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ABSTRACT 

Predictive coding theories of autism suggest that symptoms could result from an atypical 

learning of expectations. We assessed whether adults with autism could learn expectations in an 

uncertain context. Twenty-nine neurotypicals and 25 autistic adults participated in an associative 

learning task. After hearing a tone, participants had to predict the rotation direction of a dot pair, and to 

report what they perceived. There was a probabilistic association between the tone and the rotation 

direction. This association could reverse within a block. Both groups were biased by their expectations, 

as they reported perceiving a rotation consistent with the contingency in a subset of ambiguous trials 

where the dots did not rotate. Participants made predictions above chance level, but contrary to 

neurotypicals, autistic participants updated their prior expectation less after a change in contingency. 

Computational modeling revealed a smaller influence of associative learning on perceptual expectations 

in the autism group. In an additional task, participants reported how confident they were about their 

percepts. Both groups expressed confidence in relation to the stimuli, but certainty ratings reflected 

response times in neurotypical participants only. These findings, showing a more inflexible adjustment 

of priors in autism, should help refining the predictive coding hypotheses of autism. 

 

Keywords: Autism Spectrum Condition, Inflexibility, Perceptual inference, Predictive Coding, Prior, 

Probabilistic learning. 
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LAY ABSTRACT 

We have an internal representation of the world that guides our behavior, helps us predicting 

what comes next and therefore, reducing uncertainty. For instance, after hearing the noise of a door 

opening, we usually expect to see a person appearing, whose features differ depending on the context. 

In this example of associative learning, predictions need to be adjusted if there is a change in the 

environment (e.g., different person depending on the location). Recent theories suggest that the 

symptoms encountered in autism could be due to an atypical learning of predictions or to a decreased 

influence of these expectations on perception. Here, we conducted an experiment assessing whether 

adults with autism could learn and adjust their predictions in a changing environment. Throughout a 

behavioral task, participants learned to associate a sound with a visual outcome, but this association 

could sometimes reverse. Results showed that autistic adults could learn to make predictions that fitted 

the main sound-vision association, but were slower to adapt their expectations when there was an 

unannounced change in the environment. We also observed that both adults with and without autism 

tended to be biased by their expectations, as they reported seeing what they expected to see rather than 

what was actually shown. Altogether, our results indicate that autistic adults can learn predictions but 

are more inflexible to adjust these predictions in a changing environment. These results help refining 

recent theories of autism (called “predictive coding” theories), which intend to identify the core 

mechanisms underlying the autistic symptomatology. 
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INTRODUCTION 

To minimize uncertainty in new environments, we tend to make predictions about what comes 

next, based on our prior knowledge. Actively computing predictions is one of the main tasks facing the 

brain. It relies on a combination of contextual sensory information with an internal model of the world 

that captures the underlying statistical regularities of the environment. Using this internal model, we 

make knowledge-driven inferences about the causes of sensory inputs. This process of perceptual 

inference has been formalized in the Bayesian framework, where posteriors (i.e., percepts) emerge from 

a combination of precision-weighted likelihood (i.e., sensory inputs) and priors (i.e., expectations). 

These expectations may rely on structural priors, usually learned over long time-scales, or on contextual 

priors that can be learned quickly and are specific to a given spatial or temporal situation (Seriès & Seitz, 

2013). Mismatches between expectations and sensory inputs give rise to a prediction error, which can 

be used to update the internal model, and therefore, to minimize surprise in future situations. Prediction 

errors should be given a flexible weight (or precision), so that prediction errors signaling important 

changes in the structure of the environment have a high precision, whereas prediction errors due to noise 

are ignored. Furthermore, in uncertain environments, one needs to be able to track different forms of 

uncertainty: sensory uncertainty (i.e., ambiguous sensory inputs), expected and unexpected uncertainty. 

Expected uncertainty comes from the known unreliability of the predictive relationships between stimuli 

in a familiar environment, whereas unexpected uncertainty arises from non-signaled changes in the 

environment that lead to strong prediction errors (Yu & Dayan, 2005). 

Difficulties to deal with uncertainty are particularly frequent in people who have an Autism 

Spectrum Condition (ASC), and are often related to anxiety issues (Jenkinson et al., 2020; Joyce et al., 

2017). ASC is characterized by persistent difficulties in social interactions and communication, and by 

restrictive, repetitive patterns of behaviors, interests or activities (DSM-5, American Psychiatric 

Association, 2013). Recent Bayesian and predictive coding theories suggest that the autistic 

symptomatology could arise from an atypical combination of sensory input and prior knowledge (Brock, 

2012; Lawson et al., 2014; Palmer et al., 2017; Pellicano & Burr, 2012; Van de Cruys et al., 2014). 

Specifically, the HIPPEA hypothesis suggests a High and Inflexible Precision of Prediction Error in 
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Autism (Van de Cruys et al., 2014), leading to an atypical updating of priors in ASC. This hypothesis 

was supported by recent studies showing that the behavioral and neural responses to unexpected versus 

expected stimuli were decreased in ASC (Goris et al., 2018; Lawson et al., 2017), suggesting that the 

weight of the prediction error is indeed more inflexible in ASC. As the precision of the prediction error 

is function of the prior and sensory precisions, the increased inflexibility of the prediction error may 

reflect an inflexible prior precision. This idea of more inflexible priors in ASC is consistent with a recent 

study showing that predictions are updated more slowly in ASC (Lieder et al., 2019). Behavioral studies 

found that priors biased perception either in a typical way in ASC (Corbett et al., 2016; Croydon et al., 

2017; Ego et al., 2016; Van de Cruys et al., 2017), or to a smaller extent (Karaminis et al., 2016; Król 

& Król, 2019). Probabilistic learning tasks investigating how people with ASC learn expectations in 

uncertain environments showed that adults with ASC (Robic et al., 2014) or with more autistic traits 

(Goris et al., 2020) had lower performance in a volatile environment, but Manning and colleagues (2016) 

found that children with ASC were able to adapt their learning rate in a volatile context. Finally, in 

another associative learning task, neurotypical adults had longer response times when the cue-outcome 

association was unexpected vs. expected, whereas there was no such modulation in the ASC group 

(Lawson et al., 2017). This result was interpreted as a more inflexible surprise in ASC, but might also 

be due autistic participants not learning the association if they ignored the auditory cue that was 

irrelevant to perform the task (i.e., determining if an image displayed a house or a face). In contrast, 

explicitly asking for a prediction response after hearing the cue would ensure that participants try to 

learn the probabilistic association. 

Interestingly, Weilnhammer et al. (2018) developed an associative learning task to assess 

prediction learning through an explicit response (i.e., giving a prediction response) and an implicit 

response (i.e., measuring how priors bias percepts). In their task, there was a probabilistic association 

between a tone and a rotation direction of two dots (clockwise or counterclockwise). After hearing a 

tone, participants had to predict the rotation direction. Then, they saw two rotating dots and had to report 

their percepts. Importantly, the paradigm included unambiguous trials (with two dots rotating) and 

ambiguous trials where the dots did not rotate (but simply appeared first in a vertical and then in a 
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horizontal position). The ambiguous trials provided an implicit measure of prior learning, as participants 

tended to report a rotation direction that matched their expectations. 

Here, we used an adaptation of the task developed by Weilnhammer and colleagues (2018) to 

assess whether adults with ASC can learn and update their priors in uncertain environments. In this task, 

participants had to give a prediction response about the tone-rotation association, and then a perception 

response about they perceived. The paradigm encompassed three forms of uncertainty: sensory 

uncertainty due to the presence of ambiguous trials, expected uncertainty due to a cue-outcome 

association being at 62.5%, and unexpected uncertainty due to the volatility of the context (i.e., sudden 

reversals of the cue-outcome associations).  

Using the prediction response, we investigated whether adults with ASC could explicitly learn 

the association, and whether they could update their expectations after a change in contingency. Using 

the perception response in ambiguous trials, we assessed whether priors implicitly biased perception in 

ASC. Computational models helped studying whether perceptual expectations were mostly driven by 

associative learning (i.e., the influence of the current hidden contingency), priming (i.e., the influence 

of the percept in the preceding trial) and/or sensory memory (i.e., the influence of the preceding 

ambiguous trial on the next ambiguous trial). Comparing the response times to give the perception 

response in ambiguous vs. unambiguous trials also allowed us to investigate if ambiguity increases the 

uncertainty of the percepts. Finally, we gained insights about metacognition in a last block where 

participants reported how sure they were about their percepts. We investigated whether ambiguous trials 

were indeed rated as more uncertain, and whether the delay in response time in ambiguous trials (vs. 

unambiguous trials) was correlated with an increase in uncertainty rating in these trials. 

  



Main text 

6/32 

 

METHODS 

1. Participants 

Twenty-nine neurotypical (NT) adults and 25 adults with ASC were included in this behavioral 

study (Table 1). In addition to these 54 participants, four participants were excluded from the analyses: 

three NT participants had high rates of unanswered trials (more than 25% of unanswered trials, vs. 2% 

±3 in the rest of the NT group) and one ASC participant was an outlier (68% of correct perception 

responses in unambiguous trials, vs. 99% ±2 in the rest of the ASC group). 

Participants with ASC received their diagnoses of ASC from a multidisciplinary Expertise 

Center for Autism in a standardized way according to the criteria of the Diagnostic and Statistical 

Manual of mental disorders 5 (DSM-5, American Psychiatric Association, 2013). All the ASC 

participants had a diagnosis of ASC without intellectual disability (Intelligence Quotient above 70 at the 

Wechsler Adult Intelligence Scale IV (Wechsler, 2008)). 

Inclusion criteria were being between 18 and 50 years old and reporting normal or corrected-to-

normal hearing and vision. Exclusion criteria for the NT participants were being diagnosed with a 

psychiatric or neurologic disorder, being under current neuropsychiatric medication and scoring higher 

than 32 out of 50 at the Autism-spectrum Quotient (AQ, Baron-Cohen et al., 2001). In the ASC group, 

seven participants reported having one or more comorbidities, and nine ASC participants reported being 

under current medication. 

Neurotypical participants were recruited at the university, and participants with ASC were 

recruited at the Expertise Center for Autism (part of the university hospitals). 

This study was approved by the medical Research Ethical Committee of the university hospitals. 

All participants provided written informed consent before starting the experiment. 

--- Table 1 --- 

2. Overall procedure 

Prior to the experiment, participants filled out the AQ questionnaire (Baron-Cohen et al., 

2001). They performed a short training (seven trials) followed by four blocks of the main task (total of 
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384 trials), and one block with the confidence rating task (64 trials). The experiment relies on the 

paradigm developed by Weilnhammer and colleagues (2018). 

Participants sat in a quiet and darkened room, at about 60 cm from the computer screen (Dell 

Monitor U2410, spatial resolution 1920 x 1200) and wore headphones. They used their dominant hand 

to give answers using the keyboard. Stimuli were displayed using the Psychtoolbox implemented in 

Matlab (version R2018a). 

3. Experimental procedure of the main task 

3.1. Trial structure 

Participants performed a probabilistic associative learning task (Figure 1A). They first had to 

predict the rotation direction of a pair of dots after hearing a tone, and second to report the rotation 

direction they perceived. They were instructed that there was an underlying association between the tone 

and the rotation direction, and that this association could change over time. 

A high (576 Hz) or low (352 Hz) tone was played for 300 ms. After a jitter of 100 to 300 ms 

(uniform distribution), the prediction screen showing a right and a left arrow appeared for 1000 ms. 

Participants had to click on the left or right arrow of the keyboard, if they predicted that a 

counterclockwise (CCW) or clockwise (CW) rotation would follow, respectively. To highlight the 

choice of the participant, the selected arrow turned red. Then, the two dots appeared at their vertical 

position for 600 ms, made a CW or CCW rotation within 33 ms, and remained at their horizontal position 

for 600 ms. The perception screen appeared for 1000 ms, showing a left and a right double arrow. 

Participants had to report the direction of the rotation, using the left or right arrow key of the keyboard 

to report a CCW or CW rotation, respectively. After clicking, the arrow that was selected turned red. 

The inter-trial interval lasted for 500 to 2500 ms (uniform distribution, average of 1500 ms). During all 

the trials, a white fixation cross was displayed at the center of the screen. 

There were two types of trials: ambiguous and unambiguous trials. In unambiguous trials, there 

was a CW or CCW rotation of the dot pair. In ambiguous trials, the two dots appeared in their vertical 

position and then in their horizontal position (without rotating). 
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The prediction response provided an explicit measure of associative learning, while the 

perception response in ambiguous trials provided a more implicit measure (i.e., they should be perceived 

according to the current contingency if they are biased by their expectations (Weilnhammer et al., 

2018)). 

--- Figure 1 --- 

3.2. Block structure 

Each block consisted of 96 trials, divided within four subblocks: one subblock of 16 trials, two 

subblocks of 24 trials and one subblock of 32 trials. The order of these subblocks was randomized. 

Within one subblock, there was a small fraction (12.5%) of ambiguous trials and a large fraction (87.5%) 

of unambiguous trials (Figure 1B).  

In the unambiguous trials, there was an underlying contingency between the tone and the 

rotation direction. In 71.4% of the unambiguous trials (i.e., 62.5% of all trials), the tone-rotation 

association was consistent with the current contingency (i.e., expected unambiguous trials). In 28.6% of 

the unambiguous trials (i.e., 25% of all trials), the tone-rotation association was inconsistent with the 

main contingency (i.e., unexpected unambiguous trials). Among the unambiguous trials, 50% showed 

CW rotations and 50% showed CCW rotations. 

Therefore, in each block of 96 trials, there were 12 ambiguous trials (12.5%), 60 expected 

unambiguous trials (62.5%) and 24 unexpected unambiguous trials (25%). These trial type proportions 

remained the same within eight successive trials. The contingency reversed when starting a new 

subblock. Note that the proportions of trial types differ somewhat from the study by Weilnhammer and 

colleagues (2018) (i.e., in their study: 12.5% of ambiguous trials, 75% of expected unambiguous trials 

and 12.5% of unexpected unambiguous trials). In our study, we doubled the percentage of unexpected 

ambiguous trials in order to create a more uncertain environment, and therefore to investigate how adults 

with ASC learn prediction in uncertain contexts and deal with different forms of uncertainty (sensory, 

expected and unexpected uncertainty). 
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4. Experimental procedure of the confidence rating task 

4.1. Trial structure 

Participants performed a confidence rating task, where the structure of the trials was the same 

as in the main task, but in addition, they had to rate how sure they were about their percept. The 

confidence rating screen appeared for 2600 ms, showing the following ratings: “1. Very sure”, “2. Quite 

sure”, “3. Quite unsure” or “4. Very unsure”. Participants used the numbers 1 to 4 on the keyboard to 

answer. After selecting a number, their answer was highlighted in red. 

4.2. Block structure 

Participants performed one confidence rating block after completing the four blocks of the main 

task. The confidence rating block consisted of 64 trials, divided in two subblocks of 32 trials. There 

were 50% of ambiguous trials and 50% of unambiguous trials (43.75% expected and 6.25% unexpected 

unambiguous trials). Note that in this block, the percentage of ambiguous trials was higher than in the 

main task, as the main goal was to compare confidence responses in ambiguous versus unambiguous 

trials. 

5. Statistical analyses 

Demographic data of the two groups (Table 1) were compared using Student t-tests, and 

proportion tests. In the main task, one-sample t-tests (with μ = 0.50) were used to compare performance 

to chance level in each group. Groups were compared using two-sample t-tests. Response times (RT) 

were based on the individual median RT. Accuracy and RT were analyzed using repeated-measure 

ANOVAs, with group as a between-subject factor (NT vs. ASC) and condition as a within-subject factor 

(ambiguous vs. unambiguous or expected vs. unexpected). Student t-tests were used as post-hoc tests. 

Effect sizes are reported as Cohen’s d: very small (d = 0.01), small (d = 0.20), medium (d = 0.50), large 

(d = 0.80) or very large (d > 1.20) effect sizes (Cohen, 1988; Sawilowsky, 2009). In addition, we report 

Bayes Factors10 in favor of the H1 hypothesis for all these tests. 

In the confidence task, a mean confidence rating was calculated for ambiguous and 

unambiguous trials: the 1 to 4 scale (Very sure to Very unsure scale) was transformed into a 100% to 

0% certainty scale, for an easier understanding of the certainty rating scale.  
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Correlations were assessed using Pearson’s correlation tests. A Pearson’s r of 0.10 is considered 

as a small effect, 0.30 as a medium effect and 0.50 as a large effect. Correlations were compared between 

groups using Fisher’s test. 

Data were processed using Matlab (version 2019a) and statistical analyses were performed using 

R (version 2.15.3, http://www.r-project.org/). All student t-tests were two-tailed. Results are presented 

as Mean (± Standard Deviation). The threshold for statistical significance was set at p < .05. 

6. Bayesian modelling 

In line with Weilnhammer and colleagues (2018), we used a Bayesian modelling approach that 

evaluates the updating of predictions in the main task. It allows assessing whether perceptual 

expectations are mostly driven by associative learning (i.e., the influence of the current hidden 

contingency), priming (i.e., the influence of the percept in the preceding trial) and/or sensory memory 

(i.e., the influence of the preceding ambiguous trial on the next ambiguous trial). The models were 

developed by Weilnhammer and colleagues (2018), and the full mathematical model description is 

detailed in their manuscript. The prior parameters are described as Supplementary Information (Table 

S1). 

The behavioral model consists of a contingency model and a perceptual model (Figure 4A). The 

contingency model infers the tone-rotation associations throughout the main experiment to determine 

the prediction response, using a three-level Hierarchical Gaussian Filter (HGF) (Mathys et al., 2011; 

Mathys et al., 2014). The contingency model is coupled with a perceptual model, which predicts the 

perceptual choices under the influence of associative learning (inferred from the contingency model), 

priming and sensory memory. We fitted eight models on the data: associative learning (A), priming (P) 

and/or sensory memory (S) (i.e., none, A, P, S, AP, AS, PS, APS).  

The models were fitted on the prediction response about the upcoming rotating direction of the 

dot pair (yprediction) and the perception response about the rotation direction perceived (yperception). Model 

inversions were performed separately for each block of the main task. We used a version of the HGF 

for binary inputs, with the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno minimization as 

optimization algorithm. The HGF was implemented in the HGF 4.0 toolbox (TAPAS toolbox – 
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Translational Algorithm for Psychiatry-Advancing Science, translationalneuromodeling.org/tapas/) in 

Matlab (R2019a version). 

We used random effects Bayesian Model Selection (BMS) (Stephan et al., 2009) in SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) to assess which of the eight models best fitted the data. We report 

the exceedance probability, i.e., the probability that a given model is more likely than any other model 

(among the eight models tested). We also report the group-level Bayesian Information Criterion (BIC), 

i.e., the BIC scores summed across participants, for each model as a Supplementary Table (Table S2). 

For each participant, the posterior parameters of each model were averaged across the four 

blocks of the main task. Then, using Bayesian Model Averaging (BMA), we estimated the associative 

learning precision πa, the sensory memory precision πs, the priming precision πp, the second-level 

learning rate ω2 and the third-level learning rate ω3 for each participant. The second-level represents the 

probabilistic association between the cue (i.e., high or low tone) and the outcome (i.e., clockwise or 

counterclockwise rotation). The third level corresponds to the volatility of this probabilistic association 

across time (i.e., whether it will remain stable or change). The precision parameters of the winning 

model were compared using Bayesian estimation (BEST, Kruschke, 2013). 

7. Community involvement 

When setting up the experiment, an autistic adult gave us feedback about the task (e.g., clarity 

of the instructions). Furthermore, the results were presented to a local consortium including autistic 

adults, and interpretations were discussed with them. 

RESULTS 

1. Main associative learning task 

1.1. Prediction response 

1.1.1. Mean prediction response 

A correct prediction response refers to a response that matches the main tone-rotation 

association within a subblock. The mean percentage of correct predictions was 61% (±7) in the NT 
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group and 58% (±6) in the ASC group (Figure 2A). These percentages were significantly different from 

chance level (50%) in both groups (NT: t(28) = 8.9, p < .0001, d = 1.66, BF10 = 1.0 x 107; ASC: t(24) = 

7.0, p < .0001, d = 1.40, BF10 = 5.5 x 104). There was a trend toward a significant group difference (t(52) 

= 1.9, p = .06, d = 0.52, BF10 = 1.2), suggesting more accurate predictions in the NT group than in the 

ASC group. 

The mean response time (RT) to give a prediction answer was 540 ms (±90) in the NT group 

and 530 ms (±97) in the ASC group (no significant group difference). 

--- Figure 2 --- 

1.1.2. Prediction learning throughout the task 

To investigate the dynamics of prediction learning, we compared the percentages of correct 

predictions at the beginning vs. end of a subblock. We refer to the beginning and end of a subblock (of 

16, 24 or 32 trials) as the first eight and last eight trials, respectively. The percentages of correct 

predictions at the beginning and end of subblocks were, respectively, 55% (±5) and 64% (±8) in the NT 

group (Figure 3A), and 58% (±6) and 58% (±7) in the ASC group (Figure 3B).  

An ANOVA assessing the effect of group (NT vs. ASC) and part (beginning vs. end) on the 

percentage of correct predictions revealed an effect of part (F(1,52) = 17.7, p < .0001) and an interaction 

between part and group (F(1,52) = 15.5, p < .0005). Post-hoc t-tests showed that the percentage of 

correct predictions was higher at the end than at the beginning of the subblock (t(53) = 3.7, p < .0005, d 

= 0.51, BF10 = 55). In the NT group, the percentage of correct predictions was significantly higher at the 

end of a subblock than at the beginning (t(28) = 5.2, p < .0001, d = 0.96, BF10 = 1.2 x 103), whereas there 

was no significant difference in the ASC group (t(24) = 0.0, p = .98, d = 0.01, BF10 = 0.2). Between 

groups, the percentages differed at the end of the subblock (t(52) = 3.0, p < .005, d = 0.81, BF10 = 8.7), 

but not at the beginning (t(52) = 1.7, p = .10, d = 0.45, BF10 = 0.8). 

The AQ was negatively correlated with the difference in percentages of correct predictions 

between the end and the beginning of a subblock (r = -.52, p < .0001, BF10 = 3.1 x 102, Figure 3D). Note 

that these correlations did not reach the significance level within groups (NT: r = -.32, p = .10, BF10 = 

1.3; ASC: r = -.23, p = .26, BF10 = 0.7). 
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To refine the understanding of prediction learning within a subblock, we performed the same 

analyses on four time windows of eight trials within a subblock (statistical analyses described as 

Supplementary Information, analysis S1). The results, shown in Figure 3C, confirm that there was no 

significant increase in percentage of correct predictions in ASC, whereas there was an increase in NT. 

--- Figure 3 --- 

1.2. Perception response 

1.2.1. Perception response in unambiguous trials 

In unambiguous trials, the mean percentage of correct perception responses was 99% (±2) in 

both groups (no significant group difference). The percentages of correct perception response in 

expected and unexpected unambiguous trials were, respectively, 99% (±1) and 98% (±2) in the NT 

group, and 99% (±2) and 98% (±2) in the ASC group. The mean RT for expected and unexpected trials 

were, respectively, 231 ms (±82) and 223 ms (±81) in the NT group, and 256 ms (±116) and 251 ms 

(±127) in the ASC group. ANOVAs performed on the mean accuracy and RT revealed no significant 

effect of group or expectedness. 

1.2.2. Perception response in ambiguous trials 

In ambiguous trials, a perception response is considered as being correct if it matches the current 

tone-rotation association. The mean percentage of correct perception responses in ambiguous trials was 

61% (±9) in the NT group and 56% (±6) in the ASC group (Figure 2B). These percentages were different 

from chance level in the NT (t(28) = 6.5, p < .0001, d = 1.20, BF10 = 3.3 x 104) and ASC (t(24) = 4.9, p 

< .0001, d = 0.98, BF10 = 4.7 x 102) groups. The NT group had a higher percentage of correct ambiguous 

trials than the ASC group (t(52) = 2.2, p < .05, d = 0.60, BF10 = 2.0). The mean RT associated to this 

response was 285 ms (±91) in the NT group and 282 ms (±115) in the ASC group (no significant group 

difference). 

1.2.3. Unambiguous vs. ambiguous trials 

We assessed whether ambiguous trials were associated with an increase in response time 

compared to unambiguous trials. The mean RT in unambiguous and ambiguous trials were, respectively, 



Main text 

14/32 

 

227 ms (±82) and 285 ms (±91) in the NT group, and 251 ms (±116) and 282 ms (±115) in the ASC 

group. An ANOVA on RT with the factors group (NT vs. ASC) and trial type (ambiguous vs. 

unambiguous) revealed an effect of the trial type (F(1,52) = 32.0, p < .0001) and a non-significant trend 

toward an interaction between trial type and group (F(1,52) = 2.7, p = .11).  

The RT was longer in ambiguous than unambiguous trials (t(53) = 5.6, p < .0001, d = 0.76, BF10 

= 1.8 x 104), with this effect being also significant within groups (NT: t(28) = 5.0, p < .0001, d = 0.93, 

BF10 = 1.7 x 104; ASC: t(24) = 3.2, p < .005, d = 0.65, BF10 = 3.5). Between groups, the mean RTs did 

not differ significantly (p-values > .33). 

1.3. Correlation between the prediction and perception response 

We assessed correlations between the two main measures of prediction learning: the percentage 

of correct predictions (explicit measure) and of correct perception response in ambiguous trials (implicit 

measure). There was a positive correlation between these variables across groups (r = .59, p < .0001, 

BF10 = 7.8 x 103) and within groups (NT group: r = .52, p < .005, BF10 = 13; ASC group: r = .66, p < 

.0005, BF10 = 77) (Figure 2D-E). These correlations did not differ significantly between groups (p = 

.46). 

2. Behavioral modeling of the main task 

2.1. Bayesian model selection 

Random-effect Bayesian Model Selection (BMS) comparing the eight models revealed that the 

model best explaining the data in both groups was the model combining the factors associative learning 

and priming (Model AP) (Figure 4B). The exceedance probability for the model AP was 0.59 in the NT 

group and 0.96 in the ASC group. In NT, the second model best explaining the data was the model A 

(exceedance probability of 0.28).  

--- Figure 4 --- 

2.2. Posterior model parameters 

The influence of associative learning was stronger in NT than ASC (NT: πA = 1.46 ±0.36; ASC: 

πA = 1.17 ±0.31; BEST, t(52) = 3.2, p < .005, d = 0.86, BF10 = 14). The influence of priming was not 
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significantly different between groups (NT: πP = 0.20 ±0.17; ASC: πP = 0.26 ±0.16; BEST, t(52) = 1.1, 

p = .26, d = 0.31, BF10 = 0.5), nor was the influence of sensory memory (NT: πS = 0.31 ±0.39; ASC: πS 

= 0.31 ±0.41; BEST, t(50) = 0.0, p = .99, d = 0.00, BF10 = 0.3). The parameters of the best model 

(Associative learning and Priming) are shown in Figure 4C. Within groups, the influence of associative 

learning was stronger than the influence of priming in both groups (NT: BEST, t(28) = 16.0, p < .0001, 

d = 2.96, BF10 = 4.3 x 1012; ASC: BEST, t(24) = 12.5, p < .0001, d = 2.51, BF10 = 1.7 x 109). Posterior 

parameter estimates are shown as Supplementary Information (Table S1).  

The second-level and third-level learning rates were ω2 = -1.53 ±1.11 and ω3 = -6.18 ±0.11 in 

the NT group, and ω2 = -1.59 ±1.13 and ω3 = -6.19 ±0.17 in the ASC group (Figure 4.D). The learning 

rates were not significantly different between groups (ω2: BEST, t(52) = 0.2, p = .85, d = 0.05, BF10 = 

0.3; ω3: BEST, t(52) = 0.4, p = .70, d = 0.11, BF10 = 0.3).  

As expected, the mean percentage of correct predictions was strongly correlated with the 

second-level learning rate (NT: r = .75, p < .0001, BF10 = 3.4 x 104; ASC: r = .77, p < .0001, BF10 = 1.4 

x 104) (Figure 4.E-F). The percentage of ambiguous trials perceived according to the current contingency 

and the second-level learning rate were marginally correlated in NT (r = .31, p = .096, BF10 = 1.3) and 

significantly correlated in ASC (r = .55, p < .005, BF10 = 11). 

3. Confidence rating task 

3.1. Prediction and perception responses 

The mean percentage of correct predictions was 63% (±12) in the NT group and 61% (±15) in 

the ASC group (no significant group difference). The percentage of ambiguous trials perceived 

according to the current contingency was 58% (±13) in NT and 59% (±14) in ASC (no significant group 

difference). 

3.2. Confidence rating response 

The mean certainty ratings for ambiguous and unambiguous trials were, respectively, 52% (±27) 

and 85% (±17) in the NT group, and 69% (±27) and 95% (±8) in the ASC group (Figure 5B). An 

ANOVA on certainty rating with the factors group (NT vs. ASC) and trial type (ambiguous vs. 
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unambiguous) showed a group effect (F(1,52) = 10.4, p < .005), a trial type effect (F(1,52) = 53.1, p < 

.0001) and no significant interaction (F(1,52) = 0.9, p = .35). Post-hoc t-tests showed that participants 

gave higher certainty rating for unambiguous than ambiguous trials (t(53) = 7.3, p < .0001, d = 0.99, 

BF10 = 7.4 x 106). The ASC group gave higher certainty ratings than the NT group (t(106) = 2.7, p < .01, 

d = 0.53, BF10 = 5.4).  

--- Figure 5 --- 

3.3. Correlations between measures of uncertainty 

We assessed whether the explicit certainty rating for unambiguous vs. ambiguous stimuli was 

correlated with an implicit measure of certainty: the RT to give the perception response for unambiguous 

vs. ambiguous stimuli. The difference in certainty rating (unambiguous minus ambiguous) was 

positively correlated with the difference in RT (ambiguous minus unambiguous, in the main task) across 

groups (r = .31, p = .02, BF10 = 3.4). This correlation was significant within the NT group (r = .51, p < 

.005, BF10 = 12.2, Figure 5C) but not ASC group (r = .00, p = .98, BF10 = 0.4, Figure 5D). Correlations 

significantly differed between groups (p = .05). In Figure 5C, one NT participant appears to be an outlier, 

but note that the correlation is marginally significant in the NT group after removing this participant (r 

= .34, p = .07, BF10 = 1.5). Data per trial type (ambiguous or unambiguous) are shown as Supplementary 

Information (Figure S1). 

DISCUSSION 

We used an associative learning task in a volatile environment to investigate whether adults with 

autism could learn and update their expectations in an uncertain environment. Both groups managed to 

learn predictions, but contrary to the NT group who had increasing percentages of correct predictions 

when the contingency remained stable, the ASC group did not show any increase. Both groups tended 

to perceive ambiguous trials according to the current contingency, suggesting that priors biased their 

perception. Yet, this prior bias was smaller in ASC than NT. Models showed that both groups had their 

perceptual expectations mostly influenced by associative learning, but this influence was smaller in ASC 

than NT. There was no significant difference in learning rates between the groups. Finally, both groups 
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rated unambiguous trials as more certain than ambiguous trials, suggesting a form of meta-confidence. 

In NT only, the differences in certainty ratings and responses times between unambiguous and 

ambiguous trials were correlated. 

As different types of uncertainty contribute to shaping expectations about the environment, 

results are discussed in the framework of sensory, expected, and unexpected uncertainties. 

Learning expectations under sensory uncertainty 

The task presented here included ambiguous trials where the dot pair did not rotate. Sensory 

uncertainty was therefore very high in these trials, leading participants to rely on their prior expectation 

to give a perception response. It should be noted that explicitly asking for a prediction response might 

have influenced the perception response, especially in ambiguous trials. In ambiguous trials, both groups 

tended to report perceiving a rotation that followed the current contingency, showing that they learnt a 

prior that biased their perception. Yet, we observed a smaller bias in the ASC group (d = 0.60), 

consistently with the theory of “hypo-priors” in ASC formulated by Pellicano and Burr (2012). 

Nonetheless, it should be noted that autistic individuals would not have a uniformly decreased prior 

precision, as they sometimes show intact priors (e.g., Van de Cruys et al., 2017). Thus, the prior weight 

on perception might be different or not in ASC compared to NT, depending on the context and on the 

type of priors investigated (e.g., structural vs. contextual priors, see Seriès & Seitz, 2013). In light of 

previous studies showing impaired prediction learning in a volatile context but not in a stable context 

(e.g., Robic et al., 2014), we can hypothesize that hypo-priors would only be observed in autistic 

individuals in uncertain contexts. 

In the current study, another effect of sensory uncertainty on perception was the increased 

response times and the decreased certainty ratings in ambiguous trials in both groups. Within the 

Bayesian framework, a noisy sensory distribution (as in ambiguous trials) should be associated with a 

noisy posterior distribution, and therefore with a decreased confidence about the percept. The decreased 

prior bias on perception observed in ASC could either be due to a decreased prior precision or to an 

increased sensory precision (Brock, 2012). A distinction between these two alternatives is that an 

increased sensory precision would lead to a more precise posterior distribution (i.e., more confident 
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percept, as observed in the ASC group), whereas a decreased prior precision would lead to an unprecise 

posterior distribution. Hypotheses about the causes of the decreased prior bias will be further developed 

in the following sections. 

Learning expectations under expected uncertainty 

In this task, expected uncertainty refers to the fact that the tone was predictive of the dot rotation 

direction in only 62.5% of the trials. Both groups had percentages of correct predictions above chance 

level (d > 1.40), suggesting that they managed to learn the association despite a rather high level of 

expected uncertainty. In the literature, results on probabilistic learning in ASC seem to depend on several 

factors (e.g., high vs. low probabilistic associations, see Solomon et al., 2011). A meta-analysis 

including a large variety of tasks (including probabilistic learning tasks) concluded that statistical 

learning in ASC was intact, on average (Obeid et al., 2016). Finally, a probabilistic reversal learning 

task performed on a large sample of individuals with ASC showed that less optimal learning was related 

to the reduced flexible behavior in ASC (Crawley et al., 2020). 

Using computational models, we found that perceptual expectations were driven by associative 

learning and, to a smaller extent, by sensory memory in both groups. This result is consistent with the 

findings by Weilnhammer et al. (2018) in NT, and suggests that both groups relied on the same learning 

mechanisms to perform the task. In addition, the second-level learning rate (about the cue-outcome 

association) was not significantly different between groups, consistently with other probabilistic 

learning studies involving adults with ASC (Lawson et al., 2017), children with ASC (Manning et al., 

2016) and adults with high autistic traits (Goris et al., 2020). Interestingly, in the study by Goris et al. 

(2020), adults with more autistic traits did not significantly differ in learning rates but had a lower 

performance level in a volatile environment. Here, the ASC group had a smaller strength of associative 

learning and a smaller prior bias, in spite of equal average learning rates. It suggests that the prior may 

have been learnt at the same speed in both groups, but less precisely in the ASC group.  

Furthermore, we had hypothesized that expected uncertainty would lead to longer response 

times in unexpected vs. expected trials. Yet, we did not observe this effect in neither of the two groups. 

This absence of effect in unambiguous trials may be due to the high sensory precision of the inputs in 
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these trials, in combination with a relatively low prior precision. Lawson et al. (2017) observed an effect 

on response times for unexpected tone-outcome associations in NT, but the probabilistic association was 

higher in their task than ours (84% vs. 62.5%), probably leading to a more precise prior. 

Learning expectations under unexpected uncertainty 

In addition to dealing with sensory and expected uncertainties, participants had to handle 

unexpected uncertainty as the cue-outcome association could suddenly reverse. NT participants had 

more and more correct prediction responses from the beginning to the end of a subblock. In other words, 

NT participants updated their predictions about the cue-outcome association after a reversal in 

contingency (d = 0.96). In contrast, the mean percentage of correct predictions did not increase in ASC 

(d = 0.01), suggesting that they adjusted their predictions to a lesser extent or slower after contextual 

changes. The group comparison also revealed that the percentage of correct predictions at the end of a 

subblock was higher in NT than ASC (d = 0.81), reinforcing the idea that ASC participants failed to 

optimally update their predictions after a change in contingency. Other studies also showed impaired 

performance in probabilistic learning tasks in ASC (or in individual with autistic traits), specifically in 

volatile environments (Goris et al., 2020; Robic et al., 2014). 

Previous studies revealed a slower prior learning in ASC (e.g., Lieder et al., 2019), consistently 

with the decreased prior update observed in the ASC group. However, it should be noted that in the 

present study, there was no significant difference in the third-level learning rate between the groups, 

suggesting a similar learning about the volatility of the environment in both groups. Using HGF, Lawson 

et al. (2017) found that the third-level learning rate was higher in ASC than NT. Note that they used a 

higher prior variance in their model, compared to our study, which may have influenced the results. In 

contrast, Manning et al. (2016) found that both children with and without ASC updated their learning 

rates in a volatile vs. stable context. 

In the present study, given the similar volatility learning rates in both groups but the decreased 

prediction update in ASC, we can hypothesize that participants with ASC noticed the environmental 

changes, but failed to update their priors in an optimal way. Alternatively, this decreased prediction 

update in ASC may be viewed as a cost/benefit compromise in a very uncertain environment, where 
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adjusting priors may seem too costly and eventually useless, as both groups still reached a similar level 

of performance on average. 

As highlighted in the review by Palmer et al. (2017), the learning rate depends on the precision 

of the prediction error. According to the hypothesis of a High and Inflexible Precision of the Prediction 

Error in Autism (HIPPEA, Van de Cruys et al., 2014), the learning rate should be higher and more 

inflexible in ASC. The present study showed no significant difference in learning rate between groups, 

but a more inflexible behavior to adjust predictions. This would be in favor of an inflexible, but not 

higher, precision of the prediction error in ASC. Other studies also found a more inflexible precision of 

the prediction error in ASC, without a higher surprise response in ASC (Goris et al., 2018; Lawson et 

al., 2017). 

Self-reported uncertainty 

When participants were asked to judge how confident they were about their percepts, both NT 

and ASC participants indicated being more uncertain in ambiguous than unambiguous trials. This effect 

suggests that they were able to correctly assess which of the sensory stimuli were more uncertain, 

therefore revealing a form of metacognition in both groups. Being more uncertain in ambiguous than 

unambiguous trials was expected to be associated with slower answers in ambiguous than unambiguous 

trials. This effect was observed in the NT group, but not in the ASC group. In other words, the group 

level data reflected the individual data for these two effects in NT, but not in ASC. Hypotheses to explain 

this group difference may be that NT were better at assessing their uncertainty, and/or that they used the 

response time to converge toward a decision, contrary to the ASC group. An alternative explanation 

could be that ASC participants had a more inflexible behavior, as the reliability of the percept was not 

used to adapt their behavior (i.e., to modulate their response time). Nonetheless, this correlation result 

should be interpreted with caution given the trends toward correlations presented as Supplementary 

Information.  

Interestingly, ambiguous trials were perceived as relatively certain, suggesting that participants 

were indeed biased by their priors in these trials. Particularly, the certainty ratings were higher in the 

ASC group, which could be interpreted as a different use of the scale, or as different underlying 
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mechanisms. It may reflect an increased precision of the posterior distribution in the ASC group, or a 

higher confidence in sensory inputs. If people with ASC trust their percepts more, even when they are 

non-informative (i.e., ambiguous trials), it may explain why priors would be updated suboptimally. 

Indeed, the more confident a participant is in a new observation, the more it should impact his/her prior 

knowledge (Meyniel et al., 2015). This hypothesis would be consistent with an inflexible precision of 

the prediction error, leading people with ASC to use both relevant and irrelevant information to adjust 

their prior. 

Limitations 

We discussed how perception was biased by expectations, but we would like to highlight that 

this task does not allow to directly assess whether perception itself or the response itself is biased by 

prior expectations. Using neuroimaging studies could distinguish these two alternatives. Furthermore, 

we included participants with comorbidities and receiving medications, which is representative of the 

ASC population, but which may have influenced their behaviors. Yet, these participants did not behave 

as outliers. In the confidence task, fitting within-subject trial by trial models would better capture the 

RT/confidence rating relationship, but could not be performed here given the low number of trials in the 

confidence block. 

Conclusions 

Altogether, results showed that adults with ASC can learn predictions in uncertain environments 

and are biased by their expectations. However, in this volatile context, the prior bias was smaller in 

ASC, consistently with the hypo-prior hypothesis (Pellicano & Burr, 2012). Importantly, adults with 

ASC were more inflexible, as they update their priors to a lesser extent than NT after a contingency 

change. Slower prior learning in volatile contexts would explain the decreased prior update, smaller 

prior bias, and smaller influence of associative learning in ASC, but the learning rates were not 

significantly different between groups. The results tend to converge toward a more inflexible precision 

of prediction errors in ASC, but we did not find evidence of a higher precision of prediction errors. It is 

therefore partially in accordance with the hypothesis of a High and Inflexible Precision of the Prediction 

Error in Autism (Van de Cruys et al., 2014). 
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Future perspectives include using model-based functional MRI to identify the regions playing a 

key role in prior update. Besides, it would be interesting to investigate if the increased inflexibility 

observed in this task is associated with more repetitive behaviors and with a higher intolerance of 

uncertainty in the daily-life of individuals with ASC. Finally, comparing prior learning in other disorders 

of perceptual inference, such as schizophrenia, can contribute to refine the predictive coding theories. 

Acronyms 

AQ: Autism-spectrum Quotient, ASC: Autism Spectrum Condition, BMA: Bayesian Model 

Averaging, BMS: Bayesian Model Selection, CCW: Counterclockwise, CW: Clockwise, HGF: 

Hierarchical Gaussian Filter, HIPPEA: High and Inflexible Precision of the Prediction Error in Autism, 

NT: Neurotypical. 
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TABLES 

 

 NT group ASC group p 

Number of participants 29 25 - 

Male / Female number 13 / 16 13 / 12 ns 

Age (years) 23.5 (±3.5) 27.2 (±8.6) ns 

Left / Right-handed 2 / 27 2 / 23 ns 

Education level (years) 16.4 (±1.8) 14.3 (±2.3) * 

Autism-spectrum Quotient 13.1 (±5.9) 32.2 (±7.3) * 

 

Table 1: Demographic characteristics (group means ± standard deviations) 

Note that AQ scores from 2 NT participants are missing. * p < .05, ns: non-significant if p > .05. 
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FIGURE LEGENDS 

 

 

Figure 1: Experimental design 

A. Trial structure. At each trial, subjects heard a high or low tone, predicted the rotation direction (CW 

or CCW), saw a pair of dots rotating (except in ambiguous trials), and reported their perception (CW 

or CCW). B. Block structure. Each block consisted of four subblocks that were 16, 24 or 32 trial long. 

CW: Clockwise. CCW: Counterclockwise. 
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Figure 2: Associative learning in the main task 

A. Mean percentage of correct predictions. B. Mean percentage of ambiguous trials perceived 

according to the main current contingency. C-D. Correlations between the percentages of correct 

predictions and of ambiguous trials perceived according to the current contingency in NT (C) and ASC 

(D). Error bars indicate standard deviations. Significance levels: * p < .05, ** p < .005. 
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Figure 3: Prediction learning dynamics 

A-B. Mean percentages of correct predictions in the NT (A) and ASC (B) groups at the beginning (Beg.) 

and end of a subblock in the main task. Grey dotted lines represent individual data, while the thick line 

corresponds to the group mean. C. Mean percentage of correct predictions across four time-windows 

(w1, w2, w3, w4) corresponding to eight successive trials within one subblock. . D. Correlation between 

the Autism-spectrum Quotient (AQ) and the difference in percentages of correct predictions between the 

end and the beginning of a subblock.  Error bars indicate standard deviations. Significance levels: * p < 

.05, ** p < .005. 
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Figure 4: Hierarchical Gaussian Filter model of the associative learning task 

A. Illustration adapted from Weilnhammer et al. (2018). The model consists of a contingency level and 

a perceptual level that interact. The contingency model is a standard Hierarchical Gaussian Filter 

(HGF) model with μ1, μ2 and μ3 as 1st, 2nd and 3rd level predictions of the HGF model, ω2 and ω3 the 2nd 

and 3rd level learning rates, and κ2 the coupling strength between the 2nd and 3rd levels. The participant’s 

responses are the prediction response yprediction and the perception response ypercept. The perceptual model 

considers the influence of associative learning (mean μa and precision πa), priming (mean μp and 

precision πp) and sensory memory (mean μs and precision πs). P(ϴ1) represents the posterior probability 

of perceiving a CW rotation. The sensory stimulations are the CW or CCW rotations with the 

disambiguation factor (mean μdis and precision πst) and the high or low tone β. ζ is the decision 

temperature. B. Bayesian model comparison of the eight models assessing the influence of sensory 

memory (S) and/or priming (P) and/or associative learning (A), or none of these effects (0). The model 

AP (associative learning and priming) has the highest exceedance probability in both groups. C. 

Bayesian model averaging assessing the precisions of the associative learning factor πa and of the 

priming factor πp. D. Mean second-level (ω2) and third-level (ω3) learning rates in the NT and ASC 

groups. E-F. Correlations between the mean percentage of correct predictions and the learning rate in 

the NT group (E) and ASC group (F). ** p < .005, *** p < .0005. 
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Figure 5: Effect of ambiguity on response time and certainty rating 

A. Mean response time in the main task for ambiguous and unambiguous trials. B. Certainty rating in the 

confidence task for ambiguous and unambiguous trials. C-D. Correlations between the certainty rating for 

unambiguous minus ambiguous trials and response time for ambiguous minus unambiguous trials in the NT 

(C) and ASC (D) groups. Error bars indicate standard deviations U: Unambiguous trials (solid color). A: 

Ambiguous trials (spotted color). Significance levels: * p < .05, ** p < .005, *** p < .0005. 


