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DYNAMIC PROGRAMMING FOR THE STOCHASTIC

MATCHING MODEL ON GENERAL GRAPHS: THE CASE OF

THE ‘N-GRAPH’

LOÏC JEAN AND PASCAL MOYAL

IECL,UNIVERSITÉ DE LORRAINE AND INRIA PASTA

Abstract. In this paper, we address the optimal control of stochastic match-

ing models on general graphs and single arrivals having fixed arrival rates,

as introduced in [12]. On the ‘N-shaped’ graph, by following the dynamic
programming approach of [5], we show that a ‘Threshold’-type policy on the

diagonal edge, with priority to the extreme edges, is optimal for the discounted
cost problem and linear holding costs.

1. Introduction

In this work, we consider a general stochastic matching (GM) model, as defined
in [12]. It is roughly defined as follows: items of different classes enter a system
one by one, and are of different classes. We let V be the set of classes, and also
define a compatibility graph G = (V,E) on the set of classes. If two nodes (i.e.,
classes) i and j in V share an edge in G, we consider that any couple of items
of respective classes i and j are compatible. Then, upon arrival into the system,
any element can either be stored in a buffer, or matched with a compatible item
that is already present in the buffer. It is then the role of the matching policy to
determine the match of a given item, in case of multiple choices. We say that the
matching policy is greedy if any incoming item that finds compatible items in line
is necessarily matched upon arrival. Otherwise, in the non-greedy case, one might
want to keep two compatible items together in line, to wait for a more profitable
future match.

The GM model is a variant of the the so-called Bipartite stochastic matching
(BM) model introduced in [6] for the Fist Come, First matched (FCFM) policy, and
generalized in [3]. In this class of models that typically represent skill-based queue-
ing systems, the compatibility graph G is bipartite (there are classes of customers
and classes of servers) and arrivals occur by pairs customer/server - an assumption
that might appear as unpractical, in many applications. The ‘general’ stochastic
matching model (GM) we consider in this work, stands for a system in which the
compatibility graph is general (i.e., non necessarily bipartite), and arrivals occur
by single items rather than couples, entailing a widely different dynamics, and a
different analysis. For the GM model, an important line of literature first consid-
ered the stability problem. Necessary conditions for stability were shown in [12],
entailing in particular that no GM model on a bipartite graph can be stabilizable.
Then, [14, 13, 10] obtained various stability results for greedy policies and non-
bipartite graphs: [14] shows that greedy class-uniform policies never maximize the
stability region, and that neither do greedy strict priority policies in general; By
applying the dynamic reversibility argument in [1] to general graphs and single ar-
rivals, [13] proves that the greedy First Come, First Matched policy maximizes the
stability region, and construct explicitly the invariant measure and the matching
rates between classes (a result that is completed in [7] by an insightful comparison
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to order-independent queues). Then, [10] proved that greedy matching policies of
the ‘Max-Weight’ type also maximize the stability region.

The performance optimization of this class of systems have recently been con-
sidered from the point of view of access control, by providing explicit procedures
to construct the arrival rates in order to achieve given matching rates, for a fixed
matching policy: see [8, 2]. Another approach has recently received an increasing
interest: designing (greedy or non-greedy) matching policies able to maximize a
given reward or to minimize a given cost, in the long run. In [15], for a vast class of
matching structures, a variant of the greedy primal-dual algorithm was shown to be
optimal for the long-term average matching reward, where the rewards are put on
the matchings. Regarding the minimization of cumulative holding costs, [9] derives
a lower bound for the long-run cumulative holding cost, and shows that this bound
can be asymptotically approached under some conditions. Then, [4] constructs
a policy that is approximately optimal with bounded regret, in the heavy-traffic
regime. It is also shown in [11] that greedy policies are hindsight optimal (i.e.,
nearly maximize the total value function simultaneously at all times), and that a
static hindsight optimal greedy policy can be prescribed, whenever G is a tree. For
fixed arrival rates, [5] show that, under the stability conditions prescribed in [3],
a matching policy of the ‘threshold’ type is optimal for holding costs, for a BM
model, whenever G is the ‘N’-graph of Figure 1 below, for the discounted cost as
well as the average cost problem.

In this work, we show that the result of [5] concerning a BM model on the ‘N’-
graph, also holds for the GM model. Specifically, by using the tools of dynamic
programming, we show that a ‘threshold’-type policy on the diagonal edge of G
is optimal, for the discounted cost problem. The analysis follows the main steps
of the main proof in [5]; However, the technical arguments change significantly,
due to the fact that arrivals are single rather than pairwise. In particular, it is
remarkable that, due to Theorem 2 in [12], the system is not stabilizable by any
matching policy (greedy or not). However, optimality is intended for the discounted
cost problem (and for linear holding costs), guaranteeing the well-posedness of the
optimization scheme, despite the instability of the process at hand. By doing so,
for this simple graph, we show what appears as the first optimal control result for
general stochastic models having fixed arrival rates.

This paper is organized as follows. In Section 2 we start with some preliminary,
and the definition of the general stochastic matching model at hand. Then, in
Section 3 we introduce our dynamic programming problem and our main result,
stating the optimality of a threshold-type policy on the diagonal edge with priority
on the other edges. The proof of our main result is left to Section 4.

2. Preliminary

2.1. Notation. Let R, N and N∗ denote the sets of real numbers, non-negative
and positive integers, respectively. For any d ∈ N∗, we let J0, d− 1K be the integer
interval {0, 1, 2, · · · , d − 1}. For any i ∈ J0, d − 1K, we let ei be the i-th vector of
the canonical basis of Rd. Vectors of Nd will in general be denoted in bold, that is,
we write e.g.

x = (x0, · · · , xd−1).

For an un-directed graph G = (V,E), we write i − j if {i, j} ∈ E. For any i ∈ V ,
we let

E(i) = {j ∈ E : i− j} .

Throughout, all random variables are defined on a common probability space (Ω,F ,P).
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2.2. A general stochastic matching model. We consider a stochastic matching
model, as defined in [12]: Consider the ‘N-graph’, represented in Figure 1. It is
denoted by

G = (V,E) := ({0, 1, 2, 3} , {ℓ1, ℓ2, ℓ3}) := ({0, 1, 2, 3} , {{0, 1}, {1, 2}, {2, 3}}) .

0

ℓ1

1

ℓ2

2

ℓ3

3

Figure 1. The ‘N-graph’.

The dynamics of the system can be described as follows: Items enter one by one,
in discrete time, and are of different classes. Upon arrival, the class i ∈ V of the
incoming item is drawn, independently of everything else, from a fixed probability
distribution µ on V , and we say in that case that the item is a i-item. In other
words we see the arrival process as an infinite N4-valued IID sequence {An; n ∈ N}
such that for all n ∈ N and i ∈ V := J0, 3K,

P (The incoming item at step n is a i-item) := P (An = ei) = µ(i),

where µ is a probability measure over V . For a node j ∈ E(i), any j-item is said
to be compatible with the i-item.

Upon arrival, any i-item faces the following situation:

(1) Either it does not find a compatible item in line, in which case it is stored
in line;

(2) Or, there exists at least one compatible item in line at that time, in which
case it is the role of the decision rule, to be defined hereafter, to determine
a match for the i-item. Following the latter policy, we have the following
sub-cases:
2a) Either the i-item is matched right away with a j-item for a given

j ∈ E(i), in which case both items leave the system right away.
2b) Or, the i-item is put in line to wait for a potential better match, despite

the presence of one (or more) compatible item(s) in line.

At any time n ∈ N, we denote by Xn ∈ N4, the state of the buffer just after time
n. Namely, for any i ∈ J0, 3K we denote by Xn(i), the number of stored i-items in
line just after time n, and set

Xn = (Xn(0), · · · , Xn(3)) .

The decision rule is to be Markovian, if the choice of match at any time n is
prescribed by an operator un : N4 → N4 that is deterministic, or independent of the
filtration generated by the Xp, p ⩽ n, and such that

Xn+1 = un(Xn) +An+1.

The decision rule is said to be greedy if sub-case 2b) above is not allowed, namely,
whenever an incoming item finds compatible items in line, it must be matched
with one of those right away. An admissible policy π is a sequence {un; n ∈ N}
of Markovian decision rules. We then say that the policy π is structured by the
decision rules un, n ∈ N. We denote by adm, the set of admissible policies. Notice
that a decision rule may be constant, namely un = u for all n, in which case we say
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that then the policy π is stationary. The state space of {Xn; n ∈ N} is a subset Xπ

of N4 that depends on the policy π. For instance, if π is greedy, then

Xπ =
{
x = (x0, · · · , x3) ∈ N4 : xixj = 0 for any {i, j} ∈ E

}
.

Under a stationary policy π, the process {Xn; n ∈ N} is thus a Xπ-valued homoge-
neous Markov chain, and for all state x ∈ Xπ we have for all v ∈ V ,

P (u(x) + ev | x) := P (Xn+1 = u(x) + ev |Xn = x) = µ(v).

Definition 1. Any state x = (x0, · · · , x3) ∈ Xπ corresponds uniquely to a block
model graph Gx = (Vx,Ex) having |x| nodes, in which there are xi nodes of type
i for all i ∈ J0, 3K and, for any i ̸= j ∈ J0, 3K, and any pair of nodes u and v of
respective types i and j, there exists an edge between u and v, that is, {u, v} ∈ Ex,
if and only if {i, j} ∈ E. Note that Gx has no edge if π is greedy.

Definition 2. For any x ∈ Xπ, we denote by Mx, the set of all possible matches
from state x, that is, the set of all matchings on Gx or in other words, of all
sub-graphs of Gx such that each node has degree 0 or 1.

For any pair of states x,y ∈ Xπ, we write x → y whenever P (y | x) > 0. In the
sequel, we denote by Eπ

x the expected value of r.v.’s, under the policy π, given that
the initial state is x ∈ Xπ. In the discussion that follows, we identify:

• Any edge e = {i, j} ∈ E with the vector ei + ej ∈ N4;
• For any x ∈ N4, any matching m ∈ Mx with the vector z ∈ N4 such that

for all i ∈ V , zi is the number of items of class i matched in m. In other
words,

m ≡
∑
v ∈m:

v is of type i

ei,

in a way that x−m indeed represents the state of a system after executing
all matchings in m in a system in state x.

3. Optimization of the ‘N-graph’ model

3.1. Dynamic programming. We now introduce our optimization problem.

Definition 3. An admissible linear cost function is a linear mapping c of the form

c :

{
N4 −→ R+

x := (x0, x1, x2, x3) 7−→ c0x0 + c1x1 + c2x2 + c3x3
,

whose coefficients c0, c1, c2, c3 are non-negative, and such that

c2 ⩽ c0 and c1 ⩽ c3.

Let c : N4 → R+ be an admissible linear cost function. For a fixed discount
factor γ ∈ (0, 1) and a fixed initial state x ∈ Xπ, our aim is to minimize over π, the
so-called discounted cost

(1) vπγ (x) = lim
N→+∞

N∑
n=0

γnEπ
x [c(Xn)] .

Definition 4. Let v be a real function on N4, and A be a r.v. of law µ. For any
x ∈ N4, denote

Lγ
mv(x) = c(x) + γE [v(x−m+A)] , for all m ∈ Mx
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and

Lγv(x) = min
m∈Mx

Lγ
mv(x)

= c(x) + γ min
m∈Mx

E [v(x−m+A)] .

Then we use the principle of dynamic programming, and obtain that for any state
x ∈ N4 that is admissible for some policy,

v(x) := inf
π∈adm

vπγ (x)

= inf
π∈adm

Eπ
x

[
+∞∑
n=0

γnc(Xn)

]

= inf
π∈adm

Eπ
x

[
c(x) +

+∞∑
n=1

γnc(Xn)

]

= c(x) + γ inf
π∈adm

Eπ
x

[
+∞∑
n=0

γnc(Xn+1)

]
= c(x) + γ inf

y∈N4 :

x→y for some π∈adm

E [v(y)]

= c(x) + γ min
m∈Mx

E [v(x−m+A)] = Lγv(x).

The mapping v is then called the value function of our optimization problem, and
the argument above shows that v solves a fixed point equation of the Bellman type:
for all x that is admissible for some policy,

(2) v(x) = Lγv(x).

In this paper, we put in evidence a simple policy that is able to achieve a solution
to (2) in the case of the ‘N’-graph.

3.2. Threshold-type decision rules. A decision rule will is to be of threshold
type in ℓ2, with priority for ℓ1 and ℓ3, if it matches all possible ℓ1 and ℓ3 edges,
before matching a certain amount of ℓ2 edges according to a threshold that depends
on the difference between the number of remaining items 0 and 2. Formally,

Definition 5. Let (ti)i∈Z be a family of elements of N∪{+∞}. The map u : N4 →
N4 is said to be a threshold type decision rule with priority for ℓ1 and ℓ3 and
thresholds (ti)i∈Z in ℓ2, if it can be written as

u(x) = x−m(x), x ∈ N4,

where

m :

{
N4 −→ N4

x 7−→ (x0 ∧ x1)ℓ1 + (x2 ∧ x3)ℓ3 + kti(x)
(x)ℓ2

,

for kt(x) = ((x1 − x0) ∧ (x2 − x3)− t)
+
;

i(x) = (x1 − x0)− (x2 − x3).

We denote by T , the set of threshold decision rules. A policy π is said to be of the
threshold type, if it is structured by decision rules of T .
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3.3. Main result. The following result shows that we can minimize the cost in
the long run, by applying at any time, a matching policy of the threshold type,
conveying the natural idea that it is preferable to match edges ℓ3 and ℓ1 over edges
ℓ2, up to a certain state of congestion of the buffer. We have the following,

Theorem 1. For the discounted cost problem, under the assumptions of Definition
3 there exists an optimal stationary policy of the threshold type.

Theorem 1 is proved in Section 4.

Remark 1. It is significant that the above result holds regardless of the fact that
the model at hand is instable - a fact that is implied by the first assertion of Theorem
2 in [12], as the ‘N’-graph is bipartite. It is easy to observe that the quantity in (1)
is well-defined for all π and x, since for all n, the n-th term of the summation is
upper-bounded by γn (max {c0, · · · , c3}(|x|+ n)).

4. Proof of Theorem 1

We will crucially use the following result,

Theorem 2 ([16], 6.11.3). Suppose that there exists a function w : N4 → R+ such
that

(i) For any x ∈ N4,

sup
z∈N4 :x−z∈N4

c(x− z)

w(x)
< +∞ and sup

z∈N4 :x−z∈N4

1

w(x)

∑
y

P(y|x−z)w(y) < +∞.

(ii) For all ε ∈ [0 : 1), there exists η ∈ [0 : 1) and p ∈ N⋆ such that for
all p-tuple π = (u1, u2, . . . , up) of deterministic Markovian decision rules
ui : N4 → N4,

εpEπ
x [w(Xp)] < ηw(x).

(iii) If we denote

Vw =

{
v : N4 → R+ : sup

x∈N4

v(x)

w(x)
< ∞

}
,

then for all v ∈ Vw there exists a deterministic Markovian decision rule u
such that for all x ∈ N4,

Lγv(x) = Lγ
u(x)v(x).

Suppose also that there exist two sets V and D such that

(1) V is stable under Lγ and under pointwise convergence;
(2) If v ∈ V , then there exists a deterministic markovian decision rule u ∈ D

such that for all x ∈ N4,

Lγv(x) = Lγ
u(x)v(x).

Then, there exists an optimal stationary policy π⋆ structured by a single Markovian
decision rule u⋆ ∈ D .

The strategy is as follows. We start by defing a set of test functions V that
is stable under the action of Lγ , and such that if v ∈ V , we can always find a
threshold type decision rule m ∈ T such that (2) holds for all x ∈ N4.
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4.1. Properties of value functions.

Definition 6. A mapping v : N4 → R+ is said to be increasing in ℓ1, and we write
v ∈ I1 if, for any x ∈ N4 we have

v(x) ⩽ v(x+ ℓ1).

Likewise, a mapping v : N4 → R+ is said to be increasing in ℓ3, and we write v ∈ I3
if, for any x ∈ N4 we have

v(x) ⩽ v(x+ ℓ3).

It is reasonable to think that if we have the choice between matching an ℓ2 edge
and both an ℓ1 and an ℓ3 edge, we will rather do the latter. Hence the following
definition,

Definition 7. We say that v : N4 → R+ belongs to I ′ if, for all x ∈ N4 such that
x1x2 > 0, {

v(x) ⩽ v(x+ ℓ1 − ℓ2)

v(x) ⩽ v(x+ ℓ3 − ℓ2).

Moreover, we want to highlight that it is less and less interesting to keep items of
classes 1 or 2 in line. Hence the following definition,

Definition 8. We say that v : N4 → R+ is convex in ℓ2 and we write v ∈ C2 if, for
all state x ∈ N4 such that x2 ⩾ x3 − 1 and x1 ⩾ x0 − 1,

v(x+ 2ℓ2)− v(x+ ℓ2) ⩾ v(x+ ℓ2)− v(x).

4.2. Optimal policies. We now show that these properties are already enough to
satisfy the required property, namely, that a value function solving (2) corresponds
to a policy structured by a fixed threshold decision rule. We have the following
result,

Lemma 1. Let γ, v ∈ I1 ∩ I3 ∩ I ′ and x ∈ N4. Then, there exists a matching
m ∈ Mx such that

Lγ
mv(x) = Lγv(x),

and such that m matches all possible ℓ1 and ℓ3 edges in a system in state x.

Proof. Let x ∈ N4, and let m0 ∈ Mx. We let m1 be the matching we obtain by
executing all matches of edges ℓ1 and ℓ3 that are still possible in the state x−m,
that is,

m1 = m0 + (x0 −m0
0) ∧ (x1 −m0

1)ℓ1 + (x2 −m0
2) ∧ (x3 −m0

3)ℓ3.

Because v ∈ I1 ∩ I3 and because m1 can be obtained from m0 by successively
adding only ℓ1 and ℓ3 edges, we have

Lγ
m1v(x) ⩽ Lγ

m0v(x).

Let n1
2 denotes the number of ℓ2 edges in m1. We are now going to find a matching

that is at least as good and which has min (x0, x1) ℓ1 edges. To do so, we define
m2 to be the matching obtained from m1 by transforming as many ℓ2 edges in ℓ1
edges as possible, that is,

m2 = m1 + (n1
2 ∧ (x0 −m1

0))(ℓ1 − ℓ2).

As m2 can be obtained from m1 by adding ℓ1 − ℓ2 a finite number of times, we get
that

Lγ
m2v(x) ⩽ Lγ

m1v(x).

Notice that the matching m2 has exactly x0 ∧ x1 ℓ1 edges. Indeed, if it was not so,
then we would be in the following alternative:
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(i) Either in x −m2 there would be a positive number of unmatched 0-items
and a positive number of unmatched 1-items;

(ii) Or, in m2 there would be a positive number of 1-items matched with 2-
items.

But (i) is in contradiction with the definition of m1, and (ii) contradicts the defi-
nition of m2, an absurdity.

Now n2
2 denotes the number of ℓ2 edges inm2 (and notice that n2

2 = 0 if x0−m1
0 ⩾

n1
2). We now define m3 to be the matching obtained from m2 by transforming as

many ℓ2 edges in ℓ3 edges as possible, that is,

m3 = m2 + (n2
2 ∧ (x3 −m2

3))(ℓ3 − ℓ2).

Again, as m2 can be obtained from m1 by adding ℓ3 − ℓ2 a finite number of times,
we get that

Lγ
m3v(x) ⩽ Lγ

m2v(x).

Notice that the matching m3 also has exactly x3∧x2 ℓ3 edges. Indeed, if it was not
so, we would, again, either find in x−m3 a positive number of unmatched 3-items
and a positive number of unmatched 2-items, or find in m2, a positive number of
2-items matched with 1-items, another absurdity given the definitions of m1 and
m3.

As a conclusion, we have thus shown that for every matching m0 we can find
a matching m3 which has exactly min (x0, x1) ℓ1 edges and min (x2, x3) ℓ3 edges,
and such that

Lγ
m3v(x) ⩽ Lγ

m0v(x).

Since there is a finite number of possible matchings, the proof is complete. □

Observe the following result,

Corollary 1. For any 0 < γ < 1, the function set I1 ∩ I3 ∩ I ′ is stable by the
operator Lγ .

Proof. First, it is easily checked that any linear cost function c satisfying to defini-
tion 3 is in particular, an element of I1 ∩ I3 ∩ I ′. For instance, for any x such that
x1x2 > 0,

c(x+ ℓ1 − ℓ2)− c(x) = c(ℓ1)− c(ℓ2) = c0 − c2 ⩾ 0,

and the other arguments are similar. Let v ∈ I1∩I3∩I ′. First let x ∈ N4, and x =
x+ ℓ1. According to Lemma 1, we can choose a matching m = (m0,m1,m2,m3) ∈
Mx, which matches all possible ℓ1 and ℓ3 edges, and such that Lγ

mv(x) = Lγv(x).
In particular, we have that m0 ⩾ 1 and m1 ⩾ 1, and so we can define a matching
m = m− ℓ1 ∈ Mx such that x−m = x−m. It follows that

Lγv(x) ⩽ Lγ
mv(x)

= c(x) + γE[v(x−m+A)]

⩽ c(x) + γE [v(x−m+A)]

= Lγ
mv(x) = Lγv(x).

As the above holds for all x we conclude that Lγv ∈ I1, and the same argument
shows that Lγv ∈ I3.

We now prove that Lγv ∈ I ′. Let x ∈ N4 be such that x1x2 > 0, and x̃ = x+ℓ1−
ℓ2. According to Lemma 1, we can choose a matching m̃ = (m̃0, m̃1, m̃2, m̃3) ∈ Mx̃,
which matches all possible ℓ1 and ℓ3 edges, and such that Lγ

m̃v(x̃) = Lγv(x̃). Again,
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we have that m̃0 ⩾ 1 and m̃1 ⩾ 1, and so the matching m′ := m̃ + ℓ2 − ℓ1 is an
element of Mx such that x̃− m̃ = x−m′. Thus we have again

Lγv(x) ⩽ Lγ
m′v(x)

= c(x) + γE[v(x−m′ +A)]

⩽ c(x̃) + γE[v(x̃− m̃+A)]

= Lγ
m̃v(x̃) = Lγv(x̃).

We can prove similarly that the same holds true by replacing x̃ by x+ ℓ3− ℓ2. This
shows that Lγv ∈ I ′, which concludes the proof. □

Proposition 1.
For any γ and v ∈ I1 ∩ I3 ∩ C2 ∩ I ′, there exists a decision rule m⋆ with threshold
(ti)i∈Z, such that for all x ∈ N4,

Lγ
m⋆(x)v(x) = Lγv(x)

Proof. First, observe that if i ⩽ 0, by the convexity of v there exists ti ∈ N ∪
{+∞} such that the sequence (E [v (A+ |i|e2 + jℓ2)])j∈N is decreasing on [[0, ti]]

and increasing on [[ti,+∞]]. All the same, if i ⩾ 0, then by convexity of v there
exists ti ∈ N ∪{+∞} such that the sequence (E [v (A+ ie1 + jℓ2)])j∈N is decreasing

on [[0, ti]] and increasing on [[ti,+∞]]. We call m⋆ the decision rule with thresholds
(ti)i∈Z.

Now let x ∈ N4. According to Lemma 1, there exists m ∈ Mx that realizes the
minimum Lγv(x), and matches all the possible ℓ1 and ℓ3 edges of x. We call kx
the number of ℓ2 edges in m. We are in the following alternative:

(1) If x0 ⩽ x1 or x2 ⩽ x3, then kx = kti(x)
(x) = 0 and m = m⋆(x). We thus

have

Lγ
m⋆(x)v(x) = Lγ

mv(x) = Lγv(x).

(2) Otherwise, denoting j(x) = (x1 − x0) ∧ (x2 − x3), we have that

Lγ
m⋆(x)v(x) = c(x) + E

[
v
(
A+ (x1 − x0)e1 + (x2 − x3)e2 − kti(x)

(x)ℓ2
)]

= c(x) + E
[
v
(
A+ (x1 − x0 − j(x))

+
e1 + (x2 − x3 − j(x))

+
e2 +

(
j(x)− kti(x)

(x)
)
ℓ2

)]
.

We are in the following sub-alternative:
2a) If i(x) ⩽ 0, then we get that

Lγ
m⋆(x)v(x) = c(x) + E

[
v
(
A+ |i(x)|e2 +

(
j(x)− kti(x)

(x)
)
ℓ2
)]

.

and we also have

Lγ
mv(x) = c(x) + E [v (A+ i(x)e2 + (j(x)− kx)ℓ2)] .

We show that, in all cases,

(3) Lγ
m⋆(x)v(x) ⩽ Lγ

mv(x).

– If ti(x) = +∞, we get that kti(x)
(x) = 0 ⩽ kx. So j(x) −

kti(x)
(x) ⩾ j(x)−kx. But in that case, the sequence (E [v (A+ |i(x)|e2 + jℓ2)])j

is decreasing, which implies (3).
– If ti(x) = 0, then the sequence (E[v (A+ |i(x)|e2 + jℓ2)])j is in-

creasing and

j(x)− kti(x)
(x) = 0 ⩽ j(x)− kx,

implying again (3).
– Otherwise, the sequence (E[v (A+ |i(x)|e2 + jℓ2)])j is decreas-

ing on [[0, ti(x)]] and increasing on [[ti(x),+∞]]. In that case,
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∗ If j(x) ⩽ ti(x), then kti(x)
(x) = 0 and thus ti(x) ⩾ j(x) −

kti(x)
(x) ⩾ j(x)−kx. Again, the sequence (E[v (A+ |i(x)|e2 + jℓ2)])j

is decreasing on [[0, ti(x)]], implying (3).
∗ If j(x) ⩾ ti(x), then j(x)− kti(x)

(x) = ti(x) and (3) follows

from the fact that the sequence (E[v (A+ |i(x)|e2 + jℓ2)])j
reaches its minimum at j = ti(x).

2b) If i(x) > 0, then j(x) = x2 − x3 and we have

Lγ
m⋆(x)v(x) = c(x) + E

[
v
(
A+ (x1 − x0 − j(x))e1 +

(
j(x)− kti(x)

(x)
)
ℓ2
)]

= c(x) + E
[
v
(
A+ i(x)e1 +

(
j(x)− kti(x)

(x)
)
ℓ2
)]

;

Lγ
mv(x) = c(x) + E [v (A+ i(x)e1 + (j(x)− kx)ℓ2)] .

By the symmetry between ℓ1 and ℓ2, we then conclude that (3) holds,
just like in sub-case 2a).

□

4.3. Value function property conservation. In this section, we aim at finding
a subset of I1 ∩I3 ∩C2 ∩I ′ that is stable under Lγ for well chosen values of γ. For
this we introduce the following two functional spaces,

Definition 9. We denote by B, the set of mappings v : N4 → R+ such that, for all
b ∈ N4,

(i) If b = (1, 0, β, 0) + ei for i ∈ {0, 2, 3} and β ⩾ 0,

(4) v (b+ 2ℓ2 − ℓ1)− v (b+ ℓ2 − ℓ1) ⩾ v (b+ ℓ2 − ℓ1)− v (b) ;

(ii) If b = (0, β, 0, 1) + ei for i ∈ {0, 1, 3} and β ⩾ 0,

(5) v (b+ 2ℓ2 − ℓ3)− v (b+ ℓ2 − ℓ3) ⩾ v (b+ ℓ2 − ℓ3)− v (b) ;

(iii) If b = (1, 0, 0, 1) + ei for i ∈ J0, 3K,

v (b+ 2ℓ2 − ℓ1 − ℓ3)− v (b+ ℓ2 − ℓ1 − ℓ3) ⩾ v (b+ ℓ2 − ℓ1 − ℓ3)− v(b).

Observe the following,

Lemma 2. For any β ⩾ 0,

(i) (4) holds for any v ∈ I1 ∩ C2 ∩ B and b = (1, 0, β, 0) + ei, i ∈ J0, 3K;
(ii) (5) holds for any v ∈ I3 ∩ C2 ∩ B and b = (0, β, 0, 1) + ei, i ∈ J0, 3K.

Proof. (i) As v ∈ B, by the very assertion (i) in definition 9 it is sufficient to
check that (4) holds for b of the form b = (1, 1, β, 0). But this is true since,
as v ∈ I1 ∩ C2, we then have

v (b+ ℓ2 − ℓ1)−v (b) ⩽ v (b+ ℓ2 − ℓ1)−v (b− ℓ1) ⩽ v (b+ 2ℓ2 − ℓ1)−v (b+ ℓ2 − ℓ1) .

(ii) Likewise, it is enough to show that (5) holds for b of the form b = (0, β, 1, 1).
But then, as v ∈ I3 ∩ C2 we get

v (b+ ℓ2 − ℓ3)−v (b) ⩽ v (b+ ℓ2 − ℓ3)−v (b− ℓ3) ⩽ v (b+ 2ℓ2 − ℓ3)−v (b+ ℓ2 − ℓ3) .

□

Definition 10. We denote by C′, the set of mappings v : N4 → R+ such that, for
all c ∈ N4,

(i) If c = (α, 0, β, 0) + ei for α ⩾ 2, β ⩾ 0 and i ∈ J0, 3K,

v(c+ 2(ℓ2 − ℓ1))− v(c+ ℓ2 − ℓ1) ⩾ v(c+ ℓ2 − ℓ1)− v(c);
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(ii) If c = (α, 0, 0, 1) + ei for α ⩾ 2 and i ∈ J0, 3K,

v(c+ 2(ℓ2 − ℓ1)− ℓ3)− v(c+ ℓ2 − ℓ1 − ℓ3) ⩾ v(c+ ℓ2 − ℓ1 − ℓ3)− v(c);

(iii) If c = (0, β, 0, α) + ei for α ⩾ 2, β ⩾ 0 and i ∈ J0, 3K,

v(c+ 2(ℓ2 − ℓ3))− v(c+ ℓ2 − ℓ3) ⩾ v(c+ ℓ2 − ℓ3)− v(c);

(iv) If c = (1, 0, 0, α) + ei for α ⩾ 2 and i ∈ J0, 3K,

v(c+ 2(ℓ2 − ℓ3)− ℓ1)− v(c+ ℓ2 − ℓ3 − ℓ1) ⩾ v(c+ ℓ2 − ℓ3 − ℓ1)− v(c);

(v) If c = (α, 0, 0, β) + ei for α, β ⩾ 2 and i ∈ J0, 3K,

v(c+ 2(ℓ2 − ℓ1 − ℓ3))− v(c+ ℓ2 − ℓ1 − ℓ3) ⩾ v(c+ ℓ2 − ℓ1 − ℓ3)− v(c);

We proceed with our key technical result, namely, the study of the stability under
Lγ .

Proposition 2. For any 0 < γ < 1, the set

V := I1 ∩ I3 ∩ I ′ ∩ C2 ∩ B ∩ C′,

is stable by the operator Lγ .

Proof. Again, it is immediate to observe that any admissible linear cost function is
itself an element of V . Let v ∈ V . We know from Corollary 1 that Lγv belongs to
I1∩I3∩I ′. We also let m⋆ be a decision rule of threshold (ti)i∈Z for v, satisfying the
properties of Proposition 1. We then show successively that Lγ also is an element
of C2, B and C′.
Step I: Lγv ∈ C2. Let x ∈ N4 be such that x1 ⩾ x0 − 1 and x2 ⩾ x3 − 1. Denote

x = x + ℓ2, x = x + 2ℓ2 and the r.v. b = x − m⋆(x) + A. Then, observing that
i(x) = i(x) = i(x) by definition, denote

t⋆ = ti(x) = ti(x) = ti(x).

First case: x1 ⩾ x0 and x2 ⩾ x3. We are in the following alternative:

(1a) If kt⋆(x) > 0, then kt⋆(x) > 0 and in that case we get

kt⋆(x) = kt⋆(x) + 1 = kt⋆(x) + 2

and so

x−m⋆(x) = x−m⋆ (x) = x−m⋆
(
x
)
.

Therefore, as c ∈ C2 we get

Lγv(x)− Lγv(x) = Lγ
m⋆(x)v(x)− Lγ

m⋆(x)v(x) = c(x)− c(x) + γE [v (b)− v (b)]

⩽ c(x)− c(x) + γE [v (b)− v (b)]

= Lγ

m⋆(x)
v(x)− Lγ

m⋆(x)v(x) = Lγv(x)− Lγv(x).

(1b) If kt⋆(x) = 0 and kt⋆(x) > 0, then

kt⋆(x) = kt⋆(x) + 1 = kt⋆(x) + 1.

In that case, we have

x−m⋆ (x) = x−m⋆(x) + ℓ2 and x−m⋆
(
x
)
= x−m⋆ (x) .

Consequently, as m⋆ (x) + ℓ2 ∈ Mx we get that

Lγv(x)− Lγv(x) = c(x)− c(x) + Lγ
m⋆(x)v(x)− Lγ

m⋆(x)+ℓ2
v(x)

⩽ c(x)− c(x)

⩽ c(x)− c(x) = Lγv(x)− Lγv(x).
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(1c) If kt⋆(x) = kt2(x) = 0, reasoning as for the previous case we get that

x−m⋆
(
x
)
= x−m⋆ (x) + ℓ2 = x−m⋆(x) + 2ℓ2,

implying, as v belongs to C2, that

Lγv(x)− Lγv(x) = c(x)− c(x) + γE [v (b+ ℓ2)− v (b)]

⩽ c(x)− c(x) + γE [v (b+ 2ℓ2)− v (b+ ℓ2)] = Lγv(x)− Lγv(x).

Second case: x1 = x0 − 1 and x2 ⩾ x3. In that case we have b = (1, 0, β, 0) + ei
with i ∈ J0, 3K, and m⋆(x) = m⋆(x) + ℓ1, so that

(6) Lγv(x)− Lγv(x) = c(x)− c(x) + γE [v (b+ ℓ2 − ℓ1)− v (b)] .

Then,

(2a) If kt⋆(x) > 0, we also have m⋆
(
x
)
= m⋆ (x) + ℓ2, hence x − m⋆

(
x
)
=

x−m⋆ (x). Thus, as v ∈ I ′ it follows from (6) that

Lγv(x)− Lγv(x) ⩽ c(x)− c(x) ⩽ c(x)− c(x) = Lγv(x)− Lγv(x).

(2b) If kt⋆(x) = 0, then m⋆
(
x
)
= m⋆ (x) and, as c ∈ C2 and v ∈ B, (6) entails

Lγv(x)−Lγv(x) ⩽ c(x)−c(x)+γE [v(b+ 2ℓ2 − ℓ1)− v(b+ ℓ2 − ℓ1)] = Lγv(x)−Lγv(x).

Third case: x1 ⩾ x0 and x2 = x3 − 1. This case is symmetrical to the second case,
replacing ℓ1 by ℓ3, and using now assertion (ii) of definition 9).
Fourth case: x1 = x0 − 1 and x2 = x3 − 1. Then b is of the form (1, 0, 0, 1) + ei for
some i ∈ J0, 3K. Then, m⋆(x) = m⋆(x) + ℓ1 + ℓ3, and as c ∈ C2 we have that

Lγv(x)− Lγv(x) = c(x)− c(x) + γE [v(b+ ℓ2 − ℓ1 − ℓ3)− v(b)]

⩽ c(x)− c(x) + γE [v(b+ ℓ2 − ℓ1 − ℓ3)− v(b)] .(7)

We have the following alternative:

(4a) If kt⋆(x) > 0, then we have m⋆
(
x
)
= m⋆ (x) + ℓ2, hence x − m⋆

(
x
)
=

x−m⋆ (x). Thus it follows from (7) and the fact that v ∈ I ′ ∩ I1, that

Lγv(x)− Lγv(x) ⩽ c(x)− c(x) + γE [v(b)− v(b)] = Lγv(x)− Lγv(x).

(4b) If kt⋆(x) = 0, then m⋆
(
x
)
= m⋆ (x) and hence, as v ∈ B, (7) implies that

Lγv(x)− Lγv(x) ⩽ c(x)− c(x) + γE [v(b+ 2ℓ2 − ℓ1 − ℓ3)− v(b+ ℓ2 − ℓ1 − ℓ3)]

= Lγv(x)− Lγv(x),

which concludes the proof in the fourth case.

To summarize, in all cases we get that

Lγv(x)− Lγv(x) ⩽ Lγv(x)− Lγv(x).

As this is true for all x ∈ N4 such that x1 ⩾ x0 − 1 and x2 ⩾ x3 − 1, we conclude
that Lγv ∈ C2.
Step II: Lγv ∈ B.
Assertion (i). We first check assertion (i) of definition 9. So we suppose that b =
(1, 0, β, 0) + ei for β ⩾ 0 and i ∈ {0, 2, 3}. Throughout this part of the proof we

denote b = b+ ℓ2 − ℓ1 and b = b+ 2ℓ2 − ℓ1, and let t⋆ = ti(b) = t
i
(
b
). We show

that Lγ(b)− Lγ(b) ⩽ Lγ
(
b
)
− Lγ

(
b
)
for each i ∈ {0, 2, 3}:
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(ia) If i = 0, then b = (2, 0, β, 0), b = (1, 0, β + 1, 0) and b = (1, 1, β + 2, 0),

implying that m⋆ (b) = m⋆
(
b
)
= 0 and m⋆

(
b
)

= ℓ1. So as c ∈ B, it
follows from (i) of definition 10 that

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+A+ ℓ2 − ℓ1)− v(b+A)]

⩽ c
(
b
)
− c

(
b
)
+ γE [v(b+A+ 2(ℓ2 − ℓ1))− v(b+ ℓ2 − ℓ1 +A)]

= Lγ
(
b
)
− Lγ

(
b
)
.

(ib) If i = 2, then b = (1, 0, β + 1, 0), b = (0, 0, β+2, 0) and b = (0, 1, β + 3, 0),

in a way that m⋆ (b) = m⋆
(
b
)
= 0 and m⋆

(
b
)
= kt⋆

(
b
)
ℓ2. Then,

– If kt⋆
(
b
)
= 0, then in view of (i) of Lemma 2 we have

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+A+ ℓ2 − ℓ1)− v(b+A)]

⩽ c
(
b
)
− c

(
b
)
+ γE [v(b+A+ 2ℓ2 − ℓ1)− v(b+ ℓ2 − ℓ1 +A)]

= Lγ
(
b
)
− Lγ

(
b
)
.

– If kt⋆
(
b
)
= 1, then, as v ∈ I ′,

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+A+ ℓ2 − ℓ1)− v(b+A)]

⩽ c
(
b
)
− c(b)

⩽ c
(
b
)
− c

(
b
)
= Lγ

(
b
)
− Lγ

(
b
)
.

(ic) If i = 3, then b = (1, 0, β, 1), b = (0, 0, β + 1, 1) and b = (0, 1, β + 2, 1).
Then we distinguish three cases :

– If β ⩾ 1 and kt⋆
(
b
)
= 0, then applying (i) of Lemma 2 to b− ℓ3 +A

we obtain

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b− ℓ3 +A)]

⩽ c
(
b
)
− c

(
b
)
+ γE [v(b+ 2ℓ2 − ℓ1 − ℓ3 +A)− v(b+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
b
)
− Lγ

(
b
)
.

– If β ⩾ 1 and kt⋆
(
b
)
= 1, then as v ∈ I ′ we get

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b− ℓ3 +A)]

⩽ c
(
b
)
− c(b)

⩽ c
(
b
)
− c

(
b
)

= c
(
b
)
− c

(
b
)
+ γE

[
v
(
b− ℓ2 − ℓ3 +A

)
− v(b− ℓ3 +A)

]
= Lγ

(
b
)
− Lγ

(
b
)
.
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– If β = 0 and kt⋆
(
b
)
= 0, then applying (iii) of definition 9 to b + A

we obtain

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b+A)]

⩽ c
(
b
)
− c

(
b
)
+ γE [v(b+ 2ℓ2 − ℓ1 − ℓ3 +A)− v(b+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
b
)
− Lγ

(
b
)
.

– If β = 0 and kt⋆
(
b
)
= 1 then, using successively the fact that v is an

element of I3 and of I ′ we get

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b+A)]

⩽ c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 +A)− v(b+A)]

⩽ c
(
b
)
− c(b)

⩽ c
(
b
)
− c

(
b
)
= Lγ

(
b
)
− Lγ

(
b
)
.

Assertion (ii). By symmetry between ℓ1 and ℓ3, the proof is similar to that of
assertion (i), by using Assertion (v) of definition 10.
Assertion (iii). Set b = (1, 0, 0, 1)+ei, for i ∈ J0, 3K, and denote b = b+ℓ2−ℓ1−ℓ3

and b = b + 2ℓ2 − ℓ1 − ℓ3. We show that Lγ(b) − Lγ(b) ⩽ Lγ
(
b
)
− Lγ

(
b
)
for

each i ∈ J0, 3K.

(iiia) If i = 0, then b = (2, 0, 0, 1), b = (1, 0, 0, 0) and b = (1, 1, 1, 0). Then, from
Assertion (ii) of definition 10 we obtain that

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b+A)]

⩽ c
(
b
)
− c

(
b
)
+ γE [v(b+ 2(ℓ2 − ℓ1)− ℓ3 +A)− v(b+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
b
)
− Lγ

(
b
)
.

(iiib) If i = 1, then b = (1, 1, 0, 1), b = (0, 1, 0, 0) and b = (0, 2, 1, 0). We
distinguish two cases:

– If kt
i(b)

(
b
)
= 0, then, applying assertion (ii) of Lemma 2 for β = 0

to b− ℓ1 +A, we get that

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b− ℓ1 +A)]

⩽ c
(
b
)
− c

(
b
)
+ γE [v(b+ 2ℓ2 − ℓ1 − ℓ3 +A)− v(b+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
b
)
− Lγ

(
b
)
.

– If kt
i(b)

(
b
)
= 1, then, as v ∈ I ′ we obtain that

Lγ(b)− Lγ(b) = c
(
b
)
− c(b) + γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b− ℓ1 +A)]

⩽ c
(
b
)
− c(b)

⩽ c
(
b
)
− c

(
b
)

= c
(
b
)
− c

(
b
)
+ γE [v(b+ ℓ2 − ℓ1 − ℓ3 +A)− v(b+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
b
)
− Lγ

(
b
)
.
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(iiic) If i = 2, then b = (1, 0, 1, 1), b = (0, 0, 1, 0) and b = (0, 1, 2, 0). This case
is symmetric to (iiib), using now Assertion (i) of Lemma 2 for β = 0 to

b− ℓ3 +A if kt
i(b)

(
b
)
= 0.

(iiid) If i = 3, then b = (1, 0, 0, 2), b = (0, 0, 0, 1) and b = (0, 1, 1, 1) and the
argument is symmetric to that of (iiia), applying now Assertion (iii) of
definition 10.

Step III: Lγv ∈ C′.
Assertion (i). We first show that Lγ satisfies Assertion (i) of definition 10. For this,
let c = (α, 0, β, 0)+ei for α ⩾ 2, β ⩾ 0 and i ∈ J0, 3K. Let us also set c = c+ℓ2−ℓ1
and c = c+ 2(ℓ2 − ℓ1).

(ia) If i = 0, then we get c = (α + 1, 0, β, 0), c = (α, 0, β + 1, 0) and c =
(α− 1, 0, β + 2, 0). So as c ∈ C′, applying Assertion (i) of definition 10 to v
we get that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 +A)− v(c+A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2(ℓ2 − ℓ1) +A)− v(c+ ℓ2 − ℓ1 +A)]

= Lγ
(
c
)
− Lγ (c) .

(ib) If i = 1, then c = (α, 1, β, 0), c = (α−1, 1, β+1, 0) and c = (α−2, 1, β+2, 0)
and thus

(8) Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − 2ℓ1 +A)− v(c− ℓ1 +A)] .

We are in the following alternative:
– If α = 2 and kti(c)

(
c
)
= 0, then applying Assertion (i) of Lemma 2 to

b := c− ℓ1 +A we obtain from (8) that

Lγ(c)− Lγ(c) ⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 2ℓ1 +A)− v(c+ ℓ2 − 2ℓ1 +A)]

= Lγ
(
c
)
− Lγ (c) .

– If α = 2 and kti(c)
(
c
)
= 1, then as v ∈ I ′, (8) implies

Lγ(c)− Lγ(c) ⩽ c (c)− c(c) + γE [v(c− ℓ1 +A)− v(c− ℓ1 +A)]

⩽ c
(
c
)
− c (c)

= c
(
c
)
− c (c) + γE [v(c+ ℓ2 − 2ℓ1 +A)− v(c+ ℓ2 − 2ℓ1 +A)]

= Lγ
(
c
)
− Lγ (c) .

– If α > 2 then, applying (i) of definition 10 to c − ℓ1 + A, (8) entails
that

Lγ(c)− Lγ(c) ⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 3ℓ1 +A)− v(c+ ℓ2 − 2ℓ1 +A)]

= Lγ
(
c
)
− Lγ (c) .

(ic) If i = 2, then we get c = (α, 0, β + 1, 0), c = (α − 1, 0, β + 2, 0) and
c = (α−2, 0, β+3, 0). So, as in case (ia), applying Assertion (i) of definition
10 to v we get that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 +A)− v(c+A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2(ℓ2 − ℓ1) +A)− v(c+ ℓ2 − ℓ1 +A)]

= Lγ
(
c
)
− Lγ (c) .

(id) If i = 3, then c = (α, 0, β, 1), c = (α−1, 0, β+1, 1) and c = (α−2, 0, β+2, 1).
We have the following cases:
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– If β > 0, then applying Assertion (i) of definition 10 to c − ℓ3 we get
that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 − ℓ3 +A)− v(c− ℓ3 +A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 2ℓ1 − ℓ3 +A)− v(c+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

– If β = 0, then Assertion (ii) of definition 10 applied to c, shows that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 − ℓ3 +A)− v(c+A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 2ℓ1 − ℓ3 +A)− v(c+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

This shows that Lγv satisfies Assertion (i) of definition 10.
Assertion (ii). We now show that Lγ satisfies Assertion (ii) of definition 10. Let
c = (α, 0, 0, 1)+ ei for α ⩾ 2 and i ∈ J0, 3K. Let us also now set c = c+ ℓ2 − ℓ1 − ℓ3
and c = c+ 2(ℓ2 − ℓ1)− ℓ3.

(iia) If i = 0, then c = (α+ 1, 0, 0, 1), c = (α, 0, 0, 0) and c = (α− 1, 0, 1, 0). So,
as v satisfies (ii) of definition 10,

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 − ℓ3 +A)− v(c+A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2(ℓ2 − ℓ1)− ℓ3 +A)− v(c+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

(iib) If i = 1 we obtain c = (α, 1, 0, 1), c = (α− 1, 1, 0, 0) and c = (α− 2, 1, 1, 0).
Then,

(9) Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)− v(c− ℓ1 +A)] .

Then we are in the following alternative:
– If α = 2 and kti(c)

(
c
)
= 0 then, applying (iii) of definition 9 to b =

c− ℓ1 +A, it follows from (9) that

Lγ(c)− Lγ(c) ⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 2ℓ1 − ℓ3 +A)− v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

– If α = 2 and kti(c)
(
c
)
= 1, then as v ∈ I3 ∩ I ′, (9) implies

Lγ(c)− Lγ(c) ⩽ c (c)− c(c) + γE [v(c− ℓ1 + ℓ2 − ℓ1 +A)− v(c− ℓ1 +A)]

⩽ c (c)− c(c)

= c
(
c
)
− c (c) + γE [v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)− v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

– If α > 2, we apply (ii) of definition 10 to c− ℓ1 +A. Then (9) implies
that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)− v(c− ℓ1 +A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 3ℓ1 − ℓ3 +A)− v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

(iic) If i = 2, then we get c = (α, 0, 1, 1), c = (α−1, 0, 1, 0) and c = (α−2, 0, 2, 0).
So, applying Assertion (i) of definition 10 for c− ℓ3 +A yields to

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 − ℓ3 +A)− v(c− ℓ3 +A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2(ℓ2 − ℓ1)− ℓ3 +A)− v(c+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .
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(iid) If i = 3, then c = (α, 0, 0, 2), c = (α− 1, 0, 0, 1) and c = (α− 2, 0, 1, 1). So
applying (v) of definition 10 we get that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 − ℓ3 +A)− v(c+A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 2ℓ1 − 2ℓ3 +A)− v(c+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

Assertions (iii) and (iv). By the symmetry between ℓ1 and ℓ3, the proofs are analog
to that of assertions (i) and (ii), respectively.
Assertion (v). We conclude by proving that Lγv satisfies assertion (v) of definition
10. We let c = (α, 0, 0, β) + ei for i ∈ J0, 3K, α ⩾ 2 and β ⩾ 2, and set c =
c+ ℓ2 − ℓ1 − ℓ3 and c = c+ 2(ℓ2 − ℓ1 − ℓ3).

(va) If i = 0, then c = (α+1, 0, 0, β), c = (α, 0, 0, β−1) and c = (α−1, 0, 0, β−2).
Then, as v satisfies assertion (v) of definition 10 we obtain that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − ℓ1 − ℓ3 +A)− v(c+A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 2ℓ1 − 2ℓ3 +A)− v(c+ ℓ2 − ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

(vb) If i = 1, then c = (α, 1, 0, β), c = (α−1, 1, 0, β−1) and c = (α−2, 1, 0, β−2).
Then we are in the following alternative:

– If α = 2, then, applying assertion (iv) of definition 10 to v and c−ℓ1+A
leads to

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)− v(c− ℓ1 +A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 2ℓ1 − 2ℓ3 +A)− v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

– If α > 2, then we apply assertion (v) of definition 10 to v and c−ℓ1+A,
and get that

Lγ(c)− Lγ(c) = c (c)− c(c) + γE [v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)− v(c− ℓ1 +A)]

⩽ c
(
c
)
− c (c) + γE [v(c+ 2ℓ2 − 3ℓ1 − 2ℓ3 +A)− v(c+ ℓ2 − 2ℓ1 − ℓ3 +A)]

= Lγ
(
c
)
− Lγ (c) .

(vc) The case i = 2 is symmetric to (vb).
(vd) The case i = 3 is symmetric to (va).

This completes the proof that Lγv ∈ C′. □

4.4. Concluding the proof of Theorem 1. We check that the assumptions of
Theorem 2 are satisfied, for the set V which has been shown to be stable under the
action of Lγ in Proposition 2. It is also immediate that it is stable under point-wise
convergence, which proves assertion 1). Setting D ≡ T , assertion 2) is granted by
Proposition 1.

We now check that the cost function c satisfies assumptions (i)-(iii) of Theorem
2. For this, let

w =

{
N4 −→ R+

x 7−→ x0 + x1 + x2 + x3 + 1
.
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(i) For all x, z ∈ N4 such that x−z ∈ N4, we have c(x)/w(x) ⩽ max (c0, c1, c2, c3).
Moreover, there is a single arrival at each time step, implying that

1

w(x)

∑
y

P(y|x− z)w(y) = E
[
w(x− z+ a)

w(x)

∣∣∣A = a

]
⩽ E

[
w(x+ a)

w(x)

∣∣∣A = a

]

=

3∑
i=0

xi + 2

3∑
i=0

xi + 1

⩽ 2.

(ii) Let π0 be the “no matching” policy. With the same argument, we show
that for all J-steps policy π, for all x,

Eπ
x [w(Xp)] ⩽ Eπ0

x [w(Xp)] ⩽ w(x) + p,

and so

εp

w(x)
Eπ
x [w(Xp)] ⩽

εp(w(x) + p)

w(x)
⩽ εp(p+ 1),

and it is sufficient to choose p ∈ N such that εp(p+1) <
1

2
< 1 to conclude.

(iii) The last condition is satisfied because in the present case, from Lemma 1
for all v and x, Lγv(x) by taking the lower bound over a finite subset.

This completes the proof.
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