••• Modeling of the Charging Service Quality EVS35 for Electric Vehicles in Competition

299

A. Dupont^{a,b}, Y. Hayel^a, T. Jiménez^a, C. Wan^b, O. Beaude^b

^a Avignon University, France

^b EDF R&D Paris-Saclay, France

Context

OSL2022

- Two Charging Stations (**CS**) at the same site (e.g. a shopping center, a workplace);
- Electric Vehicles (EV) users choose a CS where they will park and recharge.

EV characteristics and CS limitations

- Random inter-arrival time, State of Charge (SoC), and parking duration¹;
- A fixed nb of parking spaces N_{p,i} at CS *i*, all equipped with one Charging Point (CP) with max power P_{max,i};
 A total available power P_{available,i} at CS *i*;
 A total available power P_{total} at the two CS: P_{available,1} + P_{available,2} ≤ P_{total}.

Choice of the CS: a queueing game

- EV users choose CS with highest QoS;
- QoS at each CS depends on the proportion of EVs choosing this CS;
- EV users interact through a <u>queuing game</u>⁴, where they are <u>perfectly rational</u>.

Definition and properties of equilibrium

- Equilibrium: allocation of EVs to the CS such that no EV has an incentive to unilaterally change its choice;
- Prop. 1: exists and is unique;
- Prop. 2: in general not socially optimal in terms of QoS.

Power sizing decision: <u>improving the QoS</u>

A Charging Station Operator (**CSO**), responsible for the two CS, can be interested to know the optimal power sizing to <u>maximize EV users</u> <u>satisfaction</u>. See Figure.

CS 1	CS 2

Scheduling method: a smoothing² policy

- N_{CEV}^{i} = nb of EVs at CS *i* actually charging;
- At each CS *i*, power shared through: $p_i(N_{CEV,i}) = \frac{\min(P_{available,i}, p_{max,i} \times N_{CEV,i})}{N_{CEV,i}}.$
- Quality of Service³ (QoS):

 P(CS not full) × ℙ(charging_duration ≤ parking_duration).

¹ Supposed exponentially distributed and independent.
 ² Also called *processor sharing*, already used by some CSO.
 ³ Proba to leave with a fully charged battery; an approximation is computed here.

⁴ There exists a rich literature on queueing game. See for instance "R. Hassin, M. Haviv *To Queue or Not to Queue*, 2003".

Contact: alix.dupont@edf.fr