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INTRODUCTION

LV Grid Topology information is essential for efficient grid planning and operation. When the LV Grid topology is not well-known, distribution utilities are planning extension or reinforcement based on worst case capacity scenario, which leads to over-size the LV grid. The large penetration of Distributed Energy Resources (DERs) and Electrical Vehicles (EVs) becomes a real challenge. In addition, distribution utilities have more difficulties to detect faults or losses, to analyze the health status of assets, to plan maintenance and to be pro-active when incidents.

Distribution utilities have information on the LV Grid topology usually stored in their geographic information system (GIS). However, this information is not always complete or up-to-date: some information may be missingex. phase and feeder distribution, or may be inaccurateex. feeder and distribution transformer. Information on the Smart meters wiring (to phase / feeder / transformer) can be collected manually on the field, but this method is costly, timeconsuming, and therefore not scalable. The massive deployment of Smart Meters and access to big data enable the development of methodologies for automatic and efficient identification of LV Grid Topologies.

There are several methods to estimate the LV topology from measured data. Some approaches are based on smart meters measurements, combined with additional information from GIS or sensors installed in feeders and substations. In [START_REF] Farajollahi | Topology identification in distribution systems using line current sensors: An MILP approach[END_REF] the proposed method uses load profiles from smart meters with measurements from additional sensors such as line current ones and leverage the energy conservation law to associate the meters to each feeder and phase. In [START_REF] Benzerga | Low-voltage network topology and impedance identification using smart meter measurements[END_REF] the method relies on GIS data and assumes partial coverage of measured nodes. These methods are effective, but the cost of the additional sensors or unreliable GIS data makes deployment harder.

Methods based on smart meters data typically use voltage measurement with clustering algorithms [START_REF] Zhang | Topology Identification Method of Distribution Network Based on Smart Meter Measurements[END_REF][START_REF] Yi | Improving correlation-based consumer phase identification for incomplete data[END_REF][START_REF] Hoogsteyn | Low voltage customer phase identification methods based on smart meter data[END_REF][START_REF] Blakely | Phase Identification Using Co-Association Matrix Ensemble Clustering[END_REF]. This set of methods is scalable and does not require the installation of any additional equipment, but it was only applied to phase clustering so far. Another method based on current and voltage instantaneous measurements was developed in [START_REF] Pengwah | Topology Identification of Radial Distribution Networks Using Smart Meter Data[END_REF]. It relies on estimating voltage sensitivity coefficients and solving an advanced optimization problem derived from field expertise. It leads to performant topology estimation on simulated datasets, but the diversity of real-world topologies and smart meter data makes such method difficult to scale. This paper presents a method for LV Grid topology identification based on classic voltage correlation methodologies enriched with time series data science and constrained clustering techniques. We refer to the state-of-theart V-measure [START_REF] Rosenberg | V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure[END_REF] and Silhouette Coefficient [START_REF] Rousseeuw | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF] to evaluate performances and search for the best parametersincluding the choice of correlation metric, the encoding of topology constraints when known, and the clustering algorithm.

In order to assess sensitivity of our approach to major Grid-related drivers, we conduct a comprehensive experimental plan with realistic detailed Grid simulation models developed under MATLAB SIMULINK®. They rely on aggregated ZIP load profile models generated using the framework proposed in [START_REF] Parker | Framework to Develop Time-and Voltage-Dependent Building Load Profiles Using Polynomial Load Models[END_REF]. The approach is coupled with reports such as [START_REF] Faris | Load Composition Analysis in Support of the NERC Load Modeling Task Force[END_REF] describing the spread of various appliances for different types of consumers (residential, industries, commercial, etc.). Simulated data sets present high variability regarding LV Grids (cables' length and impedance, number of loads), type of consumers (residential, commercial, singlephase or three-phase), with or without presence of electric vehicles and photovoltaic production. We also simulate meter signal degradation with various numerical precision.

The rest of the paper decomposes as follows. Section II introduces the proposed method as well as the performance metrics for evaluation. In Section III, we present the detailed simulation model and experimental plan. Section IV is devoted to results and their analysis with 3 viewing angles: quantitative, qualitative, and insights to select productionready parameters. We finally conclude in Section V.

II. VOLTAGE CORRELATION APPROACH FOR PHASE, FEEDER AND TRANSFORMER IDENTIFICATION

A. Objective

For an efficient distribution network management and maintenance, it is essential to have an accurate information of the topology of the network. In practice, the following relationships need to be identified:

• meter to transformer: by which transformer the consumer is supplied (Fig. 1a)

• meter to feeder: to which feeder the consumer is connected (Fig. 1b)

• meter to phase: to which phase of the MV/ LV transformer the consumer is connected (Fig. 1c) 

B. Method description

The voltage correlation method is based on the analysis of voltage variations. Those can be due to faults, unbalance, distance, and load variations. The principle is to look for similarities in voltage dynamics: two loads connected on the same phase, on same or different feeders, show similar dynamics.

The method calculates the correlation between each pair of voltage time series from smart meters and forms a pairwise correlation matrix. With 𝑘 a given number of clusters, a clustering algorithm is then applied to partition the dataset into the 𝑘 most intra-correlated and least inter-correlated groups of time series. Those clusters can represent smart meters connected to the same phase if 𝑘 = 3, or the same feederphase if 𝑘 = 3 * 𝑛_𝑓𝑒𝑒𝑑𝑒𝑟 with a given number of feeders.

The final algorithm is a pipeline going from the raw smart meter data to the phase clustering, with the following aspects:

• Resampling: real-world and simulated input data sampling may vary. We can resample the data to more common values such as 10mins or 30mins

• Normalization: we subtract the median voltage profile from all voltage series to remove the effect of networkwide variations and of events such as tap change.

• Similarity metric. the Pearson correlation is widely used in the literature [START_REF] Farajollahi | Topology identification in distribution systems using line current sensors: An MILP approach[END_REF][START_REF] Benzerga | Low-voltage network topology and impedance identification using smart meter measurements[END_REF]. We investigated other metrics such as the Manhattan distance or a local version of the Pearson correlation.

• 3-phase constraint: three-phase smart meters have each of their inputs on a different transformer phase. We encode this information by setting artificially low similarity values between them, as mentioned in [START_REF] Olivier | Phase Identification of Smart Meters by Clustering Voltage Measurements[END_REF] • Clustering algorithm: many available algorithms accept a distance matrix as input. (Hierarchical) Agglomerative Clustering is widely used for its performance and ease of interpretation. But it is proven to be suboptimal, so we also used Spectral Clustering.

C. Performance evaluation 1) V-measure score: The V-measure metric [START_REF] Rosenberg | V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure[END_REF] can be used to evaluate the performance of the topology estimation when true clusters are known. It is an entropy-based score between 0 and 1, assessing homogeneity and completeness of the found clusters K, compared with true clusters C. It is computed as the harmonic mean of distinct homogeneity h and completeness c scores (1). , where H is the standard entropy measure as detailed in [START_REF] Rosenberg | V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure[END_REF]. Note that the V-measure score is more challenging than a simple "percentage of successful labeling" (e.g., accuracy).

2) Silhouette score: The Silhouette Coefficient [START_REF] Rousseeuw | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF] does not require the true clusters to be known. It is calculated using the mean intra-cluster distance a(i) and the mean nearestcluster distance b(i) for each sample [START_REF] Benzerga | Low-voltage network topology and impedance identification using smart meter measurements[END_REF].

𝑠(𝑖) = 𝑏(𝑖)-𝑎(𝑖) max {𝑎(𝑖),𝑏(𝑖)} ()
To clarify, b is the mean distance between a sample and the nearest cluster that the sample is not a part of (Fig. 2).

Fig. 2. An illustration of the elements involved in the computation of s(i),

where object i belongs to cluster A. In this case b(i) = mean(d(i,B)), as B is the nearest cluster from i. Adapted from [START_REF] Rousseeuw | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF] III. LV SIMULATED NETWORK AND DATA DESCRIPTION

A. Description of the simulation model

The methodology is tested on simulated LV Grid distribution networks. The simulation model is developed in SIMULINK® (Fig. 3). It is composed of an urban MV/LV distribution transformer with 4 feeders and 75 LV customers, and a rural MV/LV transformer with one feeder and 10 LV customers. To build the load profiles, 95 residential curves are used for 365 days, with 1 minute resolution. Specific loads such as photovoltaic systems (PV) and electrical vehicles (EV) charging at workspace, home and public with different profiles are as well included in the simulated network model. In addition, 3 tertiary, 2 commercial and 2 industry profiles with 4 seasonable typical days are included. The model sizing values are typical and representative of MV distribution networks in France:

• MV/LV transformers of 400, 630 and 1000kVA in urban area, and 50 and 160kVA in rural area,

• Residential single-phase consumers with 3, 6, 9 and 12 kVA, and three-phase ones with 12, 15 and 36kVA,

• Connection cables with cross section area of 25, 35, 50, 75, 95 and 120mm². Aluminum cables were used. 

B. Description of the generated data set

A range of simulation was performed to evaluate the sensitivity of our algorithm to network characteristics. The first studied parameter is the length of cables. In the model in Fig. 3, there are 3 main types of cables:

• General three-phase + N transport cables represented by horizontal distribution blocs

• Three-phase customers connections represented by vertical distribution blocs In addition to this cable length setting, we added additional disturbances to the balancing of the network: electrical vehicle charging loads and PV loads. With these 3 load scenarios (no EV/no PV, EV, EV+PV) it results in a total of 12 simulations.

IV. RESULTS

A. Performance results

We executed our topology estimation pipeline on each of the 12 grid simulations, with 48 parameter sets: 3 sampling values (1min, 10min, 20min), with/out normalization, with/out constraints, 2 similarity metrics (Pearson, local correlation), 2 clustering algorithms (HAC and Spectral). The simulated topology contains 2 distribution transformers T1 and T2, powering 75 and 10 customers respectively (See III.A). We ran the algorithm on each subset and computed resulting V-measures and Silhouette Scores. 

1) Impact of the number of consumers (top-vs-bottom):

According to the literature, one can expect the difficulty to increase with the number of meters. The results obtained for phase clustering and feeder-phase clustering on T1 and T2 illustrate that higher number of consumers (T1) may lead to lower performance of the LV grid topology identification. This result was expected because not only more meters create more clustering possibilities, but also more meters imply more voltage drops interacting; the phase signal is gradually lost into the noise of smart meters voltage drop due to load.

2) Impact of cable length (left-to-right): Cable length has little effect on feeder phase clustering but a strong effect on phase clustering accuracy as illustrated by the results in Fig 5 . for T1. As explained in [START_REF] Thomas | Effect of Line Impedance and Loading on Voltage Profile in Distribution Network with Distributed Solar Photovoltaic System[END_REF], higher impedances lead to higher local voltage variations, which may hide phase variations and make them more difficult to identify. Consequently, the clustering performance is decreasing. Still, in case of topologies with no EV nor PV, a particular set of parameters was able to uncover the phase consistently with the maximum score (top blue points).

3) Impact of EV and PV integration (colors): Integration of EV and PV reduces the performance in the phase and feeder-phase identification: boxplots shift downwards, and the best score is not 1 anymore except for short cable lengths. Again here, the network impedance plays a role, and it was shown in [START_REF] Thomas | Effect of Line Impedance and Loading on Voltage Profile in Distribution Network with Distributed Solar Photovoltaic System[END_REF] that PV integration leads to import local rise in voltage. PV and EV impact is higher on top scores when the impedance of the LV Grid is higher. Topologies with long cable lengths and high penetration of PVs and EVs represent limit cases for voltage correlation and clustering algorithms.

4) Impact of meter numerical precision:

We observed that real-world numerical precision of smart meter readings can be as coarse as 1V. We rounded the simulated voltage timeseries to 0.01V, 0.1V and 1V. Fig. 6 presents the Vmeasure phase clustering results for transformer T1, for the 4 cable lengths without EV nor PV. On average, the better the numerical precision is, the better the phase clustering performance is. However, it appears than even in the case of 0-digit (1V) precision, the best parameter set yields to Vmeasures above 0.7. This result shows that this method is applicable to a wide range of meter class. 

B. Qualitative analysis

We now analyze two of these clustering results for short and long cables, both without EV nor PV. Algorithm parameters are to: 10min resampling, normalization and constraint activated, metric is local correlation.

From Fig. 7a. we see that with short cables (and no EV nor PV), phase clustering is very easy. We notice 3 dense groups (black/purple squares with distance <0.25). We also notice sub-clusters of even closer meters (small dark squares inside the 3 groups). Those squares represent distinct feeder phases. On the contrary it appears that two meters that are connected to different phases show large distances between 0.5 and 0.75, meaning a correlation between -0.5 and 0. So the voltage curves show no correlation up to to a slight anticorrelation.

One could foresee this result, as short cables mean short electrical distances, hence little impedance, leading to very close voltage variations in the same feeder, and to some extent, phase. Fig. 7b. represents the distance matrix obtained for the same topology with long cables instead. We see that the feeder phase groups remain easy to spot, but the phase groups are harder to distinguish. This makes sense as in this topology, group of consumers are separated by long sections (300m) of feeder cables. Local voltage variations are shared for two meters that have short electrical distance between them. But two meters on the same phase but different feeders can have long wire distance up to 1 to 2km, hence big impedance, so local variations overtake shared phase variations. In this very case, it appears that the three-phase meters constraints (the white dots) help the algorithm to correctly recover the phase clusters, leading to a perfect V-measure of 1. C. Estimating the best set of parameters, for a predictable clustering accuracy

The sensibility and performance study presented in section IV.A is informative; it allows us to define on which set of topologies our algorithm is likely to perform in production in the real world, and a set of limit cases for which tuning parameters need special care. It also allows us to select a particular set of "best" parameters for the algorithm, leading to maximum V-measure scores.

However, computing V-measure scores requires ground truth labels. When in production, these labels are not available. Still, we want to be able to know if the predictions from the algorithms are likely or not, and to choose between various parameter settings. To this extend, we investigated how the Silhouette score relates to the V-measure. Fig. 8 highlights how the V-measure score varies with the Silhouette Score in our experimental results. Each dot represents a single parameter set; only some simulations are displayed to highlight some interesting trends. From these results, it first appears that it is possible to find a good set of parameters by studying the Silhouette score. For feeder phase clustering (Fig. 8a) there is a rough linear trend: maximizing the Silhouette score tends to maximize the Vmeasure. For phase clustering (Fig. 8b) this behavior seems to only be valid above a Silhouette threshold of ~0.5. Below this threshold, the relationship between Silhouette and Vmeasure is erratic and cannot be trusted.

Second, it appears that it is possible to have a rough idea if the clustering algorithm gives trustable results by studying the Silhouette distribution. Indeed, a distribution below 0.5 seems to indicate that clustering is difficult, and that the topology cannot be trusted. Manual inspection of the clustering process is probably needed to ensure a higher level of confidence.

Above results needs of course to be cross validated with other datasets, simulated or from a real-world case.

V. CONCLUSION This paper presented a scalable method for identification of LV grid topologies based on voltage correlation, validated using data generated from simulation models. The conducted studies have shown that consumers number and lines length play an important role in the reliability of the algorithm by making the clustering task more difficult. Still, we observed a configuration of the algorithm leading to excellent results with a V measure above 0.9. On the contrary, penetration of EV and PV in the LV grid seems to represent a limit case, especially on high impedance networks (long lines). However, it seems possible to estimate a level of confidence for a given topology and dataset by studying the Silhouette score.
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 1 Fig. 1. Topology relationships to be identified a) meter to transformer b) meter to phase c) meter to feeder
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Fig. 3 .

 3 Fig. 3. Grid Simulation modelextract: one feeder, urban area. High power LV consumers, EV meters and PV meters are located at positions circled in yellow, red and green respectively.

Fig. 4 and

 4 Fig.4and Fig.5present the V-measure results. The x-axis represents cable lengths, and colors indicate if the topology contains additional EV, PV or none (vanilla). Each dot is the score for a particular set of parameters of the algorithm, and boxplots summarize the points distribution.

Fig. 4 .

 4 Fig. 4. Feeder-Phase clustering V-measure for T1 (top), T2 (bottom).

Fig. 5 .

 5 Fig. 5. Phase clustering V-measure for T1 (top), T2 (bottom).

Fig. 6 .

 6 Fig. 6. Phase clustering V-measure for decreasing numerical precision.

Fig. 7 .

 7 Fig. 7. Pairwise distance matrices for topologies with a) short and b) long cables. Dark color (small distance) to white (large distance). Top blue, green and red groups identify true phase labels. Dendrograms represent merging steps of the Hierarchical Clustering ; branches heights represent the "difficulty" to merge two groups together.

Fig. 8 .

 8 Fig. 8. Silhouette score (x-axis) and V-measure (y-axis) for a) feederphase and b) phase clustering. 6 simulated topologies are displayed (colors).

TABLE I

 I 

	.	CABLE LENGTH SCENARIOS
	Scenario	Transport	3P Customer	1P Customer
	Long cable (m)	300	150	250
	Mid-Long cable (m)	225	100	200
	Mid cable (m)	200	75	150
	Short cable (m)	30	20	10
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