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In this article, we introduce a novel data-driven variable selection approach in a multivariate nonparametric regression model designed to capture only the variables on which the regression function depends. The core concept of our method consists in approximating the underlying function by a linear combination of B-splines of order M and their pairwise interactions. The coefficients of this linear combination are estimated by minimizing the standard least-squares criterion penalized by the sum of the 2-norms of the partial derivatives with respect to the different variables on which the function depends. We demonstrate that our proposed method can be formulated as a Group Lasso problem, aiming to discard irrelevant variables for which the corresponding coefficients are close to zero. We validate our approach through numerical experiments varying the number of observations, the noise level and the total number of variables and compared it to two other state-ofthe-art methods. An application to a geochemical system based on calcite precipitation is also explored. In these different contexts, our approach exhibits better performance than the others. Our completely data-driven method is implemented in the absorber R package which is available on the Comprehensive R Archive Network (CRAN).

Introduction

The simulation of geochemical models that incorporate precipitation and dissolution reactions of minerals coupled to other physical processes represents a challenging task. Reactive transport modeling (RTM) serves as an illustration, striving to simultaneously consider geochemical reactions, fluid flow, heat transfer and solute transport, see [START_REF] Steefel | Reactive transport at the crossroads[END_REF] for various applications. To achieve feasible computational times for these simulations, oversimplifications of the model are usually required. Despite significant improvements in the past few decades, solving three-dimensional-large-scale modelling of complex reactive transport over many time steps remains nearly impossible using standard computers. This challenge has led to the development of Machine Learning (ML)-based approaches aimed at estimating real solutions for full simulation models through the use of surrogate models. The main idea here consists in solving the transport equations explicitly and approximating solutions for geochemical reactions at equilibrium using surrogate models at each time step. A wealth of reviews and surveys on surrogate models for RTM is available in the works of [START_REF] Razavi | Review of surrogate modeling in water resources[END_REF][START_REF] Asher | A review of surrogate models and their application to groundwater modeling[END_REF][START_REF] Jatnieks | Data-driven surrogate model approach for improving the performance of reactive transport simulations[END_REF][START_REF] Lary | Machine learning in geosciences and remote sensing[END_REF]. Among these models, Artificial Neural Networks (ANN) have gained prominence, see for instance [START_REF] Guérillot | Geochemical equilibrium determination using an artificial neural network in compositional reservoir flow simulation[END_REF]Prasianakis et al., 2020;[START_REF] Laloy | Speeding up reactive transport simulations in cement systems by surrogate geochemical modeling: deep neural networks and k-nearest neighbors[END_REF][START_REF] Demirer | Improving the performance of reactive transport simulations using artificial neural networks[END_REF]. These surrogate models can provide highly accurate approximations and with optimized hyperparameters, they can outperform other surrogate methods [START_REF] Laloy | Emulation of cpu-demanding reactive transport models: a comparison of gaussian processes, polynomial chaos expansion, and deep neural networks[END_REF]. However, the computational efficiency of ANN in reducing simulation time comes at the cost of requiring a large dataset and often demands extensive CPU times for training and tuning the hyperparameters [START_REF] Karpatne | Machine learning for the geosciences: Challenges and opportunities[END_REF]. Furthermore, an approach based on an on-demand training algorithm allows to train the model at runtime to iteratively build the training dataset [START_REF] Leal | Ultra-fast reactive transport simulations when chemical reactions meet machine learning: chemical equilibrium[END_REF]. Analogously, an active learning approach has also been introduced to RTM [START_REF] Savino | An active learning approach for improving the performance of equilibrium based chemical simulations[END_REF] to drastically diminish the dataset size while insuring good approximation accuracy. Finally, a novel approach based on B-splines and on an adaptive knot selection was proposed in [START_REF] Savino | A novel approach for estimating functions in the multivariate setting based on an adaptive knot selection for B-splines with an application to a chemical system used in geoscience[END_REF] to improve the approximation accuracy while having only a few parameters to tune.

Another approach to improve the surrogate model accuracy while reducing the CPU times is to reduce the number of input variables to consider in the model. This can be reformulated as a variable selection problem in the following framework.

Let us consider that we have n observations satisfying the following nonparametric regression model:

Y i = f (x i ) + ε i , x i = (x (1) 
i , . . . , x

(p) i ) ∈ R p , 1 ≤ i ≤ n
(1) where f is an unknown real-valued function and where the ε i 's are i.i.d centered random variables of variance σ 2 . We will also assume that f actually depends only on d variables instead of p, with d < p, which means that there exists a real-valued function f such that f (x) = f ( x), where x ∈ R p and x ∈ R d . Variable selection consists in identifying the components of x.

Efficient methodologies have been devised over the last few decades particularly when the variables x i s and Y i s in (1) are linearly related. Notable examples include the Lasso regression formulated by [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and one of its variant the Elastic Net defined by [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. However, dealing with the nonlinearity of the relationship between the x i s and the Y i s in (1) poses a greater challenge.

In their paper, [START_REF] Yamada | High-dimensional feature selection by feature-wise kernelized lasso[END_REF] introduced a feature-wise kernelized Lasso method tailored for variable selection in nonlinear models: HSIC-Lasso and its variation NOCCO-Lasso. This approach employs the kernel trick within the regular Lasso problem in combination with kernel-based independence measures to discern and selectively choose relevant variables. While these methods offer scalability to high-dimensional variable selection problems, they exhibit sensitivity to the number of observations. Tree-based methods such as Random Forests introduced by [START_REF] Breiman | Random forests[END_REF] are widely used for variable selection in regression models since they are well-suited to describe nonlinearity in (1). Numerous applications and challenges associated with its use for variable selection are discussed in [START_REF] Genuer | Variable selection using random forests[END_REF].

More recently, ANN have gained interest for variable selection and regression. We will present just a few examples of them. For instance, [START_REF] Liang | Bayesian neural networks for selection of drug sensitive genes[END_REF] developed a method based on a Bayesian neural network architecture to select variables for which the marginal inclusion probability exceeds a predefined threshold. Furthermore, regularized approaches with different ANN architectures were proposed as seen in the work of [START_REF] Li | Deep feature selection: theory and application to identify enhancers and promoters[END_REF] where a ridge regularization approach is considered for the weights of the first and hidden layers. Similarly, [START_REF] Feng | Sparse-input neural networks for high-dimensional nonparametric regression and classification[END_REF] introduced the SPINN method which is a single-layer neural network with a sparse group lasso regularization to shrink the weights corresponding to the units of the irrelevant variables. They later proposed another approach with deeper neural networks in [START_REF] Feng | Ensembled sparse-input hierarchical networks for highdimensional datasets[END_REF]. [START_REF] Ye | Variable selection via penalized neural network: a drop-out-one loss approach[END_REF] adapted the SPINN method by adding a greedy elimination algorithm to iteratively drop one variable at a time and determine if the empirical loss decreases. Finally, [START_REF] Lemhadri | Lassonet: A neural network with feature sparsity[END_REF] presented LassoNet, a residual feed-forward neural network architecture as introduced in [START_REF] He | Deep residual learning for image recognition[END_REF] which incorporates a regularization approach based on Lasso regression to selectively use a subset of the features in the network. Similar work on variable selection with ANN can be found in [START_REF] Chen | Nonlinear variable selection via deep neural networks[END_REF][START_REF] Lu | Deeppink: reproducible feature selection in deep neural networks[END_REF][START_REF] Zhu | Deep-gknock: nonlinear group-feature selection with deep neural networks[END_REF]. All these methods display interesting results especially for high-dimensional problems but often suffer from high training CPU times and a large number of hyperparameters to tune.

Another research direction focuses on developing flexible and interpretable methods using splines for piecewise polynomial fitting such as Multivariate Adaptive Regression Splines introduced by [START_REF] Friedman | Multivariate adaptive regression splines[END_REF]. This method enables the description of interactions and nonlinear relations by automatically pruning the most irrelevant terms. In the same vein, [START_REF] Lin | Component selection and smoothing in multivariate nonparametric regression[END_REF] developed COSSO, a regularization method for component selection and smoothing splines where the penalty term is the sum of the component norms. This approach can be considered as a more generalized form of the Lasso approach with a Reproducing Kernel Hilbert Space (RKHS) constraint. Compared to MARS, it shows better results except for higher dimensional cases with small datasets. Similarly, [START_REF] Ravikumar | Sparse additive models[END_REF] proposed sparse additive models (SpAM) based on a generalized additive model with a 2 -norm regularization. A few articles have proposed considering a sparse additive model using a linear combination of B-splines of order M (M ≥ 1), introduced by [START_REF] De Boor | A practical guide to splines[END_REF] in Chapter 9. Their ability to approximate complex functions without being significantly altered by the presence of noise has made them very attractive in the past few decades. As an illustration, [START_REF] Huang | Variable selection in nonparametric additive models[END_REF] approximated the underlying function f in (1) using an additive B-spline estimator and subsequently, employed an adaptive group lasso approach for variable selection. In their study, they presented both numerical applications and theoretical results regarding the selection consistency of their proposed method. [START_REF] Antoniadis | Variable selection in additive models using P-splines[END_REF] leveraged the benefits of Bsplines by incorporating a penalized version known as P-splines, introduced by [START_REF] Eilers | Flexible smoothing with B-splines and penalties[END_REF], and compared their results with various adaptations of COSSO. Additional references on variable selection with P-splines can be found in the review by [START_REF] Gijbels | Variable selection using P-splines[END_REF]. While these approaches have proven to be efficient for high-dimensional nonparametric additive models, they fall short in describing interactions that may exist in real datasets. Therefore, [START_REF] Radchenko | Variable selection using adaptive nonlinear interaction structures in high dimensions[END_REF] extended the SpAM approach to consider both single and interaction terms, aiming to construct a more interpretable approximation of f . This presented approach, known as VANISH, strongly penalizes interaction terms to simplify the model as much as possible and has demonstrated efficiency for small datasets. In parallel, [START_REF] Rosasco | A regularization approach to nonlinear variable selection[END_REF] proposed a novel method for variable selection based on a regularized least-square estimator penalizing large values of the partial derivatives to select the most relevant variables in a multivariate nonlinear regression model with a RKHS constraint.

In this article, we propose a novel method for variable selection motivated by (Radchenko and James, 2010) using a multivariate nonparametric regression model to retrieve the d relevant variables on which f in (1) truly depends. Our approach involves approximating f using a linear combination of B-splines and their pairwise interactions. Additionally, drawing inspiration from the methodology of [START_REF] Rosasco | A regularization approach to nonlinear variable selection[END_REF], the coefficients of the linear combination are estimated by minimizing the usual least-squares criterion penalized by the sum of the 2 -norms of the partial derivatives with respect to the different variables on which f depends. We will demonstrate that our proposed method can be formulated as a Group Lasso problem defined by [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] and thus, can be easily implemented. Two different approaches to choose the penalization parameter will be presented to the reader.

This paper is organized as follows. Section 2 presents the methodology that we propose for variable selection in nonlinear models. Section 3 investigates the performance of our approach through numerical experiments. Finally, in Section 4, we apply our method to a real geochemical application that motivated this study.

Methodology

2.1. Approximation of f using B-splines. Let us first recall how the B-spline basis associated to a given dimension among the p, the th for instance, is defined.

Let t = (t ,1 , . . . , t ,K ) be a set of K points called knots and let S be a compact subset of R. Following (De Boor, 1978, p. 89-90) and (Hastie et al., 2009, p. 160), the augmented knot sequence τ is defined as follows: k,m the kth B-spline basis function of order m with m ≤ M for the knot sequence τ and for the dimension , B-splines are defined by the following recursion:

τ ,1 = . . . = τ ,M = x ( ) min , τ ,j+M = t ,j , j = 1, . . . , K, τ ,K+M +1 = . . . = τ ,K+2M = x ( ) max , τ = (τ ,1 , . . . , τ ,K+2M ) = x ( ) min , . . . ,
B ( ) k,1 (x ( ) ) = 1 if τ ,k ≤ x ( ) < τ ,k+1 0 otherwise for k = 1, . . . , K + 2M -1, (2) 
and for 2 ≤ m ≤ M ,

B ( ) k,m (x ( ) ) = x ( ) -τ ,k τ ,k+m-1 -τ ,k B ( ) k,m-1 (x ( ) ) + τ ,k+m -x ( ) τ ,k+m -τ ,k+1 B ( ) k+1,m-1 (x ( ) ), (3) 
for k = 1, . . . , (K + 2M -m).

Inspired by [START_REF] Radchenko | Variable selection using adaptive nonlinear interaction structures in high dimensions[END_REF], we propose approximating the function f (x (1) , . . . , x (p) ) appearing in (1) by a linear combination of B-splines of each variable x (1) , . . . , x (p) and of pairwise interaction of them as follows:

F (x (1) , . . . , x (p) ) = p =1 K+M k=1 β ( ) k B ( ) k (x ( ) ) + p-1 =1 p j= +1   K+M k=1 K+M q=1 β ( ,j) k,q B ( ) k (x ( ) )B (j) q (x (j) )   , (4) where B 
( ) 2) and ( 3) and where β

k = B ( ) k,M is defined in (
( ) k and β ( ,j)
k,q are unknown coefficients. Observe that the column vector (F (x 4) can be rewritten as follows:

(1) i , . . . , x (p) i )) 1≤i≤n (
p =1 Ψ β + p-1 =1 p j= +1 Φ j β ,j . ( 5 
)
where Ψ is a n×(K +M ) matrix such that its ith row is equal to (B ( )

1 (x ( ) i ), . . . , B ( ) K+M (x ( ) i )) and β = β ( ) 1 . . . β ( ) K+M T for 1 ≤ ≤ p, A T denoting the transpose of the matrix A. Moreover, Φ j is an n × (K + M ) 2 matrix such that its ith row satisfies (Φ j ) i,• = ((Ψ ) i,• ⊗ (Ψ j ) i,• ), ⊗ denoting the Kronecker product, (Ψ ) i,• denoting the ith row of Ψ and β ,j = β ( ,j) 1,1 β ( ,j) 1,2 . . . β ( ,j) K+M,K+M T for 1 ≤ < j ≤ p.
2.2. Description of our variable selection method. Inspired by the methodology of [START_REF] Rosasco | A regularization approach to nonlinear variable selection[END_REF], we propose selecting the variables on which f depends by estimating the coefficients β and β ,j appearing in (5) by minimizing the following regularized criterion:

β 1 (λ ), . . . , β p (λ ), β 1,2 (λ ), . . . , β (p-1),p (λ ) = argmin (β 1 ,...,β p ) (β 1,2 ,...,β (p-1),p )   Y - p =1 Ψ β - p-1 =1 p j= +1 Φ j β ,j 2 2 + λ p =1 n i=1 ∂ F (x i ) 2   , where Y = (Y 1 , . . . , Y n ), the Y i 's being defined in (1), ∂ F (x i ) denotes the th partial derivative of F defined in (4) at some observation point x i = (x (1) i , . . . , x (p) i ) and ||y|| 2 2 = n i=1 y 2 i .
Note that the idea underlying this criterion is that when a function does not depend on a variable its partial derivative with respect to this variable is equal to zero.

Using the definition of F given in ( 5) the criterion can be rewritten as follows:

β 1 (λ ), . . . , β p (λ ), β 1,2 (λ ), . . . , β (p-1),p (λ ) = argmin (β 1 ,...,β p ) (β 12 ,...,β (p-1)p )   Y - p =1 Ψ β - p-1 =1 p j= +1 Φ j β ,j 2 2 +λ p =1 Ψ β + p j= +1 (∂ Φ j ) β ,j + 1≤j< (∂ Φ j ) β j, 2   , ( 6 
)
where

Ψ is the n × (K + M ) matrix such that (Ψ ) i,k = B ( ) k (x ( ) i ), B ( ) k denoting the first derivative of B ( ) k . The ith row of (∂ Φ j ) (resp. (∂ Φ j )) is defined by (∂ Φ j ) i,• = ((Ψ ) i,• ⊗ (Ψ j ) i,• ) (resp. (∂ Φ j ) i,• = ((Ψ j ) i,• ⊗(Ψ ) i,• )). By denoting (∂ Φ • ) = (∂ Φ ( +1) ) . . . (∂ Φ p ) , (∂ Φ • ) = (∂ Φ 1 ) . . . (∂ Φ ( -1) ) , β • = β ,( +1) . . . β ,p and β • = β 1, . . . β ( -1
), , the penalty term can be written as:

λ p =1 Ψ β +(∂ Φ • ) β • +(∂ Φ • ) β • 2 =: λ p =1 (∂ Θ ) γ 2 , (7) 
where

γ = β T β T , +1 ... β T ,p β T 1, ... β T -1, T . Using that p-1 =1 p j= +1 Φ j β ,j = p j=2 j-1 =1 Φ j β ,j = p =2 -1 j=1 Φ j β j, ,
the least-squares term can be rewritten as follows:

Y - p =1 Ψ β - p-1 =1 p j= +1 Φ j β ,j 2 2 = Y - p =1 Ψ β - 1 2   p-1 =1 p j= +1 Φ j β ,j + p =2 -1 j=1 Φ j β j,   2 2 =: Y - p =1 Θ γ 2 2 . (8) 
Equation ( 8) comes by setting

Θ 1 = Ψ 1 1 2 Φ 1• and Θ p = Ψ p 1 2 Φ •p , where Φ • = (Φ ( +1) . . . Φ p ) and Φ • = (Φ 1 . . . Φ ( -1)
). Combining ( 7) and ( 8), ( 6) can be rewritten as:

γ 1 (λ ), . . . , γ p (λ ) = argmin (γ 1 ,...,γ p ) Y - p =1 Θ γ 2 2 + λ p =1 (∂ Θ ) γ 2 . ( 9 
)
By defining α = (∂ Θ ) γ and X = Θ (∂ Θ ) + , A + being the Moore-Penrose inverse of matrix A, (9) can be rewritten as:

( α 1 (λ ), . . . , α p (λ )) = argmin (α 1 ,...,αp) Y - p =1 X α 2 2 + λ p =1 α 2 . ( 10 
)
The last formulation of our variable selection criterion (10) can be seen as a group lasso problem introduced by [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], where the size p of each group belonging to {1, . . . , p} is equal to n. This approach is implemented in numerous R packages such as the most recent one sparsegl developed by [START_REF] Liang | sparsegl: An r package for estimating sparse group lasso[END_REF] that we used in the numerical experiments section. For a fixed number of parameters λ , this package provides a set of penalization parameters Λ and the coefficients α (λ ) for λ belonging to Λ. The coefficients γ (λ ) are thus obtained as follows

γ (λ ) = (∂ Θ ) + α (λ ). ( 11 
)
We then define the active variables for each λ in Λ as follows:

V λ =    , k≥1 | γ ,k (λ )| = 0    , (12) 
where γ ,k (λ ) is the kth coefficient of γ (λ ). We also introduce the set V f of the indices of the d relevant variables on which f in (1) actually depends that we seek to select among the p variables and the set V f of the indices of the irrelevant variables on which f does not depend.

2.3. Choice of K. Our method relies on the definition of the B-spline basis for each in {1, . . . , p} and thus on the choice of the set of knots t used for defining them. For simplifying this choice, we considered evenly spaced knots in the interval [0, 1]. For regularity purposes, we use quadratic B-splines with M = 3. Thus, we are only interested in optimizing the number of knots K. To find the best value of K, we use two sensitivity measures. Firstly, for each λ belonging to Λ, we computed the True Positive Rate (TPR) and the False Positive Rate (FPR), defined as:

TPR(λ ) = TP(λ ) d = |V λ ∩ V f | d and FPR(λ ) = FP(λ ) p -d = V λ ∩ V f p -d ,
where d < p, |A| is the cardinality of the set A, TP(λ ) and FP(λ ) are the number of true selected variables and the number of false selected variables for λ , respectively. V f , V f and V λ are introduced in the previous section. We can then draw the ROC curve where each point has as coordinates (FPR(λ ), TPR(λ )) for λ belonging to Λ.

In order to have an idea of the quality of our variable selection procedure, we calculate the Area Under Curve (AUC) of the ROC curves as well as a complementary indicator that we want to maximize:

max(TPR -FPR) = max λ ∈Λ (TPR(λ ) -FPR(λ )).
To assess the quality of our variable selection procedure according to K, we define two functions on which our method is applied:

f 1 (x (1) , x (2) , x (3) , x (4) , x (5) ) = 2B (3) 2 (x (3) )B (5) 4 (x (5) ) + 2B (5) 4 (x (5) ) -5B (3) 2 (x (3) ), (x (1) , . . . , x (5) ) ∈ [0, 1] 5 , (13) 
f 2 (x (1) , . . . , x (10) ) = 1.8 cos (x (1) ) sin (x (7) + 1) -5 ln (x (3) + 1) -0.9

x (10) 2 + 1 , (x (1) , . . . , x (10) ) ∈ [0, 1] 10 . (14) 
In ( 13), the B-spline bases are defined using t = (0.2, 0.5, 0.6, 0.75, 0.8) for each belonging to {1, . . . , 5}. Here, V f 1 = {3, 5} and V f 2 = {1, 3, 7, 10}. Results for the two metrics defined above, AUC and max(TPR-FPR), are shown for f = f 1 and f = f 2 for 10 random samplings of the observation set and for σ = 0 and σ = 0.25 in Figure 1 and in Figure 3 for n = 700 and n = 2000, respectively. Firstly, we can clearly see for n = 700 in Figure 1 that for f 1 , all the values of K are satisfying as they allow us to get max(TPR -FPR) = 1 and AUC = 1. However, for f = f 2 , we do not have necessarily AUC = 1 when max(TPR -FPR) = 1 for instance for K = 1, which does not imply that this method does not select properly the relevant variables. To illustrate this idea, one can relate to Figure 2 in which the ROC curves for f = f 2 are drawn for each value of K belonging to {1, . . . , 10}. Here, we can observe that a good variable selection method will not necessarily lead to AUC = 1 since FPR(λ ) < 1 for every λ belonging to Λ, which indicates that the even smallest value of λ will not select all the irrelevant variables. These phenomena are even more visible for n = 2000 in Figure 3 for f 2 . The results for n = 700 in Figure 1 allow us to discriminate a value of K which gives good selection for both σ = 0 and σ = 0.25 and for both functions f 1 and f 2 . Firstly, for f 2 without any noise in the observation set (σ = 0) we can see that only the true variables are selected for K = 1 and K = 2 since AUC = 0 and max(TPR -FPR) = 1. Moreover, these two values of K are the only cases where max(TPR -FPR) = 1 for all the different samplings of the observation set when σ = 0.25. Higher values of K drastically deteriorate the AUC and the max(TPR-FPR), especially for noisy observation sets. Choosing a small value for K offers the advantage of simplifying our model and speeding up computational executions. For all these reasons, we decide to only focus on using our method with K = 1 knot in the B-spline basis. The first one is based on the percentage of variable selection defined for each variable belonging to {1, . . . , p} by:

σ = 0 σ = 0.25 f 1 f 2 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8
P = 100 |Λ| λ ∈Λ 1{ ∈ V λ } , ( 15 
)
where |Λ| is the total number of parameters in Λ, 1{A} = 1 if the event A holds and 0 if not and V λ is defined in (12).

Results for the percentage of selection of variables are displayed in Figure 4 (resp. Figure 5) for f 1 (resp. for f 2 ). Firstly, we obtain a high percentage of selection for the relevant variables V f 1 = {3, 5} since they are selected for more than 62.5% of the λ s belonging to Λ. Moreover, we can observe a noticeable gap between the frequency for the relevant (V f 1 = {3, 5}) and the irrelevant (V f 1 = {1, 2, 4}) variables. This gap is amplified as we increase the number of observations from n = 700 to n = 2000. The noise of the observations does not seem here to deteriorate the results. For f 2 , the percentage of the relevant variables (V f 2 = {1, 3, 7, 10}) are lower than the previous function (25% for variable 7 and σ = 0 and 35% for σ = 0.25). However, we can see smaller percentages for the irrelevant variables (V f 2 = {2, 4, 5, 6, 8, 9}) and a clear gap for the unnoisy observation sets (σ = 0) starting with only n = 700 as V f 2 = {2, 4, 5, 6, 8, 9} are never selected. The noise has here an influence on the quality of selection but by increasing the number of observations we can circumvent this issue as the gap is visible for σ = 0.25 with n = 2000. We encourage the user to add known fake variables in order to know which threshold of percentage of selection to use. All the variables having a percentage of selection close to the one of the added fake variables can then be considered as irrelevant as we can see in Figures 4 and5 which are visualizations of the output of our method for one sample of the observation set for f 1 and f 2 , respectively. We also propose another method to automatically choose λ . Among several existing criteria for model selection, we initially assessed a cross-validation criterion using the mean-square error as a loss function. However this approach was not satisfactory as it tended to overestimate the number of relevant variables. Hence, the suggested method leverages the popular Akaike Information Criterion (AIC) introduced in [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] and defined by:

AIC(λ ) = n ln RSS(λ ) n + 2T λ , (16) 
where T λ is the number of terms appearing in (5) by keeping only the variables selected with λ and RSS(λ ) is the residual sum of squares defined as follows:

RSS(λ ) = Y -Y(λ ) 2 2 , with Y(λ ) = p =1 Θ γ (λ ), (17) 
where γ (λ ) is defined in (11). Then, the chosen λ = λ AIC is such that:

λ AIC = argmin λ ∈Λ (AIC(λ )). ( 18 
)
The TPR(λ ) and FPR(λ ) obtained with λ = λ AIC for both functions f 1 and f 2 are displayed in Figure 8 for n = 700 and n = 2000 and for σ = 0 or σ = 0.25. We can observe for f 1 that even with a small number of observations (n = 700) this criterion allows us to get TPR(λ AIC ) = 1 while having FPR(λ AIC ) = 0 which means that the relevant variables are selected and not the irrelevant ones. The noise in the observation set has a stronger influence on the detection of the relevant variables of f 2 than for f 1 . With σ = 0.25, we indeed have TPR(λ AIC ) < 1 and FPR(λ AIC ) = 0. By increasing the value of n from 700 to 2000, the value of TPR(λ AIC ) is increased and thus the number of relevant selected variables. Moreover, for unnoisy set of observations the relevant variables are recovered from n = 700. Since we are interested in geochemical applications where the noise in the observation sets is very small, we will not be concerned by this issue. 

Numerical experiments

In this section, we will assess the robustness of our method called ABSORBER implemented in the absorber R package when the variance of the noise σ 2 increases as well as the number of observations n. We will also study how this novel method behaves when the number of variables p grows. To demonstrate its efficiency, we will compare it to two state-of-the-art methods for feature selection: LassoNet introduced in [START_REF] Lemhadri | Lassonet: A neural network with feature sparsity[END_REF] and the widely used Random Forests (RF) introduced by [START_REF] Breiman | Random forests[END_REF] and used in [START_REF] Genuer | Variable selection using random forests[END_REF] for variable selection.

LassoNet is an open-source package available on GitHub implemented in Python under the name lassonet. The algorithm generates a grid of penalization parameters and the corresponding selected variables. We can thus calculate the percentage of selection for each variable as defined in (15). In the following, the residual neural network is built by taking a hidden layer with 10 neurons as proposed in the notebook example given by this package which focuses on a 26-dimensional regression problem. Despite an increase of the number of neurons in the hidden layer and an extension of the maximal number of epochs, no significant improvement in the selection of relevant variables was observed. This is the reason why we did not explore more complex neural network architectures.

In order to apply Random Forests to our data, we used the R package randomForest, implemented by [START_REF] Liaw | Classification and regression by randomforest[END_REF], with 500 trees. This package provides the percentage of increased mean square error for each variable as the model excludes them one-by-one. This metric is then converted into a percentage of selection for each variable ensuring comparable results for the three methods.

3.1. Influence of n and σ on the quality of variable selection. In the following, we explore the impact of both the number of observations and the noise level in the observation sets on the efficiency of the three previously introduced variable selection methods.

As a result, the percentage of selection for each variable is calculated as described in (15) for 10 samplings of the observation set and the results are shown in Figure 9 (resp. Figure 10) for f = f 1 (resp. f = f 2 ) with n belonging to {700, 1000, 2000} (resp. {700, 1000}). The relevant variables are displayed in green and the irrelevant variables are displayed in red. Additional results for f 2 are presented in the Appendix in Figure 16. As we can see in Figure 9, for a given n, the noise does not seem to have a significant influence on the percentage of variables of f 1 selected by our method ABSORBER. However, as we increase the value of n of the corrupted observation set with σ = 0.25, the percentage of irrelevant variables selected with our method drops from nearly 37.5% for n = 700 to 25% with n = 2000. As observed in these figures, LassoNet tends to select irrelevant variables since the variable selection percentage of the variables belonging to V f 1 is close to that of variable 5 belonging to V f 1 , with a high selection rate of 62.5%. It has to be noticed that Random Forests selects variable 5 with only 37.5% of selection whereas our method (resp. LassoNet) selects it with a percentage of 65% (resp. 73%).

Let us now study the application of these methods to f 2 . The corresponding results are displayed in Figure 10 and in Figure 16 of the Appendix. The noise has an effect on our method ABSORBER in this case since there is no selection of irrelevant variables regardless of the value of n with unnoisy observation sets against 18.5% of selection when σ = 0.25 for the smallest values of n. However, increasing the value of n in this case allows us to reduce the percentage of selection for irrelevant variables to 10% while maintaining the minimum percentage of relevant variables to 32%. Here, using a threshold at 25% allows us to discriminate the relevant variables from the irrelevant ones.

The two other methods appear to be unaffected by changes in both σ and n. Nevertheless, as observed previously with f = f 1 , 50% of the penalization parameters of LassoNet select irrelevant variables. As a consequence, there is no distinct gap between these and relevant variable 7 since its percentage is very close to 50% as well. This statement suggests that using a high threshold on the percentage of selection obtained with LassoNet can result in omitting a relevant variable even for large n. Conversely, a low threshold includes irrelevant variables. In opposition to these two methods, the Random Forests approach tends to fail in detecting the relevant variables as variables 7 and 10 are selected nearly 0% and 5% of the time, respectively, regardless of σ and n. The same conclusion as with LassoNet can be drawn here, emphasizing that our method ABSORBER outperforms those two methods for variable selection while requiring only a few parameters to choose. 3.2. Influence of p on the quality of variable selection. In this section, we seek at studying the behavior of our method when the total number of variables p increases. To do so, we define two additional functions f 3 and f 4 such that: 1) , . . . , x (5) = 1.8 cos (x (1) ) sin (x (3) + 1) -5 ln x (3) + 1 -0.9 (x (4) ) 2 + 1

f 3 x (
x (1) , . . . , x (5) ∈ [0, 1] 5 , (19) 
f 4 x (1) , . . . , x (25) = 1.8 cos (x (1) ) sin (x (7) + 1) -5 ln (x (3) + 1) -0.9 1) , . . . , x (25) ∈ [0, 1] 25 .
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We apply all three variable selection methods to f 2 , f 3 and f 4 with observation sets of varying sizes n, all corrupted with the same noise levels as assessed in the previous section. Next, we compute the AUC and max(TPR-FPR) as defined in Section 2.3. The results for these comparisons are displayed in Figure 11 for n = 700 and n = 2000.

We can see from this figure that our method is affected by p but only when the observation set is corrupted with significant noise (σ = 0.25) and has a reduced size (n = 700). Specifically, the value of max(TPR -FPR) equals 1 for p ≤ 10 and is less than 1 for p = 25. In contrast, the efficiency of the two other methods is impacted by the value of p even for σ = 0 as the metrics presented in Figure 11A are deteriorated for p ≥ 10. For instance, with LassoNet, max(TPR -FPR) = 1 and AUC = 1 with p = 5, regardless of σ. However, max(TPR -FPR) becomes less that 1 for p = 10 and it keeps decreasing as the values of p and σ increase. Even in the easiest case where p = 5 and σ = 0, Random Forests is less competitive than the other approaches and its performance remain unchanged regardless the values of n, σ and p. For both of these two methods and for σ = 0, the AUC being close to 1 indicates a high FPR, suggesting that these methods select multiple irrelevant variables while omitting one or more relevant ones. Increasing the number of observations up to n = 2000 improves the results in Figure 11B for our method ABSORBER and Lassonet. Nevertheless, Random Forests continue to display less satisfactory results. Our method is the only one showing satisfactory results as max(TPR -FPR) = 1, regardless of p and σ. Globally, our method outperforms LassoNet and RF in this case and appears to be more robust when facing with higher dimensions p with or without noisy observation sets.

In Figure 12, the impact of the value p on our variable selection procedure using AIC is assessed. We can observe that p has little effect on the efficiency of our method, in contrast to σ which has a more pronounced negative impact on the metrics. Specifically, the TPR values are affected by σ as it necessitates an increasing value of n as σ grows to achieve TPR(λ AIC ) = 1. However, for smaller noise levels (σ < 0.25) and with n ≥ 700 our method enables TPR(λ AIC ) = 1 while maintaining FPR(λ AIC ) = 0. This means that no irrelevant variables are chosen. Since the number of relevant variables is d = 4 even for p = 5, the selection of just one irrelevant variable leads to FPR(λ AIC ) = 0.25, thereby explaining the observed results for n = 2000. However, such trends are not visible for high value of p, demonstrating the efficiency of our variable selection procedure.

3.3. Numerical performance. The goal of this section is to investigate the computational times of our variable selection approach implemented in the absorber R package. Our variable selection method is applied to f 2 , f 3 and f 4 (defined in ( 14), ( 19) and (20), respectively) for p = 5, p = 10 and p = 25, respectively. The timings were obtained on a workstation with 31.2GB of RAM and Intel Core i7 (3.8GHz) CPU. The log 10 -transformed average computational times and their standard deviation obtained from 20 independent executions are displayed in Figure 13. We can see from this figure that it only takes 57 seconds to perform variable selection on a function with p = 25 variables from n = 2000 observations. It has to be noticed that the execution times reported are mainly due to the use of the sparsegl package.

Application to a multidimensional geochemical system

In this section, we apply our variable selection method to real geochemical systems. We start by defining the geochemical system derived from the calcite dissolution and precipitation study in [START_REF] Kolditz | Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples[END_REF]. In the following, the observation sets are generated using the geochemical solver PHREEQC as in [START_REF] Parkhurst | Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[END_REF]. The corresponding thermodynamic data for aqueous species and minerals are available in the Phreeqc.dat distributed the purposes of this paper, we specifically focus on the calcite precipitation/dissolution: Calcite Ca 2+ + CO 2- 3 , logK = -8.48. The previous equation represents the dissolution reaction along with its corresponding log 10transformed equilibrium constant value logK. The amount of calcite can be here computed with PHREEQC as a function of the total elemental concentrations (C, Ca), the pH (as -log(H + )) and the amount of calcite initially present. The pH is here fixed at 9.8 and we introduce two additional concentrations (K, Cl) which do not participate in the calcite precipitation. This allows us to assess our variable selection on real datasets. We can thus formulate the problem as:

Calcite = f 5 (C * , Ca * , K * , Cl * , Calcite * ) = f 5 (C * , Ca * , Calcite * ),
where C * , Ca * , K * , Cl * , Calcite * are the normalized concentrations and quantities initially present of C, Ca, K, Cl and Calcite, respectively. The normalization of each variable is done by taking into account the minimal and the maximal bound of the values so that each variable belongs to [0, 1]. We also define another function f 6 which takes into account known fake variables to study the behavior of all three methods: Calcite = f 6 (C * , Ca * , K * , Cl * , Calcite * , x (6) , x (7) , x (8) , x (9) , x (10) )

= f 5 (C * , Ca * , Calcite * ), where x (6) , x (7) , x (8) , x (9) , x (10) are synthetic irrelevant variables obtained through uniform sampling between 0 and 1. Hereafter, V f 5 = V f 6 = {C * , Ca * , Calcite * }, V f 5 = {K * , Cl * } and V f 6 = {K * , Cl * , x (6) , x (7) , x (8) , x (9) , x (10) }.

The results for the application of our method, LassoNet and RF to f 5 and f 6 are displayed in Figure 14. Here, our method consistently selects the relevant variables belonging to V f 5 65% of the time and the irrelevant ones belonging to V f 5 are almost never selected. By increasing n, the percentage of selection for these irrelevant variables reaches 0%. In contrast, LassoNet selects all the variables and fails to discriminate the relevant from the irrelevant ones. Random Forests, on the other hand, tends to detect only one variable of V f 5 which is the calcite quantity. Furthermore, it tends to select K and Cl (5%) more than the relevant variables C and Ca (0%), even with n = 2000.

Adding fake variables does not deteriorate our method which continues to select only the relevant variables in V f 6 . However, it does not improve the results for LassoNet which continues to select all ten variables from V f 6 and V f 6 . Interestingly, it helps the Random Forests approach in detecting the relevant variables C and Ca resulting in an increase in the percentage of selection up to 5%. Nevertheless, this emphasizes the efficiency of our method which outperforms the other two in this geochemical case.

Furthermore, we used the AIC to select the parameter λ and to automatically choose the relevant variables. The corresponding results are shown in Figure 15. This statistical criterion proves to be highly efficient as evidenced by TPR(λ AIC ) = 1 and FPR(λ AIC ) = 0, regardless of n and p. 
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 123 Figure 1. AUC and max(TPR -FPR) calculated for an increasing value of K for f 1 (top) and f 2 (bottom) with noise (right) or without noise (left) in the observation set Y = (Y 1 , . . . , Y 700 ). 10 random samplings of Y were used to obtain these results. The empty bullets inside the boxplots represent the mean value and the plain bullets outside the boxplots are the extreme values.
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 4567 Figure 4. Percentage of selection of each variable for f 1 with n = 700 (left) and n = 2000 (right) and for σ = 0 or σ = 0.25. The green (resp. red) variables indicate the true relevant (resp. irrelevant) variables for f 1 . 10 random samplings of Y were used to obtain these results. The empty bullets inside the boxplots correspond to the mean value and the plain bullets outside the boxplots are the extreme values.
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 8 Figure 8. TPR(λ ) and FPR(λ ) values by choosing λ = λ AIC for f 1 (top) and f 2 (bottom) with an unnoisy (σ = 0) or noisy (σ = 0.25) set of observations. 10 random samplings of Y were used to obtain these results. The empty diamonds inside the boxplots correspond to the mean value and the plain bullets outside the boxplots are the extreme values.
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 910 Figure 9. Percentage of selection of each variable of f 1 with three different methods: ABSORBER, LassoNet and RandomForests (RF) with an increasing number of observations n (left to right) and of the value of σ (top to bottom). 10 random samplings of Y were used to obtain these results. The empty diamonds inside the boxplots correspond to the mean value and the plain bullets outside the boxplots are the extreme values.
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 111213 Figure 11. AUC and max(TPR-FPR) calculated for three different variable selection methods: ABSORBER, LassoNet and RandomForests (RF) applied to three functions (top to bottom) f 3 , f 2 and f 4 with n = 700 (A) and n = 2000 (B) and an increasing value of σ (left to right). 10 random samplings of Y were used to obtain these results. The empty diamonds inside the boxplots correspond to the mean value and the plain bullets outside the boxplots are the extreme values.
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 14 Figure 14. Percentage of selection of each variable of f 5 (top) and f 6 (bottom) with three different methods: ABSORBER, LassoNet and RandomForests (RF) with an increasing number of observations n (left to right). 10 random samplings of Y were used to obtain these results. The empty diamonds inside the boxplots correspond to the mean value and the plain bullets outside the boxplots are the extreme values.
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 1516 Figure 15. TPR(λ ) and FPR(λ ) values by choosing λ = λ AIC for f 5 (left) and f 6 (right). 10 random samplings of Y were used to obtain these results. The empty diamonds inside the boxplots correspond to the mean value and the plain bullets outside the boxplots are the extreme values.
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