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ARTICLE OPEN

Disentangling sensory precision and prior expectation of
change in autism during tactile discrimination
Laurie-Anne Sapey-Triomphe 1✉, Gaëtan Sanchez1, Marie-Anne Hénaff1, Sandrine Sonié1,2,3, Christina Schmitz 1 and
Jérémie Mattout1

Predictive coding theories suggest that core symptoms in autism spectrum disorders (ASD) may stem from atypical mechanisms of
perceptual inference (i.e., inferring the hidden causes of sensations). Specifically, there would be an imbalance in the precision or
weight ascribed to sensory inputs relative to prior expectations. Using three tactile behavioral tasks and computational modeling,
we specifically targeted the implicit dynamics of sensory adaptation and perceptual learning in ASD. Participants were neurotypical
and autistic adults without intellectual disability. In Experiment I, tactile detection thresholds and adaptation effects were measured
to assess sensory precision. Experiments II and III relied on two-alternative forced choice tasks designed to elicit a time-order effect,
where prior knowledge biases perceptual decisions. Our results suggest a subtler explanation than a simple imbalance in the prior/
sensory weights, having to do with the dynamic nature of perception, that is the adjustment of precision weights to context.
Compared to neurotypicals, autistic adults showed no difference in average performance and sensory sensitivity. Both groups
managed to implicitly learn and adjust a prior that biased their perception. However, depending on the context, autistic
participants showed no, normal or slower adaptation, a phenomenon that computational modeling of trial-to-trial responses
helped us to associate with a higher expectation for sameness in ASD, and to dissociate from another observed robust difference in
terms of response bias. These results point to atypical perceptual learning rather than altered perceptual inference per se, calling for
further empirical and computational studies to refine the current predictive coding theories of ASD.
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INTRODUCTION
Autism Spectrum Disorders (ASD) refer to a range of highly
prevalent neurodevelopmental disorders, characterized by hetero-
geneous behavioral symptoms: difficulties in social interactions
and communication, repetitive behaviors, and restricted interests
(DSM V)1. The DSM V also highlights the importance of perceptual
symptoms in ASD, such as the hyper responsiveness to sensory
stimuli1. While some of the first theories focused on the social
symptoms2, others have addressed the atypical perception in ASD
defined by a decreased global processing and increased local
processing3,4. Theories, cast in a computational (Bayesian) frame-
work, propose more generic mechanisms in an attempt to explain
both social and non-social symptoms in ASD5–10. An ongoing and
thought-provoking theoretical debate aims at accounting for the
symptoms encountered in ASD, as the expression of atypical
probabilistic inference and learning6,8–13. In particular, an atypical
predictive coding system would have consequences on their
social life, as inferring others’ intentions and their evolutions is
crucial14,15. Refining the predictive coding theories of ASD could
thus help highlighting the core mechanisms at play16,17.
Grounded on empirical evidence, the present study aims to
contribute to this endeavor to shed light on the mechanisms
underlying perceptual inference and learning in ASD.
In Bayesian terms, sensory information is combined with prior

beliefs to generate percepts (posteriors). The relative contributions
(or weights) of prior and sensory evidence reflect their respective
precision or confidence. Importantly, these precisions also have to
be inferred from sensory inputs. The hypothesis of a different
Bayesian inference has been put forward in ASD, namely, an

atypical balance between prior and sensory precisions could
account for the symptoms encountered in ASD6,8–10,12,13. At least
three mechanistic hypotheses of atypical weighting of priors and
sensory inputs in ASD have been formulated. The hypo-prior
hypothesis10 suggests that priors are blurred in ASD, so that they
do not influence perception. This is consistent with the idea that
autistic people tend to be less influenced by priors in optical
illusions18,19. In contrast, the high sensory accuracy hypothesis
suggests that sensory information could be afforded a very high
precision when computing the percept9,12. The idea of a high
sensory precision in ASD is in line with their hypersensitivity and
acute discrimination abilities20,21. Note that this second hypothesis
appears to be non-trivially distinguishable from the first one,
simply because the sensory precision and prior precision play a
symmetric role in Bayesian inference9. As a consequence, they can
only be disentangled through their differential effect on second
order statistics (posterior precisions)11. Finally, a third hypothesis
points to a High and Inflexible Precision of Prediction Error in
Autism (HIPPEA)6. Interestingly, this hypothesis refers to the
precision weighting of prediction errors, which involves the
posterior precision, i.e., both the sensory and prior precisions22.
More importantly, it does not only invoke the precision values or
estimates, but also their adjustment over time. This is important as
it not only speaks to the influence of precision on local (trial wise)
perceptual inference, but to the process of adjusting the relative
confidence of sensory and prior information through perceptual
learning (over trials and context). Typically, a difficulty in
attributing accurate precisions would give rise to context-
insensitive prediction errors and would systematically challenge
the existing priors, because noisy sensory inputs would be

1Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500 Bron, France.
2Centre de Ressource Autisme Rhône-Alpes, Centre Hospitalier Le Vinatier, Bron, France. 3Hôpital Saint-Jean-de-Dieu, Lyon, France.✉email: laurie-anne.sapey-triomphe@inserm.fr

www.nature.com/npjscilearn

Published in partnership with The University of Queensland

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00207-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00207-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00207-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-023-00207-5&domain=pdf
http://orcid.org/0000-0002-6564-5892
http://orcid.org/0000-0002-6564-5892
http://orcid.org/0000-0002-6564-5892
http://orcid.org/0000-0002-6564-5892
http://orcid.org/0000-0002-6564-5892
http://orcid.org/0000-0002-8377-9608
http://orcid.org/0000-0002-8377-9608
http://orcid.org/0000-0002-8377-9608
http://orcid.org/0000-0002-8377-9608
http://orcid.org/0000-0002-8377-9608
https://doi.org/10.1038/s41539-023-00207-5
mailto:laurie-anne.sapey-triomphe@inserm.fr
www.nature.com/npjscilearn


erroneously considered as relevant. High sensory precision at the
early stages of sensory processing would lead to upregulated
prediction errors, which could induce narrow priors hardly
adapted in changing contexts. This emphasizes the importance
of the relative sensory and prior precisions, and of the dynamics in
the adjustment of those precisions6,8.
Such theories point to core mechanisms in ASD that would

explain both non-social and social symptoms. Importantly, they
also lay the ground for quantitative computational predictions
that can be tested empirically. Identifying such a mechanism
could contribute to improving diagnoses of ASD and opening new
avenues for interventions. Assessing and quantifying precision-
weighted priors and sensory inputs is challenging because these
quantities are updated in an inter-dependent fashion. This
challenge is acute, which explains the relative scarcity of current
evidence in favor of a precise computational account of ASD.
Studies investigating prior influence on perception suggested
intact priors in individuals with high autistic traits23 and with
ASD24–29 or reduced prior influence in autistic individuals30,31 (for
reviews, see refs. 32,33). Indeed, a recent review33 concluded that
the majority of the studies testing the predictive coding theories
of ASD did not support a prior-likelihood imbalance in ASD, even
though a third of the studies pointed toward a reduced prior
weight in ASD. In particular, paradigms using implicitly learned
priors were more likely to reveal a prior/-likelihood imbalance, in
contrast with paradigms using explicitly learned or pre-existing
priors33. The authors highlighted the need to include computa-
tional approaches to better investigate these predictive coding
theories in ASD33. Furthermore, learning mechanisms have been
often reported as atypical in ASD, which could affect the way
priors are built up. Indeed, autistic individuals show more
difficulties extracting regular patterns that underlie their experi-
ence of the world34,35, or have been characterized by a too-
specific learning36,37, a slower learning38, an atypical learning in a
volatile environment36,39 but also a typical learning40 (see32 for a
review). Interestingly, among the few approaches using computa-
tional models, a recent study suggested a difference in the
dynamics of perceptual inference, as autistic individuals weighted
recent stimuli less heavily to update their priors, as compared to
neurotypicals38. Studies using an electrophysiological or neuroi-
maging approach suggested more inflexible prediction errors in
ASD41, and (sometimes atypically but) hierarchically organized
predictions and prediction errors in ASD42. Finally, there is
evidence for reduced (but also sometimes intact) sensory
adaptation in ASD43–49. Here, we refer to sensory adaptation as
a process which reduces redundancy by biasing perception away
from repeated features in the environment, making novel stimuli
and features more salient43.

For significant progress to be made, one central need is a task
that would both elicit a behavioral effect in autistic participants
and enable the precise identification of a mechanistic account of
this effect. In such an attempt, we use a simple and low-level
tactile frequency discrimination task designed to elicit a time-
order effect (TOE) (Fig. 1b). This robust and well-documented
effect relates to the contraction bias described in the Central
tendency of judgment50–59, similar to the effect of regression
towards the mean60,61. A contraction bias emerges in sequential
judgments of stimuli along a particular dimension (e.g., fre-
quency), where stimulations seem closer to the prior (e.g., mean
frequency) than they really are. It leads to the overestimation of
stimuli lying in the lower range of stimulations, and to the
underestimation of those lying in the upper range. The TOE is
subsequent to this bias and can be observed in two-alternative
forced choice tasks (2AFC), where the strength of the contraction
bias differs between the two stimulations. It occurs as if the
percept of the first stimulus would be more biased towards the
prior, which some authors have related to the need for that
stimulus to be stored in memory during the delay period56. This
effect is independent of the sensory modality and can be
massive53. It is thought to reflect the influence of acquired priors
built on the recent history of perceived stimulations during the
task62. Importantly, this is in the case of uncertain or ambiguous
environments, hence difficult decisions, that the TOE emerges and
that the most pervasive difficulties of ASD should be observed12.
TOE tasks can highlight the processes of belief updating (learning)
and relative precision tuning in a context-dependent fashion
(meta-learning).
Following the HIPPEA hypothesis6, several subtle predictions

can be made on prior construction and sensory adaptation in ASD
in our perceptual task. First, we assume that a long-lasting
exposure to a stable experimental context would enable autistic
participants to build up a precise and strongly influencing prior.
Indeed, having a high and inflexible precision ratio would lead to a
more precise prior only in the specific context where stimuli would
never vary (i.e., like in the context-setting blocks of our task). Note
that in a more changing or variable context (i.e., more naturalistic
situation), the prior precision would be lower in ASD, in line with
the weak prior hypothesis10. Hence, in our task, the TOE should
not only be visible, but even stronger in autistic participants
compared to neurotypical participants. Second, in a varying
environment, their more inflexible precision weighting would
reveal a maladaptive behavior. In other words, when suddenly
changing the frequency range, the TOE should be adjusted to the
new range slower in autistic than neurotypical participants.
Another consequence of a more inflexible precision weighting
would be a decreased sensory adaptation in the ASD group, as it

Fig. 1 Experimental paradigms. a Tactile detection threshold measurement: while the frequency was set at 30 Hz, the intensity of the
stimulation gradually increased or decreased (methods of limit) to determine the participant’s threshold. b Two-alternative forced-choice task:
participants had to determine whether the frequency of the second stimulation (F2) was higher or lower than the first one (F1). The
frequencies used for Experiments II and III are detailed in the right part of the Figure (3 context-setting blocks centered on 30 Hz, followed by
two time-order effect blocks centered on 26 or 30 Hz).
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reflects the flexible suppression of prediction errors for predictable
stimuli. Finally, we assume that the precision ratio would be less
flexibly modulated in ASD following changes in the environmental
structure.
We tested these predictions with three experiments in NT and

ASD adults, and used a computational model of 2AFC to further
emphasize the relationship between weighted prediction errors
and behavioral responses. Using a dynamic perceptual decision-
making model (assuming learning over trials) and a static one
(assuming no learning), we assessed the adjustment of the
sensory/prior precision ratio in response to contextual changes.
The aim is to contribute to elucidating whether the predictive
coding hypotheses of ASD (e.g., weak priors10, high sensory
precision9 or HIPPEA6) suffice to characterize ASD functioning or
need to be refined.

RESULTS
Absolute detection thresholds and sensory adaptation (Exp. I)
In Exp. I, the average intensity detection threshold of 30 Hz
stimulations did not differ between the neurotypical (NT) group
(0.6 mA ± 0.2) and the ASD group (0.6 mA ± 0.4) (t(61)= 0.3,
p= 0.79, d= 0.68). There was moderate evidence in favor of an
absence of group difference (BF= 0.27). Note that in each
discrimination experiment, absolute detection thresholds did not
differ between groups either (Exp. II: 0.5 mA ± 0.2 in both groups,
t(31)= 0.2, p= 0.84, d= 0.07, BF= 0.34; Exp. III: 0.6 mA ± 0.2 in NT,
0.5 mA ± 0.2 in ASD, t(35)= 0.9, p= 0.36, d= 0.07, BF= 0.44).
Therefore, NT and ASD adults did not differ in mean tactile
detection thresholds.
Rather than only measuring the average of the absolute

detection threshold, we also assessed how variable or consistent
the detection threshold measures were within each participant, as
a high sensory precision should lead to low intra-individual
variability. The intra-individual standard deviation of the four
detection threshold measures was much higher in the NT group
(0.06 ± 0.04) than in the ASD group (0.01 ± 0.01) (t(61)= 5.8,
p < 0.0001, d= 1.46; Fig. 2a). There was extreme evidence in favor
of a group difference (BF= 4.08 × 104).
Furthermore, there was a sensory adaptation effect in the NT

group (0.08 ± 0.16, t(34)= 2.9, p < 0.01, d= 0.49; Fig. 2b), but not
in the ASD group (−0.01 ± 0.04, t(27)= 0.9, p= 0.38, d= 0.17; Fig.
2c). There was substantial evidence in favor of both adaptation in
the NT group (BF= 6.39), and no adaptation in the ASD group
(BF= 0.29). This sensory adaptation effect was significantly higher

in NT than ASD participants (t(61)= 2.8, p < 0.01, d= 0.70). There
was substantial evidence in favor of a group difference (BF= 5.85).
In sum, autistic adults were more precise than NT, that is,

autistic participants showed very few variations in detection
thresholds across several measurements. In contrast, NT partici-
pants showed more variability but, interestingly, this variability
appears to be structured and reveals an adaptation effect that is
not observed in ASD participants. Sensory adaptation, here,
reflects the flexible suppression of errors for predictable stimuli.

Behavioral results in the context-setting blocks (Exp. II and III)
In Exp. II, the percentages of correct answers were 81% (± 8) in NT
and 79% (± 7) in ASD and did not differ between groups
(t(31)= 0.8, p= 0.40, d= 0.29, BF= 0.43; Fig. 3a). There was no
group difference in d’ (t(31)= 1.2, p= 0.25, d= 0.40, BF= 0.56, Fig.
3b). The average response times did not differ between groups
either (NT: 930ms ± 432, ASD: 737ms ± 252, t(31)= 1.6, p= 0.13,
d= 0.54, BF= 0.82). The relative thresholds are shown as
Supplementary Fig. 1 (group-level fits: NT: 2.7 Hz, ASD: 3.3 Hz),
and did not differ between groups (subject-level fits: NT:
3.3 ± 2.7 Hz, ASD: 3.6 ± 2.1 Hz, t(31)= 0.4, p= 0.71, d= 0.13, BF=
0.35). As performance did not differ between groups in these
context-setting blocks, it suggests a similar sensory precision in NT
and ASD.
In Exp. III, the percentages of correct answers were 81% (± 8) in

the NT group and 78% (± 9) in the ASD group (Fig. 3a) (no group
difference, t(35)= 0.9, p= 0.36, d= 0.31, BF= 0.45). There was no
group difference in d′ (t(35)= 0.9, p= 0.37, d= 0.30, BF= 0.44,

Fig. 2 Tactile detection threshold and sensory adaptation in Experiment I. a Intra-individual standard deviation of the detection threshold
measurements in neurotypical (NT) and autistic (ASD) participants. Error bars represent the standard deviations. ***p < 0.0001. b, c Cumulated
distribution of the individual dispersion of the perception threshold across participants in the NT (b) and ASD (c) groups. The x-axis presents
the percentage of measures which differed by x mA from the mean threshold of the participant: unit −3: ≤−0.15 mA, unit -2: [−0.15 to −0.09
[, unit −1: [−0.09 to −0.03[, unit 0: [−0.03 to 0.03[, unit 1: [0.03 to 0.09[, unit 2: [0.09 to 0.15[, unit 3: ≥0.15 mA. De/Di detection/disappearance
of the stimuli.

Fig. 3 Sensory precision in the context-setting blocks of Experi-
ments II and III. a Mean accuracy in the context-setting blocks
(average over the three blocks). b D prime in the context-setting
blocks (average over the three blocks). Error bars correspond to the
standard deviations. Exp. experiment, NT neurotypical, ASD autism
spectrum disorder.
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Fig. 3b). The average response times did not differ between
groups (NT: 751 ms ± 315, ASD: 876 ms ± 369, t(35)= 1.1, p= 0.27,
d= 0.37, BF= 0.52). The relative thresholds are shown in
Supplementary Fig. 1 (group-level fits: NT: 3.0 Hz, ASD: 3.5 Hz).
Relative thresholds did not differ between groups (subject-level
fits: NT: 3.6 ± 3.0 Hz, ASD: 4.5 ± 3.5 Hz, t(35)= 0.9, p= 0.38,
d= 0.30, BF= 0.44). These results showing no group difference
in performance also suggest a typical tactile precision in ASD.

Behavioral results in the TOE blocks with a stable stimulus
frequency range (Exp. II)
In the TOE blocks of Exp. II, there was no difference in accuracy
between groups (NT: 69% ± 8, ASD: 66% ± 5, t(31)= 1.5, p= 0.14,
d= 0.53, BF= 0.80). Autistic participants answered faster than NT
participants (629 ms ± 206 in ASD vs. 899ms ± 449 in NT,
t(31)= 2.2, p= 0.036, d= 0.76, BF= 1.98). Furthermore, autistic
participants answered faster in TOE blocks than in context-setting
ones (629 ms ± 206 vs. 737ms ± 252, t(15)= 2.7, p= 0.017,
d= 0.67, BF= 1.31), whereas no RT differences were found within
the NT group (t(16)= 0.9, p= 0.39, d= 0.21, BF= 0.32).
The index of TOE (ITOE) reflects how accuracy level varies

depending on the stimulus pair presented at each trial and should
be different from zero if perceptual decisions are influenced by
the underlying statistics of the task. Both groups exhibited a TOE
(Fig. 4a, b), with an ITOE significantly different from zero in NT
(ITOE= 30 ± 15, t(16)= 8.5, p < 0.0001, d= 2.1, BF= 5.98 × 104) and
ASD (ITOE= 47 ± 16, t(15)= 12.1, p < 0.0001, d= 3.0,
BF= 2.88 ×106).
As a high ITOE reflects a strong influence of prior (relative to

sensory inputs) on perceptual decisions, the ITOE was compared
between groups to assess if the relative weight of priors would be
greater in one group. The ITOE was significantly higher in ASD than
in NT (t(31)= 3.2, p < 0.005, d= 1.1) (Fig. 4c). There was strong
evidence in favor of a group difference (BF= 11.3). Importantly,
the ASD group was highly homogeneous, as only two autistic
participants scored slightly below the median ITOE of the NT group
(median: 27). The two-way nested ANOVA assessing the effect of
group and TOE blocks (4 and 5) on the ITOE only revealed a group
effect (F(1,31)= 10.1, p < 0.01). As the TOE seems asymmetrical on
Fig. 4, we conducted an ANOVA on the ITOE assessing the effect of
frequency (three F1 values lying below the mean vs. three F1
values above the mean) and group. There was a group effect
(F(1,31)= 10.0, p < 0.005), with a higher ITOE in ASD than NT. There
was also an interaction between group and frequency
(F(1,31)= 4.5, p= 0.041), with a significantly higher ITOE in ASD
than NT in lower frequencies (t(31)= 4.2, p < 0.001, d= 1.46,

BF= 108) but not in higher frequencies (t(31)= 0.4, p= 0.68,
d= 0.14, BF= 0.35).
As the TOE should be centered on the mean frequency of the

stimulus range (i.e., 30 Hz), we assessed the intercept of the two
accuracy curves (F2 > F1 and F2 < F1) in the TOE blocks. The
intercept of the two accuracy curves (F2 > F1 and F2 < F1) did not
differ between groups in any TOE block (first TOE block:
t(27)= 1.1, p= 0.30, d= 0.61, BF= 0.53; second TOE block:
t(28)= 1.5, p= 0.13, d= 0.56, BF= 0.84). In the NT group, the
intercept was 29.6 Hz (± 3.7) in the first TOE block and 29.4 Hz (±
3.0) in the second TOE block. In the ASD group, the intercept was
30.9 Hz (± 2.7) in the first TOE block and 30.9 Hz (±2.3) in the
second TOE block.
In sum, the presence of a TOE in both groups reveals that both

NT and ASD participants implicitly learned a prior (i.e., about the
frequency range of the delivered tactile stimulations) which
biased their percepts, and therefore led to a modulation of their
accuracy across trials, despite no objective change in task
difficulty. As autistic participants showed a stronger TOE than
NT, it indicates a stronger influence of the prior (relative to sensory
inputs) on perception in ASD in Exp. II.

Behavioral results in the TOE blocks after a change in stimulus
frequency range (Exp. III)
In the TOE blocks of Exp. III, the average percentage of correct
answers and response times were 67% (± 6) and 718 ms (± 318) in
the NT group and 65% (± 7) and 797ms (± 358) in the ASD group.
No significant group differences were found on accuracy
(t(35)= 1.1, p= 0.29, d= 0.36, BF= 0.50), nor response time
(t(35)= 0.7, p= 0.48, d= 0.24, BF= 0.39). The two-way nested
ANOVA assessing the effect of group and blocks (4 and 5) on the
ITOE revealed no effect.
The NT and ASD groups both showed a TOE (Fig. 5a, b), with an

ITOE significantly different from zero in both NT (ITOE= 43 ± 16,
t(19)= 12.1, p < 0.0001, d= 2.70, BF= 4.17 × 107) and ASD
(ITOE= 41 ± 18, t(16)= 9.3, p < 0.0001, d= 2.27, BF= 2.03 × 105).
The ITOE was not significantly different between groups
(t(35)= 0.4, p= 0.71, d= 0.12; Fig. 5c). There was anecdotal
evidence in favor of no group difference (BF= 0.34). An ANOVA
on ITOE assessing the effect of frequency (low vs. high frequencies)
and group revealed an interaction between group and frequency
(F(1,35)= 5.3, p= 0.027), with a tendency towards higher ITOE in
lower frequencies in ASD and in higher frequencies in NT.
In Exp. III, the mean stimulus frequency of the context-setting

blocks was 30 Hz, to induce a prior centered on 30 Hz, which
contrasts with the mean stimulus frequency of the subsequent

Fig. 4 Time-order effect in Experiment II. a, b Percentage of correct answers in the TOE blocks in the neurotypical (NT) group (a) and in the
autistic (ASD) group (b). “F2 > F1”: trials with F2 2 Hz higher than F1, “F2 < F1”: trials with F2 2 Hz lower than F1. c Time-order effect index in the
TOE blocks. Error bars correspond to the standard error of the mean. **p < 0.005.
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TOE blocks centered on 26 Hz. Investigating whether the intercept
of the two accuracy curves was closer to 30 Hz (previous context)
or 26 Hz (current context) may reveal a group difference in the
rate at which stimulus frequency expectations were updated. In
the NT group, the intercepts of the two accuracy curves were
25.4 Hz (± 1.9) in the first TOE block and 25.8 Hz (± 1.8) in the
second TOE block. In the ASD group, the intercepts were 27.4 Hz
(± 3.7) in the first TOE block and 26.7 Hz (± 3.8) in the second TOE
block. This intercept was higher (i.e., closer to the mean stimulus
frequency of the context-setting blocks) in the ASD group than in
the NT group in the first TOE block (t(35)= 2.1, p= 0.045, d= 0.71,
BF= 1.68), but not in the second TOE block (t(35)= 2.1, p= 0.045,
d= 0.71, BF= 0.47).
In conclusion, in Exp. III, both groups implicitly learned a prior

which biased their percepts, as revealed by the presence of a TOE.
The extent of this perceptual bias induced by the prior did not
differ between groups. Importantly, in this experiment, the mean
frequency of the tactile stimulations suddenly changed (from the
third to the fourth block), and both groups managed to flexibly
adjust their prior expectation, but more slowly in the ASD group
(i.e., it took more time for the ASD group to shift their belief from
the mean frequency of context-setting blocks to the one of the
TOE blocks).

Comparison of the behavioral results in the TOE blocks in Exp.
II vs. III
An ANOVA on the ITOE with group and experiment (II vs. III) as
factors revealed an interaction between group and experiment
(F(1,66)= 5.9, p= 0.02), a non-significant tendency towards a
group effect (F(1,66)= 3.0, p= 0.09) and no experiment effect
(p= 0.34). As described above, the ITOE differed between groups in
Exp. II, but not in Exp. III. Between experiments, the ITOE was larger
in Exp. III than in Exp II in the NT groups (t(35)= 2.2, p= 0.018,
d= 0.82, BF= 3.20), whereas there was no significant difference
ITOE between experiments in the ASD groups (t(31)= 1.0, p= 0.30,
d= 0.37, BF= 0.51).

Computational modeling approach (Exp. II and III)
The dynamic model M1 highlights the importance of two
parameters: the sensory precision πu, which mostly determines
the average performance and controls the overall confidence in
the response; and precision ratio r ¼ πu=πx where πx is the
precision of the prior of sameness (or sensory similarity over
stimuli). The precision ratio both modulates the average
performance and overall confidence, as well as it introduces a

perceptual bias, which gives rise to the TOE. This bias is such that
the smaller r (i.e., the larger πx with respect to πu), the larger the
TOE. Hence this model makes explicit the relative role of sensory
and prior precisions.
Since sensory precision is meant to reflect the accuracy of each

individual sensorium and given the fact that neither the stimulus
frequency range (between 20 and 40 Hz), the stimulus intensity or
duration, nor the delay between the two stimuli to be compared
change over trials or experimental sessions, we assumed this
parameter to be constant over the whole experiment for each
subject. In contrast, the precision ratio is a context-dependent
parameter and is allowed to change between sessions for a given
individual.
Finally, we considered an alternative model denoted as M0

corresponding to the hypothesis of a very weak prior precision
compared to sensory precision (or equivalently a very high
sensory precision compared to prior precision)9,10. M0 is thus an
extreme case of M1 where precision ratio r tends towards
infinity. It reduces to a static, unbiased, perceptual decision
model. In particular, it cannot emulate a TOE (see Supplemen-
tary Fig. 2). Both M0 and M1 incorporate a response bias
parameter denoted as b, which captures the putative individual
preference for choosing an option or the other, regardless of
sensory evidence.

Bayesian Model Selection (Exp. II and III)
In Exp. II, the results of the random-effect group Bayesian Model
Selection (BMS) are shown in Fig. 6d, e. In the two first context-
setting blocks of Exp. II, the BMS could not identify a single best
model in NT (M0 model frequency, exceedance probability and
protected exceedance probability: 0.53, 0.59, 0.51, respectively),
nor in ASD, despite a tendency toward M0 as the best model
(model frequency, exceedance probability and protected excee-
dance probability: 0.94, 1.00, 0.75, respectively). In the three last
blocks of Exp II, M1 best explained the data in the NT group (M1

model frequency, exceedance probability, and protected excee-
dance probability: 0.95, 1.00, 0.97, respectively), as well as in the
ASD group (M1 model frequency, exceedance probability and
protected exceedance probability: 0.97, 1.00, 1.00, respectively).
The model comparisons did not show any group difference.
Hence, the dynamic model best explained the data of both NT and
ASD participants, when switching from context-setting blocks to
TOE ones, i.e., when switching to a new context where the
variance of the stimulus range changed while its mean value
remained the same.

Fig. 5 Time-order effect in Experiment III. a, b Percentage of correct answers in the TOE blocks in the neurotypical (NT) group (a) and autistic
(ASD) group (b). “F2 > F1”: trials with F2 2 Hz higher than F1, “F2 < F1”: trials with F2 2 Hz lower than F1. c Time-order effect index in the TOE
blocks. Error bars correspond to the standard error of the mean.
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In Exp. III, the results of the random-effect group Bayesian
Model Selection (BMS) are shown in Fig. 6g, h. In the two first
context-setting blocks of Exp. III, the BMS did not clearly identify
the best model in NT (M0 model frequency, exceedance
probability and protected exceedance probability: 0.79, 1.00,
0.66, respectively) nor in ASD (M0 model frequency, exceedance
probability, and protected exceedance probability: 0.80, 1.00, 0.69,
respectively). In the three last blocks of Exp. III, M1 best explained
the data in both the NT group (M1 model frequency, exceedance
probability and protected exceedance probability: 0.97, 1.00, 1.00,
respectively) and ASD group (M1 model frequency, exceedance
probability and protected exceedance probability: 0.97, 1.00, 1.00,
respectively). The model comparisons did not show any group
difference. Here again, the dynamic model best explained the data
of both NT and ASD participants when switching to a new
experimental context, but this time the switch entailed a change
of both the mean and variance of the stimuli.

Parameter estimates in the two first context-setting blocks
(Exp. II and III)
In Exp. II, sensory precision did not differ between groups (logðπuÞ,
NT: 4.5 ± 0.8; ASD: 4.3 ± 0.7; t(31)= 0.7, p= 0.46, d= 0.26, Fig. 6a).
There was anecdotal evidence in favor of an absence of group
difference in sensory precision (BF= 0.41). As expected, sensory
precision was strongly correlated with the percentage of correct
answers (r= 0.91, p < 0.0001, Fig. 6b). There was a group
difference in response bias b (NT: −0.1 ± 0.2; ASD: 0.1 ± 0.2;
t(31)= 2.8, p= 0.010, d= 0.96, BF= 5.27), that is, a tendency to
answer F1 < F2 in the NT group, and F1 > F2 in the ASD group
(Supplementary Fig. 3). However, note that this effect is not
straightforward to interpret as the +/- response buttons were
counterbalanced across participants.
In Exp. III, sensory precision did not differ between groups (log

ðπuÞ, NT: 4.4 ± 0.7; ASD: 4.3 ± 0.9; t(35)= 0.5, p= 0.65, d= 0.15, Fig.
6a). There was anecdotal evidence in favor of an absence of group

Fig. 6 Computational results in Experiments II and III. a Mean sensory precision logðπuÞ in the two first context-setting blocks in
Experiments II and III, estimated using Bayesian Model Averaging. b, c Correlations between accuracy and logðπuÞ, both measured in the two
first context-setting blocks, in Experiments II (b) and III (c). ***p < 0.0001. d, e Experiment II: Bayesian model selection (BMS) in the NT (d) and
ASD (e) groups, comparing M1 and M0 in the two first context-setting blocks (12) or third context-setting and time-order effect blocks (345).
Protected exceedance probability: **>0.97, ***>0.99. f Estimated precision ratio log(r) in Experiment II. g, h Experiment III: Bayesian model
selection in the NT (g) and ASD (h) groups, comparing M1 and M0 in the two first context-setting blocks (12) or third context-setting and time-
order effect blocks (345). Protected exceedance probability: ***>0.99. i Estimated precision ratio log(r) in Experiment III. Error bars correspond
to the standard deviations, except for plots f and i where they represent the standard error of the mean. NT neurotypical, ASD autism
spectrum disorders.

L. Sapey-Triomphe et al.

6

npj Science of Learning (2023)    54 Published in partnership with The University of Queensland



difference in sensory precision (BF= 0.35). Sensory precision was
strongly correlated with the percentage of correct answers
(r= 0.95, p < 0.0001, Fig. 6c). The response bias b differed between
groups (NT: −0.1 ± 0.1; ASD: 0.1 ± 0.2; t(35)= 3.5, p < 0.01,
d= 1.15, BF= 24.84) (Supplementary Fig. 3).
An ANOVA evaluating the effect of group and experiment (II or

III) on sensory precision (logðπuÞ), precision ratio (log(r)) and
response bias (b) in the two context-setting blocks showed no
effect on sensory precision nor on the precision ratio, and a group
effect on the response bias (F(1,69)= 19.4, p < 0.0001) with a more
negative bias in NT than ASD (i.e., a tendency to answer F1 < F2 in
NT, and an opposite tendency in ASD).
Therefore, in the context-setting phase of both Experiments II

and III, NT and ASD participants had similar sensory precision and
precision ratio, but the two groups showed an opposite
response bias.

Parameter estimates in the last three blocks (Exp. II and III)
In Exp. II, the precision ratio was quantified and compared across
groups and blocks as it was expected to change when switching
context (i.e., transition from block 3 to block 4). An ANOVA
assessing the effect of group and block (3, 4, 5) on the precision
ratio (log(r)) revealed a group effect (F(1,98)= 5.5, p= 0.02), a
block effect (F(2,98)= 13.9, p < 0.0001) and no significant interac-
tion (F(2,98)= 1.0, p= 0.38). On average, in Exp. II, autistic
participants had a lower precision ratio than NT (−0.14 (± 1.8) in
ASD vs. 0.63 (±1.8) in NT, t(97)= 2.1, p= 0.040, d= 0.42, BF= 1.42,
Fig. 6f), with a significant group difference in block 4 (−0.96 ± 1.3
in ASD vs. 0.40 ± 1.8 in NT; t(31)= 2.5, p= 0.020, d= 0.86). There
was substantial evidence in favor of a lower precision ratio in ASD
than NT in block 4 (BF= 3.06), and anecdotal evidence in favor of
no group difference in block 5 (BF= 0.62). As compared to block 3,
the precision ratio was lower in block 4 in NT (t(16)= 2.8,
p= 0.014, d= 0.67, BF= 4.18) and in ASD (t(15)= 4.0, p < 0.005,
d= 1.01, BF= 35.89), and was lower in block 5 in NT (t(16)= 3.2,
p < 0.01, d= 0.77, BF= 8.47) and ASD (t(15)= 4.1, p < 0.001,
d= 1.03, BF= 41.07). There was no difference in precision ratios
between the two TOE blocks in any group (p-values > 0.30). As
expected, the precision ratio was negatively correlated with the
ITOE in blocks 4 (r=−0.73, p < 0.0001) and 5 (r=−0.54, p= 0.001).
In other words, when starting the new context (block 4) with a
subtle change in experimental design in Exp. III (i.e., same stimulus
mean but different variance), the ASD group expressed a higher
precision ratio (between prior and sensory precisions) compared
to the NT group, thus giving more weights to prior beliefs despite
the implicit change in the stimulus range.
In Exp. III, an ANOVA on the precision ratio estimating the effect

of group and block (3, 4, 5) showed a block effect (F(2,98)= 13.9,
p < 0.0001, Fig. 6i), but no group effect or interaction (p-values >
0.45). Indeed, there was anecdotal evidence in favor of no group
difference in precision ratio in block 4 (BF= 0.77) and block 5
(BF= 0.33). As compared to block 3, the precision ratio was lower
in block 4 in NT (t(19)= 2.4, p= 0.025, d= 0.55, BF= 2.45) and
ASD (t(16)= 3.8, p= 0.001, d= 0.95, BF= 22.6), and in block 5 in
NT (t(19)= 2.3, p= 0.036, d= 0.50, BF= 1.78) and ASD (t(16)= 3.4,
p < 0.005, d= 0.85, BF= 12.1). There was no difference in precision
ratio between the two time-order effect blocks in any group (p-
values > 0.25). As expected, the precision ratio was again
negatively correlated with the ITOE in blocks 4 (r=−0.55,
p < 0.001) and 5 (r=−0.64, p < 0.0001). In sum, when there is a
relatively noticeable change in the experimental context in Exp. III
(e.g., a shift in the range of stimulus values), both groups adjusted
their precision ratio, and no group difference was found.
We conducted an ANOVA assessing the effect of group (NT or

ASD), block (3, 4 or 5) and experiment (II or III) and their
interactions on the precision ratio log(r). There was a group effect
(F(1,209)= 4.7, p= 0.03), with a lower precision ratio in the ASD

groups than in the NT groups: −0.26 (± 0.23) in ASD vs. 0.23 (± 1.9)
in NT. There was a block effect (F(2,209)= 23.4, p < 0.001) with
higher precision ratios in the context-setting block 3 (1.1 ± 1.9)
than in the TOE blocks 4 (−0.6 ± 1.6) and 5 (−0.5 ± 1.6). There was
an experiment effect (F(1,209)= 4.1, p= 0.04), with lower preci-
sion ratios in Exp. III than in Exp. II (−0.2 ± 1.9 vs. 0.26 ± 1.7).
Finally, no interaction proved significant. To summarize, the
sensory/prior precision ratio was modulated in both groups when
changing of experimental context. It was, on average, lower in
Exp. III (i.e., after a change in both stimulus mean and variance)
than in Exp. II (i.e., after a change in stimulus variance only) and
was lower in the ASD group (i.e., with a higher prior precision
relative to sensory precision).

Post-experiment questionnaires
The percentages of participants who reported that the first
stimulus F1 was always the same were 17% (Exp. II) and 5% (Exp.
III) in the NT group, and 31% (Exp. II) and 35% (Exp. III) in the ASD
group, respectively. A few autistic participants proved able to
explicitly identify that it was during the three first blocks that F1
was never changing (19% of ASD participants in Exp. II, and 24% of
ASD participants in Exp. III), while no NT participants were able to
do so. Contrary to NT, most autistic participants reported the
impression that the intensity of the stimulation was stable over
the blocks (67% on average in ASD vs. 35% in NT). In conclusion,
ASD participants seemed to have had a more accurate perception
and awareness of the experimental manipulations than NT
participants, in terms of changes in stimulus frequency and
intensity.

DISCUSSION
Predictive coding theories suggest that autistic behavior is linked
to an atypical consideration and adjustment of the confidence
associated with sensory information and previous beliefs, respec-
tively6,8–13. These arguments are rooted in the first psychological
theories of ASD63, but now motivate attempts to specify the
underlying mechanisms using recent computational approaches
to perceptual inference and learning. The ensuing mechanistic
hypothesis has been summarized by George Musser as follows:
“To decide what is novel, the brain needs to have in place a prior
expectation that is violated. It must also assign some level of
confidence to that expectation, because in a noisy world, not all
violations are equal: sometimes things happen for a reason, and
sometimes they just happen. The best guess scientists have for
how the brain does this is that it goes through a process of meta-
learning - of figuring out what to learn and what not to. According
to this theory, biases in the meta-learning process explain the core
features of autism. The theory essentially reframes autism as a
perceptual condition, not a primarily social one; it casts autism’s
hallmark traits, from social problems to a fondness for routine, as
the result of differences in how the mind processes sensory
input”64. The gist of this theoretical argument is that it underlines
not only the importance of the concept of trust given to
information to allow a good perception, but also the importance
of the mechanisms that govern the estimation of this trust, which
are based on the ability to learn and adapt to the sensory context.
However, most recent theoretical descriptions, as well as the
empirical studies aiming at testing them, have concentrated on
the (static) imbalance between sensory precision and precision of
prior belief (except for a couple of recent studies that we discuss
below).
In the current study, we specifically targeted the implicit

dynamics of sensory adaptation and perceptual learning, that is,
adjusting the precision afforded to current beliefs and new
information, respectively. To do this, we combined three
behavioral experiments and compared computational models of
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perceptual learning and decision-making in neurotypical and
autistic adults.
We used tactile discrimination tasks designed to elicit sensory

adaptation and a time-order effect to characterize sensory
perception in ASD and to shed light on the predictive coding
hypotheses of ASD. This experimental approach was motivated by
the fact that these tasks are very sensitive to key parameters, such
as the sensory precision and the sensory-to-prior precision ratio. It
is quite remarkable to note that the results from the three
experiments contribute to drawing up a coherent picture of subtle
but robust differences between autistic and neurotypical partici-
pants. We summarize and contextualize them below, first stressing
the absence of difference on first-order measures (average
performance), and then highlighting the importance of finer,
second-order measures, and of the modeling approach to
highlight and characterize the actual differences.
Reproducibly over experiments, the two groups did not differ in

their absolute detection threshold, overall tactile discrimination
accuracy, and reaction times. Yet, note that there was only
anecdotal evidence of no group difference in accuracy and
reaction times. In agreement with those direct and global
observations, there was also anecdotal evidence suggesting that
the two groups did not differ in the estimated sensory precision in
the two frequency discrimination experiments, nor in d’. Former
studies also reported intact tactile detection thresholds ASD65–68,
but findings about tactile processing in ASD are quite inconsistent
(see ref. 69 for a review). Given the absence of group difference in
sensory precision, the atypical self-reported sensory sensitivity
described in ASD (e.g., feeling of sensory overwhelming) may be
due to unpredictable sensations, rather than due to a more acute
sensory system per se70,71.
A strong time-order effect was observed in Exp. II and III in both

neurotypical and autistic adults (extreme evidence of a time-order
effect in both groups). This effect reflects a perceptual bias due to
an attraction towards the mean magnitude of the stimuli. Our
dynamic learning model could generate a time-order effect,
contrary to the static model which considered a much larger
sensory than prior precision. Importantly, this effect was not hard
coded in the models, but simply emerged from viewing
perception as Bayesian inference. Model comparison confirmed
the ability of autistic participants to build up prior beliefs from
past sensory inputs: the data of both groups and both
experiments were best explained by model M1. There was no
group difference in the model comparison, showing that both
ASD and NT individuals can incorporate and use a prior.
At this stage, all these findings that are common to autistic and

NT participants suffice to rule out simplistic hypotheses stating
that autistic individuals constantly present with either very high
sensory precision9 or very loose priors10. In other words, autistic
individuals can implicitly learn the statistical regularities of their
environment to build up a prior and have a typical sensory
precision, suggesting that the Bayesian hypotheses of ASD should
be refined.
In addition to the time-order effect blocks, the stable and long-

lasting context-setting blocks used in Exp. II and III may have
contributed to learning the statistics (i.e., mean and variance) of
the tactile stimuli. This was observable through eliciting a
perceptual bias toward the mean in both experiments. In Exp. II,
the time-order effect was even found to be significantly stronger
in ASD than NT. Notably, all but two autistic participants had a
perceptual bias larger than the median time-order effect observed
in NT participants. The consistency of this finding is quite
remarkable when a large variability is usually found in empirical
studies on ASD.
This interpretation is in line with the posterior model

parameters showing a lower sensory/prior ratio in ASD than NT
in Exp. II, in particular at the beginning of the time-order effect
blocks (substantial evidence of a group difference in the first time-

order effect block). A decreased ratio means a relatively higher
prior precision in ASD. We hypothesize that autistic participants
strongly incorporated the contextual prior induced during the
preceding context-setting blocks, leading to this tight prior. This
hypothesis is also consistent with autistic behaviors tending to
expect very little variations between their strong expectations and
their observations. Note that the reduced response time of autistic
participants in the time-order effect blocks of Exp. II also speaks in
favor of a higher confidence in the perceptual decisions of the
ASD group, under a strong prior influence (yet note that there was
only anecdotal difference in favor of a group difference in
response time). Furthermore, the self-reports indicated that only
some autistic participants (but no NT) noticed the subtle
contextual change. Having tight priors might have contributed
to their detection of the small change in Exp. II. Autistic
participants might detect a state change more precisely, but
without necessarily updating their prior more quickly. The NT
group may have given a lesser importance to this contextual
change in Exp. II, as only the variance of the stimuli was modified,
which might explain the differential adjustment of the precision
ratios between groups. As suggested by Van de Cruys and
colleagues, “rather than having uniformly weak priors, people with
autism often develop very strong priors, or expectations, in
particular contexts”72. In the very stable context of Exp. II (i.e., no
variance of the first stimulus), autistic individuals might have
learnt precise priors (hyper-priors) unlikely to be applicable or
generalized to other contexts. Having very tight priors can, for
instance, explain categorization difficulties if low variability is
allowed between items and prototype73–75, but also reduced
perceptual flexibility in ASD76,77.
Interestingly though, in Exp. III, the time-order effect was not

greater in the NT group than in the ASD group (anecdotal
difference in favor of no group difference). In this experiment,
contrary to Exp. II, the range of frequencies used in the time-order
effect blocks was shifted downwards to be centered around 26 Hz
instead of 30 Hz. In Exp. III, the time-order effect of the ASD group
tended to be centered around higher frequencies (i.e., towards the
mean frequency of the context-setting blocks) at the beginning of
the time-order effect blocks. This could be, again, interpreted as a
stronger effect of the priors acquired during the context-setting
blocks occurring just before the time-order effect ones. However,
even though this shift in time-order effect had a medium to large
effect size, there was only anecdotal evidence of a group
difference.
In addition, the fact that some autistic participants (but no NT)

consciously perceived the change in experimental design
between the context-setting and time-order effect blocks can
also be interpreted as a manifestation of tight priors, which yield a
higher sensitivity to subtle changes.
Although very consistent altogether, these results may look

surprising as they suggest that autistic adults were even more
influenced by the context than NT. An over-specific learning of the
environmental structure (e.g., frequency distribution) could
explain the very tight priors observed in the ASD group in Exp.
II. Indeed, as the first frequency remained the same over three
long consecutive blocks made of 255 trials in total, autistic
individuals may have learnt a prior distribution with a very narrow
variance. Likewise, some evidence in favor of an over-specific
learning was found in autistic adults, associated with a lack of
generalization and an increased inflexibility in ASD37.
Importantly here, all these findings could be understood by

going beyond the analysis of averaged performance, in the light
of the computational modeling of the sequence of single trial
responses.
Our findings clearly establish that autistic participants do learn

about the sensory context and are able to implicitly learn a prior.
However, a closer look revealed that this perceptual learning is
atypical, even though the group differences were quite subtle. It
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yielded a significantly reduced sensory adaptation in ASD than in
NT participants in Exp. I (substantial evidence of a group
difference), as well as evidence in favor of a reduced precision
ratio in Exp. II (substantial evidence of a group difference), which
also reflects a stronger expectation of sameness and slower
adaptation. In Exp. I, NT participants were rapidly influenced by
the context, as they showed sensory adaptation. In contrast,
autistic participants may not have had enough time to build up
influential priors in this relatively short time lapse. Alternatively,
these results could be due to differences in neural adaptation, as a
recent study showed decreased habituation to auditory or visual
stimuli in autistic children78. Noteworthily, in Exp. I, the strong
group difference in sensory adaptation was revealed despite the
small number of measurement values per participant (as this
procedure was initially meant to simply set a non-painful, yet
perceptible, stimulus intensity for each participant).
Slower learning in ASD has also been found in studies

investigating categorization. Indeed, a difference of dynamic was
found in a study where autistic participants learnt prototypal
categories slower than NT79, as items slightly differed from the
prior. Furthermore, categorical learning was also found to be
slower in ASD than NT80. It should be noted that these studies
relied on paradigms where participants were trained to explicitly
learn the stimulus categories, whereas the present study
investigated the implicit learning of the stimulus distribution.
Another study showed slower perceptual learning in autistic
adults when the context changed, due to an over-specific learning
of the previous context37. However, this study37 was very different
from ours, as it relied on a visual search task, with an explicit
change of context, and their main observations pertain to reaction
times. In the current study, we further propose a mechanistic
explanation through computational modeling, pointing to the
central role of the precision ratio. It would be interesting to
investigate whether those same mechanisms would also explain
the above behavioral effect.
In Experiments II and III, we clearly observed that autistic

participants did modify their perceptual process across block
types, in a qualitatively similar fashion as neurotypicals. During
context-setting blocks, participants in both groups did not rely
much on prior information. Precision ratio was high, which is
consistent with the fact that in most trials, sensory evidence was
fairly large (i.e., the difference between the two frequencies was
greater than in the TOE blocks). In contrast, in the TOE blocks, both
groups relied much more on prior information, and precision ratio
was therefore low.
Note that in Exp. II, autistic participants tended to even show a

higher contrast between block types, than NT. Indeed, during
context-setting blocks and contrary to what is observed in NT,
static model M0 does capture ASD behavior significantly better
than M1. Moreover, in subsequent TOE blocks and over both Exp. II
and III, autistic participants showed a lower precision ratio than
NT. This inter-session difference is to be contrasted though, with
intra-session findings, namely that a lower precision ratio in the
first TOE block reflects a stronger prior for sameness and a slower
adjustment to this new context. Interestingly, this difference
between ASD and NT participants in their precision ratios was
stronger in Exp. II. Concomitantly, the anecdotal evidence showing
that autistic participants were faster on average than NT is
consistent with the predicted modulation of confidence by a
lower precision ratio (the inverse-temperature is increased, hence
the stochasticity of the decision process is decreased). Along the
same lines, in Exp. III, the tendency in ASD (but not in NT) to be
biased towards the mean stimulus frequency used in previous
context-setting blocks could be a sign of a slower adjustment to
the new frequency range.
In the ASD group, the decreased adaptation in Exp. I, stronger

prior for sameness in Exp. II, and slower adjustment to the new
context in Exp. III are consistent with the idea of a slower prior

learning in ASD, in line with a recent study38. Furthermore,
learning or unlearning priors more slowly would result in having
more inflexible priors, consistently with the HIPPEA hypothesis6

and the increased inflexibility observed in autistic individuals. A
difference in learning dynamics could also reconcile the differ-
ences of findings about structural vs. contextual priors in the
literature about ASD33,81, as structural priors (i.e, pre-existing
priors) are often intact in ASD, whereas contextual priors (i.e.,
learned priors) sometimes differ33. Indeed, contextual priors (i.e.,
learned over the time scale of an experiment) could differ
between NT and ASD individuals if autistic individuals would not
have had enough time to acquire or update their priors. In
contrast, if prior learning is possible in ASD, but simply slower and
therefore more inflexible, no group differences would be found
when enough time would be given for the individuals to learn a
prior, which is the case for structural priors.
A few recent studies went beyond the (static) hypotheses of

atypical perceptual inference in ASD to empirically test perceptual
learning. In a study investigating the perceptual bias induced by
contextual framing, autistic individuals weighted recent auditory
stimuli less heavily than NT individuals to form priors38. In
contrast, they relied more on long-term statistics. In other words,
autistic participants were found to slowly update their internal
representation based on recent history38. Not only does our study
replicate this general finding in a different sensory modality, but
also, our experimental design combined with our modeling
approach could further identify the more inflexible dynamics of
perceptual learning that may subsume this observed behavior in
ASD. This finding echoes the one of another study that also
employed an explicit generative model of perceptual learning in
ASD in an associative learning task involving visual stimuli36. Using
hierarchical Gaussian filters to model perception under uncer-
tainty22, the authors concluded from behavioral responses and
changes in pupil diameters that autistic adults tend to over-
estimate the environmental volatility compared to NT. In line with
our findings, this was associated with a slower updating of the
belief about the stimulus association probability. In other words,
autistic participants behaved as if uncertainty and ambiguity in
the outside world were mostly attributable to expected but
unpredictable changes, with the effect of down weighting the
influence of any incoming prediction error. Finally, a seemingly
contradictory mismatch negativity (MMN) study82 found that an
initial model learned over the first blocks of stimulations
influenced MMN amplitudes in later blocks in NT, but not in
autistic adults. This absence of primacy bias in the ASD group was
interpreted as evidence for faster model updating during early
sensory processing in ASD82. To explain their findings contra-
dicting previous work, for instance by Lieder and colleagues38, the
authors suggested that autistic individuals might have “over-
compensated for faster model updating during early sensory
processing, by being more conservative on higher levels”82.
Alternatively, to reconcile their findings with the present study
and earlier studies or theories (e.g., refs. 6,38), we can hypothesize
that their experimental context may have been too short and
volatile to allow autistic participants to build up a strong enough
prior, and therefore to show a primacy bias. These seemingly
contradictory findings point to the complexity and subtlety of the
core mechanisms behind ASD. They call for a unified theory
bridging the computational, algorithmic and neuronal levels, to be
tested empirically in future studies83. Recently, Noel and
Angelaki83 proposed a first step towards such a unified theory.
They suggested that autistic individuals would be particularly
inflexible in inferring the causal structure of the environment,
rather than being unable to combine likelihood and priors83,84.
Precisely, they point to a heightened p-common in ASD (i.e.,
common prior, the tendency to combine sensory cues) that would
favor simple structures/explanations over more complex ones.
This is somewhat reminiscent of the strength of the prior of
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sameness over time in ASD, found in the current study. Moreover,
we also observed that autistic participants were able to combine
likelihood and priors, but in a different way, as characterized
computationally by a lower precision ratio. A challenge for a
unified theory will be to explain both findings.
Our study encompasses several limitations. In Exp. I, a more

precise estimate of each subject’s detection threshold could
possibly be obtained by using an adaptive staircase procedure.
However, the use of a simple method of limits instead, enabled us
to be more sensitive to an adaptation effect, since this method
delivers successive stimuli that are contiguous in intensity. This
result is based on only a few trials and future studies should
replicate this finding using more trials. Furthermore, it should be
noted that NT and ASD participants may have relied on different
confidence decision criteria to give their answers in Exp. I, which
might have affected the results.
In the time-order effect experiments (Exp. II and III) and due to

the difficulty to recruit more ASD participants, the sample size was
relatively limited. Note, however, that the time-order effect is a
robust effect, including at the individual level, which explains why
several previous studies using this effect could rely on even
smaller groups of participants56,85. Nevertheless, those findings
would deserve replication by future studies that would consider
more participants and possibly participants who cover a larger
span of the autistic spectrum. Several results showed anecdotal
evidence in favor of a group difference or no group difference,
which suggests that these results should be replicated with larger
groups of participants or more data points.
Even though this study is based on simple sensory detection

and discrimination tasks, intelligence quotient (IQ) may play a role
in perceptual learning and contribute to group differences. Not
having access to the IQ of our NT participants prevented us from
ensuring that our two groups were fully matched in that respect.
However, we matched our two groups in terms of education level
(which is known to be correlated with IQ86, and proved to be true
in our ASD sample), and found no relationship between this
educational level and the observed behavioral effects, whatever
the group of participants.
Finally, future studies should compare the extent of the time-

order effect when tasks include or not context-setting blocks in
order to precisely assess the influence of these blocks on the
learning of prior knowledge.
In conclusion, a more inflexible or slower learning, which

expressed in different ways over the three experiments (i.e., in
ASD, decreased sensory adaptation in Exp. I, tighter prior in Exp. II,
slower adjustment to the new range in Exp. III, and lack of
difference in time-order effect between Exp. II and III) might be a
hallmark of autistic behavior. Our findings, added to the ones
obtained in different experimental contexts and sensory mod-
alities, strengthen the idea that a slower prior learning could be a
hallmark of autistic behavior. This idea is also in line with an
account87 suggesting that ASD may be characterized by an
atypical learning of predictions. Importantly, several of our results
also showed that the NT and ASD groups did not differ, as autistic
individuals could learn a prior and had a typical sensory precision,
which does not support the apparently too simplistic hypotheses
of hypo priors10 or higher sensory precision9 in ASD. Instead, we
showed that prior learning was possible, globally intact, and
dynamic in ASD. Yet, we evidenced some subtle specificities in
favor of a slower learning and stronger priors on sameness in ASD,
suggesting that the predictive coding hypotheses of ASD should
be refined. Future studies combining empirical observations and
hierarchical generative models of cognition in ASD will be
essential to test fine hypotheses about autism8 and how they
relate to both non-social and social symptoms of ASD88.

METHODS
Participants
All participants were adults aged between 18 and 60 years. NT and
ASD participants were matched in age, gender ratio, education
level and handedness ratio (assessed using the Edinburgh
handedness inventory). Autistic participants were diagnosed by
an experienced psychiatrist specialized in autism diagnosis and in
charge of the regional Resources Center for autism. They received
a diagnosis of ASD according to the DSM V1 and scored above the
cut-off threshold at the ADOS (Autism Diagnosis Observation
Schedule89). Autistic participants presented with no language
onset delay or intellectual disability (i.e., total IQ > 70, assessed
using the WAIS-IV, see Table 1). All participants reported no history
of neurological disorders, and none of the NT participants had a
history of psychiatric disorder. Every participant completed the
Autism-Spectrum Quotient (AQ) questionnaire90 and the Glasgow
Sensory Questionnaire (GSQ)91,92. All participants provided
informed consent prior to inclusion in the study. Approval was
obtained from the local ethics committee (Southeast IV Commit-
tee for the Protection of Persons).
There were three experiments relying on tactile detection or

discrimination tasks with NT and ASD adults. Experiment I
measured tactile detection thresholds. Experiments II and III relied
on a tactile 2AFC task designed to elicit a time-order effect, with a
stable stimulus frequency range in Experiment II, and a changing
stimulus frequency range in Experiment III. Here follows the
description of the ASD and NT groups of subjects who
participated in each experiment. Some participants were involved
in the three experiments (2 NT and 12 ASD), but a period of at
least 10 months separated their participation to Experiments II
and III.
In Exp. I (tactile threshold measurement), there were thirty-five

NT participants and 28 autistic participants. The two groups were
matched for age, education level, and sex ratio (Table 1).
In Exp. II (TOE with a stable stimulus range), there were eighteen

NT and 20 autistic participants. Participants who got less than
56.5% of correct answers (confidence interval, according to
binomial law for p= 0.05 and 120 successes out of 240 trials)
during the context-setting blocks were excluded from the
analyses, which resulted in the exclusion of one NT participant
and four autistic participants. Among the excluded participants,
one NT and one ASD participant reported being hyposensitive due
to damaged fingers, and three ASD participants reported being
hyperreactive to the tactile stimulations. After exclusion, it resulted
in groups of 17 NT participants and 16 autistic participants (Table
1).
In Exp. III, there were twenty NT and 20 autistic participants.

Three autistic participants were discarded from the analyses as
they got <56.5% of correct answers during the context-setting
blocks. Among the excluded ASD participants, one was hyper-
reactive to the tactile stimulations, one reported a high fatigability,
and one was disturbed by the sensation produced by the adhesive
tape. After exclusion of these three participants, it resulted in a
group of 20 NT adults and a group of 17 autistic adults (Table 1).

Tactile stimuli
Two gold electrodes were placed on the first and third phalanx of
the left index finger of the participant. Electrical stimulations were
delivered by a constant current stimulator (GRASS technology).
The electrical stimulation was felt on the internal face of the third
phalanx (cathode electrode). Stimulations were composed of 5
ms-long boxcar pulses, repeated at a given frequency. The overall
tactile stimulation lasted 500ms. Tactile stimuli were generated
using Matlab 2013b.
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Experiment I: tactile detection task
Each experiment was programmed using the software package
Presentation (Version 17.1, Neurobehavioral Systems,
www.neurobs.com). The tactile detection threshold was estimated
in each participant, prior to Exp. II and III. The aim was twofold: (i)
matching the subjective stimulation intensity between participants
for the subsequent discrimination task; (ii) comparing NT and ASD
participants in terms of both the mean and the variance of this
threshold. The stimulus frequency was constant and set to 30 Hz.
The intensity of the electrical stimulation was gradually increased
and then decreased (method of limits, Fig. 1a). Each participant was
asked to report when the tactile sensation started to be perceived
(detection, during the increase of stimulus intensity) as well as
when the sensation disappeared (disappearance, during the
decrease). Starting from 0mA, the stimulus intensity was increased
by 0.02mA every second. Participants were told to raise their non-
stimulated hand, as soon as they could feel the stimulation and this
first detection threshold value was collected. We kept on increasing
the intensity until reaching 1.5 times this threshold value. Then, we
used the same progression to decrease the intensity and
participants had to lower their non-stimulated hand as soon as
the sensation would disappear. This procedure was repeated twice,
resulting in four measures of threshold: two of detection and two of
disappearance. Data were collected specifically for Exp. I, or prior to
Exp. II or III. If one participant participated in both Exp. II and III, then
only the first measure was kept (i.e., from Exp. II).
The threshold measurement procedure involved a prolonged

exposure to tactile stimulations, and might thus be significantly
influenced by sensory adaptation93. If so, detection of a change
should be biased differently, depending on whether the stimulus
intensity is being increased or decreased. Precisely, detection of
the stimulation should occur at a lower intensity than the feeling
of its disappearance. We assessed the sensory adaptation effect by
computing, in each participant, the averaged difference between
the disappearance and detection intensities. We tested whether

the sensory adaptation effect was significantly different from zero
in each group and compared these effects between groups.

Experiments II and III: tactile discrimination tasks
The intensity of the electrical stimulations aimed to be at 2.5 times
their detection threshold94. Yet, for some NT participants (7 in Exp. II,
14 in Exp. III) and autistic participants (15 in Exp. II, 15 in Exp. III), we
allowed a slight modulation of this factor to guarantee a comfortable
(non-painful and non-itchy) but clearly perceived stimulus. This
ended up with similar multiplying factors between the two groups:
2.4 in the NT group and 2.2 in the ASD group on average (no
significant difference), and mean intensities of 1.3mA (±0.4) in the
NT group and 1.1mA (±0.4) in the ASD group (no significant
difference). The intensity was kept constant during the whole task.
At each trial, participants received two successive stimulations to

be compared in frequency (Fig. 1b). Each stimulation lasted for
500ms and the time interval between the two stimulations was
fixed and equal to 2000 ms. A white fixation cross was displayed on
the center of the computer screen during stimulations and delay.
Right after the delivery of the second stimulation, a question mark
appeared on screen to indicate that an answer was expected.
Participants had up to 4 seconds to answer by clicking on the
computer mouse buttons, using their dominant hand. If the second
stimulation was perceived as higher in frequency than the first one,
they had to click on the side of the plus sign (+), as shown on
screen. Conversely, if it was perceived as lower, they had to click on
the side of the minus sign (−). Finally, a black screen appeared after
the mouse click and the next trial would start after a fixed inter-trial
interval of 1500ms. The sides corresponding to the plus (+) and
minus (–) answers respectively, were indicated on screen at each
trial and never changed for a given participant but were counter-
balanced over participants. No feedback was provided.
Participants were told to prioritize accuracy over speed. Each

experiment consisted of 447 trials, and each trial lasted for 5.3 sec
on average. It was divided into five blocks (7 to 8 minutes each):

Table 1. Demographic characteristics of the participants.

Experiment I Experiment II Experiment III

NT ASD p value NT ASD p value NT ASD p value

Number of participants 35 28 – 17 16 – 20 17 –

Male/Female number 27/8 20/8 ns 12/5 12/4 ns 14/6 12/5 ns

Age (years) 37 ± 10
[23–58]

33 ± 9
[18–48]

ns 30 ± 9
[18–45]

33 ± 9
[18–47]

ns 35 ± 13
[19–58]

34 ± 10
[19–48]

ns

Number of years of education after A-level 5 ± 3
[0–8]

4 ± 3
[0–8]

ns 4 ± 2
[0–8]

4 ± 3
[0–8]

ns 3 ± 2
[0–8]

4 ± 2
[0–8]

ns

AQ 12 ± 5
[4–29]

34 ± 9
[14–49]

*** 12 ± 5
[4–21]

37 ± 8
[18–49]

*** 12 ± 4
[6–19]

34 ± 9
[18–48]

***

GSQ hypersensitivity
(tactile subscore)

21 ± 9
[6–50]
(3 ± 1)

40 ± 16
[15–74]
(6 ± 3)

*** 23 ± 8
[15–44]
(4 ± 2)

42 ± 17
[15–74]
(7 ± 3)

*** 22 ± 8
[6–38]
(4 ± 1)

39 ± 17
[15–74]
(6 ± 2)

***

GSQ hyposensitivity (tactile subscore) 17 ± 7
[5–34]
(3 ± 2)

34 ± 12
[16–70]
(5 ± 2)

*** 20 ± 8
[9–37]
(4 ± 2)

35 ± 14
[16–70]
(6 ± 3)

** 19 ± 7
[6–34]
(7 ± 2)

33 ± 13
[16–70]
(7 ± 5)

**

WAIS-IV verbal comprehension score - 125 ± 17
[83–149]

– - 127 ± 17
[96–149]

– - 128 ± 13
[102–149]

–

WAIS-IV perceptual reasoning score - 111 ± 17
[78–138]

– - 117 ± 15
[84–138]

– - 115 ± 14
[84–138]

–

The table presents the group means ± standard deviations [range] of the participants included in the analyses.
AQ Autism-spectrum Quotient, GSQ Glasgow Sensory Questionnaire: total hypersensitivity and hyposensitivity scores, and tactile hyper/hyposensitivity
subscores, WAIS-IV scores are missing for one participant in Exp. II and two participants in Exp. III, but their diagnosis reports mention an intelligence quotient
in the normal range, p p-values correspond to the results of the Student t-tests and proportion tests performed between groups (ns: non-significant if p > 0.05,
*p < 0.05, **p < 0.01, ***p < 0.001).
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three context-setting blocks, followed by two time-order effect
blocks. Participants began the task after having completed a 16-
trial long training made of one sample of each possible pair of
stimuli that would be presented during the context-setting blocks.

Experiments II and III: design of the context-setting blocks
The initial blocks (1, 2, 3) aimed at familiarizing the participants
with the task and at inducing a context-based prior on the
expected range of stimulus frequencies. During these first three
blocks, the frequency of the first stimulation (F1) was always the
same and equal to 30 Hz. The frequency of the second stimulation
(F2) was 0 to 8 Hz higher or lower than F1 (F2= 22 to 38 Hz). The 17
possible pairs of frequencies were repeated five times each per
block. Each block thus consisted of 85 trials: 40 trials in which F2
was higher than F1, 40 trials where F2 was lower than F1 and 5
trials where F2 was equal to F1 (the latter were discarded from the
analyses). By keeping the first stimulation constant, we induced a
strong prior expectation of 30 Hz stimulation for F1. The order of
the trials was pseudo-randomized. Precisely, pairs of stimuli were
presented, one cycle after another. A cycle corresponding to the
set of all possible pairs of stimuli. Within each cycle, the trial order
was fully randomized.

Experiments II and III: design of the TOE blocks
Blocks 4 and 5 aimed at eliciting a time-order effect (TOE).
Participants were not informed that the design of these two
blocks was different from the one in the three preceding blocks.
Each block consisted of 96 trials with eight presentations of each
of the 12 new pairs of frequencies. Trials were pseudo-randomly
ordered (successive trials were never identical). Importantly, to
induce a TOE and regardless of the experiment, the frequency F1
was no more constant but, within a trial, the absolute difference in
frequency between the two stimuli was always equal to 2 Hz.
In Exp. II, the frequency of the first stimulation could take six

different values with equal probability (F1= 25, 27, 29, 31, 33, or
35 Hz; a range centered at 30 Hz). The second stimulation was
then 2 Hz higher or lower than F1, with equal probability (F2= 23,
25, 27, 29, 31, 33, 35, or 37 Hz).
In Exp. III, the frequency of the first stimulation could take

another six values with equal probability (F1= 21, 23, 25, 27, 29, or
31 Hz; a range centered at 26 Hz). The second stimulation was
then 2 Hz higher or lower than F1, with equal probability (F2= 19,
21, 23, 25, 27, 29, 31, or 33 Hz).
In order to quantify the TOE at the individual level, we define a

TOE index denoted as ITOE. Over all possible F1 frequencies, it is
simply given by the average difference in accuracy between the
case where F2 was 2 Hz higher than F1 and the case where it was
2 Hz lower (e.g., 25 Hz – 27 Hz vs. 25 Hz – 23 Hz), finally normalized
by the individual mean accuracy over all trials. Note that this index
has no unit and is equal to zero in the absence of TOE. The greater
the TOE is, the greater the ITOE is. To further describe the TOE, we
also calculated the intercept of the two accuracy curves (F2 > F1
and F2 < F1) in the first and second halves (i.e., in blocks 4 and 5).

Computational modeling approach
We developed a probabilistic model of Bayesian perception and
decision making in the context of 2AFC. This model emphasizes
the role of sensory and prior precisions in the way past sensory
information is incorporated into prior beliefs and influences the
current perceptual decision. It turns out that this simple and
general hypothesis of a Bayesian learning process is sufficient to
elicit a time-order effect. We here describe in detail the perceptual
and decision parts of this model, respectively, as well as our model
fitting procedure.

Perceptual model
At each trial t, the subject is asked to compare two stimulus
frequencies presented sequentially and denoted by uðtÞ1 and uðtÞ2 ,
respectively. To perform this perceptual decision, the subject has
to infer the actual feature of interest for each stimulus, based on
noisy sensory inputs, as well as on acquired prior beliefs. An
optimal fashion to combine these two information is given by
Bayes rule, which simply weights each information by its afforded
confidence (precision or inverse variance). In several experimental
contexts, perceptual decisions have been well captured by a
Bayesian inference process56. However, what is often overlooked
is how these confidence weights are themselves estimated and
adjusted over trials, in a context-dependent fashion. For instance,
in a 2AFC, if sensory inputs are noisy and if the two stimuli to be
compared are quite similar, prior information should play a
significant role, as suggested by the observed time-order effect
behavioral accuracy. To capture this process, one needs to appeal
to Bayesian learning, a between-trial mechanism by which
posterior estimates resulting from Bayesian inference at a given
trial, become the prior belief at the next trial for subsequent
inference. The proposed perceptual model implements Bayesian
learning in the context of a sequence of two stimulus-feature
comparisons and makes explicit the key role of two parameters: (i)
sensory precision πu; and (ii) precision ratio r which controls the
relative contribution of sensory inputs and prior expectations on
perception (see below).
We denote by xn the feature to be inferred from the nth stimulus

of the sequence (be it the first or second stimulus of a given trial).
It relates to the sensory input through the likelihood function:

un � N xn; π
�1
u

� �
(1)

Besides, subjects entertain a prior belief over xn which is built
on past observations. It writes and can be decomposed as follows:

p xnjU1¼ n�1ð Þ ¼
Z

p xnjxn�1ð Þ:p xn�1jU1¼ n�1ð Þdxn�1 (2)

where U1¼ n�1 indicates all sensory inputs presented before
stimulus n.
The above decomposition highlights two terms. The first one

can be referred to as a prior of sameness. It quantifies how much
the subject believes that consecutive stimuli resemble each other.
The second one is the posterior belief over the previous stimulus
feature, given the whole sequence of stimuli so far. Without loss of
generality, we consider Gaussian distributions for both:

p xn; j; xn�1ð Þ ¼ N xn�1; π
�1
x

� �
p xn�1; j;U1¼ n�1ð Þ ¼ N μn�1; π

�1
μn�1

� �
8<
: (3)

Equation (3) introduces three model variables. πx is the prior
precision, such that the higher the prior precision, the stronger the
belief of sameness. μn�1 and πμn�1

are state variables in the sense
that they evolve over stimulus presentations. They designate the
mean and precision of the posterior belief over the (n-1)th

stimulus, respectively. The prior of sameness term and the
information inherited from past observations combine according
to Eq. (2), to form the full prior which is also Gaussian, and whose
first moment (θðnÞ) and second moment (πθðnÞ ) write:

θðnÞ ¼ μn�1

πθðnÞ ¼ π�1
μn�1

þ π�1
x

� ��1
¼ πμn�1 :πx

πμn�1þπx

8<
: (4)

Note that the prior of sameness moderates the Bayesian
learning process, in the sense the weaker the prior of sameness,
the weaker the influence of the current posterior belief on
subsequent inference. In other words, the strength of the prior not
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only depends on the confidence over the current belief, but is
further modulated by the overall belief in contextual stability.
Finally, having defined the likelihood (Eq. (1)) and prior (Eq. (4)),

applying Bayes rule yields the following formula for the two
moments of the Gaussian posterior distribution over xn:

πμn ¼ πu þ πθn ¼ πu þ πμn�1 :πx
πμn�1þπx

μn ¼ πu:unþπθn :μn�1
πuþπθn

8<
: (5)

Note that here, contrary to Eq. (4) where variances were adding
up, sensory and prior precisions add up.
Interestingly, Eq. (5) can be rewritten to emphasize the learning

process, as follows:

μn ¼ μn�1 þ τn: un � μn�1ð Þ
τn ¼ πu

πμn
¼ πu

πuþπθn

(
(6)

where precision ratio τn plays the role of a learning rate. It takes
values between 0 and 1, and the closer to one, the larger the
update of the subject’s belief based on the latest sensory input.
The latter happens when prior precision πθn is neglectable
compared to sensory precision. Conversely, if prior precision is
much greater than πu, then τn gets close to zero and the belief is
not updated.
To fully grasp how learning rate τn evolves over trials, let us

rewrite the bottom line of Eq. (6) as follows:

τn ¼ 1

1þ πμn�1 :πx

πu: πμn�1þπxð Þ
¼ 1� 1

1þ τn�1 þ r (7)

with precision ratio r ¼ πu
πx
.

A non-trivial consequence here is that the dynamic Bayesian
learning process is convergent and fully determined by the value
of the parameter r. Indeed, Eq. (7) defines a recurrent series for the
learning rate, which converges towards a limit value τlim given by:

τlim ¼ �r þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r: r þ 4ð Þp
2

(8)

Note that the higher r, the closer to one τlim. Moreover, it can be
shown that the speed of convergence towards τlim also increases
with r. This means that the smaller the prior precision with respect
to sensory precision, the faster the adjustment of the learning rate
and the larger the limit value hence the weight afforded sensory
input for perceptual inference.

Response model
The subject’s response at trial t relies on the inferred probability
that the first stimulus has a higher frequency than the second one.
This posterior probability writes:

p xð1Þt >xð2Þt ; j;U1¼ t

� �
¼ p xð1Þt � xð2Þt >0; j;U1¼ t

� �
¼ 1� F

xð1Þt �xð2Þt ;j;U1¼ tð Þ
(9)

where U1¼ t indicates all past stimulations including those
presented in current trial t, and F stands for the cumulative
distribution function.
Given the above perceptual model, the posterior distribution

over the difference xð1Þt � xð2Þt is Gaussian and the above
probability then writes:

p xð1Þt >xð2Þt ; j;U1¼ t

� �
¼ 1

2
: 1þ erf Rtð Þð Þ (10)

where erf indicates the error function and its argument Rt is given
by:

Rt ¼ αt: μ
ð1Þ
t � μ

ð2Þ
t

� �
(11)

with:

αt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
ð1Þ
μt :π

ð2Þ
μt

2: π
ð1Þ
μt þ π

ð2Þ
μt

� �
vuuut (12)

where μ
ð1Þ
t (resp. μð2Þt ) and π

ð1Þ
μt (resp. πð2Þμt ) are the posterior mean

and precision pertaining to the first (resp. second) stimulus in trial
t. Finally, given the above perceptual model and Eq. (7) in
particular, one can rewrite the two terms of the right-hand side in
Eq. (10) as follows:

μ
ð1Þ
t � μ

ð2Þ
t

� �
¼ uð1Þt � uð2Þt

� �
� 1� τ

1ð Þ
t :τ

2ð Þ
t

� �
: u 1ð Þ

t � μ
0ð Þ
t

� �
þ 1� τ

1ð Þ
t

� �
: u 2ð Þ

t � μ
0ð Þ
t

� �
(13)

and:

αt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πu

2: τ
1ð Þ
t þ τ

2ð Þ
t

� �
vuut (14)

where μ
0ð Þ
t is the prior mean at the beginning of trial t (i.e., prior to

observing first stimulus uð1Þt ). τ 1ð Þ
t and τ

2ð Þ
t are the learning rates

that pertain to each stimulus in trial t, respectively.
Interestingly, Eqs. (10) and (11) show that the decision variable

Rt is homogeneous to a t-statistics or a d-prime measure, i.e., to
the ratio of a mean contrast and its associated standard deviation.
Furthermore, the higher a positive (resp. negative) Rt , the higher
(resp. the lower) the probability of answering that uð1Þt is greater
than uð2Þt . Precisely, obtaining a high probability in favor of either
one answer or the other rests on both having a high contrast
(a high difference μ

ð1Þ
t � μ

ð2Þ
t ) and a high confidence weighting αt .

Importantly though, the contrast term relates to the veridical
physical difference between the two stimuli (uð1Þt � uð2Þt ), but also
depends on two additional terms that depend on the two learning
rates and act as perceptual biases. Similarly, the confidence
weighting term depends on sensory precision πu, but is also
modulated by the two learning rates. Note that coefficient αt is
also similar to an inverse-temperature coefficient, as typically used
in probabilistic decision models95.
Finally, the response model predicts the subject’s binary

decision at trial t as the outcome of a Bernoulli process with
probability qt of answering that uð1Þt is greater than uð2Þt given by:

qt ¼
1
2
: 1þ erf Rt þ bð Þð Þ (15)

where additional parameter b captures a putative response bias.
Hence, the proposed full model rests on two perceptual

parameters (sensory precision πu and precision ratio r) and one
response parameter (response bias b). In addition, the initial values
for the two state variables, μ 0ð Þ

0 and τ
0ð Þ
0 have to be defined, but it

turns out that beyond the few first trials, they have no influence
whatsoever on the overall subject’s performance, which fully
depends upon the above three parameters.
In this study, we compare this full Bayesian learning model

(denoted M1) with a static model (denoted M0), where the
perceptual decision is purely based on the veridical contrast
(uð1Þt � uð2Þt ) and sensory precision πu such that:

Rt ¼
ffiffiffiffiffi
πu

p
2

: uð1Þt � uð2Þt

� �
(16)

Note that M0 is what would be observed if r would tend towards
infinity in the above full model, that is when the influence of priors
is infinitely weak (i.e., the precision of the prior for sameness tends
towards zero). M0 is a static model with no state variables and only
two parameters (sensory precision πu and response bias b).
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While M0 cannot produce a TOE and is thus not expected to
well explain subject’s responses in blocks 4 and 5, it may well
explain subject’s responses in another experimental context,
namely during the context-setting blocks 1, 2, and 3. In the latter,
in most trials, the difference between the two stimuli to be
compared is fairly large and prior information should not
contribute much to the perceptual decisions.

Model fitting
To implement, fit and compare models between experimental
conditions and groups, as well as estimating relevant parameters
using Bayesian Model Averaging (BMA), we used the VBA Matlab
toolbox (http://mbb-team.github.io/VBA-toolbox/)96. We also
assessed the reliability of our modeling approach in performing
simulation-based confusion and model identifiability analyses (see
Supplementary Methods 1).
Data were fitted on the two first context-setting blocks to

estimate the sensory precision and on the three last blocks to
capture the transition between the third context-setting block and
the two TOE blocks.
When fitting the models on the behavioral data, we excluded the

trials whose RTs were outliers (i.e., more than three standard
deviations away from the participant’s mean). In the first two blocks
and in the last three blocks, the percentages of excluded trials were
1.2% (± 1.6) and 0.8% (± 0.7) in NT and 0.8% (± 0.9) and 0.7% (± 1.2)
in ASD in Exp. II, and 0.4% (± 0.5) and 0.6% (± 0.7) in NT, and 0.4%
(± 0.6) and 0.7% (± 0.8) in ASD in Exp. II, respectively. The R-squared
values associated with the fits are given as Supplementary Table 1.
The sensory precision was estimated from the two first context-

setting blocks, an estimate that was then used as a prior for the
multisession inference in the three last blocks. The supplementary
information contains the considered priors over model parameters
(Supplementary Table 2), the model posterior parameters
(Supplementary Table 3) and the probabilities of answer for each
trial type and model (Supplementary Fig. 2).

Questionnaires
In addition to the AQ and GSQ questionnaires, participants
answered a task-related questionnaire at completion of the study
(Exp. II or III), to report about their first-person experience of the
task. They were asked to rate the overall difficulty (globally and
block-wise). They were also asked to specify: (i) whether they had
the feeling that the intensity of the stimuli varied over time; (ii)
whether the first or second stimulation of each trial remained
constant in frequency (if so, in which block), and (iii) whether they
thought they had answered “plus” or “minus” most frequently.
Finally, they were free to add any comment about the strategies
they might have used to perform the task.

Statistical analyses
Descriptive statistics are reported as mean ± standard deviation.
Demographic data and tactile detection thresholds were compared
between groups using unpaired t-tests. Psychometric functions were
estimated in the context-setting blocks using a general linear model
with a logit link function. Differential thresholds were determined as
the difference in frequency between F1 and F2 to reach 75% of
correct answers. Within-group repeated measure ANOVAs were used
to assess the accuracy and response times over the five blocks, in
Exp. II and III, and Tukey’s t-tests were used post-hoc. TOE blocks
were also analyzed with two-way nested ANOVAs, with the factor
participant nested in the factor group and two main factors: group
and TOE blocks. To estimate the intercept of the TOE, we first
assessed the performance bias for each frequency F1, by computing
the difference in response accuracy between F2 > F1 trials and F2 < F1
trials. Then, the intercept of the two accuracy curves in TOE blocks
was assessed by fitting robust linear regressions to this performance

bias as a function of F1 frequency, participant by participant. The
mean intercept was calculated as the average of participants’
intercepts, after excluding the few outliers (i.e., intercepts estimated
outside the range of presented frequencies: 3 NT and 1 ASD in Exp. II,
and 1 NT and 1 ASD in Exp. III). Correlations between the
questionnaire scores and inferred model parameters were assessed
using Pearson’s r. A Pearson’s r of 0.10 is considered as a small effect,
0.30 as a medium effect, and 0.50 as a large effect. Effect sizes are
reported as Cohen’s d: very small (d= 0.01), small (d= 0.20), medium
(d= 0.50), large (d= 0.80), or very large (d > 1.20) effect sizes97,98.
Additionally, we computed Bayes factors (BF) for the main effects of
interest using the BayesFactor package in R (with default settings). To
interpret the magnitude of this effect, we refer to Jeffreys (1961)99

and Kass & Raftery (1995)100 classifications. Unanswered trials were
excluded from all the above analyses (they represented less than
0.01% of all recorded trials). All statistical analyses were performed
using R (version 2.15.3, http://www.r-project.org/). The threshold for
statistical significance was set to p < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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