (k(x (i) , x (j) ) + τ 2 1 i=j ) 1≤i,j≤n . τ 2 is the noise hyperparameter, when assuming y i = f (x (i) ) + ε i , with ε i ∼ N (0, τ 2 ).
The covariance kernel function must be a positive definite function. In practice, parameterized families such as the Gaussian and Matérn covariances are employed, see e.g., [START_REF] Williams | Gaussian processes for machine learning[END_REF]. As an example, the Matérn 5/2 kernel in product form writes:

k(x, x ′ ) = σ 2 d i=1 k i (x i , x ′ i ) with k i (x i , x ′ i ) = 1 + √ 5h i /θ i + 5h 2 i /(3θ 2 ) exp - √ 5h i /θ . For
inferring the hyperparameters, we rely on the log-likelihood: log L := -n/2 log(2π) -1/2 log |K|-1/2y ⊤ K -1 y. When the variance parameter σ 2 can be factorized, i.e. K = σ 2 R, with R the correlation matrix, its estimator is available in closed-form: σ2 n := n -1 y ⊤ R -1 y, while the other hyperparameters are obtained by maximizing the concentrated log-likelihood: log L := -n/2 log(2π) -n/2 log(σ 2 n ) -n/2 log |R| -n/2. A typical extension of GPs to offer much better scalability with data size is to follow the Sparse Variational GP (SVGP) framework [START_REF] Titsias | Variational Learning of Inducing Variables in Sparse Gaussian Processes[END_REF][START_REF] Hensman | Gaussian Processes for Big Data[END_REF]. While not considered in this paper, our model would naturally apply to this framework.

Additive Model

Unlike tensor product covariance kernels whose values quickly decrease to zero, impacting the covariance values hence the modeling ability, the tensor sum counterparts do not suffer from this problem. This latter form of covariance amounts to considering additive models, that is, decompositions of the original function into several components. The general model writes f (x) ≈ µ + M i=1 g i (x A i ) with component functions g i acting on subsets of variables A i , plus a constant term µ. These subsets can simply be the original variables [START_REF] Neal | Monte Carlo implementation of Gaussian process models for Bayesian regression and classification[END_REF]; [START_REF] Plate | Accuracy versus interpretability in flexible modeling: Implementing a tradeoff using Gaussian process models[END_REF]; [START_REF] Duvenaud | Additive Gaussian processes[END_REF]; [START_REF] Durrande | Additive kernels for Gaussian process modeling[END_REF], disjoint groups [START_REF] Kandasamy | High dimensional Bayesian optimisation and bandits via additive models[END_REF]; [START_REF] Gardner | Discovering and exploiting additive structure for Bayesian optimization[END_REF] or more general subsets of variables [START_REF] Rolland | High-dimensional Bayesian optimization via additive models with overlapping groups[END_REF].

The sum form of the covariance, i.e., k A

(x, x ′ ) = d i=1 k i (x i , x ′ i )
, translates in the model, where the mean becomes the sum of component-wise means

m n,A (x) = k A (x) ⊤ K -1 A y = d i=1 k i (x i )K -1 A y = d i=1 m n,i (x i ) with k i (x i ) := (k i (x i , x (j) 
i )) 1≤j≤n . It becomes useful for visualization and interpretation, e.g., with main effect plots. As for the predictive variance, it does not have a similar decomposition but it can can be zero at unobserved locations, unless noise is present, see, e.g., [START_REF] Durrande | Additive kernels for Gaussian process modeling[END_REF].

Inference can involve learning variance and scale parameters for every component kernel, plus eventually selecting interaction order, with up to 2 d components. To help inference, centering the various terms is usually preferred to avoid non-identifiability [START_REF] Durrande | Additive kernels for Gaussian process modeling[END_REF]; [START_REF] Lu | Additive Gaussian processes revisited[END_REF]. Orthogonality constraints can be further added between the terms, leading to functional ANOVA decomposition of the original function, see e.g., [START_REF] Muehlenstaedt | Data-driven kriging models based on FANOVA-decomposition[END_REF]; [START_REF] Durrande | Anova kernels and rkhs of zero mean functions for model-based sensitivity analysis[END_REF]; [START_REF] Ginsbourger | On ANOVA decompositions of kernels and Gaussian random field paths[END_REF].

Active Subspace Methods

By not imposing the variables to match the original variables in dimension reduction, one can rather attempt to learn the most important directions of variation of f : f (x) ≈ g(A ⊤ x) with A a d × r matrix, 1 ≤ r ≤ d and preferably r ≪ d. Learning this linear embedding encoded in A is possible with different strategies. Elements of A can be treated as regular hyperparameters [START_REF] Garnett | Active learning of linear embeddings for Gaussian processes[END_REF]; [START_REF] Tripathy | Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation[END_REF]; [START_REF] Letham | Re-examining linear embeddings for highdimensional Bayesian optimization[END_REF], or they can be random [START_REF] Wang | Bayesian optimization in high dimensions via random embeddings[END_REF]; [START_REF] Nayebi | A framework for Bayesian optimization in embedded subspaces[END_REF], relying on the stability of the random projection for the L 2 norm.

When looking at directions where f varies the most, the so-called active subspace Constantine (2015), A is defined (up to a rotation) as the largest r eigen vectors of the matrix

C := X ∇(f (x)) ⊤ ∇(f (x))λ(dx)
where λ is usually the Lebesgue measure on hypercubic domains. Without the gradient of f , A may be estimated via compressed sensing, partial least squares, principal component analysis, see e.g., [START_REF] Carpentier | Bandit theory meets compressed sensing for high dimensional stochastic linear bandit[END_REF]; [START_REF] Djolonga | High-dimensional Gaussian process bandits[END_REF]; [START_REF] Bouhlel | Improving kriging surrogates of high-dimensional design models by partial least squares dimension reduction[END_REF]; [START_REF] Raponi | High dimensional Bayesian optimization assisted by principal component analysis[END_REF]. For a GP, its AS matrix C (n) can be directly computed, as shown by [START_REF] Wycoff | Sequential learning of active subspaces[END_REF] and detailed in Appendix A. These AS approaches usually involve first learning a high-dimensional GP to estimate A, before fitting a low dimensional GP in the reduced space, see e.g., [START_REF] Tripathy | Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation[END_REF]. In Appendix A, we also show how to learn directly the low dimensional GP.

Multi-fidelity

Be it a number of Monte Carlo iterations, a mesh or a training set size, the accuracy of a simulator experiment is often tunable. Accordingly, GP models have been adapted to take into account these various levels of fidelity, see e.g., [START_REF] Kennedy | Predicting the output from a complex computer code when fast approximations are available[END_REF]; [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF]; Le Gratiet & Garnier (2014); [START_REF] Tighineanu | Transfer learning with Gaussian processes for Bayesian optimization[END_REF]. We only review the two levels case here, coarse (resp. fine) level denoted by C (resp. E), with the auto-regressive (AR) model: [START_REF] Kennedy | Predicting the output from a complex computer code when fast approximations are available[END_REF], assumes that ∀x

f E (x) = ρf C (x) + δ(x), δ(•) ⊥ f C (•). This model, proposed by
̸ = x ′ , Cov [Y E (x), Y C (x ′ )|Y C (x)] = 0, i.e., that nothing more can be learned for Y E (x) from the coarse model if Y C (x) is known. Denote the n C observations y C (resp. y E ) at X C := x (1) C , . . . , x (n C ) C (resp. X E ). Given the following covariances: Cov [Y C (x), Y C (x ′ )] = k C (x, x ′ ), Cov [Y E (x), Y C (x ′ )] = ρk C (x, x ′ ), Cov [Y E (x), Y E (x ′ )] = ρ 2 k C (x, x ′ ) + k E (x, x ′ ),
the corresponding predictive equations for the zero mean version are given by (see, e.g., [START_REF] Kennedy | Predicting the output from a complex computer code when fast approximations are available[END_REF]; [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF] for the derivation):

m n,E (x) = k(x) ⊤ K-1 ỹ, s 2 n,E (x) = ρ 2 k C (x, x) + k E (x, x) -k(x) ⊤ K-1 k(x) (1) with k(x) ⊤ = [ρk C (X C , x), ρ 2 k C (X E , x) + k E (X E , x)], K = k C (X C , X C ) ρk C (X C , X E ) ρk C (X E , X C ) ρ 2 k C (X E , X E ) + k E (X E , X E ) and ỹ⊤ = [y C , y E ].
For inference, the low fidelity model is independently trained first, then the fine level hyperparameters (including ρ) are obtained based on d := y E -ρy C (X E ). If the designs of experiments between fidelity levels are nested, i.e., X E ⊆ X C , the difference between levels can be directly evaluated. Otherwise, the difference can be computed based on the predictive mean [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF]; [START_REF] Sacher | A nonnested infilling strategy for multifidelity based efficient global optimization[END_REF], replacing y C (X E ) by its prediction. Further details are given in Appendix B.

A recursive formulation of Eq. ( 1) is available to reduce the computational effort, see e.g., Le Gratiet & Garnier (2014), but equivalence holds only in the noiseless setting, see Appendix B. Subsequently we introduce our proposed multi-fidelity combination of additive and linear embedding models, tailored to tackle high-dimensional problems.

Multi-fidelity for High-dimensional Modeling

Our goal is to combine the advantages of both additive and linear embedding models, without further complexifying inference. Ideally, each component would capture distinct features of the high-dimensional black-box, thereby enhancing the overall model performance.

Combination Options

There are presumably many options to combine models. A straightforward idea would be to simply sum the two types of models, but this raises identifiability issues. Without the AS assumption, this is the model proposed by [START_REF] Plate | Accuracy versus interpretability in flexible modeling: Implementing a tradeoff using Gaussian process models[END_REF] for visualization, by gradually modifying the degree of additivity. Another such idea is first to apply a rotation with AS as a preprocessing step, e.g., as in [START_REF] Binois | A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization[END_REF], before applying an additive model on the inactive directions. The drawbacks here are the loss of interpretability of the additive model in the original variables and a potential lack of interpolation if the additivity assumption does not hold. The converse is to learn a linear embedding directly on the residuals of an additive model, which result in a challenging inference problem if done in one step. One workaround to include orthogonality conditions would be to follow [START_REF] Lenz | Additivity and Ortho-Additivity in Gaussian Random Fields[END_REF]; [START_REF] Ginsbourger | On ANOVA decompositions of kernels and Gaussian random field paths[END_REF] with an orthogonal decomposition between additive and ortho-additive components, before applying AS on the latter. While appealing, this decomposition remains based on the projection of a single high-dimensional tensor product kernel. Furthermore, the independent integral derivations of ortho-additive and AS components do not seamlessly carry over when combined.

A Multi-fidelity Approach

To maintain an orthogonality condition for identifiability, we propose to rely on the one enjoyed by the multi-fidelity model. Indeed, this model regresses the coarse model when no data is available, in order to improve extrapolation-the predominant prediction regime characteristic of high-dimensional problems. We opt for a first order additive model as the coarse level and a linear embedding model as the finer one. This choice is the most natural since (first order) additivity is a restrictive yet data-efficient assumption. The linear embedding then is able to learn the remaining high orders of interaction, allowing flexibility in the choice of the embedding dimension r. In the case r = d, a regular GP is fit on the residuals between additive model prediction and data, still on the rotated initial input space, thus maintaining interpolation in the noiseless case. This rotation is shown to be helpful as a pre-processing step [START_REF] Binois | A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization[END_REF]. If the additive model is a good approximation, the remaining variance of the GP on the residuals will be smaller. This thus alleviates the inflation of the variance in high dimension stemming from the behavior of distances, causing over-exploration as often observed in high-dimensional BO, see e.g., [START_REF] Eriksson | Scalable global optimization via local Bayesian optimization[END_REF]. The converse, taking an AS model as coarse model is less relevant as it will also capture additive components while a finer additive model may not be able to interpolate deterministic data. Plus, again, the additive model would be on a rotated input space, losing interpretability and convenience. Our proposed model thus writes:

Y E (x) = ρY C (x) + δ(Ax) Y C (x) ⊥ δ(Ax) (2) 
In practice there is solely one set of (fine level) evaluations y. To obtain coarse level values and d, we simply take the predictions provided by the additive model:

y (C) = m (C) n (X C
). An issue that may arise with this scheme is when an additive model fits the data perfectly. This scenario is more likely to occur when the training dataset is small, or the dimension large. Figure 1 illustrates an example using the non-additive Branin function. There are several options to cope with this issue, which can be detected by comparing the noise variance to the process variance. One is to restrict the range of the lengthscale (e.g., using prior knowledge). Another one is to withhold some designs from the additive model. That way, if the prediction by the additive model is not accurate, then it will be corrected at the fine level. Lastly, it remains to build the finer model on the residuals of the prediction by the coarse level. When fitting a linear embedding model, one key question is the selection of the dimension. We choose to rely on the likelihood to do so.

Proposed Instantiation

We detail the construction of model (2) in Algorithm 1. In Step 2, we restrict ourselves to using a first order additive model, avoiding higher order terms selection. From Steps 3 to 6, in case the noise variance of the additive model τ 2

C is less than one percent of the additive process variance, σ Algorithm 1 Pseudo-code for multi-fidelity high dim GP 1: Input: X E = X C , y, p (e.g., 0.8) 2: Train an additive model Y C on (X C , y)

3: if τ 2 C ≤ 0.01 × d 1 α i then 4:
Sample n 0 = p × n data points from x 1:n , y and remove the rest from X C and y (C) .

5:

Train an additive model

Y C on (X C , y (C) ). 6: end if 7: Predict the response of Y C at X E : m (C)
n (X E ). 8: Train a multi-fidelity GP from the residual data: d = y -ρm (C) n (X E ). 9: Estimate the corresponding AS matrix C (n) . 10: Train an AS multi-fidelity GP, varying the number of dimensions kept r. 11: Output: Trained multi-fidelity model. additive model. The remaining steps are dedicated to learning the linear embedding and the corresponding GP hyperparameters.

For this, we prefer the active subspace to be learned (and not random, which usually requires several random AS to work well, in practice and theoretically, see [START_REF] Cartis | Bound-constrained global optimization of functions with low effective dimensionality using multiple random embeddings[END_REF]). There we follow [START_REF] Wycoff | Sequential learning of active subspaces[END_REF], because the required number of hyperparameters to learn the linear embedding remains limited compared to say, [START_REF] Garnett | Active learning of linear embeddings for Gaussian processes[END_REF]; [START_REF] Letham | Re-examining linear embeddings for highdimensional Bayesian optimization[END_REF]. Following the modularization principle [START_REF] Liu | Modularization in Bayesian analysis, with emphasis on analysis of computer models[END_REF], that is, separating inference of different modules, we chose to perform a two-stage approach, rather than the single-stage one described in Appendix A. In Step 8, first a tensor product high-dimensional GP model is trained on the residuals between the observations and predictions by the coarse model from Step 7. From this model, an estimation of the active subspace matrix C is obtained (Step 9), following [START_REF] Wycoff | Sequential learning of active subspaces[END_REF]. The eigen vectors U of C (n) = UΛU ⊤ provide the new coordinate system, i.e., with rotated coordinates X E,r = X E U 1:r (assuming that X is centered). It remains to select the number r of eigen vectors from U. Since r is a discrete parameter, one simple workaround is to optimize the lengthscale parameters for various values of r, before selecting the best overall value (Step 10). One can consider that lengthscales for the inactive dimensions are set to infinity, such that this remains the same model defined on the full rotated space. Note that this can result in a noisy model, where the noise subsumes the contributions of the inactive dimensions.

Empirical Evaluation

We conduct a comparative analysis between the multi-fidelity approach and baseline methods on synthetic functions and datasets. Rather than taking very large input dimensions d and data sizes n, we focus on the low data regime, considering n up to 500 and d up to 32.

Setup

As a baseline, we use a standard GP model (hereafter denoted by Ref), with a tensor product kernel. The R R Core Team (2023) package hetGP Binois & Gramacy (2021) is used for learning of the hyperparameters, where the initialization of the hyperparameters is complemented by an initialization with the R package RobustGaSP [START_REF] Gu | RobustGaSP: Robust Gaussian Stochastic Process Emulation[END_REF] for a robust hyperparameter estimation [START_REF] Gu | Robust Gaussian stochastic process emulation[END_REF]. We entertain an additional variant of standard GPs, with an isotropic kernel (Iso). Additionally we assess the individual component models of the multi-fidelity approach: a first order additive model (Add) and linearly embedded GP (AS). A multi-fidelity model with a standard GP for the finer level is also entertained (MF), in addition to the version with active subspace (ASMF, which is our main proposal). We further add naive variants (n-) of the multi-fidelity models, involving a direct summation of the additive model with the one on the residuals. The implementation of the proposed models is in the Supplementary Material to reproduce the results. All use Matérn 5/2 kernels in these experiments.

For test functions, we start with draws from GPs with d = 8, 15, avoiding model mismatch. That is, we consider draws from standard GPs and first order additive GPs. The subsequent set of tests is with classical toy problems: Sobol (d = 8) [START_REF] Marrel | Calculations of Sobol indices for the Gaussian process metamodel[END_REF], penicillin (d = 7) [START_REF] Liang | Scalable Bayesian optimization accelerates process optimization of penicillin production[END_REF], Levy (d = 10, 20) [START_REF] Laguna | Experimental testing of advanced scatter search designs for global optimization of multimodal functions[END_REF] and Cola (d = 17) [START_REF] Mathar | A class of test functions for global optimization[END_REF]. We also embed lower dimensional test functions, Hart-mann3 (d e = 3) with a random AS matrix with d = 8, 15 and Branin (d e = 2) [START_REF] Dixon | The global optimization problem: an introduction[END_REF] with a random hashing matrix with d = 10. We complement these by adding an additive GP realization to the linearly embedded Hartmann3 function. From a thousand randomly sampled locations where these benchmarks are evaluated, a training set is extracted. Lastly, we use real datasets BostonHousing (d = 13), Concrete (d = 8) [START_REF] Newman | UCI repository of machine learning databases[END_REF], pumadyn (d = 8, 32) [START_REF] Corke | A robotics toolbox for Matlab[END_REF] and CASP (d = 9) [START_REF] Rossi | The network data repository with interactive graph analytics and visualization[END_REF]. All test sets are centered, and rescaled to unit variance. As for metrics, we rely on the root mean square error (RMSE) and score (or log-predictive density, [START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF], computed on the remaining data after training.

Results

The results are presented for the RMSE (lower is better) and score (higher is better) in Figures 2 and3. We threshold scores at -5 for better visualization. Before delving into specific details, the multi-fidelity plus AS is in general at least as well as regular GPs. Notably, it can improve significantly the results when additive or low intrinsic dimensionality is present. The few exceptions, e.g., on standard GP samples, occur mostly for the lowest budgets and with a small difference. It is noteworthy that regular GPs are in general not worse than most alternatives, and in particular when first-order additive or AS-alone structure are not present. This underscores the importance of meticulous hyperparameter tuning for high-dimensional GPs, where larger values can be taken to offset greater distances, without resulting in conditioning issues of the covariance matrix.

The naive and AR multi-fidelity models seem to perform similarly on the RMSE, but the AR model generally yields better scores, both with full and AS kernels. Perhaps unsurprisingly, the best results of the MF models are obtained when the additive model performs well: e.g., for Sobol, penicilin, addGP. Then the AS version of the MF GPs tends to outperform the full GP one, where the best results are obtained when AS structure is present as well: penicillin, puma, addGP + Hartman or Levy. This improvement can be attributed to either truncating the number of active dimensions, or simply to the rotation applied on the input space when keeping all variables. This can be seen in Appendix in Figure 4 (also note that the selected dimension is usually larger than the actual embedding one, which is recommended in practice [START_REF] Letham | Re-examining linear embeddings for highdimensional Bayesian optimization[END_REF] and theoretically [START_REF] Cartis | A dimensionality reduction technique for unconstrained global optimization of functions with low effective dimensionality[END_REF]). While additive and AS models excel when such structure is present, they tend to perform poorly when this assumption does not hold, especially in terms of score. This effect is more pronounced in additive models, as AS GP ones can compensate using r = d dimensions, ultimately not reducing the dimension. Then for problems with simultaneously additive and AS structures, the dedicated GP models perform best. Isotropic GPs may make a reasonable initial choice with low data, as they are much easier to infer, but they quickly become less effective than anisotropic ones. Timings are provided in Appendix C, Figure 6, where the repeated optimization of the likelihood to estimate the best low dimension r in the AS models shows. Considering multi-fidelity does not add much computational effort. In terms of budget, more data is beneficial to all models, as reflected by the larger boxplots for lower budgets. The effect of the budget is the most striking on the AS models, suggesting that a minimal amount of data is essential for robust inference. Conversely, the additive model exhibits the least change with increasing budget and can perform well even with lowest budgets.

Finally, we include an indicative comparison with the higher-order additive model (OAK) from [START_REF] Lu | Additive Gaussian processes revisited[END_REF], as depicted in Figure 5 in Appendix C. However, the results are harder to interpret: the predictive variance is not returned to compute scores, additional scalings are performed, plus a measure on the input space is needed. OAK can perform better than the alternatives on some test cases, but worse on the cases with active subspaces. This highlights the difficulty of learning high-order interactions in additive models.

Conclusion and Perspectives

We propose a simple solution to properly combine the predominant structural assumptions for high-dimensional modeling: additivity and low intrinsic dimensionality. The resulting multi-fidelity model is simple to construct and robust to incorrect assumptions. The promising results obtained open perspectives in several main directions. First, the inference of GP hyperparameters for high-dimensional problems may be improved, potentially starting with GPs that have pre-selected lengthscales, as suggested in [START_REF] Appriou | Combination of optimization-free kriging models for high-dimensional problems[END_REF]. Then a comparison could be conducted with direct inference of the active subspaces matrix within GPs, see e.g., [START_REF] Letham | Re-examining linear embeddings for highdimensional Bayesian optimization[END_REF] or [START_REF] Garnett | Active learning of linear embeddings for Gaussian processes[END_REF]. Given that larger datasets may be necessary for more precise inference of such features, a combination with sparse GP models, e.g., as in [START_REF] Moss | Inducing point allocation for sparse Gaussian processes in high-throughput Bayesian optimisation[END_REF], would be considered. This could further include input and output warpings, as already advocated by [START_REF] Lin | Transformation and additivity in Gaussian processes[END_REF]; [START_REF] Lu | Additive Gaussian processes revisited[END_REF]. A second direction to explore is the use of less linear multi-fidelity models as summarized by [START_REF] Brevault | Overview of Gaussian process based multifidelity techniques with variable relationship between fidelities, application to aerospace systems[END_REF], or even multi source models, see, e.g., [START_REF] Poloczek | Multi-information source optimization[END_REF]. This would be beneficial when combining models whose structural assumptions have no natural ordering, like [START_REF] Oh | Bayesian optimization with cylindrical kernels[END_REF], and higher order additive models [START_REF] Lu | Additive Gaussian processes revisited[END_REF]. Non-linear dimension reduction is another appealing candidate, see e.g., [START_REF] Guhaniyogi | Compressed Gaussian process for manifold regression[END_REF]. Lastly, GP modeling shines in sequential procedures, where existing works only focus on individual aspects, say additivity [START_REF] Schwabe | Designing experiments for additive nonlinear models[END_REF], multi-fidelity Le [START_REF] Le Gratiet | Cokriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes[END_REF] or active subspace estimation [START_REF] Wycoff | Sequential learning of active subspaces[END_REF]. Future research could delve into the alignment of these goals compared to Bayesian optimization, exploring how these aspects synergize in sequential decision-making processes.

A One Shot Active Subspace Gaussian Process Learning

In practice, C = X ∇(f (x)) ⊤ ∇(f (x))λ(dx) is often estimated by Monte Carlo, either directly on f when the gradient is available, or on its surrogate. In [START_REF] Wycoff | Sequential learning of active subspaces[END_REF], this AS matrix is expressed in closed form for a GP, which can be further used to reduce the dimension. Let k be a twice differentiable kernel, with derivatives κ, W i,j := X κ i (X) ⊤ κ j (X)dλ, and

E i,j := X ∂ 2 k(X,X) ∂x i ∂x j dλ. Then, C (n) i,j = E i,j -tr (K -1 n W i,j ) + y ⊤ K -1 n W i,j K -1 n y.
As a result, estimating a GP with reduced dimension is possible via a two-step process: first fit an high-dimensional GP, then use the corresponding AS matrix to learn a low dimensional GP on the projected data, with kernel k(x, x ′ ) = k(A ⊤ x, A ⊤ x ′ ), assuming a centered X, where A = U r , the first r eigen vectors of C (n) .

Nevertheless, the AS matrix C (n) in fact only depends on the d lengthscale hyperparameters, and the data. What we propose here is to use the same parameterization of the AS matrix of the GP, but learn the parameters via the likelihood of a low dimensional GP, i.e., learn all hyperparameters: l 1 , . . . , l r , θ 1 , . . . θ d at once, where the l i (resp. θ i ) are the low (high) dimensional GP lengthscales.

We rely on the work made previously with the derivative of an AS kernel in [START_REF] Wycoff | Sequential learning of active subspaces[END_REF], and give the additional required expressions, that is ∂C ∂θ i :

∂C (n) i,j ∂θ i = ∂E i,j -tr (K -1 n W i,j ) + y ⊤ K -1 n W i,j K -1 n y ∂θ i .
Hence we need ∂E i,j ∂θ i , ∂K -1 n ∂θ i and ∂W i,j ∂θ i . These are combined to get:

∂C (n) i,j ∂θ i = ∂E i,j ∂θ i -tr ∂K -1 n ∂θ i W i,j + K -1 n ∂W i,j ∂θ i + y ⊤ ∂K -1 n ∂θ i W i,j K -1 n y + y ⊤ K -1 n ∂W i,j ∂θ i K -1 n y + y ⊤ K -1 n W i,j ∂K -1 n ∂θ i y.
and up to the likelihood level:

∂ log L ∂θ i = ∂ const. -n 2 log y ⊤ K -1 y -1 2 log |K| ∂θ i = n 2σ 2 y ⊤ K -1 ∂K ∂θ i K -1 y - 1 2 T r K -1 ∂K ∂θ i
where, using the chain rule ∂K i,j ∂θ i = ∂K i,j ∂U ∂U ∂θ i . More precisely, using [START_REF] Petersen | The matrix cookbook[END_REF], involving the eigen vectors U l and corresponding eigen value λ l of C, and pseudo-inverses †:

∂U l ∂θ i = (λ l I -C) † ∂C ∂θ i U l .
As an example, for a Gaussian kernel in the reduced dimension too, h = (x i -x j ), such that:

∂K i,j ∂W = 2Diag(l)Whh ⊤ K i,j .
For this Gaussian kernel case, parameterized by k(x,

x ′ ) = d i=1 exp - x i -x ′ i θ i 2 (denot- ing a = x i , b = x ′ i and t = θ i ): ∂E i,j ∂θ = ∂ ∂θ δ i=j θ 2 = -2δ i=j θ -3 ∂w i,i (a, b, t) ∂t = - 2t (b + a -2) 2t 2 -(b + a -2) 2 e b+a t 2 -(b + a) 2t 2 -(b + a) 2 e 1 t 2 e -b 2 -a 2 -2 2t 2 16t 6 - √ π erf b+a 2t -erf b+a-2 2t 2t 2 -2bt + 2at -b 2 + 2ab -a 2 2t 2 + 2bt -2at -b 2 + 2ab -a 2 e -b 2 +2ab-a 2 -1 4t 2 16t 6 ∂w i,j (a, b, t) ∂t = -2 (a -b) te - (a-b) 2 4t 2 (b + a) e - (b+a) 2 4t 2 -(b + a -2) e - (b+a-2) 2 4t 2 8t 4 + 4t -b 2 + a 2 e -b 2 +a 2 2t 2 --b 2 + 2 (b + a -1) -a 2 e -b 2 +2(b+a-1)-a 2 2t 2 8t 4 + 2 √ π (a -b) erf b+a-2 2t -erf b+a 2t t 2 e - (a-b) 2 4t 2 - √ π (a -b) 3 erf b+a-2 2t -erf b+a 2t e - (a-b) 2 4t 2 8t 4 ∂I l,l (a, b, t) ∂t = 2 √ πt 2 e - (b-a) 2 4t 2 erf b+a 2|t| -erf b+a-2 2|t| + √ π (b -a) 2 e - (b-a) 2 4t 2 erf b+a 2|t| -erf b+a-2 2|t| 4t 2 + 2e - (b-a) 2 4t 2 (b + a -2) e - (b+a-2) 2 4t 2 -(b + a) e - (b+a) 2 4t 2 4t
B Complements on the Auto-regressive Multi-fidelity

Model

For the implementation, we start by giving some log-likelihood derivatives. Then we discuss the link to the recursive formulation of the AR multi-fidelity model.

B.1 Log-likelihood Derivatives

Derivatives of the log-likelihood are given, e.g., in [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF]. The only change is the log-likelihood derivative that requires adaptation in the additive case.

For the coarse level model with an additive kernel where

K = d i=1 α i K (i) (θ i ) + gI: L = -n/2 log(2π) -1/2y ⊤ C K -1 y C -1/2 log |K| ∂L ∂θ i = 1/2y ⊤ C K -1 ∂K ∂θ i K -1 y C -1/2T r K -1 ∂K ∂θ i ∂L ∂α i = 1/2y ⊤ C K -1 ∂K ∂α i K -1 y C -1/2T r K -1 ∂K ∂α i = 1/2y ⊤ C K -1 K (i) K -1 y C -1/2T r K -1 K (i)
Then for the AR multi-fidelity kernel:

∂ L ∂ρ = ∂ -n/2 log(σ 2 d ) ∂ρ = -1/2 ∂(y E -ρy C ) ⊤ K -1 (y E -ρy C ) ∂θ i = y C K -1 (y E -ρy C )

B.2 Recursive Formulation

Le Gratiet & Garnier (2014) provide a recursive formulation of the multi-fidelity AR model, which is equivalent to the one by [START_REF] Kennedy | Predicting the output from a complex computer code when fast approximations are available[END_REF] but only in the deterministic case. This formulation writes:

m n,E (x) = m n,C (x) + k E (x, X E )K -1 E (y (E) -ρy (C) ), s 2 n,E (x) = ρ 2 s n,C (x) + k E (x, x) -k E (x, X E )K -1 E k E (X E , x) (3) 
which reduces the computational complexity of fitting the finer level and gives the predictive quantities at all fidelity levels. We give here a simple proof of the equivalence in this case, then show that it does not apply in the noisy one.

B.2.1 Deterministic Case

In the deterministic case, when both designs are equal,

X C = X E (of size n): K = k C (X C , X C ) ρk C (X C , X E ) ρk C (X E , X C ) ρ 2 k C (X E , X E ) + k E (X E , X E ) := K C ρK C ρK C ρ 2 K C + K E Similarly, k(x) := [ρk C , ρ 2 k C + k E ] ⊤
for shorter notation (dropping the dependence on x).

Then the block-matrix inverse formula [START_REF] Petersen | The matrix cookbook[END_REF] gives, following the notations there:

C 1 = K C -ρ 2 K C (K E + ρ 2 K C ) -1 K C and C 2 = ρ 2 K C + K E -ρ 2 K C = K E where this second equality is used for expressing K-1 : K-1 = ρ 2 K -1 E + K -1 C -ρK -1 E -ρK -1 E K -1 E .
Consequently, for the predictive equations:

K-1 k = [ρ 3 K -1 E k C + ρK -1 C k C -ρ 3 K -1 E k C -ρK -1 E k E , -ρ 2 K -1 E k C + ρ 2 K -1 E k C + K -1 E k E ] = [ρK -1 C k C -ρK -1 E k E , K -1 E k E ] such that m n,E (x) = k⊤ K-1 ỹ = ρk C K -1 C y C -ρk E K -1 E y C + k E K -1 E y E = m n,C (x) + k E K -1 E (y E - ρy C ) and s 2 n,E (x) = k⊤ K-1 k = ρ 2 k C K -1 C k C -ρ 2 k C K -1 E k E +ρ 2 k C K -1 E k E +k E K -1 E k E = ρ 2 k C K -1 C k C + k E K -1 E k E = ρ 2 s 2 n,C (x) + s 2 n,d (x 
) For the non equal DoE, X C can be split into [X E , X R ] where X R are the designs where only the cheap level is evaluated. In this case, we still have that

C 2 = ρ 2 K C (X E , X E ) + K E -ρ 2 K C (X E , X E ) = K E . The last term is obtained by realizing that A 12 is the first n E lines of K C (X C , X C ) = A 11 . Then A 12 A -1 11 = [I, 0] and A -1 11 A 21 = [I, 0] ⊤ such that: K-1 =     ρ 2 K -1 E 0 0 0 + K C (X C , X C ) -1 -ρK -1 E 0 -ρK -1 E 0 K -1 E     Hence, with k = [ρk C (X E , x), ρk C (X R , x), ρ 2 k C (X E , x) + k E ],
the same simplifications as above occur, giving the equivalence between the two formulations. From the expression of K-1 , only n × n inverses and determinants need to be computed.

B.2.2 Noisy Coarse Function

Now assume that the low fidelity function is noisy, as is usually the case for an additive model. This time, the application of the block inverse matrix when

X E = X C on: Ǩ = k C (X C , X C ) + gI ρk C (X C , X E ) ρk C (X E , X C ) ρ 2 k C (X E , X E ) + k E (X E , X E ) := K C + D ρK C ρK C ρ 2 K C + K E gives, (following again notations from Petersen et al. (2008)): C 1 = (K C + D) - ρ 2 K C (K E + ρ 2 K C ) -1 K C and C 2 = ρ 2 K C + K E -ρ 2 K C (K C + D) -1 K C = K E + ρ 2 (K -1 C + g -1 I) -1 = K E + gρ 2 K C (K C + gI) -1
using the Woodbury identity. Even though it allows to reduce the computational complexity of the direct multi-fidelity approach, it does not lead to the expressions from the recursive formulation. In particular, the recursive variance expression does not equal zero at X E since the low fidelity variance is greater than zero.

C Additional Results

To complement the results provided in the main part, Figure 4 focuses on the estimation of the low intrinsic dimensionality. Then a comparison on the RMSE for the OAK model by [START_REF] Lu | Additive Gaussian processes revisited[END_REF] is given in Figure 5, before general timing results in Figure 6. The experiments have been performed on four 2.40GHz Intel cores. 

  Figure 1: Additive model prediction surfaces on 20 points from the Branin function, interpolating (left) or approximating (right).
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 23 Figure 2: First part RMSE and score results. The color lines indicate the baseline result from standard GP models.
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 456 Figure 4: Number of active dimensions kept for the AS GP (left boxplots) and MF AS GP (right gray-filled boxplots). The red segments indicate the number of variables of the problem (d).
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