
HAL Id: hal-04434885
https://hal.science/hal-04434885v1

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance Algorithms for the Unrelated Parallel
Machines Scheduling Problem with a Common Server

and Job-Sequence Dependent Setup Times
Nathalie Grangeon, Youssouf Hadhbi, Laurent Deroussi, Sylvie Norre

To cite this version:
Nathalie Grangeon, Youssouf Hadhbi, Laurent Deroussi, Sylvie Norre. High Performance Algorithms
for the Unrelated Parallel Machines Scheduling Problem with a Common Server and Job-Sequence
Dependent Setup Times. 9th International Conference on Metaheuristics and Nature Inspired Com-
puting, Nov 2023, Marrakech, Morocco. �hal-04434885�

https://hal.science/hal-04434885v1
https://hal.archives-ouvertes.fr

High Performance Algorithms for the Unrelated Parallel
Machines Scheduling Problem with a Common Server and

Job-Sequence Dependent Setup Times

Youssouf Hadhbi, Laurent Deroussi, Nathalie Grangeon, and Sylvie Norre

Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint-Étienne, LIMOS, 63000
Clermont-Ferrand, France

{youssouf.hadhbi, laurent.deroussi, nathalie.grangeon, sylvie.norre}@uca.fr

1 Introduction

This paper deals with a new variant of the non-preemptive unrelated parallel machines scheduling
problem with setup times (UPMS-SDST). In this context, the setup processing is not operated
automatically such that a common server is used as an extra shared resource to operate the setup
processing between each two jobs assigned to the same machine. For this, we consider the so-called
job-sequence dependent setup times which means that the setup times depend on only the sequence
of jobs. This problem is known under the name of unrelated parallel machines scheduling problem
with a common server and job-sequence dependent setup times (UPMS-CS-SDST) [27]. It can be
formally defined as follows. We consider a set of unrelated parallel machinesM . There does not exist
a dependency between these machines such that each machine i ∈ M has its proper characteristics
as speed, configuration, energy consumption and quality of work [27]. Notice that the machines M
are available along a set of Tmax consecutive periods denoted by T = {1, 2, ..., Tmax − 1, Tmax}.
Let N be a set of n jobs numbered from 1 to n such that each job k is characterized by

– a subset of qualified machines Mk ⊆ M that are capable of processing the job k,
– a processing-time pki ∈ N on each machine i ∈ M such that pki = +∞ for each non qualified

machine i ∈ M \Mk.
– a priority factor wk ∈ R∗,
– a set of setup-times sjk ∈ N of job k after job j ∈ N0 \{k} if the two jobs k and j are assigned to

the same machine that is to say the job-sequence dependent setup times, where N0 denotes the
set of jobs in N with an additional dummy-job 0 (i.e., N0 = N ∪{0}) such that the dummy-job
0 precedes each first job assigned to each machine.

As mentioned before, a common server is used to manage the setup operations between each pair
of consecutive jobs (j, k) assigned to the same machine. Moreover, the common server can be
unavailable at some periods in T . For this, we consider a binary parameter at which equals to 1
if the server is available at period t, and 0 if not. However, the jobs N are available in all periods
of T . The problem consists in assigning each job k to one of its qualified machine in Mk while
satisfying the following technological constraints

– each job k must be processed only one time by one of its qualified machines i ∈ Mk. Moreover,
pki consecutive periods are assigned to each job k if it is assigned to machine i (processing-time).
As a consequence, each job k has one completion period of processing in T (non-premption of
processing),

– sjk consecutive periods are assigned to each job k if it is processed immediately after a job j
over the same machine (setup-time),

– the common server cannot start the setup processing for a job if it hasn’t finished the setup
for another job yet (non-premption of setup),

– each machine can handle at most one job at each period such that two jobs cannot be processed
at the same period on the same machine (non-overlapping of processing),

– the setup operation cannot be ensured at period t if the common server is not available at
period t. Moreover, the common server can ensure the setup operation of at most one job at
period t (non-overlapping of setup),

2 Hadhbi et al.

– the common server interrupts the setup processing for a job when it becomes unavailable.
However, it can resume the setup processing of this job when it becomes available (server
availability).

The objective is to minimize the total weighted completion time of processing for the different
jobs.
From a practical point of view, the UPMS-CS-SDST problem arises when planning production
and scheduling for some industrial flexible manufacturing systems. It appears in some applications
related to the production of some mechanical parts of automobiles, hydraulic and electrical sectors
[27] in the context of Industry 4.0. In this context, optimization of these real modern systems is a
real challenge such that effective scheduling is a key issue to well manage the different resources
and improve productivity of manufacturing systems.
The UPMS-CS-SDST problem is NP-hard in the strong sense [27]. The main contributions of this
paper is as follows.
We first formulate the problem as a mixed integer linear program (MILP), and further devise an
exact algorithm based on a branch-and-cut (B&C) algorithm to solve the problem. Due to the
complexity of the problem, we propose a metaheuristic based on an iterated local search (ILS)
algorithm [21] for solving the problem. Using this, we provide several matheuristics based on a two
stage algorithm: ILS first and MILP last. We also carry out a comparative study between these
methods and show the effectiveness of our approach using small-sized instances and large-sized
instances.
The rest of this paper is organized as follows. In Section 2, we present some related works that have
been well studied in the literature. In Section 3, we present a MILP for the problem. We introduce
the ILS in Section 4. Matheuristics are presented in Section 5. We then present an extensive
computational study using different classes of instances. Finally, we summarize our results and
future outlook in Section 7.

2 Related Works

In the most general statement, the classical unrelated parallel machines scheduling problem (UPMS)
has been well studied in the literature. The setup times are not considered in this case. It has been
shown to be NP-hard [19]. Several exact algorithms have been proposed to solve the problem
[1][8][23][22][33]. Despite the NP-hardness of the problem, heuristics and metaheuristics have also
been required to solve the problem [14][33]. On the other hand, some approximate algorithms with
good performance guarantee have been developed for solving the problem [16][19][24][32].
Notice that for some works, the setup-time has been considered as a part of processing-time. Here,
we focus on the works that considered the processing and the setup operation separately. This is
related to the UPMS-SDST problem. For this, we consider sequence-dependent setup times such
that a setup operation is needed after each completion of processing of a job and before each
starting of processing of another job assigned to the same machine. In this context, each machine
is regulated to process the next job. This needs a setup time which depends only on the pair of
consecutive jobs who share the same machine. This has first been studied by Allahverdi et al. [2].
Several exact algorithms have been proposed to solve the UPMS-SDST problem. They are based
on branch-and-bound algorithm [29], branch-and-check algorithm [13], branch-and-price algorithm
[25] and Bender decomposition [30]. However, these approaches have been shown to be less efficient
when using large-sized instances of the same problem.
For this, heuristics [5][20][26] and metaheuristics have been used to solve the UPMS-SDST prob-
lem. Rabadi et al. [26] presented a greedy randomized adaptive search procedure to solve the
problem. A simulated annealing has been used by Radhakrishnan and Ventura to solve the same
problem [28]. Helal et al. [17] presented also a tabu search algorithm for the problem. On the other
hand, some population-based metaheuristics have been introduced to solve the problem. Vallada
and Ruiz [31] proposed a genetic algorithm for the problem. An ant colony optimization algorithm
has been developed by Arnaout et al. [3] for solving the problem. Recently, Arnaout et al. [4]
developed a worm optimization algorithm and compared it with some known metaheuristics for
the same problem.
Hybrid methods have also been developed to solve the UPMS-SDST problem. Fang et al. [12]
developed an hybridization of adaptive large neighborhood search algorithm with a tabu search

High Performance Algorithms for the UPMS-CS-SDST 3

algorithm. Zeidi and Hosseini [34] proposed a two-stage algorithm which combines a genetic algo-
rithm with a simulated annealing algorithm. Behnamian et al. [6] presented an hybridization of
ant colony optimization, simulated annealing and variable neighborhood search.
Notice that the setup-processing is operated automatically in these previous works. This means
that they did not consider the existence of a single or multiple servers to manage the setup process.
Moreover, this resource is shared by all jobs N and machines M .
There exist a few works that have taken into account these additional resources (servers) and
setup constraints such that the UPMS-CS-SDST problem is more less studied than the UPMS-
SDST problem. A new integer linear programming formulation has been proposed by Bektur et al.
[7] for solving the UPMS-CS-SDST problem without taking into account the unavailability of the
common server in some periods of T . Moreover, the same authors developed some metaheuristics
based on a simulated annealing and a tabu search algorithm for solving the problem. Elidrissi et al.
[11] introduced a mixed integer programming formulation for a similar problem with two commun
servers. They also developed two greedy heuristics and a general variable neighborhood search
algorithm. The results showed that this latter outperformed the two other approaches.
To the best of our knowledge, the work done by Raboudi et al. [27] represents the initial study
of the UPMS-CS-SDST problem taking into account the technological constraints and problem
characteristics that have been considered in our study. Their mixed integer linear programming
formulation has shown some limits such that it has been shown to be not able to solve small
instances to optimality with a number of jobs up to 7 and 6 machines.

3 Mixed Integer Linear Programming Formulation

In what follows, we present a mixed integer linear programming formulation [15] for solving the
UPMS-CS-SDST problem based on the following variables

– for each job k ∈ N and machine i ∈ M , let uk
i be a binary variables which equals to 1 if job k

is assigned to machine i, and 0 if not,
– for each machine i ∈ M , job j ∈ N0 and job k ∈ N , we denote by xi

j,k a binary variables which
is related to the sequence-dependent setup times such that it takes 1 if jobs j is processed
immediately before job k on machine i, and 0 if not,

– for each job j ∈ N and period t ∈ T , variable ykt equals to 1 if the setup operation of job k is
performed at period t, and 0 if not,

– for each two distinct jobs j, k ∈ N , we consider the variables qjk which takes 1 if the job k is
processed after job j even if they are not assigned to the same machine, and 0 if not. This
means that the starting period of the setup operation for job k is performed after the ending
period of the setup operation of job j,

– we denote by bk ∈ R+ (resp. ek ∈ R+) the starting period (resp. the ending period) of the
setup operation for job k,

– the completion period of processing for each job k ∈ N is denoted by ck ∈ R+.

The UPMS-CS-SDST problem is then equivalent to the following MILP

min
∑
k∈N

wkck, (1)

subject to ∑
i∈Mk

uk
i = 1,∀k ∈ N, (2)

∑
i∈M\Mk

uk
i = 0,∀k ∈ N, (3)

∑
j∈N0\{k}

xi
j,k = uk

i ,∀k ∈ N and i ∈ M (4)

∑
j∈N\{k}

xi
k,j ≤ uk

i ,∀k ∈ N and i ∈ M, (5)

∑
k∈N

xi
0,k ≤ 1,∀i ∈ M, (6)

4 Hadhbi et al. ∑
k∈N

ykt ≤ at,∀t ∈ T, (7)∑
t∈T

ykt =
∑

j∈N0\{k}

∑
i∈M

sjkx
i
j,k,∀k ∈ N, (8)

bk ≤ tykt +B(1− ykt),∀k ∈ N and t ∈ T, (9)

tykt −B

t−1∑
t′=1

ykt′ ≤ bk,∀k ∈ N and t ∈ T, (10)∑
j∈N\{k}

∑
i∈M

pijx
i
j,k ≤ bk,∀k ∈ N, (11)

(t+ 1)ykt ≤ ek,∀k ∈ N and t ∈ {1, ..., Tmax − 1}, (12)

cj +B(
∑
i∈M

xi
j,k − 1) ≤ bk,∀k ∈ N and j ∈ N \ {k}, (13)

ek − bk ≥
∑

j∈N0\{k}

∑
i∈M

sjkx
i
j,k,∀k ∈ N, (14)

ek ≤ bj +Bqjk,∀k ∈ N and j ∈ N \ {k}, (15)

ej ≤ bk +B(1− qjk),∀k ∈ N and j ∈ N \ {k}, (16)

ck = ek +
∑
i∈Mk

piku
k
i ,∀k ∈ N, (17)

ck ≤ Tmax,∀k ∈ N, (18)

qjk ≤ 1,∀j ∈ K and k ∈ N \ {j}, (19)

uk
i , x

i
j,k, y

k
t , q

j
k, b

k, ek, ck ≥ 0, (20)

uk
i , x

i
j,k, y

k
t , q

j
k ∈ {0, 1}, (21)

where T ′ = {1, ..., Tmax − 1}, and B a large integer number (eg., B = Tmax is feasible).
The objective function (1) consists in minimizing the total weighted completion time of processing
for the different jobs in N . Equations (2) express the fact that each job k ∈ N is handled by only
one machine of its qualified machine i ∈ Mk. Equations (3) show that each job k ∈ N cannot be
assigned to a non qualified machine i ∈ M \Mk. Equations (4) ensure that a job k is preceded by
one job j ∈ N0 \ {k} on a machine i ∈ M if and only if job k is assigned to machine i. Moreover,
constraints (5) shows that a job k can be the predecessor of at most one job j ∈ N \{k} on machine
i if and only if it is assigned to machine i. The dummy-job can precede at most one job on each
machine i ∈ M as shown by constraints (6). The common server can handle at most one job at each
period t ∈ T if and only it is available at period t as noticed in constraints (7). However, variables
ykt are forced to be equal to 0 for each k ∈ N when the common server is not available at period t.
Equations (8) show that the number of periods in which the setup is performed for job k must be
equal to its setup-time. Constraints (9) and (10) ensure that a period t can be a starting period of
the setup operation of jobs k if the setup of job k is performed at period t and there does not exist
a period t′ ∈ {1, ..., t−1} in which the setup of job k is performed. Constraints (11) ensure that the
starting period of setup for a job k is forced to be greater than the processing time of a job j which
is processed immediately before job k on a shared qualified machine in Mk ∩Mj . In a similar way,
we ensure in constraints (12) that the setup operation of each job k ∈ N is accomplished after the
last period t in which the setup is performed for job k. Constraints (13) ensure the non-overlapping
of the processing operation with the setup operation for two distinct jobs that are processed one
after the other and immediately. The gap between the ending period and the starting period of
setup for job j is greater than its setup time as shown in constraints (14). Constraints (15) and
(16) ensure the non-preemption of setup constraints. The completion period for each job k ∈ K is
computed as shown in constraints (17). Constraints (18) impose that the completion period should
be smaller than Tmax. Inequalities (19) and (20) are the trivial inequalities, and constraints (21)
are the integrality constraints.
Using this formulation, we devise a branch-and-cut algorithm to solve the UPMS-CS-SDST problem
[15] by combining a branch-and-bound algorithm with a cutting plane algorithm.

High Performance Algorithms for the UPMS-CS-SDST 5

4 Iterated Local Search

In this section, we give a detailed description of the iterated local search algorithm [21] used
to solve the UPMS-CS-SDST problem. We discuss the importance of its different procedures.
This algorithm aims at building iteratively a sequence of solutions generated by an improvement
heuristic based on the so-called local search (LS) algorithm. The ILS is based on the following
procedures

– Representation of a solution: in this work, a solution S of the UPMS-CS-SDST problem is
considered as a sequence of jobs for the setup-processing. It can be represented as vector
{[1], [2], ..., [n]} where [k] denotes the job that is placed in position k in S.

– Evaluation procedure: for this, we first consider a solution S of the problem. This solution is
then evaluated by using a greedy algorithm as follows. At each iteration, we select the first
job k from the solution S that is not yet assigned to a machine i ∈ Mk. After this, for each
qualified machine i ∈ Mk of job k, we compute the starting period of setup, the ending period
of setup, and the completion time of the processing for job k while satisfying all constraints of
the problem with the set of jobs that are already proceeded (i.e., the set of jobs that precede
k in the solution S). Then, the selected job k is assigned to the qualified machine i ∈ Mk that
offers the minimum completion time Ck. The algorithm stops when all jobs are assigned, or
when the completion time Ck of the current job k exceeds Tmax which means that solution S
is infeasible. The output of this algorithm is given by a quadruple (f(S), G,C,R) where
• f(S) denotes the total weighted completion time of processing for the different jobs in S,
• G is a matrix of m ∗ Tmax dimension such that each element Gi

t denotes the index of the
job assigned at period t of the machine i, and equals to 0 if no job is assigned to machine
i at period t. This can be used to draw a Gantt diagram.

• C is a vector of size n which presents the completion time of processing for the set of jobs
such that each Ck represents the completion time of job k as mentioned before.

• R is a vector of size Tmax such that each element Rt stores the index of the job for which
the setup processing is done at period t by the common server, and 0 if no setup is done
at period t

– Initial solution: an initial solution for the UPMS-CS-SDST problem can be seen as a starting
point in a search area of the solutions. For this, one can randomly generate an initial solution S0

for the problem. We then use an evaluation procedure described above to evaluate this solution
and further show if it is feasible or not for the problem. Generally, this starting solution S0

does not give a good quality solution. This step must not be neglected such that starting with a
good solution improves the quality of the algorithm and allows achieving high quality solutions
as fast as possible and especially the computation time is very short.

– Neighborhood procedure: this aims at exploring the neighborhood area of a solution S in par-
ticular and the search area of all solutions of the problem in general. This procedure generates
a new solution S′ for the problem, called neighbor of S (denoted by S′ = Neighbor(S)) such
that some positions of certain jobs of S are randomly changed in S′. This new solution is then
evaluated to be compared with solution S. This procedure should be executed many times
to explore the neighborhood space of a solution and extend the search space. For this, we
distinguish several neighborhood strategies that can be used to explore the solution space
• Exchange: we need to select randomly two jobs j and k and change their positions in the
sequence J .

• Insertion: it consists in moving randomly a job from a position a and inserting it in another
position b in sequence J .

• Inversion: we first select randomly two positions a and b. Then, we reverse the sub-sequence
of jobs situated between a and b.

– Acceptance Criterion: choosing the ideal acceptance criterion is very important such that it
aims at determining the rules for the acceptance of updating the current best solution and
replacing it by an iteration solution. For this, we use the so-called ”Better” criterion proposed
by Lourenço et al. [21] such that a solution S′ can replace a solution S at each iteration of the
algorithm if and only if the quality of the new solution S′ is better or equal to the quality of
solution S.

– Stopping criterion: in our study, the algorithm terminates when we exceed a limited number
of iterations or a maximum CPU time.

6 Hadhbi et al.

– Improvement procedure: this is based on a local search algorithm. Consider a solution S
′
,

the local search algorithm aims at finding a nearby solution S
′∗ with better quality than

S
′
. This algorithm needs as input the maximum number of iterations without improvement,

neighborhood method, a maximum CPU time, and an initial solution S
′
. We then explore

the neighborhood space of solution S
′
given at each iteration of the ILS which is considered

as the initial best solution of the LS (denoted by S∗′). At each iteration of the local search
algorithm, we generate a new solution S” that can be seen as a neighbor of the current best
solution S∗′ and then evaluate it using the greedy-algorithm. This will then be compared with
the current best solution S∗′. We update the current best solution if it satisfies the acceptance
criterion. The algorithm stops when the stopping criterion is verified. Algorithm 1 summarizes
the different steps of the local search algorithm.

Algorithm 1 Local Search Algorithm

Require: a maximum number of iterations without improvement denoted by Maxit ≥ 0, a maximum
CPU time denoted by MaxCpu ≥ 0, perturbation method denoted by Neighbor, evaluation procedure,
initial solution denoted by S′.
i← 0 and S∗′ ← S′

while i ≤Maxit and MaxCpu is not exceeded do
S”← Neighbor(S∗′) and i← i+ 1
if f(S”) ≤ f(S∗′) then

if f(S”) < f(S∗′) then
i← 0

end if
S∗′ ← S”

end if
end while
return S∗′

To summarize, the ILS can be seen as an iterative improvement technique. Here, the goal is to
find the best sequencing of jobs which gives a high quality solution for the problem. For this,
we first use a construction method to generate an initial feasible solution S0 for the problem
that will be improved by the LS to provide an initial best solution S∗ for the problem. After
this, and at each iteration, we apply multiple perturbations on the current solution S∗ using
a neighborhood method. As a result, a new solution S′ is found for the problem. We then use
the local search algorithm to explore the neighborhood space of solution S′ and return a local
optimum S∗′ of the LS. The resulting solution will then be compared with the current best
solution of the ILS and become the new best solution if it satisfies the acceptance criterion.
The algorithm is stopped if one of the stopping criteria is verified.
All these steps are summarized in Algorithm 2.

Algorithm 2 Iterated Local Search Algorithm

Require: a maximum number of iterations for the ILS denoted by MaxILS
it ≥ 0, a maximum CPU time

for the ILS denoted by MaxILS
Cpu ≥ 0, number of perturbations for the ILS denoted by b, perturbation

method for the ILS denoted by NeighborILS , LS’s parameters, evaluation procedure, initial solution
denoted by S0.
S∗ ← LS(MaxLS

it ,MaxLS
Cpu, NeighborLS , f, S0) and i← 0

while i ≤MaxILS
it and MaxILS

Cpu is not exceeded do
S′ ← S∗, a = 0 and i← i+ 1
while a ≤ b do

S′ ← Neighbor(S′) and a← a+ 1 //Perturbation(S′)
end while
S∗′ ← LS(MaxLS

it ,MaxLS
Cpu, NeighborLS , f, S

′)
if f(S∗′) ≤ f(S∗) then //AcceptanceCriterion(S∗, S∗′)

S∗ ← S∗′

end if
end while
return S∗

High Performance Algorithms for the UPMS-CS-SDST 7

5 Matheuristics

In what follows, we introduce three matheuristics for solving the UPMS-CS-SDST problem. They
can be considered as a two stage algorithm combined an iterated local search algorithm with a
modified version of our MILP formulation [15]. Notice that these approaches provide approximate
solutions for the problem without guarantee of optimality.
Throughout the following sections, our MILP formulation already presented in Section 3, will be
considered as the basic MILP formulation for the problem.

5.1 Matheuristic I: Machine-Job-Sequencing Fixing

For this, we first use an ILS to solve the problem. Consider the resulting solution S. We then use
an updated formulation of the basic MILP with some additional constraints. This matheuristic
aims at producing an optimal solution for the resulting sequencing of jobs provided by S while
respecting some additional precedence constraints required by S. This means that each job j ∈ N
should be preceded by each job k having a smallest index in S compared with the index of j in S
if and only if the two jobs j and k are assigned to the same machine. Otherwise, the precedence
constraint between these two jobs is not considered. For this, we consider a matrix P of n ∗ n
dimension such that Pj,k = 1 if job j is preceded by job k in S, and 0 if not. After this, we use a
MILP formulation to solve the problem such that we keep the same variables and constraints used
in the basic MILP. Moreover, we add the following precedence constraints

ck +B(uj
i + uk

i − 2) ≤ bj ,∀k ∈ N, ∀j ∈ N \ {k},∀i ∈ M with Pj,k = 1. (22)

Inequalities (22) ensure that if job j and k are assigned to the same machine, and Pj,k = 1 then
the starting period of setup for job j must be greater than the completion period of job k.
Notice that this modified MILP can also be used as an exact method to solve a new variant of the
UPMS-CS-SDST problem that can be called unrelated parallel machines scheduling problem with
a common server, job-sequence dependent setup times and precedence constraints.

5.2 Matheuristic II: Machine-Job-Assignment Fixing

In this case, we aim at identifying the optimal solution of the problem with pre-assignment of
machines. For this, we make the set of qualified machines Mk = {i} if job k is assigned to machine
i in solution S of ILS. Based on this, we introduce a new MILP to solve the problem taking into
account the pre-assignment of machines as additional constraints. It’s based on the same variable
of the basic MILP without taking into account the variables uk

i given that the jobs are already
assigned to machines. We also modify the definition of variables xi

j,k such that we consider a new
variable xj,k which equals to 1 if job k is processed immediately after job j and they should be
already assigned to the same machine, and 0 if not. As a consequence, the number of variables
is decreased and becomes less compared with the basic MILP. Moreover, the constraints that are
related to the machine assignment should be deleted, and constraints (4), (5), (8), (11), (13), (14)
and (17) should be modified as follows∑

j∈Nk∪{0}

xj,k = 1,∀k ∈ N, (23)

∑
j∈Nk

xk,j ≤ 1,∀k ∈ N, (24)

∑
t∈T

ykt =
∑

j∈Nk∪{0}

sjkxj,k,∀k ∈ N, (25)

∑
j∈Nk

pijxj,k ≤ bk,∀k ∈ N with {i} = Mk, (26)

cj +B(xj,k − 1) ≤ bk,∀k ∈ N, ∀j ∈ Nk, (27)

ek − bk ≥
∑

j∈Nk∪{0}

sjkxj,k,∀k ∈ N, (28)

ck = ek + pik,∀k ∈ N with {i} = Mk, (29)

8 Hadhbi et al.

where Nk denotes the set of jobs that are assigned to the same machine with job k in solution
S. As can be noticed, the number of variables and constraints is largely decreased due to these
modifications compared with the basic MILP.

5.3 Matheuristic III: Setup-Job-Sequencing Fixing

The third matheuristic consists in determining the optimal solution for the problem with some
additional constraints such that the predecessor of each job is known in advance using the solution
S of the ILS. As a consequence, the setup time of each job is known in advance. For this, we denote
by jk the index of job that has been processed immediately before job k and assigned to the same
machine in solution S. Using this, we introduce another MILP based on the original MILP with
some modifications. We keep the same variables of the original MILP without considering the setup
variables xi

j,k. Some constraints should be removed from the model (e.g., constraints (4), (5), (6)),
and other ones as (8), (11), (13), (14), should be modified as follows∑

t∈T

ykt = sjkk ,∀k ∈ N, (30)∑
i∈M

pijk ≤ bk,∀k ∈ N, (31)

cjk ≤ bk,∀k ∈ N, (32)

ek − bk ≥ sjkk ,∀k ∈ N. (33)

Moreover, each job k and its predecessor jk should be assigned to the same machine. For this, we
add the following constraints to the new MILP formulation

ujk
i = uk

i ,∀k ∈ N, ∀i ∈ M. (34)

6 Computational Study

The different approaches described above have been implemented in Java and run on high perfor-
mance computing servers with 64 GB as a memory limit. For each MILP, we devise a Branch-and-
Cut algorithm to solve the problem. We have also implemented the MILP of Raboudi et al. [27].
For this, we use CPLEX [10] to solve the MILP formulations provided in previous sections. We also
use its proper cuts to obtain tighter bounds for the linear relaxation and boost the performance
of the Branch-and-Cut algorithm. We consider 900 sec as a CPU time limit for the ILS and 3600
sec for the B&C algorithm. The maximum number of iterations for the ILS is limited to 200000
such that the number of perturbations of the ILS equals to 4 at each iteration. The common server
is available for 8 contiguous periods and then unavailable for 8 contiguous periods in T . All the
approaches have been tested using three families of instances described as follows.

Instances / Characteristics |M | |N | wk pik sjk |Mk| Tmax

Instances I [27] {2,3,4} {4,5,6,7, 8, 10, 20, 24} [1; 5] [10; 350] [1; 10] ≥ 1 [200; 1000]

Instances II {2,3,4} {4,5,6,7, 8, 10, 20, 24} [1; 5] [10; 350] [1; 10] ≥ 2 [200; 1000]

Instances III {2,5,10, 15, 20} {5,10, 20, 30, 40} [1; 6] [1; 16] [1; 6] ≥ 1 [300; 4000]
Table 1. Instances characteristics.

Concerning the ILS, for each instance and each neighborhood procedure, we compute the average
value of the objective function (denoted by avg) and the objective function for the best solution
(denoted by min) of 10 independent ILS solutions starting from the same initial solution that has
been generated randomly.
On the other hand, for the different matheuristics, and for each instance, we use the best solution
(min) found by 10 independent ILS solutions that will provide some additional constraints for the
second stage of matheuristic as already described in Section 5.
The main objective of this study is to show the effectiveness of our approaches using different
instances (30 instances of type I, 32 instances of type II and 131 instances of type III). For this,
we address a comparison study between the different approaches in tables 2, 3, 4 and 5.
We consider the following indicators:

High Performance Algorithms for the UPMS-CS-SDST 9

– % opt (avg): percentage of instances that are solved to optimality at each replication by the
chosen algorithm (10 replications for the ILS and one replication when using a Branch-and-Cut
algorithm for each instance).

– % opt (min): percentage of instances that are solved to optimality in at least one replication
by the chosen algorithm.

– % best sol (avg): percentage of instances for which the chosen algorithm provides the best avg.
– % best sol (min): percentage of instances for which the chosen algorithm provides the best

min.
– % low standard deviation (SD): percentage of instances for which the chosen algorithm has the

best SD.
– % best sol the ILS is improved or equal: percentage of instances for which the chosen algorithm

found a solution value which is equal or strictly better than the ILS’s solution value.
– % best sol the ILS is improved: percentage of instances for which the chosen algorithm found

a solution value which is strictly better than the ILS’s solution value.

Notice that the results of our B&C algorithm (using our MILP) will be taken as a benchmark in
our computational study given that it has been shown to be the best model in our previous study
[15] compared with the MILP of Raboudi et al. [27], and other ones that we already proposed in
previous studies.
First, results show that for the two first classes of instances I and II respectively, the B&C algo-
rithm is able to solve to optimality 70% and 53, 13% of instances respectively. Moreover, the B&C
is shown to be able to beat the existing one MILP of Raboudi et al. [27] which suffers more from a
tractability point of view even for small-sized instances. The latter solves to optimality 10%, 3, 13%
and 2, 29% of instances of type I, II and III respectively. However, the B&C algorithm becomes
less performant for the large-sized instances (Instances III) such that 6, 11% of these instances are
solved to optimality. As a consequence, the B&C becomes more less efficient when using large-sized
instances and even for the medium ones. For this reason, and as mentioned before, we use the ILS
and some matheuristics to solve the UPMS-CS-SDST problem.
We first show in Table 2 the effectiveness of the ILS using different neighborhood procedures de-
noted respectively by ILS Exc , ILS Inv and ILS Ins when using respectively exchange, inversion
and insertion as neighborhood procedure while considering the instances that are solved to op-
timality by the B&C. For this, we consider the two indicators % opt (avg) and % opt (min) to
compare between these algorithms using the instances that are solved to optimality by the B&C.

% opt (avg) % opt (min)

Raboudi et al. 14,29 14,29
ILS Exc 90,48 90,48
ILS Inv 90,48 90,48
ILS Ins 90,48 90,48

Math MJSF 95,24 95,24
Math MJAF 85,71 85,71

Instances I

Math SJSF 76,19 76,19

Raboudi et al. 5,88 5,88
ILS Exc 70,59 70,59
ILS Inv 70,59 70,59
ILS Ins 70,59 70,59

Math MJSF 88,24 88,24
Math MJAF 82,35 82,35

Instances II

Math SJSF 70,59 70,59

Raboudi et al. 37,50 37,50
ILS Exc 75,00 75,00
ILS Inv 75,00 75,00
ILS Ins 75,00 75,00

Math MJSF 62,50 62,50
Math MJAF 87,50 87,50

Instances III

Math SJSF 62,50 62,50

Table 2. Comparison between different algorithms based on the instances that are solved to optimality
by the B&C.

The ILS has been shown to be very performant for the different instances such that it is able to
solve several instances to optimality and even for the instances that are not solved to optimality by
the MILP of Raboudi et al. [27]. The ILS also allows solving several instances that are not solved

10 Hadhbi et al.

by the B&C but without guarantee of optimality.
Moreover, we show in Table 3 the efficiency of each algorithm based on two indicators: % best sol
(avg) and % best sol (min) while using all instances.

% best sol (avg) % best sol (min)

Raboudi et al. 46,67 46,67
B&C 76,67 76,67

ILS Exc 83,33 86,67
ILS Inv 80,00 80,00
ILS Ins 83,33 86,67

Math MJSF 76,67 76,67
Math MJAF 73,33 73,33

Instances I

Math SJSF 70,00 70,00

Raboudi et al. 40,63 40,63
B&C 75,00 75,00

ILS Exc 84,38 78,13
ILS Inv 71,88 68,75
ILS Ins 75,00 78,13

Math MJSF 78,13 78,13
Math MJAF 75,00 75,00

Instances II

Math SJSF 71,88 71,88

Raboudi et al. 7,63 7,63
B&C 9,16 9,16

ILS Exc 61,07 64,12
ILS Inv 18,32 32,82
ILS Ins 59,54 81,00

Math MJSF 16,03 16,03
Math MJAF 9,92 9,92

Instances III

Math SJSF 12,98 12,98

Table 3. Comparison between different algorithms based on all instances.

We notice in Table 3 that the ILS improves the quality of certain solutions proposed by the B&C
and is able to find better solutions (based on average and min) than those found by the B&C
or the MILP of Raboudi et al. [27]. These results are still stable for the different neighborhood
procedures such that the exchange neighborhood procedure is shown to be advantageous in some
instances compared with the other ones and also having the low SD (see Table 4) for the different
instances of type I, II and III. Moreover, and using large-sized instances of type III, the ILS with
its different neighborhood procedures, is able to solve some instances to optimality. However, for
the other ones, the ILS cannot guarantee the optimality. For these same instances, the ILS gives
several high quality solutions compared with the B&C.

% low SD by ILS Exc % low SD by ILS Inv % low SD by ILS Ins

Instances I 86,67 83,33 86,67

Instances II 100,00 87,5 90,63

Instances III 61,83 27,48 59,54

Table 4. Comparison between different neighborhood procedures using standard deviation indicator.

Next, we combine the ILS with a B&C algorithm to devise a matheuristic for solving the UPMS-
CS-SDST problem as already described in Section 5. For this, we assess the performance of three
matheuristics denoted respectively by Math MJSF, Math MJAF and Math SJSF. Table 2 shows
that that they are also able to solve several instances to optimality and showed to be better than
the ILS while using Math MJSF for instances of type I and II. This latter solves some instances to
optimality that are not solved to optimality by the ILS and the MILP of Raboudi et al. [27]. Table
3 also shows that the Math MJSF is advantageous in some instances compared with the other
approaches. However, when the optimality is not guaranteed or when using large-sized instances,
the ILS proposes better solutions than the different matheuristics due to the usage of the MILP
and the B&C in the second stage such that each MILP becomes more less tractable when using
large-sized instances.
On the other hand, we aim to evaluate the impact of using the best solution of the ILS to add some
additional constraints to the MILP in order to devise the different matheuristic, and also evaluate
the impact of using this solution as a warm-start for these matheuristics. For this, Table 5 shows
initially that the different matheuristics are able to produce several solutions with quality better
or equal than those provided by the ILS (see column 1 in Table 5), and strictly better than those

High Performance Algorithms for the UPMS-CS-SDST 11

of ILS for other ones (see column 2 in Table 5). Moreover, the warm-start technique is shown to be
very efficient when using large-sized instances such that this technique is capable of boosting these
matheuristics, and further allows obtaining strictly better solutions for more instances compared
with when it’s not used.

Without Warm-Start With Warm-Start
% best sol the ILS

is improved or equal
% best sol of the
ILS is improved

% best sol of the
ILS is improved

Math MJSF 86,67 10,00 10,00
Math MJAF 83,33 10,00 10,00Instances I
Math SJSF 83,33 13,33 13,33

Math MJSF 75,00 18,75 18,75
Math MJAF 78,13 31,25 31,25Instances II
Math SJSF 78,13 31,25 34,38

Math MJSF 17,56 6,11 28,24
Math MJAF 12,21 4,58 29,01Instances III
Math SJSF 16,03 4,58 32,82

Table 5. Effectiveness of Matheuristics.

As a consequence, all these previous results prove the high quality performance of our approaches
for solving the UPMS-CS-SDST problem.

7 Conclusion

In this paper, we have addressed the non-preemptive unrelated parallel machines scheduling prob-
lem with a common server and job-sequence dependent setup times. First, we have presented some
related works considering the setup processing. We have proposed a mixed integer program to for-
mulate the problem, and have devised an exact algorithm based on a branch-and-cut algorithm for
solving the problem. Despite the NP-hardness of the problem, we have developed a metaheuristic
based on an iterated local search algorithm to solve the problem. Using these results, we have
presented different matheuristics that can be seen as post-optimization algorithms. The results
have shown the effectiveness of these approaches and the advantages of certain ones.
Finally, it would be interesting to further develop some adaptive and hybrid metaheuristics for
solving the problem. We also plan to study new realistic or real variants of the problem while
considering some additional technological constraints (machine availability, delay for jobs) and
ressources (multiple servers).

Acknowledgment

This work was supported by the French Government, France-Relance Project in collaboration with
InoProd (https://www.inoprod.com/).

References

1. E. Åblad, A. Strömberg, and D. Spensieri, ”Exact makespan minimization of unrelated parallel ma-
chines”. Open Journal of Mathematical Optimization, 2, 2021, pp. 1-15.

2. A. Allahverdi, J. N. D Gupta, and T. Aldowaisan, ”A review of scheduling research involving setup
considerations”. OMEGA International Journal of Management Science, 27, 1999, pp. 219–239.

3. J.P. Arnaout, G. Rabadi, and R. Musa, ”A two-stage Ant Colony optimization algorithm to minimize
the makespan on unrelated parallel machines—part II: enhancements and experimentations”. Journal
of Intelligent Manufacturing, 25, 2014, pp. 43–53.

4. J.P. Arnaout, ”A worm optimization algorithm to minimize the makespan on unrelated parallel machines
with sequence-dependent setup times”. Annals of Operations Research, 285, 2020, pp. 273-293.

5. A. Al-Salem, ”Scheduling to minimize makespan on unrelated parallel machines with sequence depen-
dent setup times”. Engineering Journal of University of Qatar, 17, 2004, pp. 177-187.

6. J. Behnamian,M. Zandieh, and S. M. T. Fatemi Ghomi, ”Parallel-machine Scheduling Problems with
Sequence-dependent Setup times Using an ACO, SA and VNS Hybrid Algorithm”. Expert Systems
with Applications, 2009, 36, pp. 9637–9644.

7. G. Bektur, and T. Saraç, ”A mathematical model and heuristic algorithms for an unrelated parallel
machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and
a common server”. Journal of Computers and Operations Research, 103, 2019, pp. 46-63.

12 Hadhbi et al.

8. Z. Chen, and W. B. Powell, ”Solving parallel machine scheduling problems by column generation”.
INFORMS Journal on Computing, 11, 1999, pp. 78–94.

9. L. P. Cota, F. G. Guimarães, F. B. de Oliveira, and M. J. Freitas Souza, ”An Adaptive Large Neighbor-
hood Search with Learning Automata for the Unrelated Parallel Machine Scheduling Problem”. IEEE
Congress on Evolutionary Computation (CEC), 2017, pp. 185-192.

10. I.I. Cplex: V12. 9, ”User’s Manual for Cplex”. IBM, 46(53), pp. 157.
11. A. Elidrissi, R. Benmansour, and A. Sifaleras, ”General variable neighborhood search for the parallel

machine scheduling problem with two common servers”. Optimization Letters, 2022, pp. 1-31.
12. W. Fang, H. Zhu, and Y. Mei, ”Hybrid meta-heuristics for the unrelated parallel machine scheduling

problem with setup times”. Knowledge-Based Systems Journal, 241, 2022, 108193 p.
13. L. Fanjul-Peyro, R. Ruiz, and F. Perea, ”Reformulations and an exact algorithm for unrelated parallel

machine scheduling problems with setup times”. Computers and Operations Research Journal, 101,
2019, pp. 173-182.

14. C.A. Glass, C.N. Potts, and P. Shade, ”Unrelated parallel machine scheduling using local search”.
Mathematical and Computer Modelling Journal, 20, 1994, pp. 41–52.

15. Y. Hadhbi, L. Deroussi, N. Grangeon, and S. Norre, ”Improved Formulations and Branch-and-Cut
Algorithm for the Unrelated Parallel Machines Scheduling Problem with a Common Server and Job-
Sequence Dependent Setup Times”. 9th International Conference on Control, Decision and Information
Technologies (CoDIT), 2023, Rome, Italy, pp. 1-6.

16. L.A. Hall, ”Approximation algorithms for scheduling”. Book of Approximation Algorithms for NP-
Hard Problems, D.S. Hochbaum, editor, PWS Publishing, Boston, MA, 1997, pp. 1–45.

17. M. Helal, G. Rabadi, A. Al-Salem, ”A tabu search algorithm to minimize the makespan for the unre-
lated parallel machines scheduling problem with setup times”. IJOR, 3, 2006, 182-192.

18. A.A. Juan, H. R. Lourenço, M. Mateo, R. Luo, Q. and Castella, ”Using iterated local search for solv-
ing the flow-shop problem: Parallelization, parametrization, and randomization issues”. International
Transactions in Operational Research, 21, 2014, pp. 103-126.

19. J.K. Lenstra, B.S. David, and E. Tardos, ”Approximation algorithms for scheduling unrelated parallel
machines”. Mathematical Programming, 46, 1990, pp. 259–271.

20. S.W. Lin, C.C. Lu, and K.C. Ying, ”Minimization of total tardiness on unrelated parallel machines
with sequence- and machine-dependent setup times under due date constraints”. International Journal
of Advanced Manufacturing Technology, 53, 2011, pp. 353–361.

21. H.R. Lourenço, O.C. Martin, T. Stützle, ”Iterated Local Search”. Glover, F., Kochenberger, G.A. (eds)
Handbook of Metaheuristics, International Series. Operations Research & Management Science, vol 57.
Springer, Boston, MA, 2003.

22. E. Mokotoff, and P. Chrétienne, ”A cutting plane algorithm for the unrelated parallel machine schedul-
ing problem”. European Journal of Operational Research, 141, 2002, pp. 515–525.

23. S. Martello, F. Soumis, and P. Toth, ”Exact and approximation algorithms for makespan minimization
on unrelated parallel machines”. Discrete Applied Mathematics Journal, 75, 1997, pp. 169-188.

24. Z. Pei, M. Wan, and Z. Wang, ”A new approximation algorithm for unrelated parallel machine schedul-
ing with release dates”. Annals of Operations Research, 285, 2020, pp. 397–425.

25. M.J. Pereira Lopes, and J.M.V. De-Carvalho, ”A branch-and-price algorithm for scheduling parallel
machines with sequence dependent setup times”. EJOR, 176, 2007, pp. 1508–1527.

26. G. Rabadi, R. Moraga, and A. Al-Salem, ”Heuristics for the unrelated parallel machine scheduling
problem with setup times”. Journal of Intelligent Manufacturing, 17, 2006, pp. 85-97.

27. H. Raboudi, G. Alpan, F. Mangione, G. Tissot, and F. Noels, ”Scheduling unrelated parallel machines
with a common server and sequence dependent setup times”. 10th IFAC Conference on Manufacturing
Modelling, Management and Control MIM 2022, 55, 2022, pp. 2179-2184.

28. S. Radhakrishnan, and J. A. Ventura, ”Simulated annealing for parallel machine scheduling with
earliness-tardiness penalties and sequence-dependent setup times”. International Journal of Production
Research, 38, 2000, pp. 2233–2252.

29. P. Rocha, M. Ravetti, G. Mateus, and P. Pardalos, ”Exact algorithms for a scheduling problem with
unrelated parallel machines and sequence and machine-dependent setup times”. Computers and Oper-
ations Research Journal, 35, 2008, pp. 1250-1264.

30. T.T. Tran, A. Araujo, and J.C. Beck, ”Decomposition methods for the parallel machine scheduling
problem with setups”. INFORMS Journal on Computing, 28, 2016, pp. 83-95.

31. E. Vallada, and R. Ruiz, ”A genetic algorithm for the unrelated parallel machine scheduling problem
with sequence-dependent setup times”. EJOR, 211, 2011, pp. 612–622.

32. V. V. Vazirani, ”Scheduling on Unrelated Parallel Machines”. Approximation Algorithms, Springer,
Berlin, Heidelberg, 2003.

33. A. Wotzlaw, ”Scheduling Unrelated Parallel Machines—Algorithms, Complexity, and Performance”.
VDM Verlag Dr. Mueller e.K., 2007.

34. J. R. Zeidi, and Sa. M. Hosseini, ”Scheduling unrelated parallel machines with sequence-dependent
setup times”. The International Journal of Advanced Manufacturing Technology, 81, 2015, pp.
1487–1496.

