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A NOVEL VARIABLE SELECTION METHOD IN A NONLINEAR
MULTIVARIATE MODEL USING B-SPLINES WITH AN APPLICATION

TO GEOSCIENCE

MARY E. SAVINO AND CÉLINE LÉVY-LEDUC

Abstract. In this article, we introduce a novel data-driven variable selection approach
in a multivariate nonparametric regression model designed to capture only the variables
on which the regression function depends. The core concept of our method consists in
approximating the underlying function by a linear combination of B-splines of order M and
their pairwise interactions. The coefficients of this linear combination are estimated by
minimizing the standard least-squares criterion penalized by the sum of the `2-norms of the
partial derivatives with respect to the different variables on which the function depends. We
demonstrate that our proposed method can be formulated as a Group Lasso problem, aiming
to discard irrelevant variables for which the corresponding coefficients are close to zero. We
validate our approach through numerical experiments varying the number of observations,
the noise level and the total number of variables and compared it to two other state-of-
the-art methods. An application to a geochemical system based on calcite precipitation is
also explored. In these different contexts, our approach exhibits better performance than
the others. Our completely data-driven method is implemented in the absorber R package
which is available on the Comprehensive R Archive Network (CRAN).

1. Introduction

The simulation of geochemical models that incorporate precipitation and dissolution reac-
tions of minerals coupled to other physical processes represents a challenging task. Reactive
transport modeling (RTM) serves as an illustration, striving to simultaneously consider geo-
chemical reactions, fluid flow, heat transfer and solute transport, see (Steefel, 2019) for various
applications. To achieve feasible computational times for these simulations, oversimplifications
of the model are usually required. Despite significant improvements in the past few decades,
solving three-dimensional-large-scale modelling of complex reactive transport over many time
steps remains nearly impossible using standard computers. This challenge has led to the de-
velopment of Machine Learning (ML)-based approaches aimed at estimating real solutions
for full simulation models through the use of surrogate models. The main idea here consists
in solving the transport equations explicitly and approximating solutions for geochemical re-
actions at equilibrium using surrogate models at each time step. A wealth of reviews and
surveys on surrogate models for RTM is available in the works of (Razavi et al., 2012; Asher
et al., 2015; Jatnieks et al., 2016; Lary et al., 2016). Among these models, Artificial Neu-
ral Networks (ANN) have gained prominence, see for instance (Guérillot and Bruyelle, 2020;
Prasianakis et al., 2020; Laloy and Jacques, 2022; Demirer et al., 2023). These surrogate mod-
els can provide highly accurate approximations and with optimized hyperparameters, they can
outperform other surrogate methods (Laloy and Jacques, 2019). However, the computational
efficiency of ANN in reducing simulation time comes at the cost of requiring a large dataset and
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often demands extensive CPU times for training and tuning the hyperparameters (Karpatne
et al., 2018). Furthermore, an approach based on an on-demand training algorithm allows
to train the model at runtime to iteratively build the training dataset (Leal et al., 2017).
Analogously, an active learning approach has also been introduced to RTM (Savino et al.,
2022) to drastically diminish the dataset size while insuring good approximation accuracy.
Finally, a novel approach based on B-splines and on an adaptive knot selection was proposed
in (Savino and Lévy-Leduc, 2023) to improve the approximation accuracy while having only
a few parameters to tune.

Another approach to improve the surrogate model accuracy while reducing the CPU times
is to reduce the number of input variables to consider in the model. This can be reformulated
as a variable selection problem in the following framework.

Let us consider that we have n observations satisfying the following nonparametric regres-
sion model:

Yi = f(xi) + εi, xi = (x
(1)
i , . . . , x

(p)
i ) ∈ Rp, 1 ≤ i ≤ n (1)

where f is an unknown real-valued function and where the εi’s are i.i.d centered random vari-
ables of variance σ2. We will also assume that f actually depends only on d variables instead
of p, with d < p, which means that there exists a real-valued function f̃ such that f(x) = f̃(x̃),
where x ∈ Rp and x̃ ∈ Rd. Variable selection consists in identifying the components of x̃.

Efficient methodologies have been devised over the last few decades particularly when the
variables xis and Yis in (1) are linearly related. Notable examples include the Lasso regression
formulated by (Tibshirani, 1996) and one of its variant the Elastic Net defined by (Zou and
Hastie, 2005). However, dealing with the nonlinearity of the relationship between the xis and
the Yis in (1) poses a greater challenge.

In their paper, (Yamada et al., 2014) introduced a feature-wise kernelized Lasso method
tailored for variable selection in nonlinear models: HSIC-Lasso and its variation NOCCO-
Lasso. This approach employs the kernel trick within the regular Lasso problem in combination
with kernel-based independence measures to discern and selectively choose relevant variables.
While these methods offer scalability to high-dimensional variable selection problems, they
exhibit sensitivity to the number of observations. Tree-based methods such as Random Forests
introduced by (Breiman, 2001) are widely used for variable selection in regression models since
they are well-suited to describe nonlinearity in (1). Numerous applications and challenges
associated with its use for variable selection are discussed in (Genuer et al., 2010).

More recently, ANN have gained interest for variable selection and regression. We will
present just a few examples of them. For instance, (Liang et al., 2018) developed a method
based on a Bayesian neural network architecture to select variables for which the marginal
inclusion probability exceeds a predefined threshold. Furthermore, regularized approaches
with different ANN architectures were proposed as seen in the work of (Li et al., 2016) where
a ridge regularization approach is considered for the weights of the first and hidden layers.
Similarly, (Feng and Simon, 2017) introduced the SPINN method which is a single-layer neural
network with a sparse group lasso regularization to shrink the weights corresponding to the
units of the irrelevant variables. They later proposed another approach with deeper neural
networks in (Feng and Simon, 2022). (Ye and Sun, 2018) adapted the SPINN method by
adding a greedy elimination algorithm to iteratively drop one variable at a time and determine
if the empirical loss decreases. Finally, (Lemhadri et al., 2021) presented LassoNet, a residual
feed-forward neural network architecture as introduced in (He et al., 2016) which incorporates
a regularization approach based on Lasso regression to selectively use a subset of the features
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in the network. Similar work on variable selection with ANN can be found in (Chen et al.,
2021; Lu et al., 2018; Zhu and Zhao, 2021). All these methods display interesting results
especially for high-dimensional problems but often suffer from high training CPU times and
a large number of hyperparameters to tune.

Another research direction focuses on developing flexible and interpretable methods us-
ing splines for piecewise polynomial fitting such as Multivariate Adaptive Regression Splines
introduced by (Friedman, 1991). This method enables the description of interactions and
nonlinear relations by automatically pruning the most irrelevant terms. In the same vein,
(Lin and Zhang, 2006) developed COSSO, a regularization method for component selection
and smoothing splines where the penalty term is the sum of the component norms. This
approach can be considered as a more generalized form of the Lasso approach with a Re-
producing Kernel Hilbert Space (RKHS) constraint. Compared to MARS, it shows better
results except for higher dimensional cases with small datasets. Similarly, (Ravikumar et al.,
2009) proposed sparse additive models (SpAM) based on a generalized additive model with a
`2-norm regularization.

A few articles have proposed considering a sparse additive model using a linear combination
of B-splines of order M (M ≥ 1), introduced by (De Boor, 1978) in Chapter 9. Their ability
to approximate complex functions without being significantly altered by the presence of noise
has made them very attractive in the past few decades. As an illustration, (Huang et al.,
2010) approximated the underlying function f in (1) using an additive B-spline estimator and
subsequently, employed an adaptive group lasso approach for variable selection. In their study,
they presented both numerical applications and theoretical results regarding the selection
consistency of their proposed method. (Antoniadis et al., 2012) leveraged the benefits of B-
splines by incorporating a penalized version known as P-splines, introduced by (Eilers and
Marx, 1996), and compared their results with various adaptations of COSSO. Additional
references on variable selection with P-splines can be found in the review by (Gijbels et al.,
2015). While these approaches have proven to be efficient for high-dimensional nonparametric
additive models, they fall short in describing interactions that may exist in real datasets.
Therefore, (Radchenko and James, 2010) extended the SpAM approach to consider both
single and interaction terms, aiming to construct a more interpretable approximation of f .
This presented approach, known as VANISH, strongly penalizes interaction terms to simplify
the model as much as possible and has demonstrated efficiency for small datasets. In parallel,
(Rosasco et al., 2010) proposed a novel method for variable selection based on a regularized
least-square estimator penalizing large values of the partial derivatives to select the most
relevant variables in a multivariate nonlinear regression model with a RKHS constraint.

In this article, we propose a novel method for variable selection motivated by (Radchenko
and James, 2010) using a multivariate nonparametric regression model to retrieve the d rel-
evant variables on which f in (1) truly depends. Our approach involves approximating f
using a linear combination of B-splines and their pairwise interactions. Additionally, drawing
inspiration from the methodology of (Rosasco et al., 2010), the coefficients of the linear com-
bination are estimated by minimizing the usual least-squares criterion penalized by the sum
of the `2-norms of the partial derivatives with respect to the different variables on which f
depends. We will demonstrate that our proposed method can be formulated as a Group Lasso
problem defined by (Yuan and Lin, 2006) and thus, can be easily implemented. Two different
approaches to choose the penalization parameter will be presented to the reader.

This paper is organized as follows. Section 2 presents the methodology that we propose
for variable selection in nonlinear models. Section 3 investigates the performance of our
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approach through numerical experiments. Finally, in Section 4, we apply our method to a real
geochemical application that motivated this study.

2. Methodology

2.1. Approximation of f using B-splines. Let us first recall how the B-spline basis asso-
ciated to a given dimension among the p, the `th for instance, is defined.

Let t` = (t`,1, . . . , t`,K) be a set of K points called knots and let S` be a compact subset of
R. Following (De Boor, 1978, p. 89-90) and (Hastie et al., 2009, p. 160), the augmented knot
sequence τ ` is defined as follows:

τ`,1 = . . . = τ`,M = x
(`)
min,

τ`,j+M = t`,j , j = 1, . . . ,K,

τ`,K+M+1 = . . . = τ`,K+2M = x(`)
max,

τ ` = (τ`,1, . . . , τ`,K+2M ) =
(
x

(`)
min, . . . , x

(`)
min︸ ︷︷ ︸

M times

, t`,1, . . . , t`,K︸ ︷︷ ︸
t`

, x(`)
max, . . . , x

(`)
max︸ ︷︷ ︸

M times

)
,

where x(`)
min and x(`)

max are the lower and upper bounds of S`, respectively.
Denoting by B(`)

k,m the kth B-spline basis function of order m with m ≤ M for the knot
sequence τ ` and for the dimension `, B-splines are defined by the following recursion:

B
(`)
k,1(x(`)) =

{
1 if τ`,k ≤ x(`) < τ`,k+1

0 otherwise
for k = 1, . . . ,K + 2M − 1, (2)

and for 2 ≤ m ≤M ,

B
(`)
k,m(x(`)) =

x(`) − τ`,k
τ`,k+m−1 − τ`,k

B
(`)
k,m−1(x(`)) +

τ`,k+m − x(`)

τ`,k+m − τ`,k+1
B

(`)
k+1,m−1(x(`)), (3)

for k = 1, . . . , (K + 2M −m).
Inspired by (Radchenko and James, 2010), we propose approximating the function

f(x(1), . . . , x(p)) appearing in (1) by a linear combination of B-splines of each variable
x(1), . . . , x(p) and of pairwise interaction of them as follows:

F (x(1), . . . , x(p)) =

p∑
`=1

K+M∑
k=1

β
(`)
k B

(`)
k (x(`)) +

p−1∑
`=1

p∑
j=`+1

K+M∑
k=1

K+M∑
q=1

β
(`,j)
k,q B

(`)
k (x(`))B(j)

q (x(j))

 ,

(4)

where B(`)
k = B

(`)
k,M is defined in (2) and (3) and where β(`)

k and β(`,j)
k,q are unknown coefficients.

Observe that the column vector (F (x
(1)
i , . . . , x

(p)
i ))1≤i≤n (4) can be rewritten as follows:

p∑
`=1

Ψ` β` +

p−1∑
`=1

p∑
j=`+1

Φ`j β`,j . (5)

where Ψ` is a n×(K+M) matrix such that its ith row is equal to (B
(`)
1 (x

(`)
i ), . . . , B

(`)
K+M (x

(`)
i ))

and β` =
(
β

(`)
1 . . . β

(`)
K+M

)T
for 1 ≤ ` ≤ p, AT denoting the transpose of the matrix A.

Moreover, Φ`j is an n× (K +M)2 matrix such that its ith row satisfies (Φ`j)i,• = ((Ψ`)i,• ⊗
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(Ψj)i,•), ⊗ denoting the Kronecker product, (Ψ`)i,• denoting the ith row of Ψ` and β`,j =(
β

(`,j)
1,1 β

(`,j)
1,2 . . . β

(`,j)
K+M,K+M

)T
for 1 ≤ ` < j ≤ p.

2.2. Description of our variable selection method. Inspired by the methodology of
(Rosasco et al., 2010), we propose selecting the variables on which f depends by estimating
the coefficients β` and β`,j appearing in (5) by minimizing the following regularized criterion:(

β̂1(λ ), . . . , β̂p(λ ), β̂1,2(λ ), . . . , β̂(p−1),p(λ )
)

= argmin
(β1,...,βp)

(β1,2,...,β(p−1),p)

∥∥∥Y − p∑
`=1

Ψ` β`−
p−1∑
`=1

p∑
j=`+1

Φ`j β`,j

∥∥∥2

2
+ λ

p∑
`=1

√√√√ n∑
i=1

∂`F (xi)2

 ,

whereY = (Y1, . . . , Yn), the Yi’s being defined in (1), ∂`F (xi) denotes the `th partial derivative
of F defined in (4) at some observation point xi = (x

(1)
i , . . . , x

(p)
i ) and ||y||22 =

∑n
i=1 y

2
i . Note

that the idea underlying this criterion is that when a function does not depend on a variable
its partial derivative with respect to this variable is equal to zero.

Using the definition of F given in (5) the criterion can be rewritten as follows:(
β̂1(λ ), . . . , β̂p(λ ), β̂1,2(λ ), . . . , β̂(p−1),p(λ )

)
= argmin

(β1,...,βp)
(β12,...,β(p−1)p)

∥∥∥Y − p∑
`=1

Ψ` β`−
p−1∑
`=1

p∑
j=`+1

Φ`j β`,j

∥∥∥2

2

+λ

p∑
`=1

∥∥∥Ψ′` β` +

p∑
j=`+1

(∂`Φ`j)β`,j +
∑

1≤j<`

(∂`Φj`)βj,`

∥∥∥
2

 ,

(6)

where Ψ′` is the n × (K + M) matrix such that (Ψ′`)i,k = B
(`)′

k (x
(`)
i ), B(`)′

k denoting the first
derivative of B(`)

k . The ith row of (∂`Φ`j) (resp. (∂`Φj`)) is defined by (∂`Φ`j)i,• = ((Ψ′`)i,• ⊗
(Ψj)i,•) (resp. (∂`Φj`)i,• = ((Ψj)i,•⊗(Ψ′`)i,•)). By denoting (∂`Φ`•) =

(
(∂`Φ`(`+1)) . . . (∂`Φ`p)

)
,

(∂`Φ•`) =
(
(∂`Φ1`) . . . (∂`Φ(`−1)`)

)
, β`• =

(
β`,(`+1) . . .β`,p

)
and β•` =

(
β1,` . . .β(`−1),`

)
, the

penalty term can be written as:

λ

p∑
`=1

∥∥∥Ψ′` β` +(∂`Φ`•)β`•+(∂`Φ•`)β•`

∥∥∥
2

=: λ

p∑
`=1

∥∥∥(∂`Θ`)γ`

∥∥∥
2
, (7)

where γ` =
(
βT
` βT

`,`+1 ... βT
`,p β

T
1,` ... β

T
`−1,`

)T . Using that
p−1∑
`=1

p∑
j=`+1

Φ`j β`,j =

p∑
j=2

j−1∑
`=1

Φ`j β`,j =

p∑
`=2

`−1∑
j=1

Φj` βj,` ,
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the least-squares term can be rewritten as follows:∥∥∥Y − p∑
`=1

Ψ` β`−
p−1∑
`=1

p∑
j=`+1

Φ`j β`,j

∥∥∥2

2

=
∥∥∥Y − p∑

`=1

Ψ` β`−
1

2

p−1∑
`=1

p∑
j=`+1

Φ`j β`,j +

p∑
`=2

`−1∑
j=1

Φj` βj,`

∥∥∥2

2

=:
∥∥∥Y − p∑

`=1

Θ` γ`

∥∥∥2

2
.

(8)

Equation (8) comes by setting Θ1 =
(

Ψ1
1
2Φ1•

)
and Θp =

(
Ψp

1
2Φ•p

)
, where Φ`• =

(Φ`(`+1) . . .Φ`p) and Φ•` = (Φ1` . . .Φ(`−1)`). Combining (7) and (8), (6) can be rewritten as:(
γ̂1(λ ), . . . , γ̂p(λ )

)
= argmin

(γ1,...,γp)

(∥∥∥Y − p∑
`=1

Θ` γ`

∥∥∥2

2
+ λ

p∑
`=1

∥∥∥(∂`Θ`)γ`

∥∥∥
2

)
. (9)

By defining α` = (∂`Θ`)γ` and X̃` = Θ`(∂`Θ`)
+, A+ being the Moore-Penrose inverse of

matrix A, (9) can be rewritten as:

(α̂1(λ ), . . . , α̂p(λ )) = argmin
(α1,...,αp)

(∥∥∥Y − p∑
`=1

X̃`α`

∥∥∥2

2
+ λ

p∑
`=1

∥∥∥α`

∥∥∥
2

)
. (10)

The last formulation of our variable selection criterion (10) can be seen as a group lasso
problem introduced by (Yuan and Lin, 2006), where the size p` of each group ` belonging to
{1, . . . , p} is equal to n. This approach is implemented in numerous R packages such as the
most recent one sparsegl developed by (Liang et al., 2022) that we used in the numerical
experiments section. For a fixed number of parameters λ , this package provides a set of
penalization parameters Λ and the coefficients α̂`(λ ) for λ belonging to Λ. The coefficients
γ̂`(λ ) are thus obtained as follows

γ̂`(λ ) = (∂`Θ`)
+α̂`(λ ). (11)

We then define the active variables for each λ in Λ as follows:

Vλ =

`, ∑
k≥1

|γ̂`,k(λ )| 6= 0

 , (12)

where γ̂`,k(λ ) is the kth coefficient of γ̂`(λ ).
We also introduce the set Vf of the indices of the d relevant variables on which f in (1)

actually depends that we seek to select among the p variables and the set Vf of the indices of
the irrelevant variables on which f does not depend.

2.3. Choice of K. Our method relies on the definition of the B-spline basis for each ` in
{1, . . . , p} and thus on the choice of the set of knots t` used for defining them. For simplifying
this choice, we considered evenly spaced knots in the interval [0, 1]. For regularity purposes,
we use quadratic B-splines withM = 3. Thus, we are only interested in optimizing the number
of knots K. To find the best value of K, we use two sensitivity measures. Firstly, for each
λ belonging to Λ, we computed the True Positive Rate (TPR) and the False Positive Rate
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(FPR), defined as:

TPR(λ ) =
TP(λ )

d
=
|Vλ ∩ Vf |

d
and FPR(λ ) =

FP(λ )

p− d
=

∣∣Vλ ∩ Vf
∣∣

p− d
,

where d < p, |A| is the cardinality of the set A, TP(λ ) and FP(λ ) are the number of true
selected variables and the number of false selected variables for λ , respectively. Vf , Vf and Vλ

are introduced in the previous section. We can then draw the ROC curve where each point
has as coordinates (FPR(λ ),TPR(λ )) for λ belonging to Λ.

In order to have an idea of the quality of our variable selection procedure, we calculate the
Area Under Curve (AUC) of the ROC curves as well as a complementary indicator that we
want to maximize:

max(TPR− FPR) = max
λ∈Λ

(TPR(λ )− FPR(λ )).

To assess the quality of our variable selection procedure according to K, we define two
functions on which our method is applied:

f1(x(1), x(2), x(3), x(4), x(5)) = 2B
(3)
2 (x(3))B

(5)
4 (x(5)) + 2B

(5)
4 (x(5))− 5B

(3)
2 (x(3)),

(x(1), . . . , x(5)) ∈ [0, 1]5,
(13)

f2(x(1), . . . , x(10)) = 1.8 cos (x(1)) sin (x(7) + 1)− 5 ln (x(3) + 1)− 0.9

x(10)2
+ 1

,

(x(1), . . . , x(10)) ∈ [0, 1]10.

(14)

In (13), the B-spline bases are defined using t` = (0.2, 0.5, 0.6, 0.75, 0.8) for each ` belonging
to {1, . . . , 5}. Here, Vf1 = {3, 5} and Vf2 = {1, 3, 7, 10}. Results for the two metrics defined
above, AUC and max(TPR−FPR), are shown for f = f1 and f = f2 for 10 random samplings
of the observation set and for σ = 0 and σ = 0.5 in Figure 1 and in Figure 3 for n = 350 and
n = 2000, respectively.

Firstly, we can clearly see for n = 350 in Figure 1 that for f1, all the values of K are
satisfying as they allow us to get max(TPR− FPR) = 1 and AUC = 1.

However, for f = f2, we do not have necessarily AUC = 1 when max(TPR − FPR) = 1
for instance for K = 3, which does not imply that this method does not select properly the
relevant variables. To illustrate this idea, one can relate to Figure 2 in which the ROC curves
for f = f2 are drawn for each value of K belonging to {1, . . . , 10}. Here, we can observe that
a good variable selection method will not necessarily lead to AUC = 1 since FPR(λ ) < 1
for every λ belonging to Λ, which indicates that the even smallest value of λ will not select
all the irrelevant variables. These phenomena are even more visible for n = 2000 in Figure
3 for f1 and f2. The results for n = 350 allow us to discriminate a value of K which gives
good selection for both σ = 0 and σ = 0.5 and for both functions f1 and f2. Indeed, for f1

without any noise in the observation set we can see that only the true variables are selected
for K = 3 since AUC = 0 and max(TPR − FPR) = 1. Moreover, K = 3 is the only case
where max(TPR − FPR) = 1 for nearly all the different samplings of the observation set
when σ = 0.5. Higher values of K drastically deteriorate the AUC and the max(TPR−FPR),
especially for noisy observation sets.
For all these reasons, we decide to only focus on using our method with K = 3 evenly spaced
knots in the B-spline basis.
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σ = 0 σ = 0.5

f1
f2

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

AUC max(TPR−FPR)

Figure 1. AUC and max(TPR − FPR) calculated for an increasing value of
K for f1 (top) and f2 (bottom) with noise (right) or without noise (left) in the
observation set Y = (Y1, . . . , Y350). 10 random samplings of Y were used to
obtain these results. The empty bullets inside the boxplots represent the mean
value and the plain bullets outside the boxplots are the extreme values.
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Figure 2. ROC curves for an increasing value of K for f2 with no noisy
observations Y = (Y1, . . . , Y350) (σ = 0 in (1)) and for one sampling of the
observation set (blue line). The red line corresponds to the identity function
TPR = FPR.
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Figure 3. AUC and max(TPR − FPR) calculated for an increasing value of
K for f1 (top) and f2 (bottom) with noise (right) or without noise (left) in the
observation set Y = (Y1, . . . , Y2000). 10 random samplings of Y were used to
obtain these results. The empty bullets inside the boxplots represent the mean
value and the plain bullets outside the boxplots are the extreme values.

2.4. Choice of λ . By following the previous method, we have a set of penalization parameters
Λ and a set of indices of selected variables for each of them in Vλ . Let us now propose two
ways of selecting the final set of selected variables among the different sets Vλ .

The first one is based on the percentage of variable selection defined for each variable `
belonging to {1, . . . , p} by:

P` =
100

|Λ|
∑
λ∈Λ

1{` ∈ Vλ} , (15)

where |Λ| is the total number of parameters in Λ, 1{A} = 1 if the event A holds and 0 if not
and Vλ is defined in (12).

Results for the percentage of selection of variables are displayed in Figure 4 (resp. Figure
5) for f1 (resp. for f2). Firstly, we obtain a high percentage of selection for the relevant
variables Vf1 = {3, 5} since they are selected for more than 75% of the λ s belonging to Λ.
Moreover, we can observe a huge gap between the frequency for the relevant (Vf1 = {3, 5})
and the irrelevant (Vf1 = {1, 2, 4}) variables. This gap is amplified as we increase the number
of observations from n = 350 to n = 2000. The noise of the observations does not seem here to
deteriorate the results. For f2, the percentage of the relevant variables (Vf2 = {1, 3, 7, 10}) are
lower than the previous function (40% for variable 7), however we can see similar frequencies
for the irrelevant variables (Vf2 = {2, 4, 5, 6, 8, 9}) and a clear gap for the unnoisy observation
sets (σ = 0) starting with only n = 350 as Vf2 = {2, 4, 5, 6, 8, 9} are never selected. The noise
has here an influence on the quality of selection but by increasing the number of observations
we can circumvent this issue as the gap is visible for σ = 0.5 with n = 2000. We encourage the
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user to add known fake variables in order to know which threshold of percentage of selection
to use. All the variables having a percentage of selection close to the one of the added fake
variables can then be considered as irrelevant as we can see in Figures 4 and 5 which are
visualizations of the output of our method for one sample of the observation set for f1 and f2,
respectively.

n = 350 n = 2000

3 5 1 2 4 3 5 1 2 4
0

25

50

75

100

σ = 0 σ = 0.5

Figure 4. Percentage of selection of each variable for f1 with n = 350 (left)
and n = 2000 (right) and for σ = 0 or σ = 0.5. The green (resp. red) vari-
ables indicate the true relevant (resp. irrelevant) variables for f1. 10 random
samplings of Y were used to obtain these results. The empty bullets inside
the boxplots correspond to the mean value and the plain bullets outside the
boxplots are the extreme values.

n = 350 n = 2000

1 3 7 10 2 4 5 6 8 9 1 3 7 10 2 4 5 6 8 9
0

25

50

75

100

σ = 0 σ = 0.5

Figure 5. Percentage of selection of each variable for f2 with n = 350 (left)
and n = 2000 (right) and for σ = 0 or σ = 0.5. The green (resp. red) vari-
ables indicate the true relevant (resp. irrelevant) variables for f2. 10 random
samplings of Y were used to obtain these results. The empty diamonds inside
the boxplots correspond to the mean value and the plain bullets outside the
boxplots are the extreme values.
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Figure 6. Percentage of selection of each variable for f1 with n = 350 (top)
and n = 2000 (bottom) and for σ = 0 (left) or σ = 0.5 (right). The green
(resp. red) variables indicate the true relevant (resp. irrelevant) variables for
f1. Only one sampling of Y is used to obtain the results displayed.
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Figure 7. Percentage of selection of each variable for f2 with n = 350 (top)
and n = 2000 (bottom) and for σ = 0 (left) or σ = 0.5 (right). The green
(resp. red) variables indicate the true relevant (resp. irrelevant) variables for
f2. Only one sampling of Y is used to obtain the displayed results.

We also propose another method to automatically choose λ . Among several existing criteria
for model selection, we initially assessed a cross-validation criterion using the mean-square er-
ror as a loss function. However this approach was not satisfactory as it tended to overestimate
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the number of relevant variables. Hence, the suggested method leverages the popular Akaike
Information Criterion (AIC) introduced in (Akaike, 1973) and defined by:

AIC(λ ) = n ln

(
RSS(λ )

n

)
+ 2Tλ , (16)

where Tλ is the number of terms appearing in (5) by keeping only the variables selected with
λ and RSS(λ ) is the residual sum of squares defined as follows:

RSS(λ ) =
∥∥∥Y − Ŷ(λ )

∥∥∥2

2
,

with Ŷ(λ ) =

p∑
`=1

Θ`γ̂`(λ ),
(17)

where γ̂`(λ ) is defined in (11). Then, the chosen λ = λAIC is such that:

λAIC = argmin
λ∈Λ

(AIC(λ )). (18)

The TPR(λ ) and FPR(λ ) obtained with λ = λAIC for both functions f1 and f2 are displayed
in Figure 8 for n = 350 and n = 2000 and for σ = 0 or σ = 0.5. We can observe for f1

that with a sufficient number of observations this criterion allows us to get TPR(λAIC) = 1
while having FPR(λAIC) = 0 which means that the relevant variables are selected and not
the irrelevant ones. The noise in the observation set has a stronger influence on the detection
of the relevant variables of f2 than for f1. With σ = 0.5, we indeed have TPR(λAIC) < 1
and FPR(λAIC) = 0. By increasing the value of n from 350 to 2000, the value of TPR(λAIC)
is increased and thus the number of relevant selected variables. Moreover, for unnoisy set of
observations the relevant variables are recovered from n = 350. Since we are interested in
geochemical applications where the noise in the observation sets is very small, we will not be
concerned by this issue.

3. Numerical experiments

In this section, we will assess the robustness of our method called ABSORBER implemented
in the absorber R package when the variance of the noise σ2 increases as well as the number
of observations n. We will also study how this novel method behaves when the number of
variables p grows. To demonstrate its efficiency, we will compare it to two state-of-the-art
methods for feature selection: LassoNet introduced in (Lemhadri et al., 2021) and the widely
used Random Forests (RF) introduced by (Breiman, 2001) and used in (Genuer et al., 2010)
for variable selection.

LassoNet is an open-source package available on GitHub implemented in Python under
the name lassonet. The algorithm generates a grid of penalization parameters and the
corresponding selected variables. We can thus calculate the percentage of selection for each
variable as defined in (15). In the following, the residual neural network is built by taking
a hidden layer with 10 neurons as proposed in the notebook example given by this package
which focuses on a 26-dimensional regression problem. Despite an increase of the number of
neurons in the hidden layer and an extension of the maximal number of epochs, no significant
improvement in the selection of relevant variables was observed. This is the reason why we
did not explore more complex neural network architectures.

In order to apply Random Forests to our data, we used the R package randomForest,
implemented by (Liaw et al., 2002), with 500 trees. This package provides the percentage of
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Figure 8. TPR(λ ) and FPR(λ ) values by choosing λ = λAIC for f1 (top) and
f2 (bottom) with an unnoisy (σ = 0) or noisy (σ = 0.5) set of observations. 10
random samplings ofY were used to obtain these results. The empty diamonds
inside the boxplots correspond to the mean value and the plain bullets outside
the boxplots are the extreme values.

increased mean square error for each variable as the model excludes them one-by-one. This
metric is then converted into a percentage of selection for each variable ensuring comparable
results for the three methods.

3.1. Influence of n and σ on the quality of variable selection. In the following, we
explore the impact of both the number of observations and the noise level in the observation
sets on the efficiency of the three previously introduced variable selection methods.

As a result, the percentage of selection for each variable is calculated as described in (15)
for 10 samplings of the observation set and the results are shown in Figure 9 (resp. Figure 10)
for f = f1 (resp. f = f2) with n belonging to {350, 500, 700} (resp. {350, 500}). The relevant
variables are displayed in green and the irrelevant variables are displayed in red. Additional
results are presented in the Appendix in Figure 16 (resp. Figures 17 and 18) for f1 (resp.
f2). As we can see in Figure 9 and in Figure 16 of the Appendix, for a given n, the noise
does not seem to have a significant influence on the percentage of variables of f1 selected by
our method ABSORBER. However, as we increase the value of n of the corrupted observation
set with σ = 0.5, the percentage of irrelevant variables selected with our method drops from
nearly 50% for n = 350 to 25% with n = 1500. As observed in these figures, LassoNet tends to
select irrelevant variables since the variable selection percentage of the variables belonging to
Vf1 is nearly equal to that of variable 5 belonging to Vf1 , both having a selection rate of 70%
for n = 350 and σ = 0.5. Compared to our method and LassoNet, Random Forests selects
variable 5 with only 30% of selection against 80% and 75%, respectively.

Let us now study the application of these methods to f2. The corresponding results are
displayed in Figure 10 and in Figures 17 and 18 of the Appendix. The noise has an effect on our
method ABSORBER in this case since there is no selection of irrelevant variables regardless
of the value of n with unnoisy observation sets against 25% of selection when σ = 0.5 for
the smallest values of n. However, increasing the value of n in this case allows us to reduce
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the percentage of selection for irrelevant variables to 10% while maintaining the minimum
percentage of relevant variables up to 40%.

The two other methods appear to be unaffected by changes in both σ and n. Nevertheless,
as observed previously with f = f1, 50% of the penalization parameters of LassoNet select
irrelevant variables. As a consequence, there is no distinct gap between these and relevant
variable 7 since its percentage is very close to 50% as well. This statement suggests that
using a high threshold on the percentage of selection obtained with LassoNet can result in
omitting a relevant variable even for large n. Conversely, a low threshold includes irrelevant
variables. In opposition to these two methods, the Random Forests approach tends to fail in
detecting the relevant variables since variable 7 and 10 are selected nearly 0% and 5% of the
time, respectively, regardless of σ and n. The same conclusion as with LassoNet can be drawn
here, emphasizing that our method ABSORBER outperforms those two methods for variable
selection while requiring only a few parameters to choose.

3.2. Influence of p on the quality of variable selection. In this section, we seek at
studying the behavior of our method when the total number of variables p increases. To do
so, we define two additional functions f3 and f4 such that:

f3

(
x(1), . . . , x(5)

)
= 1.8 cos (x(1)) sin (x(3) + 1)− 5 ln

(
x(3) + 1

)
− 0.9

(x(4))2 + 1(
x(1), . . . , x(5)

)
∈ [0, 1]5,

(19)

f4

(
x(1), . . . , x(50)

)
= 1.8 cos (x(1)) sin (x(7) + 1)− 5 ln (x(3) + 1)− 0.9(

x(10)
)2

+ 1
,(

x(1), . . . , x(50)
)
∈ [0, 1]50.

(20)

We apply all three variable selection methods to f2, f3 and f4 with observation sets of varying
sizes n, all corrupted with the same noise levels as assessed in the previous section. Next,
we compute the AUC and max(TPR−FPR) as defined in Section 2.3. The results for these
comparisons are displayed in Figure 11 for n = 350 and n = 2000.

We can see from this figure that our method is affected by p when the observation set is
corrupted with significant noise (σ = 0.5) and has a reduced size (n = 350). Specifically,
max(TPR − FPR) = 1 and AUC = 0 indicating that no irrelevant variables are selected,
regardless of p with σ ≤ 0.25. In contrast, the efficiency of the two other methods is impacted
by the value of p as the metrics presented in Figure 11 are drastically deteriorated. For
instance, with LassoNet max(TPR − FPR) = 1 and AUC = 1 with p = 5 for σ < 0.5.
However, max(TPR − FPR) becomes less that 1 for p = 10 and it keeps decreasing as the
values of p and σ increase. Even for the simpler case, p = 5 and σ = 0, Random Forests
exhibit deteriorated results and this deterioration continues when both p and σ increase since
max(TPR − FPR) falls below 1. For both of these two methods, AUC > 0 indicating that
FPR > 0 and suggesting that these methods select irrelevant variables while omitting one
or more relevant ones. Increasing the number of observations up to n = 2000 improves the
results for all three methods. Nevertheless, Random Forests continue to yield poor results,
the only improvement being a reduction in variability between the different samplings. Our
method is the only one showing satisfactory results as max(TPR − FPR) = 1, regardless of
p and σ. Globally, our method outperforms LassoNet and RF in this case and appears to be
more robust when facing with higher dimensions p with or without noisy observation sets.
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Figure 9. Percentage of selection of each variable of f1 with three different
methods: ABSORBER, LassoNet and RandomForests (RF) with an increasing
number of observations n (left to right) and of the value of σ (top to bottom).
10 random samplings of Y were used to obtain these results. The empty
diamonds inside the boxplots correspond to the mean value and the plain
bullets outside the boxplots are the extreme values.

In Figure 12, the impact of the value p on our variable selection procedure using AIC is as-
sessed. We can observe that only σ has a negative impact on the efficiency of our method. More
precisely, the TPR values are smaller than 1, especially for σ = 0.5 regardless of n. However,
for smaller noise levels (σ < 0.25) and with n ≥ 700 our method enables TPR(λAIC) = 1 while
maintaining FPR(λAIC) = 0. This means that no irrelevant variables are chosen, regardless
of p, demonstrating the efficiency of our variable selection procedure.

3.3. Numerical performance. The goal of this section is to investigate the computational
times of our variable selection approach implemented in the absorber R package. To this end,



16 MARY E. SAVINO AND CÉLINE LÉVY-LEDUC

n = 350 n = 500

σ
=

0
σ

=
0.1

σ
=

0.25
σ

=
0.5

1 3 7 10 2 4 5 6 8 9 1 3 7 10 2 4 5 6 8 9

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

ABSORBER LassoNet RF

Figure 10. Percentage of selection of each variable of f2 with three different
methods: ABSORBER, LassoNet and RandomForests (RF) with an increasing
number of observations n (left to right) and of the value of σ (top to bottom).
10 random samplings of Y were used to obtain these results. The empty
diamonds inside the boxplots correspond to the mean value and the plain
bullets outside the boxplots are the extreme values.

we introduce an additional function for which p = 25 defined as follows:

f5

(
x(1), . . . , x(25)

)
= 1.8 cos (x(1)) sin (x(7) + 1)− 5 ln (x(3) + 1)− 0.9(

x(10)
)2

+ 1
,(

x(1), . . . , x(25)
)
∈ [0, 1]25.

(21)

Our variable selection method is applied to f2, f3, f4 and f5 (defined in (14), (19), (20)
and (21), respectively) for p = 5, p = 10, p = 25 and p = 50, respectively. The timings
were obtained on a workstation with 31.2GB of RAM and Intel Core i7 (3.8GHz) CPU. The
log10-transformed average computational times and their standard deviation obtained from
20 independent executions are displayed in Figure 13. We can see from this figure that it
only takes 250 seconds to perform variable selection on a function with p = 50 variables from
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Figure 11. AUC and max(TPR−FPR) calculated for three different variable
selection methods: ABSORBER, LassoNet and RandomForests (RF) applied
to three functions (top to bottom) f3, f2 and f4 with n = 350 (A) and n = 2000
(B) and an increasing value of σ (left to right). 10 random samplings of Y
were used to obtain these results. The empty diamonds inside the boxplots
correspond to the mean value and the plain bullets outside the boxplots are
the extreme values.
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Figure 12. TPR(λ ) and FPR(λ ) values by choosing λ = λAIC for f3, f2 and
f4 with three noise levels in the observation sets. 10 random samplings of Y
were used to obtain these results. The empty diamonds inside the boxplots
correspond to the mean value and the plain bullets outside the boxplots are
the extreme values.

n = 2000 observations. It has to be noticed that the execution times reported are mainly due
to the use of the sparsegl package.
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Figure 13. Execution times for an increasing number of observations n and
values of p. The tested functions are here f2, f3, f4 and f5 with unnoisy
observation sets (σ = 0).
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4. Application to a multidimensional geochemical system

In this section, we apply our variable selection method to real geochemical systems. We
start by defining the geochemical system derived from the calcite dissolution and precipitation
study in (Kolditz et al., 2012). In the following, the observation sets are generated using the
geochemical solver PHREEQC as in (Parkhurst and Appelo, 2013). The corresponding ther-
modynamic data for aqueous species and minerals are available in the Phreeqc.dat distributed
with PHREEQC. The compositional system actually solved consists of 14 species in solution, 2
mineral components, 8 geochemical reactions and 2 mineral dissolution-precipitation reactions.
For the purposes of this paper, we specifically focus on the calcite precipitation/dissolution:

Calcite 
 Ca2+ + CO2−
3 , logK = −8.48.

The previous equation represents the dissolution reaction along with its corresponding log10-
transformed equilibrium constant value logK. The amount of calcite can be here computed with
PHREEQC as a function of the total elemental concentrations (C, Ca), the pH (as −log(H+))
and the amount of calcite initially present. The pH is here fixed at 9.8 and we introduce two
additional concentrations (K, Cl) which do not participate in the calcite precipitation. This
allows us to assess our variable selection on real datasets. We can thus formulate the problem
as:

Calcite = f6(C∗,Ca∗,K∗,Cl∗,Calcite∗)

= f̃6(C∗,Ca∗,Calcite∗),

where C∗, Ca∗, K∗, Cl∗, Calcite∗ are the normalized concentrations and quantities initially
present of C, Ca, K, Cl and Calcite, respectively. The normalization of each variable is done
by taking into account the minimal and the maximal bound of the values so that each variable
belongs to [0, 1]. We also define another function f7 which takes into account known fake
variables to study the behavior of all three methods:

Calcite = f7(C∗,Ca∗,K∗,Cl∗,Calcite∗, x(6), x(7), x(8), x(9), x(10))

= f̃6(C∗,Ca∗,Calcite∗),

where x(6), x(7), x(8), x(9), x(10) are synthetic irrelevant variables obtained through uniform
sampling between 0 and 1. Hereafter, Vf6 = Vf7 = {C∗,Ca∗,Calcite∗}, Vf6 = {K∗,Cl∗} and
Vf7 = {K∗,Cl∗, x(6), x(7), x(8), x(9), x(10)}.

The results for the application of our method, LassoNet and RF to f6 and f7 are displayed
in Figure 14. Here, our method consistently selects the relevant variables belonging to Vf6
62.5% of the time and the irrelevant ones belonging to Vf6 are almost never selected. By
increasing n, the percentage of selection for these irrelevant variables reaches 0%. In contrast,
LassoNet selects all the variables and fails to discriminate the relevant from the irrelevant
ones. Random Forests, on the other hand, tends to detect only one variable of Vf6 which is
the calcite quantity. Furthermore, it tends to select K and Cl (5%) more than the relevant
variables C and Ca (0%), even with n = 2000.

Adding fake variables does not deteriorate our method which continues to select only the
relevant variables in Vf7 . However, it does not improve the results for LassoNet which con-
tinues to select all ten variables from Vf7 and Vf7 . Interestingly, it helps the Random Forests
approach in detecting the relevant variables C and Ca resulting in an increase in the percent-
age of selection up to 5%. Nevertheless, this emphasizes the efficiency of our method which
outperforms the other two in this geochemical case.
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Furthermore, we used the AIC to select the parameter λ and to automatically choose the
relevant variables. The corresponding results are shown in Figure 15. This statistical criterion
proves to be highly efficient as evidenced by TPR(λAIC) = 1 and FPR(λAIC) = 0, regardless
of n and p.
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Figure 14. Percentage of selection of each variable of f6 (top) and f7 (bottom)
with three different methods: ABSORBER, LassoNet and RandomForests
(RF) with an increasing number of observations n (left to right). 10 ran-
dom samplings of Y were used to obtain these results. The empty diamonds
inside the boxplots correspond to the mean value and the plain bullets outside
the boxplots are the extreme values.
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Figure 15. TPR(λ ) and FPR(λ ) values by choosing λ = λAIC for f6 (top)
and f7 (bottom). 10 random samplings of Y were used to obtain these results.
The empty diamonds inside the boxplots correspond to the mean value and
the plain bullets outside the boxplots are the extreme values.
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Figure 16. Percentage of selection of each variable of f1 with three different
methods: ABSORBER, LassoNet and RandomForests (RF) with an increasing
number of observations n (left to right) and of the value of σ (top to bottom).
10 random samplings of Y were used to obtain these results. The empty
diamonds inside the boxplots correspond to the mean value and the plain
bullets outside the boxplots are the extreme values.

5. Appendix: Additional plots
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Figure 17. Percentage of selection of each variable of f2 with three different
methods: ABSORBER, LassoNet and RandomForests (RF) with an increasing
number of observations n (left to right) and of the value of σ (top to bottom).
10 random samplings of Y were used to obtain these results. The empty
diamonds inside the boxplots correspond to the mean value and the plain
bullets outside the boxplots are the extreme values.
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Figure 18. Percentage of selection of each variable of f2 with three different
methods: ABSORBER, LassoNet and RandomForests (RF) with an increasing
number of observations n (left to right) and of the value of σ (top to bottom).
10 random samplings of Y were used to obtain these results. The empty
diamonds inside the boxplots correspond to the mean value and the plain
bullets outside the boxplots are the extreme values.
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