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Abstract—In this work, we focus on a non-preemptive un-
related parallel machines scheduling problem with a common
server and job-sequence dependent setup times. This problem
arises when planning the production of some mechanical parts
of automobile, hydraulic and electrical sectors. It’s well known
to be NP-Hard. We first propose new mixed integer linear
programming formulations for the problem. We then compare
them with the only state-of-the-art formulation for the same
problem. Based on these results, we devise a Branch-and-Cut
algorithm along with computational results are presented to
evaluate the performance of our approach. Moreover, we provide
a warm starting algorithm for the problem, and further show its
influence on boosting the Branch-and-Cut algorithm.

Index Terms—Job-sequence dependent, unrelated parallel ma-
chines, setup time, machine eligibility, scheduling with a common
server, MILP, branch-and-cut, warm starting algorithm.

I. INTRODUCTION

In this paper, we study a variant of an unrelated parallel ma-
chines scheduling problem. Here, we consider a job-sequence
dependent setup times, and a common server which is used
to manage the setup processing over all machines. It can be
stated as follows. We first consider an interval of Tmax periods
T numeroted from 1 to Tmax. Let M be a set of parallel
machines such that each machine i ∈ M is available along
all periods in T . These machines are unrelated given that they
have different characteristics, we mention speed, configuration,
and quality of work. A common server is considered as a
common operator for ensuring the setup process operations
for a set N of n jobs over all machines. Notice that all jobs
N are available at period 0. Each job k ∈ N is specified by

• a priority weight wk ∈ R∗,
• a processing time pki ∈ N on each machine i ∈ M ,

• a subset of machines Mk that are capable of processing
job k such that pki > 0 for each i ∈ Mk and pki = +∞
for each i ∈ M \Mk,

• a setup time sj,k ∈ N of job k after job j ∈ N0 \ {k} if
they are assigned to the same machine that is to say the
job-sequence dependent setup times,

where N0 denotes the set of jobs in N with an additional
dummy-job 0 (i.e., N0 = N ∪ {0}) such that the dummy-job
0 precedes the first jobs assigned to the differents machines.
Notice that the common server can be unavailable on some
periods. For this, we consider a parameter at which equals to
1 if the server is available at period t, an 0 if not.
The problem aims at assigning each job k to one and only one
of its qualified machines Mk while satisfying the following
constraints:

• No preemption of processing: that is to say the job k is
processed one and only one time on one of its qualified
machines Mk. This means that we have one completion
period of processing for each job j,

• No preemption of setup: the common server must finish
the setup operation of each job k before starting the setup
operation for another job even if they are assigned to
different machines,

• Server availability: the common server can ensure the
setup operation of at most one job k at period t ∈ T if
and only if it is available at period t.

Finally, the total weighted completion time of processing for
the different jobs N is minimized.
This problem occurs in real industrial flexible manufacturing
systems and more precisely when planning and dimensioning
the production of some mechanical parts of automobile, hy-
draulic and electrical sectors in the context of Industry 4.0.



It has been shown to be NP-Hard [10]. There exist several
variants of scheduling problem that are related to this problem
and have been well studied in the literature while some
technological constraints are relaxed like the no preemption of
setup and server availability constraints. Here we focus on the
original variant called unrelated parallel machines scheduling
problem with sequence-dependent setup times. In this context,
a sequence-dependent setup time is considered after each
completion of processing of each job, we need to regulate
machines to process the next job and this needs a setup
time which depends only on each consecutive pair of jobs
assigned to the same machine. Allahverdi et al. [1] presented
a detailed state of the art for a generalized parallel machines
scheduling problem considering a setup process. Rabadi et
al. [16] proposed a metaheuristic for the problem based on
a randomized priority search that has been shown to be very
performant compared with a partitioning heuristic proposed by
Al Salem et al. [2]. Helal et al. [11] developed a tabu search
algorithm for solving the problem and showed that it gives
better results than the partitioning heuristic proposed by Al
Salem et al. [2]. Arnaout et al. [3] developed an Ant Colony
Optimization algorithm for the same problem. This has been
shown to be efficient compared with the two last approaches
proposed by Al Salem et al. [2] and Helal et al. [11]. Chen [6]
developed hybrid metaheuristics for the problem to minimize
the weighted number of tardy jobs. They are based on a
variable neighborhood descent and a tabu search algorithm.
The results have shown the effectiveness of this last approach.
Fang et al. [8] have developed a hybrid metaheuristic for
the problem. Their approach is based on an adaptive large
neighborhood search algorithm with learning automata and a
tabu search algorithm. The problem has been divided into two
stages. The authors have shown that their approach showed
excellent performances compared with ant colony optimization
and a worm optimization algorithm proposed by Arnaout et
al. [3]. Moreover, their approach has shown to be able to beat
an adaptive large neighborhood search algorithm with learning
automata. Some exact algorithms are also provided to solve the
problem. Fanjul-Peyro et al. [9] introduced a new formulation
for the problem. Moreover, the same authors developed a
Branch-and-Check algorithm for the problem, and compared
it with a hybrid decomposition method based on a Bender
decomposition algorithm and a Branch-and-Check algorithm.
A Branch-and-Price algorithm was developed by Pereira et
al. [15] for the solution of the problem. The results showed
that the approach is able to solve large sized instances to
optimality with a reasonable computational time. On the other
hand, there exists another variant of this problem such that the
setup time between each pair of jobs depends on the assigned
machine. This is known under the name unrelated parallel
machine scheduling problem with sequence and machine-
dependent setup times. Lee et al. [13] developed a tabu
search algorithm for the problem which has been shown to
be performant compared with an existing simulated annealing
algorithm. Moreover, the results showed that more than 50 %
of small instances are solved to optimality. Exact algorithms

have also been used to solve this variant. Avalos-Rosales et
al. [4] proposed a new formulation and a metaheuristic based
on a multi-start algorithm and variable neighbourhood descent
metaheuristic for the problem. A branch-and-bound algorithm
(B&B) was developed by Rocha et al. [18] while a greedy
randomized adaptive search procedure is used to provide a
starting upper bound for the problem.
However, all these previous works did not take into account
the presence of a single server as a resource for managing
the setup process and shared by all jobs and machines.
Recently, Bektur et al. [5] proposed a new formulation and
metaheuristics based on a simulated annealing and a tabu
search algorithm for solving this problem without taking into
account the existence of some unavailability periods for the
common server. Only the instances with the number of jobs up
to 10 and two machines are solved to the optimality. Huang et
al. [12] presented a new formulation for this problem without
taking into account the unavailability of the server in some
periods.
Recently, Raboudi et al. [17] proposed the first formulation
for this problem taking into account all the technological
constraints that have been considered in our study. The results
have shown the limitation of their formulation such that it
suffers from a tractability point of view and it’s not able to
solve small instances to optimality with a number of jobs
up to 7 and 6 machines. To the best of our knowledge, the
problem has first been identified by Raboudi et al. [17]. It
remains challenging to propose new tractable formulations for
the problem. For this, we aim to propose several mixed integer
linear programming formulations (MILP) for the problem, and
further compare them with the formulation of Raboudi et al.
[17]. Using this, we devise a Branch-and-Cut (B&C) algorithm
for each formulation to solve the problem, and further show
that we are able to outperform the results of Raboudi et al.
[17]. Moreover, we propose a warm-start algorithm based on
an Iterated Local Search algorithm [14]. This will be used as
a preprocessing for the Branch-and-Cut algorithm by giving
a feasible solution (if possible) for the problem and an initial
upper bound for the Branch-and-Cut algorithm. At the end,
we show the influence of the warm-start algorithm.
The remainder of this paper is organized as follows. In Section
II, we introduce 3 new MILP for the problem. These will be
compared in Section III with an existing formulation of the
problem. A Branch-and-Cut algorithm is presented in Section
IV. We then present an extensive computational study in
Section V using 4 classes of instances. Finally, we summarize
our results and future outlook in Section VI.

II. MIXED INTEGER LINEAR PROGRAMMING
FORMULATIONS

In what follows, we introduce three different MILP for the
problem.

A. Formulation I

First, we introduce the first formulation which is based on
the following variables. For each job k ∈ N and machine



i ∈ M , let uk
i be a variable which takes 1 if job k is assigned

to machine i, and 0 if not. For each machine i ∈ M , job j ∈ N
and job k ∈ N , let xi

j,k be a variable which takes 1 if jobs j
is processed immediately before job k on machine i, and 0 if
not. For each job j ∈ N and period t ∈ T , variable ykt will
take 1 if the setup operation of job k is performed at period
t, and 0 if not. We also consider the variables qjk for each two
distinct jobs j, k ∈ N which takes 1 if the job k is processed
after job j even if they are not assigned to the same machine,
and 0 if not. This is equivalent to say that the starting period
of the setup operation for job k is performed after the ending
period of the setup operation of job j. We will denote by bkt
(resp. ekt ) the binary variable which takes 1 if t is the starting
period (resp. the ending period) of the setup operation for job
k, and 0 if not. The completion period of processing for each
job k ∈ N is denoted by ck ∈ R+.
The problem is equivalent to the following MILP

min
∑
k∈N

wkck, (1)

subject to ∑
i∈Mk

uk
i = 1,∀k ∈ N, (2)∑

i∈M\Mk

uk
i = 0,∀k ∈ N, (3)

∑
j∈N0\{k}

xi
j,k = uk

i ,∀k ∈ N, (4)

∑
j∈N\{k}

xi
k,j ≤ uk

i ,∀k ∈ N, (5)

∑
k∈N

xi
0,k ≤ 1,∀i ∈ M, (6)∑

k∈N

ykt ≤ at,∀t ∈ T, (7)∑
t∈T

ykt =
∑

j∈N0\{k}

∑
i∈M

sjkx
i
j,k,∀k ∈ N, (8)

bkt ≤ ykt ,∀k ∈ N and t ∈ T, (9)

ykt ≤ bkt +

t−1∑
t′=1

ykt′ ,∀k ∈ N and t ∈ T, (10)∑
t∈T

bkt = 1,∀k ∈ N, (11)∑
j∈N\{k}

∑
i∈M

pijx
i
j,k ≤

∑
t∈T

tbkt ,∀k ∈ N, (12)

(t+ 1)ykt +B(ykt − 1) ≤
∑
t∈T

tekt ,∀k ∈ N and t ∈ T ′, (13)∑
t∈T

ekt = 1,∀k ∈ N, (14)

cj +B(
∑
i∈M

xi
j,k − 1) ≤

∑
t∈T

tbkt ,∀k ∈ N, ∀j ∈ N, (15)∑
t∈T

tekt −
∑
t∈T

tbkt ≥
∑

j∈N0\{k}

sij,kx
i
j,k,∀k ∈ N, (16)

∑
t∈T

tekt ≤
∑
t∈T

tbjt +Bqjk,∀k ∈ N, ∀j ∈ N, (17)∑
t∈T

tejt ≤
∑
t∈T

tbkt +B(1− qjk),∀k ∈ N, ∀j ∈ N, (18)

ck =
∑
t∈T

tekt +
∑
i∈Mk

piku
k
i ,∀k ∈ N, (19)

ck ≤ Tmax,∀k ∈ N, (20)

uk
i , x

i
j,k, y

k
t , q

j
k, b

k
t , e

k
t , ck ≥ 0, (21)

uk
i , x

i
j,k, y

k
t , q

j
k, b

k
t , e

k
t ∈ {0, 1}. (22)

where T ′ = {1, ..., Tmax − 1}, and B a large integer number
(eg., B = Tmax is feasible).
As mentioned before, the objective function (1) consists in
minimizing the total weighted completion time of processing
for the different jobs in N . Equations (2) ensure that each job
k ∈ N is assigned to only one qualified machine i ∈ Mk.
A job k ∈ N cannot be assigned to a non qualified machine
i ∈ M \Mk as shown by equations (3). Equations (4) express
the fact that a job k is preceded by one job j ∈ N0 \{k} on a
machine i ∈ M if and only if job k is assigned to machine i.
Moreover, constraints (5) ensure that a job k can be considered
as the predecessor of at most one job j ∈ N \{k} on machine
i if and only if it is assigned to machine i. Constraints (6)
ensure that the dummy-job can precede at most one job on
each machine i ∈ M . The common server can ensure the setup
operation of at most one job at each period t ∈ T if and only it
is available at period t as noticed in constraints (7). However,
variables ykt are forced to be equal to 0 for each k ∈ N when
the common server is not available at period t. The number
of periods in which the setup is performed for job k must be
equal to its setup time as shown in equations (8). Constraints
(9) ensure that a period t cannot be a starting period of setup
for a job k if the setup operation is not performed at period
t. Constraints (10) ensure that a period t can be a starting
period of the setup operation of jobs k if the setup of job
k is performed at period t and there does not exist a period
t′ ∈ {1, ..., t − 1} in which the setup of job k is performed.
Equations (11) express the fact that each job k has one and
only one starting period of setup operation. The starting period
of setup for a job k is forced to be greater than the processing
time of a job j which is processed immediately before job k
on a shared qualified machine in Mk∩Mj . This is ensured by
constraints (12). In a similar way, we ensure in constraints (13)
that the setup operation of each job k ∈ N is accomplished
after the last period t in which the setup is performed for
job k. Moreover, equations (14) ensure that each job k has
only one ending period of setup operation. Constraints (15)
ensure the non-overlapping of the processing operation with
the setup operation for two distinct jobs that are processed one
after the other and immediately. The gap between the ending
period and the starting period of setup for job j is greater
than its setup time as shown in constraints (16). Constraints
(17) and (18) ensure the no preemption of setup constraints.
The constraints (19) compute the completion period for each
job k ∈ K. This completion period is imposed to be smaller



than the maximum time of processing over machines Tmax

by contraints (20). Inequalities (21) are the trivial inequalities,
and constraints (22) are the integrality constraints.

B. Formulation II

Here we propose a new MILP for the problem which can be
seen as an improved formulation for the last formulation while
sharing some variables and constraints with the formulation I.
For this, we keep the same objective function, and the variables
uk
i , xi

j,k, qjk, ykt and ck. We consider two new variables
bk ∈ R+ and ek ∈ R+ respectively to express the start period
and the end period of the setup process for each job k ∈ N .
The constraints (2)-(8) and (20) of formulation I are also used
in this new formulation. However, the rest of constraints of
formulation I are replaced by the following constraints

bk ≤ tykt +B(1− ykt ),∀k ∈ N and t ∈ T, (23)

tykt −B

t−1∑
t′=1

ykt′ ≤ bk,∀k ∈ N and t ∈ T, (24)∑
j∈N\{k}

∑
i∈M

pijx
i
j,k ≤ bk,∀k ∈ N, (25)

(t+ 1)ykt ≤ ek,∀k ∈ N and t ∈ {1, ..., Tmax − 1}, (26)

cj +B(
∑
i∈M

xi
j,k − 1) ≤ bk,∀k ∈ N, ∀j ∈ N \ {k}, (27)

ek − bk ≥
∑

j∈N0\{k}

sij,kx
i
j,k,∀k ∈ N, (28)

ek ≤ bj +Bqjk,∀k ∈ N, ∀j ∈ N \ {k}, (29)

ej ≤ bk +B(1− qjk),∀k ∈ N, ∀j ∈ N \ {k}, (30)

ck = ek +
∑
i∈Mk

piku
k
i ,∀k ∈ N, (31)

ck, b
k, ek ≥ 0,∀k ∈ N. (32)

As noticed in the program presented above, constraints (9)
and (10) are replaced by constraints (23)-(25) to express the
fact that each job k has one starting period of setup and
should be equal to the smallest period t in which the setup
is performed for job k. In a similar way, constraints (13)-
(14) are also replaced by constraints (26) to ensure that the
setup is accomplished after the last period t in which the
setup is performed. Constraints (15) are replaced by (27).
Constraints (16) are replaced by constraints (28) to impose
the gap between the ending period and the starting period
of setup for each job k. We replace the constraints (17) by
(29), and (18) by (30) to ensure the no preemption of the
setup for the different jobs in N . The constraints (31) compute
the completion period for each job k ∈ N as done in (19).
Inequalities (32) are the trivial inequalities.

C. Formulation III

In what follows, we introduce a new formulation in order
to reduce the number of variables for the formulation II. For
this, we keep the same objective function, and the variables
uk
i , xi

j,k, qjk, ykt and ck. However, this caused a huge increase
in the number of constraints. The constraints (2)-(8) and (20)

of formulation I are still used in this formulation. However,
the other ones are replaced by the following constraints

cj +B(
∑
i∈M

xi
j,k − 1) ≤ tykt +B(1− ykt ),∀k, j ∈ N and t ∈ T,

(33)

ck −
∑
i∈Mk

piku
k
i ≤ tyjt +B(1− yjt + qjk),∀k, j ∈ N and t ∈ T,

(34)

cj −
∑
i∈Mj

piju
j
i ≤ tykt +B(2− ykt − qjk),∀k, j ∈ N and t ∈ T,

(35)

(t+ 1)ykt +
∑
i∈Mk

piku
k
i ≤ ck,∀k ∈ N and t ∈ T. (36)

The variables bk of formulation II are replaced by tykt +B(1−
ykt ). The variables ek are also replaced by ck −

∑
i∈Mk

piku
k
i .

Constraints (27) are replaced by (33) for ensuring the non-
overlapping of the processing operation with the setup oper-
ation for two jobs k and j if job j is processed immediately
before job k on a shared qualified machine. The no preemption
of the setup constraints are now ensured by constraints (34)
and (35). The constraints (36) compute the completion period
for the different jobs in N .

III. COMPARATIVE STUDY

Based on the previous results, we compare our three formu-
lations with an existing formulation proposed by Raboudi et al.
[17] in terms of their number of binary variables, continuous
variables, and number of constraints as shown in Table I.
We notice that in the formulation III, we use less number
of variables compared with the other ones. On the other
hand, the formulation II contains less number of constraints
compared with the other ones. As a consequence, and in terms
of model size (number of variables * number of constraints),
the formulation may suffer less from a tractability point of
view compared with the other formulations. More details about
the differences between these different formulations will be
highlighted in the rest of this paper.

IV. BRANCH-AND-CUT ALGORITHM

Using the theoretical results presented in the previous
sections, we devise a Branch-and-Cut algorithm for each
formulation. This algorithm consists in solving a sequence of
linear programs using a cutting-plane algorithm and provides
an optimal solution for the linear relaxation at each node of
the well known branch-and-bound tree. This solution may not
be feasible for the problem if it does not satisfy the integrality
constraints. For this, we perform the branching phase which
consists in dividing the problem into subproblems. We con-
tinue this process until an optimal solution is obtained for the
problem.

V. COMPUTATIONAL STUDY

The B&C algorithm has been implemented in Java using
CPLEX 12.9 [7] as a MILP solver while allowing the gen-
eration of its proper cuts and benefiting from its parallelism



TABLE I
MODEL SIZE: COMPARISON BETWEEN DIFFERENT FORMULATIONS.

Number of Constraints Number of Binary Variables Number of Continuous Variables
Raboudi et al. [17] |N |(1 + 4|M |+ 2|M ||N |+ 2|T |+ 2|N |) + |M |+ |T |+ 1 |N |(|M |+ |N0||M |+ |N |+ |M ||T |) 4|N |

MILP I |N |(4 + 2|M |+ 3|T |+ 3|N |) + |M |+ |T | |N |(|N |+ |M |+ |M ||N0|+ 3|T |) |N |
MILP II |N |(2 + 2|M |+ 3|T |+ 3|N |) + |M |+ |T | |N |(|M |+ |M ||N0|+ |T |+ |N |) 3|N |
MILP III |N |(2|M |+ 3|N ||T |+ |T |) + |M |+ |T | |N |(|M |+ |M ||N0|+ |T |+ |N |) |N |

TABLE II
INSTANCES CHARACTERISTICS.

Instances / Characteristics I II III IV
|M | {2, 3, 4}
|N | {4,5,6,7,8,10, 20, 24}
wk {1,2,3,4,5}
pik [10; 350]
sj,k [0; 10]
|Mk| ≥ 1 ≥1 ≥2 ≥2

Server continuous availability 8 hours 24 hours 8 hours 24 hours
Server continuous unavailability 8 hours

Tmax {200, 350, 400, 600, 800, 1000}

by activating 8 threads. We use a HPC server with a memory
size limited to 64 Gb to perform our experiments. The CPU
time is limited to 1 hour (3600 s). In addition, we present our
computational results using four types of instances as shown
in Table II such that for each type of instances we generate
34 instances randomly with a number of machines up to 4,
number of jobs up to 24 and 1000 as the maximum makespan
(Tmax hours).
In what follows, we present the performance results of the
different formulations using a Branch-and-Cut algorithm. The
main goal is to show the effectiveness of our approach
compared with the existing one of Raboudi et al. [17].
Table III reports a comparative study between these different
algorithms considering different criterias and the same objec-
tive function. The results show that MILP II is able to beat the
other ones over all types of instances such that using MILP II,
we are able to solve more instances to optimality compared
with the other formulations (see column 1 in Table III). Almost
all of these instances are solved in less CPU time and fewer
nodes proceeded in the B&C tree by MILP II (see columns 2, 3
and 4 in Table III). Moreover, and when the optimality is not
proven, MILP II enables reducing the gap (i.e., the relative
error between the lower bound and the best upper bound
obtained at the end of the resolution) for several instances
that are solved with a large gap by the other formulations (see
columns 5 in Table III). However, there exists a few instances
that are not solved by MILP II for which the CPLEX’s primal
heuristic is not able to produce a feasible solution for these
instances. On the other hand, MILP I is shown to be the
second best formulation for our study. It’s able to solve more
instances to optimality using our different types of instances
compared with MILP III or that of Raboudi et al. [17]. As
a consequence, our computational experiments show clairly
the strength of MILP II and I. Moreover, they significantly
improve the results yielded by Raboudi et al. [17].
Next, we investigate several enhancements that can be used
to speed up and increase the efficiency of the different for-

mulations and even for that of Raboudi et al. [17]. This is
based on a warm-start algorithm used to introduce a feasible
solution for the problem and initialize the upper bound for the
B&C algorithm. For this, we first generate an initial sequence
of jobs for each instance, and compute its solution using a
greedy-algorithm which consists in selecting the best machine
assignment for each job in the sequence. This sequence will be
used in an Iterated Local Search algorithm [14] which aims
at identifying the best sequence of jobs having the smallest
total weighted completion time. Using this, we evaluate the
influence of the warm-start algorithm on the Branch-and-
Cut algorithm (see Table IV) considering several criterias.
We noticed in column 4 of Table IV that using the warm-
start algorithm speed-up the resolution of several instances by
MILP II, MILP I and that of Raboudi et al. [17]. Also, the
warm-start algorithm is able to decrease the gap for several
instances (see column 2 in Table IV), and the number of nodes
in the B&C tree (see column 3 in Table IV). Moreover, there
exist some instances that haven’t been solved to optimality by
the different formulations, that are solved to optimality when
using the warm-start algorithm (see column 1 of Table IV vs
column 1 of Table III). There are also some instances that
are not solved by the different formulations, that are solved
with a significant gap when using the warm-start algorithm
(see column 5 of Table IV vs column 6 of Table III). In some
sense, the warm-start algorithm is shown to be a promising
prospect and yield an efficient Branch-and-Cut algorithm.

VI. CONCLUDING REMARKS

In this paper, we have studied a non-preemptive unre-
lated parallel machines scheduling problem with a common
server and job-sequence dependent setup times. First, we have
proposed several MILP for the problem. These have been
compared with an existing formulation for the problem. Using
this, we have developed an exact algorithm based on a Branch-
and-Cut algorithm to solve the problem. The results have
shown that some formulations perform very well compared
with other ones and that of the existing one of the literature.
Furthermore, we have introduced a warm-start algorithm based
on a metaheuristic called Iterated Local Search algorithm. This
has been shown to be very interesting and allow improving the
results yielded by the Branch-and-Cut algorithm.
Finally, it would be interesting to further study other variants
of the problem, for example taking into account the existence
of multiple servers, and also the unavailability of each machine
in some periods. Moreover, through our research we plan to
develop some adaptive metaheuristics, hybrid metaheuristics
and matheuristics considering large-sized instances for the
problem.



TABLE III
BRANCH-AND-CUT ALGORITHM: COMPARISON BETWEEN DIFFERENT FORMULATIONS.

% of instances solved
to optimality

% of instances
solved to optimality
in less than 10 mn

% of instances solved
to optimality with the smaller

number of nodes

% of instances
solved to optimality with

the smaller CPU Time

% of instances not
solved to optimality but

with the smaller gap

% of instances
not solved

Raboudi et al. [17] 11,76 2,94 0,00 0,00 0,00 17,65
MILP I 20,59 2,94 0,00 0,00 0,00 47,06
MILP II 67,65 58,82 100 100 14,7 17,65lnstance I

MILP III 2,94 2,94 0,00 0,00 0,00 17,65
Raboudi et al. [17] 2,94 2,94 0,00 0,00 0,00 17,65

MILP I 41,18 17,65 0,00 0,00 0,00 41,18
MILP II 73,53 64,71 100 100 11,7 14,71Instance II

MILP III 0,00 0,00 0,00 0,00 0,00 17,65
Raboudi et al. [17] 5,88 2,94 0,00 0,00 0,00 17,65

MILP I 8,82 2,94 0,00 0,00 0,00 55,88
MILP II 44,12 38,24 100 100 44,1 14,71Instance III

MILP III 0,00 0,00 0,00 0,00 0,00 20,59
Raboudi et al. [17] 2,94 8,82 0,00 0,00 0,00 17,65

MILP I 17,65 2,94 0,00 0,00 0,00 55,88
MILP II 70,59 64,71 100 100 11,7 17,65Instance IV

MILP III 0,00 0,00 0,00 0,00 0,00 17,65

TABLE IV
IMPACT OF THE WARM-START ALGORITHM ON THE BRANCH-AND-CUT ALGORITHM

% of instances solved
to optimality

% of instances for which we
improved the gap %

% of instances for which
we improved the gap % (or equal)
and decreased the B&C tree size

% of instances for which we
improved the CPU Time

% of instances
not solved

Instances I

Raboudi et al. [17] 11,76 79,41 44,12 11,76 8,82
MILP I 23,53 38,24 35,29 14,71 23,53
MILP II 73,53 23,53 82,35 47,06 8,82
MILP III 2,94 67,65 64,71 0,00 8,82

Instances II

Raboudi et al. [17] 2,94 64,71 58,82 5,88 11,76
MILP I 44,12 44,12 79,41 35,29 11,76
MILP II 79,41 8,82 82,35 67,65 11,76
MILP III 0,00 82,35 73,53 0,00 11,76

Instances III

Raboudi et al. [17] 5,88 58,82 61,76 5,88 14,71
MILP I 17,65 76,47 88,24 17,65 14,71
MILP II 50,00 35,29 44,12 41,18 8,82
MILP III 0,00 82,35 64,71 0,00 14,71

Instances IV

Raboudi et al. [17] 2,94 73,53 41,18 0,00 14,71
MILP I 35,29 64,71 82,35 32,35 14,71
MILP II 70,59 14,71 70,59 61,76 14,71
MILP III 0,00 82,35 41,18 0,00 14,71
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