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Abstract
Bayesian predictive coding theories of autism spectrum disorder propose that
impaired acquisition or a broader shape of prior probability distributions lies at
the core of the condition. However, we still know very little about how probability
distributions are learned and encoded by children, let alone children with autism.
Here, we take advantage of a recently developed distribution learning paradigm
to characterize how children with and without autism acquire information about
probability distributions. Twenty-four autistic and 25-matched neurotypical chil-
dren searched for an odd-one-out target among a set of distractor lines with orien-
tations sampled from a Gaussian distribution repeated across multiple trials to
allow for learning of the parameters (mean and variance) of the distribution. We
could measure the width (variance) of the participant’s encoded distribution by
introducing a target-distractor role-reversal while varying the similarity between
target and previous distractor mean. Both groups performed similarly on the
visual search task and learned the distractor distribution to a similar extent. How-
ever, the variance learned was much broader than the one presented, consistent
with less informative priors in children irrespective of autism diagnosis. These
findings have important implications for Bayesian accounts of perception
throughout development, and Bayesian accounts of autism specifically.

Lay summary: Recent theories about the underlying cognitive mechanisms of
autism propose that the way autistic individuals estimate variability or uncer-
tainty in their perceptual environment may differ from how typical individuals do
so. Children had to search an oddly tilted line in a set of lines pointing in different
directions, and based on their response times we examined how they learned
about the variability in a set of objects. We found that autistic children learn vari-
ability as well as typical children, but both groups learn with less precision than
typical adults do on the same task.
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INTRODUCTION

Bayesian predictive coding theories have recently gained
traction as an explanation for autistic behavior, both in
controlled lab settings (e.g., Karvelis et al., 2017; Lawson
et al., 2017; Lieder et al., 2019) and as symptom clusters
in daily life (e.g., Lawson et al., 2014; Palmer et al., 2017;
Pellicano & Burr, 2012; Van de Cruys et al., 2014). In

these theories, perception and learning are cast as proba-
bilistic inferences combining prior knowledge with per-
ceptual inputs (likelihood). More specifically, predictive
coding assumes that priors and likelihoods are represen-
ted as Gaussian probability distributions (Friston &
Kiebel, 2009), characterized by a mean (the expectation)
and a precision (inverse variance; the width of the bell-
shape). The extent to which perceptual estimates
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(decisions) are biased toward the actual evidence versus
the prior is determined by the relative precision of the
respective distributions. Importantly, both the means and
the precisions of the prior distributions need to be esti-
mated or learned through experience (Hohwy, 2013).
Indeed, the many proposals on what inferential processes
go awry in autism converge on how precisions are esti-
mated and shaped by experience. For example, keeping
the sensory precision constant, a prior with lower esti-
mated precision is broader and has a weaker effect on
perception. Usually, however, informative priors provide
the necessary robustness to perception, allowing us to
exploit known regularities and discard the noise, in order
to zoom in on behaviorally relevant changes (prediction
errors) in the input (Van de Cruys et al., 2017). Hence, a
failure to learn and apply informative priors may lead to
unstable, more variable percepts (cf. hypersensitivity) and
problems selecting relevant input dimensions in the face
of (noise) variability in other dimensions (crucial in social
settings). In the longer term, this inability to “regularize”
perception may elicit compensatory behavioral strategies
in terms of repetitive movements and other ways to
recover a modicum of predictability in perceptual inputs
(cf. insistence on sameness). In short, there is a plausible
etiological chain from problems in estimating precision
to the key symptom clusters in autism spectrum disorder
(ASD), described as impairments in social interaction
and communication on the one hand, and repetitive and
restrictive behaviors and interests, including alterations
in sensory sensitivity, on the other hand (American Psy-
chiatric Association, 2013).

Research on summary statistics, also known as ensem-
ble perception, has shown that people have no problems
extracting the means of sets of stimuli, be it based on low-
level features such as orientation or size, or higher-level
features such as face identity and emotional facial expres-
sions (Whitney et al., 2014; Whitney & Yamanashi
Leib, 2018). Representing a set of stimuli by its average
often happens without being able to recognize each indi-
vidual item of the set and is even present under conditions
of reduced attention. Previous research on ensemble per-
ception in ASD yielded mixed results. Children (Van der
Hallen et al., 2017) and adults (Corbett et al., 2016) seem
to be able to represent sets of dots by their mean size. Chil-
dren with ASD may even tolerate more variability when
estimating averages (Manning et al., 2015; Van der Hallen
et al., 2017). Yet another study found no difference in the
ability to represent the average emotion of faces between
children with and without ASD (Karaminis et al., 2017;
but see Rhodes et al., 2015).

In addition to ensemble means, ensemble variance has
been found to be extracted for size and orientation in neu-
rotypical adults (Norman et al., 2015; Solomon, 2010), but
has been studied less compared to the average of sets of
stimuli. Even so, we know that extracting variance is a pre-
requisite for many odd-one-out visual search tasks. Indeed,
to find an item that does not belong to a set (detect an

outlier), it is crucial to know the diversity or variability of
the items that do belong to the group (Haberman &
Whitney, 2012; Rosenholtz, 2001). Moreover, an estimate
of the variance of groups of stimuli provides the observer
information on the reliability or precision of the average of
the set. To the best of our knowledge, no studies have veri-
fied whether variance extraction is already present in chil-
dren (with or without ASD).

In the current study, we use odd-one-out visual search
as an implicit measure of whether children extract vari-
ances. Rather than explicitly asking participants for esti-
mates of summary statistics as in most studies on the
topic, Chetverikov et al. (2016, 2017a, 2017b, 2017d,
2020) developed a method to infer the representation of
those statistics from visual search performance, arguably
a more ecologically valid way to probe this. They based
their paradigm on findings of priming of pop-out, a phe-
nomenon that occurs when an odd-one-out target has the
same features over different visual search trials, leading
to decreased response times. Priming of pop-out has also
been found when distractors have the same features over
different trials. Chetverikov et al. used such priming, in
addition to role reversal—when a target falls within the
feature distribution of distractors in previous trials—to
infer to what extent the distributions of the distractor set
(their mean, variance, and shape more broadly) are
encoded implicitly. Using this method, Chetverikov
et al. (2016, 2017b, 2020) reported that our visual brain
not only extracts and represents the first-order statistics
such as the average but also various other properties of
the distributions, such as variance, type (e.g., normal
vs. uniform) and skewness.

The visual search paradigm by Chetverikov and col-
leagues is extremely suited here for several reasons. First,
while concepts such as mean and variance may be diffi-
cult to grasp for children, a visual search task is very intu-
itive. Second, visual search is known to be intact or even
improved in ASD from very early on in development
(Kaldy et al., 2011; Van der Hallen et al., 2015). Any
impairments or alterations in performance are unlikely to
be explained by the basic nature of the task.

Third, the paradigm allows us to look at the role-
reversal effect in which the target suddenly falls within
the previously learned distractor distribution range. Plot-
ting the participants’ response times as a function of the
difference between the current target orientation and the
previous distractor distribution mean will show the shape
of the represented prior distribution (its variance or
inverse precision), as learned across repetitions of the
same (distractor) distribution. Here, we can address ques-
tions concerning the aberrant estimation of precision, as
proposed by predictive coding accounts of ASD (Lawson
et al., 2014; Pellicano & Burr, 2012; Van de Cruys
et al., 2014). Specifically, we will be able to examine
whether the learned distractor distribution is broader or
narrower than the actually presented Gaussian distractor
distribution. Note that there is some vagueness in the
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existing theoretical proposals as to what to expect: Some
merely state that the estimated precision is “aberrant” in
autism (Lawson et al., 2014), others suggest that the pre-
cision of prediction errors is higher (Brock, 2012; Con-
stant et al., 2018; Van de Cruys et al., 2014), which
should lead to more precise posteriors and, subsequently,
priors (because today’s posterior is tomorrow’s prior).
Yet others made a clear claim that priors in autism are
less precise (Pellicano & Burr, 2012).

Fourth and finally, in the literature on Bayesian pre-
dictive coding, a distinction is made between structural
and contextual priors (Seriès & Seitz, 2013; Teufel &
Fletcher, 2020). Contextual priors are based on regulari-
ties specific to a particular context, for example,
predicting the next word in a sentence based on the
semantic and syntactic structure. These priors are
assumed to be learned and deployed in a hierarchical
way with predictions from one level predicting input
activity in the level below. Such predictions usually have
a more limited applicability, but can be quickly and flexi-
bly learned through experience (Van de Cruys,
Vanmarcke, Van de Put, & Wagemans, 2018). This is the
type of prior we induce in our visual search paradigm, by
repeating trials with the same distractor probability
distribution.

Contrary to contextual priors that are learned in a
short time span (in just a few trials), structural priors
reflect innate or overlearned statistical regularities in the
visual input. These priors are applicable across all visual
inputs irrespective of context because they concern
(quasi-)universal scene statistics. Instead of relying on the
top-down connections between levels, they are thought to
be encoded as embedded constraints in bottom-up infor-
mation processing (Teufel & Fletcher, 2020). A common
example is the light-from-above prior, which causes us to
perceive ambiguous shading stimuli as lighted from
above, as is usually correct for natural images. For orien-
tation perception, it is well-known that people are much
better at discriminating cardinal orientations (horizontal
and vertical) compared to oblique orientations because
the former are much more prevalent in our natural visual
environment (Girshick et al., 2011). Given that we use
sets of oriented lines as visual search displays, we will be
able to verify in our study whether outliers (targets) are
easier to spot when the distractor distribution mean is
cardinal versus oblique, and whether this effect of the
structural prior is reduced in ASD (if priors are broader),
as one study already found (Dickinson et al., 2016; but
see Shafai et al., 2015).

METHODS

Participants

Two groups of children between 10 and 14 years old par-
ticipated in this study (N = 49; M age = 11.94 years;

SD = 1.39; range: 10–14 years). Intelligence of the partic-
ipants was estimated with an abbreviated version
(Sattler, 2001) of the Wechsler Intelligence Scale, Third
edition (WISC-III-NL; Wechsler, 1992). From this
abbreviated version, a performance intelligence quotient
(PIQ), a verbal intelligence quotient (VIQ), and a full-
scale IQ (FIQ) are derived. Based on these results, none
of the participants had an intellectual disability (FIQ
≤70). All participants had normal or corrected-to-normal
vision and none reported taking any neuroleptics.

The ASD group consisted of 24 children diagnosed
with ASD by a child psychiatrist or a multidisciplinary
team, based on the DSM-IV-TR criteria (American Psy-
chiatric Association, 2000). Participants were recruited
via the Autism Expertise Centre of our university hospi-
tal. In proportion to the gender ratio described in the lit-
erature (Lai et al., 2015), the ASD group comprised
8 girls and 16 boys. The ASD diagnosis was re-evaluated
using the Autism Diagnostic Observation Schedule
2, Module 3 (ADOS-2; Gotham et al., 2007), conducted
by a trained psychologist. Eighteen participants scored
above the ASD cut-off and six participants below the
ASD cut-off on the ADOS-2 (Mean = 8.76, SD = 4.17).
Moreover, ASD traits were measured with the Dutch ver-
sion of the social responsiveness scale (SRS-2; Roeyers
et al., 2011). In addition, the Dutch version of the sensory
profile questionnaire (SP-NL; Dunn & Rietman, 2006)
was administered to measure how the children process
sensory information in everyday situations. We assessed
the level of attention problems (and emotional or behav-
ioral problems) by administering the child behavior
checklist (Achenbach & Ruffle, 2000) parent report to
control for the influence of attention problems on-task
behavior. The typically developing (TD) group consisted
of 25 children recruited through mainstream schools. The
TD participants did not have a known diagnosis of a
child psychiatric disorder nor they did have a first-degree
family member diagnosed with ASD. Demographic
details and p-values of a two-sided t-test for the compari-
son of the ASD group and the matched TD group are
shown in Table 1.

Procedure

This study was approved by the ethical committee of the
university hospital and incorporated within a larger series
of studies on visual perception in children with ASD. Par-
ent consent and child assent were given before the start of
the test session. The tests took place in a quiet and dark-
ened room and the viewing distance was �57 cm.

The odd-one-out visual search task was presented to
the children as a space game in which they could discover
a new planet by following the stars falling in the oddest
direction. The participants had to search for the odd-one-
out in a 6 × 6 grid of 36 lines subtending 16� × 16� at the
center of a display (see Figure 1). Each line represented a
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falling star and the length of each line was 1.41�. All line
positions were jittered by randomly adding a value of
±0.5� to vertical and horizontal coordinates. The partici-
pants used the arrow keys to indicate whether the target
was in the upper or lower half of the display (little dots
on the side of the search array indicated the division).

The children were encouraged to respond as fast and
accurately as possible and received a score after each
response, indicating how close they got to the undi-
scovered planet. The children were told that there was
another competing team of astronauts with the same mis-
sion. Every 10 blocks (±70 trials), a screen was presented
with their own score as well as the score of the competing
team of astronauts (a random number of points below
the participant’s score). The children could take a self-
paced break here.

Before starting with the actual test trials, the partici-
pants completed an extensive step-by-step practice proto-
col with 10 practice trials, with feedback on all trials.

During the actual experiment, feedback was only pro-
vided for incorrect trials.

Apparatus and stimuli

Trials were organized in blocks consisting of a prime
streak and a test streak. A prime streak consisted of five
or six trials with distractor orientations sampled from the
same distractor distribution with a constant mean and
SD. The trial number was varied to prevent participants
from learning the regularities in changes from prime
streaks to test streaks throughout the experiment. The
distractor distribution in trials in prime streaks was
always a Gaussian distribution, with a distractor stan-
dard deviation (DSD) of 10�. The mean of the distractor
distribution was set randomly for each prime streak. The
target orientation was set randomly for each trial within
the prime streaks, with the constraint that the difference

TABLE 1 Participant characteristics

ASD (16 male: 8 female) TD (13 male: 12 female) Two-sided t test

M SD (range) M SD (range) p-value (BF10)

Age 12 1.30 (10–15) 11.85 1.50 (10–15) 0.62 (0.32)

Verbal IQ 105 17.67 (57–130) 105 10.86 (68–122) 0.92 (0.29)

Performance IQ 106 17.23 (74–132) 107 14.09 (66–143) 0.76 (0.30)

CBCL attention 58.20 7.92 (50–77) 54.67 5.88 (50–66) 0.12 (0.85)

SRS-2 89.33 16.99 (52–119) 49 8.61 (38–65) <0.0001 (>100)

ADOS 8.62 4.06 (1–19)

Note: SRS data of three participants with ASD and of four TD participants is missing.
Abbreviations: ADOS, autism diagnostic observation schedule; BF10, bayes factor; CBCL, child behavior checklist; SRS-2, social responsiveness scale.

F I GURE 1 Example search array for
a prime trial and example search array for
a test trial. In the prime trial (left side), the
distractors are sampled from a Gaussian
distribution with a distractor distribution
standard deviation (DSD) of 10� (dark
red). In this example, the mean orientation
(vertical line in the bell-shape) of the
distribution is 109� and the target
orientation (blue arrow) differs 85� from
the distractor distribution mean. In the test
trial (right side), the distractors are
sampled from a Gaussian distribution with
a DSD of 5�. The previous distractor
distribution is represented in dashed lines.
In this example, the difference between the
current target orientation (blue arrow) and
the previous distractor distribution mean
(CT-PD) is 13� (red double arrow). The
target differs 61� from the current
distractor distribution mean (M = 157�; in
dark red)
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between the target orientation and the mean of the dis-
tractor distribution could range from 60� to 120�. During
the prime streaks, the mean of the distractor distribution
and the DSD (always 10�) remained constant, whereas
the target orientation and location differed on every trial.

Each prime streak was followed by a test streak con-
sisting of one to two trials with the distractor orientations
sampled from the same distractor distribution. The test
streak distractor distribution was a Gaussian distribution
with a DSD of 5�. The target orientation in the test trials
differed −90� to 90� from the distractor distribution mean
of the previous prime streak. The difference between the
current target orientation in the test trials and the previ-
ous distractor distribution mean (CT-PD) was randomly
chosen out of the 13 bins with different bin sizes
(i.e., smaller bin sizes closer to zero). The different CT-
PD bins were (−90� to −70�), (−70� to −50�), (−50� to
−35�), (−35� to −25�), (−25� to −15�), (−15� to −5�),
(−5� to +5�), (+5� to +15�), (15� to 25�), (25� to 35�),
(35� to 50�), (50� to 70�), and (70� to 90�). Bin sizes were
smaller where the target orientation was closer to the pre-
vious distribution mean (i.e., small CT-PDs), to have a
higher precision for our response times plotted as a func-
tion of CT-PD in the area around the previous
distribution mean.

Each prime streak length (five or six trials) was
followed by a test streak with a target orientation chosen
based on a CT-PD sampled from each CT-PD bin, so
together prime and tests streaks formed blocks of six to
eight trials. These combinations were repeated five times
per participant, resulting in 130 blocks (13 orientations
× 2 streak lengths × 5 repeats) per participant, or �910
trials. The total test session duration was between 20 and
40 min, depending on the self-paced breaks.

ANALYSIS

All experiment code, data, and analyses (including extra
analyses) can be found at the Open Science Framework (osf.
io/95672). For all analyses, response time data were log-
transformed to reduce skewness. In all response time ana-
lyses, only correct trials are included. Per participant,
response times of three SD higher than this person’s mean
response time and response times lower than 100 ms were
removed from the analysis. Based on these outlier criteria,
1.9% of all trials were removed for the ASD group and 2.1%
of all trials were removed for the TD group. Bayes factor
versions of the reported mixed models analysis of variance
(ANOVA) can be found in the Supplementary Materials.

RESULTS

Average visual search performance

A linear mixed model (random intercept and random
slope model) with DSD, Group and Group x DSD as

predictors, revealed a significant effect of DSD on search
times (B = 0.08, t = 5.01, p < 0.0001), with shorter search
times in the test streaks with a DSD of 5� (M = 1138 ms,
SD = 686) compared to search times in the prime streaks
with a DSD of 10� (M = 1290 ms, SD = 1058). Neither
the effect of Group (B = 0.03, t = 0.6, p = 0.55) nor the
interaction effect between Group and DSD (B = −0.008,
t = −0.40, p = 0.69) on search times was significant (see
Figure 2). A generalized mixed model on the accuracies
shows the same results qualitatively: only a main effect of
DSD (more accurate for low DSD), not of Group. Fur-
thermore, a Bayesian analysis on reaction times shows
moderate evidence against including a main effect of
Group and/or an interaction effect of Group x DSD (see
Supplementary Materials for full results).

These results imply typical visual search performance
in children with ASD, irrespective of the amount of vari-
ability in the display. However, a post hoc analysis
showed a significant negative correlation of autism traits,
as measured by the SRS-2, and mean response time in
the visual search task (Pearson r = −0.64, p = 0.001, see
Figure 3). To look at this in more detail, we plotted con-
ditional accuracy functions (Figure 4) on quantile split
data. They indicate that particularly in the lowest
response time bins, people with high SRS-2 (but not with
mid SRS-2) are faster in searching the displays, without
paying in terms of accuracy. This suggests that the
improved visual search performance sometimes found in
other studies (see Discussion) may be limited to individ-
uals with high autism traits and displays where serial sea-
rch is not required.

Structural priors

When looking at the effect of structural priors, one of our
key questions, we find a pronounced curve which is char-
acteristic for a strong effect of cardinal orientations

F I GURE 2 Mean response times for the two distractor distribution
conditions for both groups. Error bars represent 95% bootstrapped
confidence intervals. Lighter dots represent individual means. Note that
conditions have unequal trial numbers because of the design (5� are test
trials, 10� prime trials)
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(B = 7.00; t = 11.1; p < 0.001), similarly present in chil-
dren with and without ASD (see Figure 5; B = 1.27;
t = 0.94; p = 0.35). We find faster target detection for tar-
gets with orientations around the horizontal or vertical
axis compared to oblique targets.

Repetition effect within prime streaks

We assessed repetition effects by analyzing response
times and accuracy over trial numbers within prime
streaks, in which the distractors at each trial were sam-
pled from the same Gaussian distribution. A linear mixed
model with Trial Number, Group and Group x Trial Num-
ber as predictors with Helmert contrasts for Trial Number
(comparing average response time on each trial with the
average response time on all subsequent trials) revealed
significantly higher response times on the first trial com-
pared to response times on the later trials for both groups
(t = 10.61, p < 0.0001; see Figure 6). On the second trial,
response times were not significantly different anymore
from later trials, suggesting that virtually all learning
took place from the first to the second trial in the streak.
No effect of Group (t = 0.42, p = 0.68) or Group x Trial

F I GURE 4 Conditional accuracy
functions per quantile split SRS-2 group:
low SRS-2 (<52) with 13 TD participants;
mid SRS-2 (between 52 and 80) with seven
TD and six ASD participants, and high
SRS-2 (>80) with 13 ASD participants.
Each data point is the accuracy for a
quartile of the response time distribution

F I GURE 3 Scatterplot of the social responsiveness scale-2 (SRS-2)
score by mean response time in ms per participant, with linear fits and
95% confidence intervals (shaded areas) per group
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Number interactions were found. Accuracy did not
change across trials. These results indicate a quick
decrease in response times after one trial with distractors
sampled from the same Gaussian distribution in both
groups.

Role-reversal effects

To test the role-reversal effects in test streaks, we ana-
lyzed response times on correct first trials of test streaks
as a function of the distance between the current target
orientation and the mean of the previous distractor distri-
bution (CT–PD) (see Figure 7). If a distractor distribu-
tion is learned and therefore inhibited during repetitions
in prime streaks, response times should increase when a
target falls within that prime distribution in a test streak.
Figure 7 shows that role-reversals have a strong effect in
both groups, as response times gradually decrease with
the increase of absolute CT-PD. A linear mixed model
with absolute CT-PD, Group, and Group x absolute CT-
PD as predictors and response time as an outcome vari-
able revealed a significantly negative effect (B = −0.05
[0.01], t = −5.47, p < 0.0001) of absolute CT-PD on
response time. No effect of Group (B = 0.03 [0.05],
t = 0.58, p = 0.56) or interaction effect of Group x abso-
lute CT-PD (B = 0.01 [0.01], t = 0.19, p = 0.85) was
found. Again, a Bayesian analysis on reaction times
shows moderate evidence against including a main effect
of Group and/or an interaction effect of Group x absolute
CT-PD (see Supplementary Materials for full results).

In typical adults, previous studies have shown that
the fall-off of response times tracks the width (or type) of
distribution closely (Chetverikov et al., 2016), indicating
that a more or less faithful representation of the distribu-
tion was learned during prime trials. However, as can be
seen in Figure 7, in our sample of children, response
times only start to go down when CT-PD is outside of
the full range of the normal distribution (beyond CT-
PD = 25), suggesting that the shape of the distribution is
not (fully) learned, but only represented as a range or uni-
form distribution. For comparison, Figure 7b shows data
Chetverikov et al. (2016, Experiment 1) for neurotypical
adults under the same distributional conditions. Indeed,
if we apply the same analysis to the binned CT-PD (bins
determined based on sampling frequencies in the experi-
ment) only two last bins, well beyond the “primed” distri-
bution, have significantly lower response times compared
to average response times in previous bins (CT-PD = 50–
70: B = −0.08, t = −2.03, p = 0.047; CT-PD = 70–90:
B = −0.12, t = −2.94, p = 0.005).

Recoding CT-PD to a binary variable indicating
whether the current target orientation fell within the
range of the previous distractor distribution (CT-
PD < 30�) or outside of it (CT-PD > 30�) revealed a sig-
nificant effect of In range (B = −0.10 [0.02], t = 5.91,
p < 0.0001) on response times, with lower response times
for trials where the target orientation fell outside
(M = 1125 ms) versus inside the previous distractor dis-
tribution range (M = 1216 ms). Again, no significant
effect of Group or Group x In range interaction effect was
found. Importantly, there is no effect of CT-PD on reac-
tion times if we test this on the data of within range trials
only (B = 28.63; t = 0.88; p = 0.380; no group

F I GURE 5 Mean response time in ms for a given target
orientation (binned), showing a clear effect of cardinal versus oblique
orientations (collapsed across all trials/conditions). Error bars are 95%
bootstrapped confidence intervals

F I GURE 6 Mean response times for each trial within prime streaks
for both groups (darker lines). Lighter lines represent average response
times for each participant
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interaction: B = −79.27; t = −1.057; p = 0.29), indicating
that the slope in this range is not different from zero,
which is inconsistent with the encoding of a Gaussian.

DISCUSSION

Children with and without ASD performed a visual sea-
rch task specifically developed to examine implicit per-
ceptual distribution learning. While our groups did not
significantly differ in overall visual search performance,
people with strong autism traits were significantly faster
in finding the target. Also, structural priors (oblique
vs. cardinal orientations) strongly but similarly
influenced search performance in both groups. In addi-
tion, both groups benefited equally from the fact that dis-
tractors are sampled from the same distribution as the
previous trial(s). However, there does not seem to be
much extra learning beyond the first repeat of that dis-
tractor distribution. Finally, through target-distractor
role reversal, we could establish that the prior distribu-
tion that children learned was much broader than the
actually presented distribution, suggesting that the vari-
ance cannot be properly learned in the number of trials in
which adults properly can do so. While a few previous
studies indeed found slower or less flexible learning of
priors in adults with ASD (Lieder et al., 2019; Sapey-
Triomphe et al., 2020; Zaidel et al., 2015), our findings
here suggest that the less precise encoding of the prior
distribution holds for all children, irrespective of ASD
diagnosis.

Despite several reports of improved visual search in
ASD, a meta-analysis showed no significant difference in
performance (Van der Hallen et al., 2015). Still, three
recent studies not included in the meta-analysis did find
improved search in very young children (Cheung
et al., 2018; Kaldy et al., 2011), with one study reporting
that better visual search performance in nine-month-old
infants predicts ASD traits at a later age (Gliga
et al., 2015). Our study corroborates that relation
between ASD traits and faster search performance, and
might help to resolve inconsistencies in this literature.
While visual search studies often use rather homogeneous
distractor sets, we continuously varied the items in this
set, which means the challenge of inferring “sameness” in
order to find the outlier (odd-one-out) is greater here.
This factor may explain the lack of the main effect of
Group on overall search performance. Compared with
adults in the same task, children are considerably slower
(average of 675 vs. 1250 ms, see Chetverikov et al., 2016)
suggesting the need to sample (saccade) across multiple
(smaller) areas serially to correctly estimate means and
variances and find the odd-one-out. Those processes may
obscure any advantages in local search that children with
autism may have. That said, our results do suggest that
children with autism are more correct in the very short
response times compared to typically developing chil-
dren, implying that their capacity to process the dissimi-
larity as such might be increased (when they
coincidentally land in the area of the target), in line with
previous studies (Baldassi et al., 2009), but that this
advantage is washed out if spatial pooling across multiple

F I GURE 7 Local regression fit of response times (shaded areas are
95% confidence interval) plotted as a function of the absolute distance
between current target orientation and the mean of the previous
distractor distribution (CT-PD, in degrees), for the ASD and TD group
(a). The middle plot (b) depicts the same for typical adults, based on
data from Chetverikov et al. (2016). The lower plot (c) represents (half
of) the normal distribution (SD = 10) from which the distractors in the
previous trials were actually sampled
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saccades is required. Alternatively, participants with
ASD may already pool across a greater number of items
in a single fixation (leading to better mean and variance
estimates, and so better outlier detection), consistent with
studies on motion direction discrimination (Manning
et al., 2015, 2017).

With regard to the influence of structural priors, we
found that they influence perception to a similar extent in
autism and typical development (e.g., no broader priors
here), consistent with what Shafai et al. (2015) found for
a simple (single stimulus) orientation discrimination task
(but see Sysoeva et al., 2015). Visual search was harder
(slower) when targets were near the oblique orientations
compared to near horizontal or vertical orientations (the
so-called oblique effect), showing that these biases are
already clearly apparent in children, irrespective of
autism diagnosis. This is consistent with the evidence of
another intact structural prior in children with and with-
out autism, namely the light-from-above prior (Croydon
et al., 2017). The faster search for targets around the car-
dinal orientations may be due to a disproportionately
larger fraction of V1 neurons sensitive to cardinal orien-
tations, with narrower orientation tunings (Girshick
et al., 2011), so more precise encoding and possibly better
discrimination in a search. However, it is possible that
attractive biases, i.e. perceiving a stimulus to be more car-
dinal than it actually is because of the strong cardinality
prior, also played a role. Because the average distance
between the target and (mean) distractor orientation was
90 in our design, this would likely still help the search
(e.g., +30� would become 0�; −60� would become −90�).

Our findings also go against a recent neuro-
computational model of autism based on divisive normal-
ization, which predicted a reduced oblique effect in
autism (see supplementary materials in Rosenberg
et al., 2015). Rosenberg et al. (2015) used divisive nor-
malization to qualitatively model existing findings and to
predict new empirical findings in autism, assuming a
decreased divisive (suppressive) normalization. However,
contrary to the model, the oblique effect, as well as other
perceptual effects based on divisive normalization
(Palmer et al., 2018; Sandhu et al., 2020; Van de Cruys,
Vanmarcke, Steyaert, & Wagemans, 2018), seem to be
preserved in autism.

While studies in adults have shown that the variance
of the distractor distribution can be learned in a limited
number of trials (Chetverikov et al., 2016, 2017a, 2017c),
our data in children suggests they cannot (yet) learn the
precise width (variance) of a Gaussian distribution,
and/or may rely on simpler heuristics such as the range.
Specifically, Chetverikov et al. (2017a) showed that for
neurotypical adults the difference between a normal and
a uniform (range) type of distribution arises after 1 and
2 trials already. The fact that the CT-PD curves are flat
within the full range of the normal distribution and only
then decrease (see Figure 7) suggests that children are not
really representing the distribution as a Gaussian. Of

course, we cannot exclude that children may be able to
implicitly learn more about the distribution given a lot
more trials than the 5 and 6 we used.

We should emphasize that the comparison with adult
data should be interpreted with some caution because of
the differences in baseline response times (see Figure 7).
Because increased response times or an increase in noise
will only add noise or bias along the y-axis (independent
of CT-PD values), they will not change the shape of the
curve. However, a large change in the baseline response
times may be indicative of a substantial difference in the
way participants conduct the task, namely in a more
serial, less efficient way. Indeed, at least in tasks that
require the judgment of average location of sets of dots,
children have been found to use less efficient and more
variable sampling strategies (Jones et al., 2019; Jones &
Dekker, 2018). Other studies confirm that averages can
be extracted from very early in development (Manning
et al., 2014; Sweeny et al., 2015), but children pooled over
a lower number of items compared to adults. Such
decreased sampling may explain the decreased precision
of the encoding of the variance of the distractor distribu-
tion in children that we report. Our implicit measure of
ensemble statistics also showed that the mean was implic-
itly learned in both our groups, consistent with earlier
explicit tasks of summary statistics in children (and
inconsistent with an overall global deficit in autism as
hypothesized by Happé & Frith, 2006).

While the findings are consistent with an acquisition
of a broader distribution than the one presented, imply-
ing that children form broader contextual priors than
adults, such “weaker” priors are not limited to individuals
with autism, as sometimes hypothesized (Pellicano &
Burr, 2012). Only outside of the range of the distribution,
the response times drop significantly, which could point
to the encoding of the Gaussian distractor distribution as
a uniform one (Chetverikov et al., 2017c) in children, that
is, taking into account the range of the distribution only.
Hence, our findings also do not align with an enhanced
perceptual functioning account or the idea of increased
sensory precision in ASD (Brock, 2012; Mottron
et al., 2006; Van de Cruys et al., 2014), since those
accounts would predict a sharper or in any case more
accurate representation of the distribution in the ASD
group.

In future work, it will be interesting to investigate
why children with ASD lose their usual edge in visual
search performance in our more complex task. Both the
extent of spatial (and temporal) pooling (number of
items), and the weights of the different items contributing
to the mean and variance estimation might vary
(Alvarez, 2011). In addition, it is sometimes hypothesized
that the key problem in ASD may be in disentangling
irrelevant (noise) variability from relevant dimensions of
variability (Van de Cruys et al., 2017). Hence, adding an
irrelevant dimension of variability (e.g., color) to the par-
adigm may be promising (Hansmann-Roth et al., 2019).
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Finally and most importantly, a study with adults with
ASD should verify whether the capacity to encode the
precise distractor distribution can be acquired with aging,
as seems to be the case for neurotypical adults, or
whether autistic individuals are generally stuck with
broader prior distributions. Adult participants would also
allow us to increase the trial load and add conditions
with different distribution types (Gaussian, uniform) and
widths, as done in earlier studies using this paradigm in
typical participants (e.g., Chetverikov et al., 2016, 2017a)
in order to better characterize distribution learning in
autism as well as dissociate possible effects of learning of
the target distribution of priming trials versus learning
(of the shape of) the distractor distribution. Indeed, the
fact that, contrary to research in adults, we did not find a
clear reproduction of the shape of the distractor distribu-
tion (i.e., monotonic decrease in RT corresponding to
monotonic decrease in distractor probability density),
leaves open a possible contribution of target distribution
learning (in both groups).

In conclusion, we present the first evidence on feature
distribution learning in children. Using our implicit mea-
sure, we show that the variance learned was much
broader than the one of the presented distribution, con-
sistent with less informative or broader priors in children
irrespective of ASD diagnosis. This may point to a level
of developmental maturation required to neurally repre-
sent precise distributions, as we see in adults. In contrast,
structural priors (those that do not depend on learning
within the task) do already have a strong effect on chil-
dren’s visual search performance, again irrespective of
ASD diagnosis.
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