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Mitotic bookmarking redundancy by nuclear 
receptors in pluripotent cells

Almira Chervova1,2,6, Amandine Molliex1,2,6, H. Irem Baymaz3, 
Rémi-Xavier Coux    1,2, Thaleia Papadopoulou    1,2, Florian Mueller4, 
Eslande Hercul1,2, David Fournier1,2, Agnès Dubois1,2, Nicolas Gaiani    1,2, 
Petra Beli3,5, Nicola Festuccia    1,2  & Pablo Navarro    1,2 

Mitotic bookmarking transcription factors (TFs) are thought to mediate 
rapid and accurate reactivation after mitotic gene silencing. However, the 
loss of individual bookmarking TFs often leads to the deregulation of only 
a small proportion of their mitotic targets, raising doubts on the biological 
significance and importance of their bookmarking function. Here we used 
targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan 
nuclear receptor, to discover a large redundancy in mitotic binding among 
members of the protein super-family of nuclear receptors. Focusing on 
the nuclear receptor NR5A2, which together with ESRRB is essential in 
maintaining pluripotency in mouse embryonic stem cells, we demonstrate 
conjoint bookmarking activity of both factors on promoters and enhancers 
of a large fraction of active genes, particularly those most efficiently 
reactivated in G1. Upon fast and simultaneous degradation of both factors 
during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including 
key players of the pluripotency network, display attenuated transcriptional 
reactivation. We propose that redundancy in mitotic bookmarking TFs, 
especially nuclear receptors, confers robustness to the reestablishment of 
gene regulatory networks after mitosis.

During mitosis many transcription factors (TFs) are inactivated or 
evicted from the chromatin and transcription is halted; however, some 
TFs remain active and bind to a subset of their targets, typically con-
taining numerous and high-quality binding motifs1. Traditionally, it 
has been considered that this phenomenon, known as mitotic book-
marking, enables daughter cells to promptly resume transcription of 
key genes upon mitotic exit2. However, the exact role and importance 
of these bookmarking factors is unclear. Indeed, only a small subset of 
mitotically bookmarked genes displays a clear, albeit partial, depend-
ence on the presence of their respective mitotic bookmarking factor for 
proper reactivation3–13. This has led to the hypothesis that the effects 

of mitotic bookmarking TFs might be relatively minor and represent 
a mere consequence of other properties, such as chromatin modifica-
tions13. However, an alternative hypothesis is that of mitotic bookmark-
ing redundancy: distinct mitotic bookmarking TFs may simultaneously 
and independently bookmark key genes important for cell identity such 
that the loss of one would be largely inconsequential.

The nuclear receptor ESRRB, a mitotic bookmarking TF that 
maintains nucleosome organization in mouse embryonic stem (ES) 
cells5,10, represents an ideal candidate to assess the notion of mitotic 
bookmarking redundancy. Indeed, while mitotic ESRRB binds around 
a third of its interphase targets (∼10,000 gene regulatory regions)5,10, 
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we found only 16 that were identified in mitosis, regardless of the 
crosslinking strategy, and strongly enriched as compared to both the 
control IP and corresponding input (in red in Fig. 1b and Extended Data 
Fig. 1b). We also identified 21 additional proteins that were enriched 
as compared to the control IP but not to the input, raising the possi-
bility that these are highly expressed proteins in mitotic cells leading 
to some level of unspecific detection (in pink in Fig. 1b and Extended  
Data Fig. 1b). Notably, none of the pluripotency TFs associated with 
ESRRB in interphase were identified in mitosis; in fact, the vast major-
ity of proteins was undetectable in mitosis for every functional group 
except for one, nuclear receptors and related factors, which were 
almost all found associated with ESRRB in both asynchronous and 
mitotic cells (Fig. 1a and red- and pink-colored proteins in Fig. 1b). While 
the mitotic detection of selected proteins in most functional groups 
is interesting, as it suggests a priming mechanism mediated by ESRRB 
to recruit other partners after mitosis, the high occurrence of nuclear 
receptors associated with ESRRB in mitotic cells is compelling, repre-
senting half of the most confident mitotic hits (Extended Data Fig. 1b). 
The identified nuclear receptors, with established roles in ES cells29, are 
the following: ESRRB itself but also the highly related ESRRA; NR0B1  
(also known as DAX1), a nuclear receptor lacking a DBD; NR5A2 (also 
known as LRH1), whose functional role together with ESRRB has been 
already demonstrated in ES cells; and RXRB, a retinoic acid receptor 
with established roles in pluripotency and differentiation. In addition, 
other factors that were reported as interacting with nuclear receptors 
are also associated with ESRRB in asynchronous and mitotic chromatin, 
such as NSD1 (ref. 30), TRIM24 (ref. 31) and SNW1 (ref. 32). Among this 
small set of proteins, and given its major role in ES cells14,27, we focused 
on NR5A2 for further validation and characterization.

Long-lived chromatin retention of NR5A2 in mitosis
TFs acting as mitotic bookmarking factors often coat mitotic chromo-
somes. This is the case for ESRRB5 as reproduced here using endog-
enously expressed ESRRB–TdTomato fusion proteins (Fig. 2a). As 
expected from our ChIP–MS results (Fig. 1), endogenously expressed 
NR5A2–green fluorescent protein (GFP) fusion proteins were detected 
with ESRRB on mitotic chromosomes (Fig. 2a). Moreover, the reten-
tion of these two factors on mitotic chromosomes is mutually inde-
pendent, as established using previously described knockout (KO) cell 
lines14: in ESRRB KO mitotic cells, NR5A2 remains associated with the 
chromatin; conversely, in NR5A2 KO cells ESRRB still coats the mitotic 
chromosomes (Fig. 2b). These results are in accord with the large bind-
ing independence of the two factors to their common sites on DNA14. 
Despite this seemingly similar behavior, ESRRB and NR5A2 coating 
of the mitotic chromosomes also displays notable differences: while 
chromosomal coating by ESRRB is disrupted by FA crosslinking10, as 
shown for many other TFs33, that of NR5A2 is retained (Extended Data 
Fig. 2a). A potential explanation for this behavior, already reported 
for CTCF11, could be that the residence time of NR5A2 on the chro-
matin is long, allowing FA crosslinking10,33. Accordingly, fluorescence 
recovery after photobleaching (FRAP) analyses performed in parallel 
for ESRRB and NR5A2 clearly show that, while fluorescence is rapidly 
recovered on bleached chromatin for ESRRB, in the case of NR5A2 the 
recovery is incomplete over 10 s (Fig. 2c). Even after long times fol-
lowing photobleaching (up to 100 s), NR5A2 signal does not recover 
entirely, indicating that the association of this TF with the chromatin 
is long lived. This is particularly evident in interphase, but holds true 
also in mitosis, where a seemingly immobile fraction of around 25% 
characterizes NR5A2 coating of the mitotic chromosomes (Fig. 2d). 
These results, in sharp contrast to most, if not all, other bookmarking 
TFs analyzed and more specifically to ESRRB (Extended Data Fig. 2b),  
set apart NR5A2 as a TF that is stably associated with the chroma-
tin in interphase and in mitosis. Intrigued by this finding, we asked 
whether the DNA-binding domain (DBD) of NR5A2 was sufficient  
for such long-lived interactions by ectopically expressing DBD–GFP 

only 150 genes require ESRRB to be properly reactivated immediately 
after mitosis5. Moreover, ES cells in which ESRRB or another nuclear 
receptor, NR5A2, is individually knocked out remain viable; in contrast, 
the simultaneous loss of both nuclear receptors is incompatible with 
self-renewal and the maintenance of pluripotency14. While the inacti-
vation of either ESRRB or NR5A2 has minor molecular consequences, 
the loss of the two TFs triggers strongly reduced binding of major ES 
cell regulators, such as POU5F1 (hereafter OCT4), SOX2 and NANOG, 
at thousands of enhancers14. This strong complementarity between 
ESRRB and NR5A2 showcases the importance of the functional redun-
dancy between nuclear receptors. In fact, a high level of redundancy 
among members of this super-family of TFs might be expected since 
they are evolutionarily and structurally related and share highly similar 
DNA-binding motifs15–18. Moreover, several nuclear receptors have been 
shown to coat mitotic chromosomes19–25, even though the engagement 
in site-specific interactions genome wide has only been analyzed for 
ESRRB5,10. Together, these observations suggest that cohorts of nuclear 
receptors could be involved in mitotic bookmarking processes in con-
junction with ESRRB to ensure the proper post-mitotic reactivation of 
the pluripotency network.

In this Article, to investigate mitotic bookmarking redundancy 
from the perspective of ESRRB, we first established that the most recur-
rent and prevalent proteins with which it associates on mitotic chro-
matin are nuclear receptors. Second, focusing on NR5A2 we showed 
that its retention on mitotic chromatin is long-lived and characterized 
by site-specific interactions at gene regulatory elements harboring 
a specific variant of the DNA-binding motif recognized by nuclear 
receptors. Third, we assessed the functional consequence of dual 
bookmarking by ESRRB and NR5A2 using Auxin-inducible degrons: 
we found both factors to be conjunctly required for efficiently reac-
tivating a group of around 1,000 genes after mitosis. These ESRRB/
NR5A2-responsive genes during the M–G1 transition are collectively 
downregulated during ES cell differentiation, transiently induced in 
pluripotent compartments of the early mouse embryo and enriched for 
pluripotency regulators. We conclude that nuclear receptors execute 
the key task of rapidly reinstating the gene regulatory networks sup-
porting ES cell identity after mitosis.

Results
Mitotic association of ESRRB with nuclear receptors
Previous work showed that ESRRB interacts with a large number of 
chromatin-associated proteins, including chromatin remodelers, 
members of the basal transcriptional apparatus, pluripotency TFs 
and other nuclear receptors26,27. We therefore aimed at identifying 
which proteins are associated with ESRRB in interphase and in mito-
sis. To do so, we applied chromatin immunoprecipitation combined 
with mass spectrometry (ChIP–MS), a technique similar to chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) but that uses 
mass spectrometry to identify the factors crosslinked to the immuno-
precipitated protein28, in our case ESRRB (Extended Data Fig. 1a). Since 
we have previously shown that fixation with disuccinimidyl glutarate 
(DSG) and formaldehyde (FA) greatly improves the detection of TF 
localization to mitotic chromosomes10, we performed three replicate 
assays in such conditions, together with negative immunoprecipitation 
(IP) controls. We have also established that FA alone is enough to detect 
substantial numbers of ESRRB mitotic binding sites10. Therefore, we 
also performed ChIP–MS after crosslinking with either DSG and FA or 
FA only and compared the results to the respective inputs. In agreement 
with previous reports26,27, we found known interactors of ESRRB, such 
as other pluripotency TFs and members of the Mediator, NuRD and 
Swi/Snf complexes, to be associated with ESRRB in asynchronous cells 
(Fig. 1a and Extended Data Fig. 1b). All these proteins were, however, 
largely undetectable in mitosis. Indeed, a more comprehensive analysis 
(Extended Data Fig. 1b) identified 105 proteins in asynchronous cells, 
belonging to different functional groups (Fig. 1b). Of those proteins,  
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Fig. 1 | Nuclear receptors are maintained on mitotic chromatin with ESRRB. 
a, Quantification of peptide abundance for specific examples belonging to 
different functional groups known to interact with ESRRB in interphase. The 
numbers of identified razor peptides are shown; similar observations were made 
with iBAQ and LFQ quantifications (see respective tabs in Source data). b, The 
ESRRB-centered, chromatin-associated proteome in interphase and mitotic 
cells, organized by functional groups. NURD, nucleosome remodeling and 
deacetylase complex; SWI/SNF, switch/sucrose nonfermentable nucleosome 

remodeling complex; GTF, general transcription factors; CELL DIV, proteins with 
known roles during mitosis; CHAP, proteins with roles in chaperoning activity; 
NUCL REC, nuclear receptors and known associated factors; REPL, replication 
machinery; PTF, pluripotency transcription factors; IMP EXP, proteins with roles 
in nuclear import and export; RNAbp, RNA-binding proteins; CHR, proteins with 
known roles in chromatin regulation. Mitotic hits were grouped in two classes 
of low (pink) and high (red) confidence, depending on the fold change of the 
enrichment between the IP and the input observed in mitosis.
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fusion proteins. The recovery of fluorescence for the NR5A2 DBD alone 
was seemingly rapid in interphase (Extended Data Fig. 2c). Addition of 
all the remaining C-terminal domain that contains the ligand-binding 
domain, responsible for the interaction of nuclear receptors with coac-
tivators, considerably increased the time of fluorescence recovery 
(Extended Data Fig. 2c). In mitosis, we found that both the DBD alone 
and the DBD–Ct fusion proteins efficiently coated the chromosomes 
(Extended Data Fig. 2d). Moreover, and in contrast to interphase, the 
dynamics of fluorescence recovery were found to be similar between 
the two constructs (Extended Data Fig. 2c). From these overexpres-
sion assays (Extended Data Fig. 2e), we conclude that the DBD alone 
is sufficient to trigger relatively long-lived chromatin interactions in 
mitosis, whereas in interphase the ligand-binding domain, possibly 
through the mediation of protein–protein interactions, confers further 
stability to NR5A2 binding to the chromatin.

Mitotic bookmarking by NR5A2
We next aimed at assessing whether NR5A2 engages in site-specific 
interactions with its DNA targets, a defining property of mitotic 
bookmarking factors1. To do this, we performed ChIP–seq assays in 
asynchronous and highly pure populations of mitotic ES cells. Explo-
ration of the binding profiles throughout the genome confirmed the 
capacity of NR5A2 to bind mitotic chromatin at specific sites (Fig. 3a), 
which can be described with four main binding trends (Fig. 3b): regions 
that are bound by both factors in interphase and in mitosis, hereafter 
dB (for double bookmarked), regions that are bookmarked by either 
ESRRB (eB) or NR5A2 (nB) and regions that are bound by the two factors 
exclusively in asynchronous cells (hereafter lost regions, L). Globally, 
ESRRB and NR5A2 binding levels were higher at bookmarked regions, 
including in asynchronous cells (Extended Data Fig. 3a,b), in keeping 
with the idea that mitotic bookmarking often takes place at regions 

of robust binding. The behavior of ESRRB and NR5A2 is not, however, 
fully symmetric. Indeed, at nB regions ESRRB is bound in interphase 
but mostly lost in mitosis whereas at eB regions NR5A2 is not efficiently 
recruited neither in interphase nor in mitosis (Fig. 3b and Extended 
Data Fig. 3a,b). This observation, together with our previous finding 
that NR5A2 and ESRRB show a preference for slightly different DNA 
motifs14, prompted us to determine whether distinct sequences are 
enriched over these four groups of regions. For all groups, we found 
an overrepresentation of the TCAAGGTCA sequence characteristic 
of estrogen-related receptors (Fig. 3c), which contains the classical 
AGGTCA box of nuclear receptors34,35, extended by a half-site. However, 
at regions bound by NR5A2 in mitosis (dB and nB), thymidine (T) was 
less prominent at the seventh base, and as frequent there as cytosine 
(C). The occurrence of T or C at the seventh position in the motif was 
already identified as favoring ESRRB versus NR5A2 binding in asyn-
chronous ES cells14. Analysis of the presence of the motif and more 
particularly of T/C variants across all regions showed that the efficiency 
of mitotic bookmarking correlates with the presence of this consen-
sus, with loci containing both T and C variants, or exclusively C, being 
strongly enriched at dB and nB regions (Fig. 3d); in contrast, eB regions 
were exclusively associated with motifs containing a T. As expected, L 
regions showed the lowest occurrence of motifs, which almost always 
contain a T. Moreover, we observed that the type of motifs present 
in the regions (Fig. 3e), as well as their number per region (Fig. 3f)  
and quality (Fig. 3g), is quantitatively associated with the binding 
levels of ESRRB and NR5A2, particularly in mitosis. Hence, the aver-
age motif score of the regions clearly differentiates bookmarked ver-
sus lost status (Fig. 3h). Finally, we noted that the motif identified at 
dB and nB regions was longer, containing an extra AGT at the 5′ end  
(Fig. 3c). While we had already identified the presence of this longer 
motif in ESRRB bookmarked regions5, this new analysis clearly 
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associates it with bookmarking by NR5A2, with or without ESRRB. 
Overall, we conclude that the presence of different versions of the 
ESRRB/NR5A2 motif, together with their degree of similarity to the 
consensus and their number of occurrences per region, is directly 
related to the behavior of ESRRB and NR5A2 in mitosis; in interphase, 
though, ESRRB and NR5A2 can also be recruited by other TFs, often 
excluded from mitotic chromatin (Fig. 1).

Chromatin states of ESRRB/NR5A2 binding regions
We next separated ESRRB/NR5A2 binding regions using epigenomic 
signatures characteristic of active promoters, active enhancers or 
enhancers lacking marks of activity, and quantified pluripotency TF 
binding (OCT4, SOX2 and NANOG; Fig. 4a). At enhancers, we observed 
that pluripotency TFs were almost exclusively constrained to L regions 
displaying poor ESRRB/NR5A2 motifs (Fig. 4a), indicating that ESRRB 
and NR5A2 are probably indirectly recruited at these regions. This 
subset was also characterized by slightly more accessible chromatin 
and p300 recruitment (Fig. 4a and Extended Data Fig. 4a). At active 
enhancers and promoters this trend was not apparent (Fig. 4a); instead, 
we found a small positive correlation between marks of activity and 
mitotic bookmarking status, with dB globally displaying higher levels 
of active marks than eB/nB, which in turn showed more enrichment 
than L regions (Extended Data Fig. 4a). Moreover, although the effect 
was rather modest, dB and eB regions also displayed a less pronounced 
reduction in accessibility in mitosis compared to asynchronous cells 

(Extended Data Fig. 4a). We also observed that, proportionally, active 
promoters display the highest frequency of bookmarked regions (50% 
against 20–30% for other elements; Fig. 4a and Extended Data Fig. 4b). 
This is reflected by a two- to threefold enrichment of promoters within 
dB and eB regions, which nevertheless remain in absolute terms less fre-
quently bound by these factors than enhancers (Extended Data Fig. 4b). 
Overall, this analysis indicates that at enhancers losing ESRRB/NR5A2 
in mitosis, NANOG, OCT4 and SOX2 are probably key regulators trig-
gering ESRRB/NR5A2 recruitment in interphase and a modest enrich-
ment for epigenomic features associated with activity. In contrast, at 
active regulatory elements, ESRRB and NR5A2 have a positive impact in 
pluripotency TF binding and enrichment for active marks, particularly 
at regions where ESRRB/NR5A2 engage in mitotic bookmarking. Next, 
we turned to the analysis of nucleosome organization, since we had 
previously shown that ESRRB and CTCF bookmarked regions maintain 
nucleosome order in mitosis10,11. In this regard, nB regions are particu-
larly interesting as they were previously considered as lost regions. 
Using previously published analyses of nucleosome mapping using 
micrococcal nuclease sequencing10, we observed that at all bookmarked 
regions (dB, eB and nB), the nucleosomes were ordered as nucleosomal 
arrays in both interphase and mitosis (Fig. 4b). While the best phasing 
of the nucleosomes and the more pronounced nucleosome depleted 
region over the motif were observed at dB regions, both eB and more 
significantly nB regions displayed substantial maintenance of nucleo-
some organization. In contrast, L regions showed poor organization and 
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a clear central accumulation of nucleosomes, specifically in mitosis, as 
previously observed for regions losing TF binding during division10,11. 
Therefore, the nucleosome organization capacity of ESRRB is also 
shared by NR5A2.

ESRRB/NR5A2 mark rapidly reactivated genes
We next aimed at establishing whether ESRRB/NR5A2 binding, particu-
larly during mitosis, is associated with post-mitotic gene transcription 
dynamics. To simplify these analyses, we focused on three binding 
groups: regions bookmarked by two factors (dB), regions bookmarked 
by a single factor (B) and regions losing both factors in mitosis (L). We 
considered a gene as a target when either a 2-kb-long window centered 
on its transcription start site, or an enhancer to which it had been previ-
ously linked using 3D conformational data and epigenomic analyses36, 
overlapped with ESRRB/NR5A2 binding regions. This association was 
hierarchical: when a gene promoter or enhancer was overlapped by a dB 
region, it was labeled as dB and the remaining genes were subsequently 
labeled, in order, as B, L or unbound. This led to gene groups of similar 
size: dB, 3,529; B, 2,594; L, 2,671; unbound, 5,163. Next, we plotted the 
post-mitotic transcription dynamics of these 14,000 genes (Fig. 5a) 
using highly temporally resolved data9, and computed the proportion 
of genes in each dB/B/L/unbound category for sliding windows of 1,000 
genes (step = 10) displaying continuously increasing reactivation inten-
sities. We observed that ESRRB/NR5A2 binding regions were progres-
sively enriched as genes reactivate faster and more strongly (Fig. 5b, 
left, and Extended Data Fig. 5a). Moreover, this progressive increase of 
the enrichment was solely due to regions bookmarked by both ESRRB 
and NR5A2 (dB, Fig. 5b, right). This indicates that the combined mitotic 

bookmarking by ESRRB and NR5A2 may drive efficient post-mitotic 
gene transcription. To assess this more quantitatively, we calculated 
the mean transcription profile of dB, B and L genes and compared them 
to unbound genes: all three groups of ESRRB/NR5A2-bound genes 
reactivated faster and more drastically than genes not bound by the 
two nuclear receptors (Fig. 5c, left). Moreover, dB genes were by far the 
most efficiently reactivated genes, followed by B and L genes, which 
displayed relatively similar kinetics. Splitting the associations by the 
type of regulatory element further showed that genes bookmarked 
by ESRRB and NR5A2 reactivate more robustly than unbound genes, 
whether they bind at promoters or at enhancers (Extended Data Fig. 5b).  
However, only promoters showed some level of increased reactiva-
tion when bookmarked by a single nuclear receptor as compared to 
unbound promoters (Extended Data Fig. 5b). Moreover, ignoring pro-
moters and enhancers, and associating genes to dB, B and L groups by 
proximity (<50 kb), further confirmed that both the timing and the 
strength of gene reactivation were favored by ESRRB/NR5A2 binding 
in mitosis and to a lower extent by binding of a single factor (Extended 
Data Fig. 5b). Altogether, these observations support the notion that 
bookmarking factors promote gene reactivation in daughter cells, 
especially when two TFs are involved. In addition, the effect of double 
mitotic bookmarking by ESRRB and NR5A2 was observed both for 
genes that are, and that are not, targeted by other TFs such as NANOG, 
OCT4 and SOX2 (Fig. 5c, middle and right). Having established that 
mitotic bookmarking by ESRRB and NR5A2 is associated with strong 
post-mitotic gene reactivation, we aimed at analyzing more closely their 
link to the speed of the reactivation. For this, we ordered genes by the 
percentage of transcription with respect to the last time point analyzed 
(Extended Data Fig. 6a,b). We observed that the most rapidly reacti-
vated genes were also enriched for ESRRB/NR5A2 mitotic bookmarking 
(Extended Data Fig. 6c). Thus, genes bookmarked by the two TFs are 
both more strongly and more rapidly reactivated. Finally, to provide 
functional evidence of such correlations, we tagged each of the alleles of 
ESRRB and NR5A2 with the Auxin-induced degradation domain, which 
we previously used to efficiently degrade CTCF in mitosis and upon 
release into interphase9,11. Accordingly, treatment with the auxin analog 
5-Ph-IAA (hereafter IAA) led to a drastic reduction of both ESRRB and 
NR5A2 protein levels in interphase and during mitosis (Extended Data 
Fig. 7a), associated with a nearly complete loss of mitotic chromosome 
coating as judged by immunofluorescence (Extended Data Fig. 7b,c). 
Western-blot analysis of ESRRB/NR5A2 upon biochemical fractionation 
of mitotic cells further confirmed the acute depletion of these two TFs 
from the chromatin (Extended Data Fig. 7d). Thus, we proceeded to syn-
chronize the cells in mitosis with a two-step approach, first inhibiting 
CDK1 to enrich ES cells in G2, and then inhibiting microtubule dynamics 
to arrest cells in pro-metaphase. During the second step we added IAA to 
initiate ESRRB/NR5A2 degradation as the cells enter mitosis and kept it 
throughout the release into the next interphase (Extended Data Fig. 7e),  
as described9. We collected multiple time points after mitosis for RNA 
extraction, and, after controlling the efficient depletion of ESRRB/
NR5A2 in three independent replicates (Extended Data Fig. 7f), we 
prepared total ribodepleted RNA sequencing (RNA-seq) libraries to 
quantify pre-mRNAs as a proxy of transcriptional activity9. Contrary 
to our expectations, we did not observe major differences in the global 
reactivation dynamics of ESRRB/NR5A2-depleted cells compared to 
their respective control (Extended Data Fig. 8a–c).

Gene activation by ESRRB/NR5A2 during the M–G1 transition
While the global effects of the double depletion of ESRRB/NR5A2 are 
minor, further exploration of the dataset enabled us to identify two 
principal component analysis (PCA) dimensions (principal components 
PC5 and PC6) describing clear differences between IAA-treated and 
control cells, even if capturing a small proportion of the total vari-
ance (Fig. 6a). This was expected given that most of the variance in 
this dataset is captured by the very vast transcriptional changes taking 
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place after mitosis9. Extraction of the genes contributing mostly to PC5 
and PC6 identified two groups that were either down- or upregulated 
upon IAA treatment (Fig. 6b) and displayed concordant regulation in 
independent datasets generated in inducible ESRRB/NR5A2 double-KO 
ES cells14 (Extended Data Fig. 8d), indicating that they represent bona 
fide ESRRB/NR5A2-responsive genes. Notably, while downregu-
lated genes responded throughout the whole time-course analysis, 
the upregulation observed was largely not statistically significant  
(Fig. 6b). Gene Ontology and gene set enrichment analyses showed 
that downregulated genes were strongly enriched in members of the 
pluripotency network, and to a lesser extent in metabolic pathways  
(Fig. 6c). Indeed, several pluripotency TFs were found downregulated 
after mitosis, albeit at variable levels, with some being more affected 
than others by ESRRB/NR5A2 depletion (Fig. 6d). Prompted by these 
results, we aimed at comprehensively identifying ESRRB/NR5A2 
responsive genes after mitosis, by using direct statistical comparisons 
between control and IAA treated cells (Extended Data Fig. 9a), as well 
as by taking advantage of previously identified targets14. Combined, we 
found 1,013 genes that were downregulated after mitosis in the absence 
of ESRRB/NR5A2 and 941 that were upregulated, which displayed a 
similar behavior (Extended Data Fig. 8e) and functional associations 
to those observed in the more restricted gene sets extracted from PCA 
(Fig. 6b,c). Of note, only 42 downregulated and 38 upregulated genes 

were found to be differentially transcribed during early G1 upon the 
single loss of ESRRB5, supporting the notion of ESRRB/NR5A2 redun-
dancy. Importantly, we also found a strong association between the 
ESRRB/NR5A2 binding status and the gene’s responsiveness to ESRRB/
NR5A2 depletion (chi-squared P value 5.84 × 10−77), with around 85% 
of downregulated genes being bound at known regulatory elements 
(Fig. 6e) and around 50% being bookmarked by both ESRRB and 
NR5A2 (Fig. 6e), which represents a strong and significant association  
(Fig. 6f). In contrast, upregulated or nonresponsive genes were  
partially depleted of double bookmarked sites (Fig. 6e,f). Moreover, 
when we analyzed previous genes responsive to the long-term loss of 
ESRRB and NR5A2, we observed that only those displaying attenuated 
reactivation upon IAA treatment (Extended Data Fig. 9b) were associ-
ated with regions bookmarked by both ESRRB and NR5A2 (Fisher exact 
test P = 8.736 × 10−8, odds ratio 2.54). We conclude that the combined 
bookmarking activity of ESRRB and NR5A2 at promoters and enhanc-
ers primarily fosters the activation of around 1,000 genes enriched in 
regulators or markers of pluripotency, including important regulators 
of self-renewal such as Tfcp2l1, Tbx3, Nanog or Klf5. Accordingly, we 
observed that the depletion of both TFs during a single M–G1 transi-
tion led to reduced self-renewal efficiency, although with high intrinsic 
variability between independent assays, due to the extensive manipula-
tion of the cells (Extended Data Fig. 9c). Hence, while the quantitative 
consequences of ablating ESRRB/NR5A2 during the M–G1 transition are 
relatively modest, they are associated with measurable phenotypical 
consequences. Furthermore, it remains possible that additional mitotic 
bookmarking by other nuclear receptors (Fig. 1) partially compen-
sates for the loss of ESRRB/NR5A2. In this regard, it is noteworthy that 
both the short motif identified at regions exclusively bookmarked 
by ESRRB as well as the long motif identified at NR5A2-bookmarked 
regions compose the core nuclear receptor binding consensus and, in 
particular, perfectly match the ESRRA and RXRB motifs, respectively 
(Extended Data Fig. 10a). Moreover, both ESRRA and RXRB are present 
in the mitotic ESRRB proteome we report (Fig. 1), suggesting their 
direct contribution to the post-mitotic reactivation of ESRRB/NR5A2 
target genes. In agreement, preliminary observations indicate that 
ESRRA binds at regions targeted by ESRRB and NR5A2 in interphase and 
displays weak but consistent mitotic bookmarking activity at regions 
bookmarked by ESRRB (Extended Data Fig. 10b,c), as predicted by the 
analysis of the motifs. Therefore, the activity of a complex network of 
nuclear receptors acting redundantly might ensure the robustness 
of mitotic bookmarking. Finally, we analyzed the expression dynam-
ics of ESRRB/NR5A2 responsive genes after mitosis during embryoid 
body differentiation37 and early mouse embryogenesis38,39. We found 
that genes activated by ESRRB/NR5A2 after mitosis are rapidly down-
regulated upon in vitro differentiation (Fig. 6g, left, and Extended Data  
Fig. 8f) and, conversely, transiently upregulated in the naive pluripotent 
compartments of the early blastocyst (Fig. 6g, right, and Extended 
Data Fig. 8g). Conversely, genes repressed by ESRRB/NR5A2 after mito-
sis are globally upregulated during differentiation (Fig. 6g, left, and 
Extended Data Fig. 8f) and, in vivo, maternally inherited, cleared and 
then re-expressed at E5.5 (Fig. 6g, right, and Extended Data Fig. 8g), 
when the dismantlement of naive pluripotency starts. These observa-
tions provide further support to the biological significance of the group 
of genes activated by ESRRB/NR5A2 during the M–G1 transition and 
strongly associated to their mitotic bookmarking activity.

Discussion
The pluripotency network is composed of a plethora of TFs that pro-
mote self-renewal and preserve pluripotency. This network is believed 
to be robust against the loss of single factors, since only the individual 
depletion of OCT4 or SOX2 leads to drastic differentiation40,41. This 
is in part due to TF redundancy, as computationally predicted42 and 
as shown for KLF2/KLF4/KLF5 (ref. 43) or for ESRRB/NR5A2 (ref. 14).  
Nevertheless, self-renewal necessarily involves undergoing mitosis, 
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which represents an obstacle to the regulation mediated by most 
TFs1. Therefore, specific mechanisms may have evolved to ensure the 
regulatory continuity throughout cell generations and to prevent inap-
propriate escape from pluripotency. Mitotic bookmarking offers, in 
this regard, a suitable mechanism to facilitate the reassembly of func-
tional regulatory complexes after mitosis and promote target gene 

reactivation. In this study we have identified a family of gene regulators, 
nuclear receptors, as potentially common mitotic bookmarking factors 
in ES cells, and have focused on two, ESRRB and NR5A2, to further show 
that they bind together at a large subset of their mitotic targets. Using an 
Auxin-inducible protein degradation system we further show that the 
reactivation of ESRRB/NR5A2 mitotic targets is partially compromised 
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when they are simultaneously degraded in mitosis and during reentry 
in interphase. However, current experimental limitations linked to the 
kinetics of ESRRB/NR5A2 degradation/resynthesis upon Auxin treat-
ment/washout do not enable specifically testing the role of mitotic 
binding per se versus an independent role during mitotic exit. Alter-
native tools enabling extremely fast modulation of TF localization  
and/or activity rather than expression will now need to be developed 
to address this key question rigorously.

While ESRRB and NR5A2 are structurally related and their binding 
profiles highly similar, they can display different biophysical behav-
iors, with NR5A2 displaying unusually long binding to mitotic chro-
matin. These two TFs also display subtle differences in terms of the 
DNA-binding motifs with which they preferentially interact, which 
become particularly relevant in the context of mitosis where the chro-
matin poses additional constraints for TF binding as compared to inter-
phase. Notwithstanding, they functionally work together to maintain 
ordered nucleosomal arrays at their targets in mitosis. Given that both 
ESRRB and NR5A2 are simultaneously required to recruit NANOG, OCT4 
and SOX2 at a large number of regulatory elements, notably enhanc-
ers14, it is likely that these ordered arrays facilitate the reassembly of 
functional enhanceosomes to promote gene reactivation in daughter 
cells. However, the consequences of the loss of ESRRB/NR5A2 during 
the M–G1 transition are, for most genes, relatively modest, except for 
prominent examples such as Nanog, Tfcp2l1 or Tbx3. Moreover, genes 
losing ESRRB/NR5A2 binding in mitosis, or genes controlled by TFs 
that do not act as mitotic bookmarking factors in our cells10 (OCT4, 
SOX2 and NANOG), are also associated with accelerated transcription 
patterns after mitosis in comparison with unbound genes. These obser-
vations may be ascribed to three major phenomena. First, additional 
bookmarking factors may cooperate with ESRRB/NR5A2, as shown 
for ESRRA, or target independent regions. Second, the global coating 
of mitotic chromosomes by ESRRB/NR5A2 and other TFs44, or even 
their mere cytoplasmic inheritance, may also be important to rapidly 
activate target genes in G1, even if not linked to site-specific interac-
tions with DNA during mitosis. In particular, TFs with pioneer activi-
ties such as ESRRB45, NR5A2 (ref. 45), OCT4 (ref. 46) and SOX2 (ref. 46)  
may accelerate transcriptional reactivation of their interphasic tar-
gets compared to unbound genes. Third, the global, strong and tran-
sient hyper-transcriptional burst taking place after mitosis47, which 
is particularly prominent in ES cells9, may be robust enough to buffer 
the loss of ESRRB/NR5A2. Promoters may be subject to additional 
mechanisms fueling their post-mitotic activation, such as particularly 
well-preserved accessibility48 or histone acetylation7, mitotic book-
marking by TBP8 or by CTCF9, or APC/C-driven regulation49. Hence, in 
this permissive context the additional contribution of ESRRB/NR5A2 
might have a minor impact. Considering these three nonmutually exclu-
sive aspects, and given the role of ESRRB/NR5A2 in enabling enhancer 
occupancy by other pluripotency TFs in interphase14, it is likely that 
their mitotic bookmarking activity is more strongly associated with 
enhancer function and, therefore, with the modulation of transcrip-
tional levels rather than with off–on switching processes. Notably, the 
genes most influenced by ESRRB/NR5A2 mitotic bookmarking include 
factors of particular importance for ES cell identity, as suggested by 
the specificity in their developmental pattern of expression and their 
enrichment in regulators of the pluripotency network. This might be 
a general characteristic of the genes responding during M/G1 to the 
action of cell type-specific mitotic bookmarking TFs, as supported by 
the recurrent identification of cell identity genes within repertoires of 
mitotic bookmarking targets3–5.

Overall, we argue that the control of post-mitotic transcription is 
twofold. On the one hand, yet to be fully characterized general mech-
anisms are responsible for the global transcriptional reactivation 
burst, probably operating at promoters. On the other hand, cohorts of 
redundant mitotic bookmarking activities, such as nuclear receptors, 
impart specificity to the kinetics and amplitude of gene reactivation 

by modulating enhancer activity. This may confer the required robust-
ness to the reactivation of cell type-specific genes and gene regulatory 
networks preserving cell identity in a manner that is largely resilient 
to the loss of one or several regulators. Although challenging, it will 
be important in the future to establish new tools to invalidate the 
activity of all nuclear receptors identified as mitotic ESRRB binding 
partners, such that the importance and redundancy of this process 
can be fully tested. Furthermore, extending our meticulous analysis 
of mitotic binding events and their consequences to other cell types 
where nuclear receptors have been shown to at least coat mitotic chro-
mosomes19–25 may enable generalization of the role of nuclear receptors 
as mitotic bookmarking factors.
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Methods
Cell culture and mitotic preparations
ES cells—E14Tg2a, EKOiE5, EKOie–NrKO14, FLAG–Nr5a2 (ref. 14), 
NR5A2–GFP/ESRRB–mCherry14, ESRRB/NR5A2–GFP lines and ESRRB/
NR5A2–IAA ESCs (see details below)—were cultured on serum and leu-
kemia inhibitory factor conditions as previously described11. Mitotic 
ES cells (>95% purity as assessed by 4′,6-diamidino-2-phenylindole 
staining and microscopy) were obtained using a double synchroniza-
tion method based on the CDK1 inhibitor RO-3306 (10 µM; Sigma, 
SML0569), nocodazole (50 ng ml−1; Sigma, M1404) and shake-off, as 
previously described9. For post-mitosis analyses, cells were seeded in 
separate dishes (one per time point), purposely uncoated with gelatin 
and lysed in cold TRIzol (ThermoFisher, 15596026) 20, 30, 40, 50, 60, 
90 and 120 min after release from the mitotic block9. ESRRB/NR5A2 
depletion was achieved with 0.5 mM auxin (5-Ph-IAA BioAcademia, 
30-003), added during the 5 h of nocodazole block and maintained 
during the whole post-mitotic release. Asynchronous cells were treated 
in parallel during 5 h.

ES cell derivation
ESRRB/NR5A2–GFP cells were generated by stable transfection of a 
CAG-driven vector expressing C-terminal fusions of ESRRB or NR5A2 
variants to GFP (connected by a glycine linker and linked to an IRES–
puromycin resistance cassette) and selection of single clones. NR5A2 
variants included the full protein from ENSEMBL transcript Nr5a2-
205 (Uniprot Q1WLP7) and two truncated version coding for the 
DBD alone or for a fragment spanning the DBD and all the remaining 
C-terminal portion of the protein (amino acids: DEDLEE … LHAKRA). 
For experiments shown in Fig. 2b, similar expression constructs 
were transiently transfected by lipofection in EKOiE, or EKOie–NrKO 
cells. ESRRB/NR5A2–AID cells were generated by CRISPR–Cas9, first 
inserting a CAG–OsTir2–T2a–NeomycinR cassette at the TIGRE locus 
(gRNA 3′-ACTGCCATAACACCTAACTT-5′), then a LoxP–PuromycinR–
LoxP–HA–AID–Gly5 cassette at the start codon of Nr5a2 (ENSEMBL 
transcript Nr5a2-205; gRNA 5′-CCACTTTGGGCAGCATGACA-3′) 
and finally a LoxP–PuromycinR–LoxP–3xFLAG–Gly5 cassette at 
the start codon of Esrrb (ENSEMBL transcript Esrrb-206; gRNA 
5′-TGAACCGAATGTCGTCCGAC-3′). After each round, single colonies 
were expanded and cells homozygous for correctly targeted alleles 
identified by polymerase chain reaction on genomic DNA and sequenc-
ing. In addition, after each insertion of the AID degron, the selection 
cassette was removed by Cre-mediated recombination. All cell lines 
are available upon request.

Protein analyses
To establish the ESRRB-centered proteome, we used both asynchro-
nous and mitotic cells obtained during successive experimental 
rounds, fixed with DSG (2 mM; Sigma, 80424-5 mg) for 50 min at room 
temperature (RT) followed by 10 min with FA (1%, Thermo, 28908), 
sonicated as previously described10 and stored at −80 °C until 300 × 106 
cells for each were accumulated. Next, ESRRB and control IPs were per-
formed in parallel in triplicates using 50 × 106 cells per IP and a standard 
ChIP procedure with anti-ESRRB (Perseus Proteomics, H6-705-00) and 
control antibodies, except that after the last wash the beads were resus-
pended in 2× lithium dodecyl sulfate buffer/100 mM dithiothreitol 
(DTT), incubated for 35 min at 95 °C while shaking and spun for 10 min 
at RT at maximum speed. Samples were stored at −20 °C until further 
processing. The eluates, after equilibrating their temperature to RT, 
were alkylated by incubating with 5.5 mM chloroacetamide for 30 min 
in the dark and then loaded onto 4–12% gradient sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis gels. Proteins were stained 
using the Colloidal Blue Staining Kit (Life Technologies). Due to DSG/
FA crosslinking, the proteins appeared as a smear upon sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis; therefore, the bands 
corresponding to heavy and light chains of the IP antibodies were not 

cut out to avoid losing potentially relevant proteins. All proteins were 
digested in-gel using trypsin. Peptides were extracted from gel and 
desalted on reversed phase C18 StageTips. Peptide fractions were 
analyzed on a quadrupole Orbitrap mass spectrometer (Q Exactive 
Plus, Thermo Scientific) equipped with an ultrahigh-performance 
liquid chromatography system (EASY-nLC 1000, Thermo Scientific). 
Peptide samples were loaded onto C18 reversed phase columns (15 cm 
length, 75 µm inner diameter, 1.9 µm bead size) and eluted with a linear 
gradient from 8% to 40% acetonitrile containing 0.1% formic acid in 2 h.  
The mass spectrometer was operated in data-dependent mode, 
automatically switching between MS and MS2 acquisition. Survey 
full-scan MS spectra (m/z 300–1,700) were acquired in the Orbitrap. 
The ten most intense ions were sequentially isolated and fragmented 
by higher-energy C-trap dissociation. An ion selection threshold of 
5,000 was used. Peptides with unassigned charge states, as well as with 
charge states less than +2, were excluded from fragmentation. Frag-
ment spectra were acquired in the Orbitrap mass analyzer. Raw data 
files were analyzed using MaxQuant (development version 1.5.2.8)50. 
Parent ion and MS2 spectra were searched against a database contain-
ing all mouse protein sequences obtained from the UniProtKB released 
in 2016 using Andromeda search engine51. Spectra were searched with 
a mass tolerance of 6 ppm in MS mode, 20 ppm in higher-energy C-trap 
dissociation MS2 mode, strict trypsin specificity and allowing up to 
three miscleavages. Cysteine carbamidomethylation was searched as a 
fixed modification, whereas protein N-terminal acetylation and methio-
nine oxidation were searched as variable modifications. The dataset 
was filtered on the basis of posterior error probability to arrive at a 
false discovery rate (FDR) of below 1% estimated using a target-decoy 
approach52. All the proteins identified by MS in triplicate control and 
ESRRB IPs in asynchronous and mitotic cells, along with quantifica-
tions, normalized intensities and additional metrics, are provided as 
Source data. Razor and unique peptides were used to compute a fold 
enrichment and P value between the ESRRB and control IP in either 
asynchronous or mitotic cells using the DEseq package53 as described54. 
Proteins displaying a fold change above 5 and a P value below 0.05 in 
either asynchronous or mitotic cells were selected for further analyses. 
This list was filtered on the basis of ‘Reverse’ hits, ‘Contaminants’ and 
‘identified by site’ parameters. All detected immunoglobulins as well 
as other proteins belonging to the top 1,000 frequently identified 
proteins in MS datasets (https://www.thegpm.org/lists/index.html) 
were ignored. This led us to 105 proteins identified as associated with 
ESRRB in either asynchronous or mitotic cells, available in Extended 
Data Fig. 1 and in Source data. Proteins displaying a P value below 
0.05 were considered as positive mitotic hits. However, we further 
classified them as high or low confidence depending on their gen-
eral abundance in mitotic cells and their identification after FA-only 
fixation. To do this, we performed an additional round of MS using 
the mitotic replicate 2 for ESRRB IP together with its corresponding 
input (DSG/FA fixed) as well as an IP/Input generated in parallel after 
FA fixation. Proteins displaying higher Razor and unique peptides in 
both the DSG/FA and FA IPs compared to their respective inputs were 
considered of high confidence (Source data). These 105 hits were ana-
lyzed using the STRING database55: first, all proteins were used as an 
input to identify functionally related groups (subnetworks) based on 
Ontology annotations; second, all possible functional and biochemical 
interactions between each protein and the rest were computed; third, 
subnetworks were connected using the sum of all the interaction scores 
existing between all individual proteins of each group. To monitor the 
efficiency of ESRRB/NR5A2 depletion from mitotic chromatin upon 
IAA treatment, 107 mitotic cells were lysed in Buffer A (10 mM HEPES 
pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol and 
1 mM DTT) supplemented with complete protease inhibitors and 0.1% 
Triton X-100. After centrifugation, the supernatant was set apart as the 
cytosolic fraction and the pellets were further lysed in Buffer B (3 mM 
ethylenediaminetetraacetic acid, 0.2 mM egtazic acid and 1 mM DTT) 
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supplemented with complete protease inhibitors. After centrifuga-
tion the pellets (chromatin fraction) were resuspended in 2× reducing 
Laemmli buffer with 5% β-mercaptoethanol, sonicated (ten cycles; 30 s 
on/30 s off in a Bioruptor X machine, Diagenode), boiled and centrifu-
gated at max speed at RT. The cytosolic fraction was precipitated with 
TCA stock solutions 100% (w/v), washed with cold acetone, dried on a 
heat block at 95 °C and resuspended in 2× reducing Laemmli buffer + 5% 
β-mercaptoethanol. The two fractions were analyzed by western blot.

Imaging
For immunofluorescence, cells were plated on IBIDI hitreat plates 
coated overnight with poly-l-ornithine 0.01% (Sigma, cat. no. P4957) at 
4 °C, washed and coated 2 h with 10 µg ml−1 laminin (Millipore, cat. no. 
CC095). Fixation and immunofluorescence were performed with either 
paraformaldehyde or DSG + paraformaldehyde, as described10, using 
2 µg ml−1 mouse monoclonal anti-flag for ESRRB (M2 Sigma, F3165) 
and 1 µg ml−1 polyclonal rabbit anti-HA for NR5A2 (Abcam, ab9110) 
antibodies. Images were acquired with a LSM900 Zeiss microscope 
using a 64× oil-immersion objective. For live imaging and FRAP analy-
ses, ES cells expressing fluorescent protein fusions were grown on 
IBIDI plates, incubated with 250 nM Hoechst-33342 for 30 min before 
imaging and imaged at 37 °C in a humidified atmosphere (7% CO2). 
Images were acquired with a 63× oil immersion objective on a Nikon 
Ti2E equipped with a Yokagawa CSU W1 spinning disk module and a 
Photometrics sCMOS Prime 95B camera. For FRAP, fluorescence recov-
ery was analyzed every 0.3–1 s (NR5A2) and 50–100 ms (ESRRB) after 
photobleaching (500 µs pulse, spot of 0.5 × 0.5 µm size) in MATLAB as 
described previously10,56 and the plots corrected to min = 0 and max = 1.

Identification of ESRRB/NR5A2 binding sites displaying 
distinct behaviors in mitosis
NR5A2 ChIP–seq was performed in FLAG–Nr5a2 mitotic cells as previ-
ously described and in parallel with already published datasets gener-
ated in asynchronous cells14. Briefly, cells were crosslinked with DSG 
(2 mM; Sigma, 80424-5mg) for 50 min at RT followed by 10 min with FA 
(1%, Thermo, 28908). Cells were then sonicated with a Bioruptor Pico 
(Diagenode) and immunoprecipitated with anti-flag antibodies (M2 
Sigma, F3165). Precipitated DNA was used for library preparations10 
and sequenced externally by Novogene Co Ltd. Reads were aligned with 
Bowtie2 (ref. 57) to the mm10 genome; only those with a single discov-
ered alignment were kept. Peaks were called against relevant inputs for 
all mitotic samples using MACS2 (ref. 58) and filtered to have (1) MACS2 
FDR <0.05 in all three replicates, (2) mean enrichment over the input >2 
and (3) FDR of the enrichment over the input <0.05, calculated with a 
previously described generalized linear model10. The resulting mitotic 
NR5A2 peaks were combined with previous collections of confident 
ESRRB/NR5A2 peaks10,14 and mitotic bookmarking calls for ESRRB10. 
Finally, peaks were annotated as dB/eB/nB/L. The compendium of 
ESRRB/NR5A2 regions, their quantifications and mitotic bookmarking 
status are available as Source data.

Identification of differentially expressed genes during the M–
G1 transition
RNA was extracted with 500 µl TRIzol (ThermoFisher, 15596026), 
treated with DNAse I (Qiagen) and used for the generation of 
Ribo-depleted, stranded and paired-end RNA-seq libraries, pre-
pared and sequenced by Novogene. Pre-mRNA levels were quanti-
fied exactly as previously described9 and those with more than 0.1 
transcripts per million in at least one sample were kept for further 
analyses. Differentially expressed genes were obtained from two sep-
arate analyses: first, using previous lists of ESRRB/NR5A2-responsive 
genes14, where we selected genes with an FDR <0.05 upon the double 
knockout of the two TFs, quantified their pre-mRNA levels across the 
datasets generated here, and identified those displaying concord-
ant changes in plus/minus IAA during the M–G1 transition using 

k-means clustering, and, second, using a direct comparative strategy 
of each time point analyzed here and keeping those with an FDR <0.1 
(DEseq2 (ref. 53)). A fully annotated table with all genes considered, 
quantifications and differential expression parameters is provided 
in Source data.

Bioinformatic analyses
Analyses were performed in R (version 3.6.3). ChIP–seq quantifications 
were performed with the bamsignals package with systematic correc-
tion to the library sizes and counting the number of reads either falling 
into peak coordinates (for boxplots) or covering each base of a 2-kb win-
dow centered on the middle of the peak (for enrichment heatmaps and 
metaplots). Boxplots (median, bar; 25–75% percentiles, box; 1.5-fold 
the inter-quartile range, whiskers) and metaplots were visualized with 
ggplot2 package59 and heatmaps with ComplexHeatmap package60. 
To characterize the regions as promoters (high H3K4me3), active 
enhancers (high H3K27ac) or enhancers (high H3K4me1), available ES 
cell data from the Encode consortium were used. All additional histone 
modifications and DNase accessibility datasets were downloaded from 
Encode. Assay for transposase-accessible chromatin with sequencing 
as well as ChIP–seq for NANOG, OCT4 and SOX2 was previously pub-
lished10,61. All quantifications are available in Source data. To identify 
the most prevalent DNA motif associated with distinct ESRRB/NR5A2 
binding regions, as well as their precise genomic coordinates, we used 
RSAT62 with the command -markov auto -disco oligos -nmotifs 1 -minol 
6 -maxol 8 -merge_lengths -2str -origin start -scan_markov 1. For each 
motif, the presence of a T, a C or an A/G at the seventh position of the 
estrogen-related receptor consensus was manually annotated. The 
information relative to the motifs can be found in Source data. Nucleo-
some positioning plots were generated considering midpoints of 
140–200 bp fragments from published micrococcal nuclease sequenc-
ing paired-end datasets10, after correcting the MNase-driven bias with 
a k-mer approach and smoothing the average profiles with a Gaussian 
process regression, as described10. When multiple motifs were available 
per region, only one was selected to center nucleosome positioning 
plots on its 5′ end; the following prioritized criteria were used: (1) best 
similarity score to the consensus, (2) closest distance to the middle 
of the peak and (3) highest enrichment for small MNase fragments 
(footprints <100 bp). Genes were associated to the different groups 
of ESRRB/NR5A2 binding regions when either their promoter regions, 
defined as 2-kb-long regions centered on the 5′ ends of known mRNA 
isoforms, or putative enhancers, defined by their epigenomic status 
and 3D interaction contacts as independently reported36, overlapped 
with our set of ChIP–seq peaks. The approach was hierarchical, favoring 
dB associations over eB/nB and then L regions; genes lacking ESRRB/
NR5A2 binding at these regions were qualified as unbound (Source 
data). The resulting groups of genes were used to plot average reac-
tivation trends and the proportion of dB/eB/nB/L genes displaying 
increased reactivation dynamics. PCA of the RNA-seq was run with the 
prcomp function with centered data corresponding to log2(transcripts 
per million (TPM)) to capture direct differences between IAA treat-
ments. The genes more prominently contributing to PC5/PC6 were 
identified with the boxplot.stats function applied to the ‘rotation’ 
output of prcomp. Gene Ontology and gene set enrichment analyses 
were performed using the enrichR package63; the full set of statisti-
cally significant terms can be found in Source data. The relationships 
between ESRRB/NR5A2 binding at promoters/enhancers and gene 
responsiveness to ESRRB/NR5A2 depletion were assessed with a con-
tingency table and chi-squared test followed by individual two-sided 
Fisher’s exact tests for specific combinations of gene bookmarking 
and responsiveness.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE partner repository64 
(PXD038950). NR5A2 ChIP–seq and RNA-seq of ESRRB/NR5A2–
AID cells exiting mitosis are available at Gene Expression Omnibus 
(GSE220253). Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quantifications of all protein hits in interphase 
and in mitosis. (A) Representative immunoprecipitation (IP) of ESRRB from 
DSG/FA-fixed chromatin. Asy: asynchronous cells; Mit: mitotic cells; Ctl: 
blank immunoprecipitation. Four independent experiments showed similar 
efficiencies. (B) Quantifications (Razor peptides), fold changes and associated 

p-values (calculated with a generalized linear model in DEseq53) used to 
categorize the proteomic hits as exclusive of interphase (ASY hits) or also found 
in mitosis (Mit hits). Two categories of mitotic hits were made, based on the fold-
change of ESRRB IP versus the INPUT in mitosis (last parameters on the right of 
the heatmap). All the proteins belonging to each category are shown.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | NR5A2 long-lived chromatin interactions are 
driven by its DNA binding domain. (A) Illustrative example of ESRRB/NR5A2 
immunostaining upon formaldehyde or DSG and formaldehyde crosslinking, 
as indicated. The white line represents 10 µm in all panels. (B) Quantification 
of comparative FRAP assays of ESRRB-GFP and NR5A2-GFP expressed from 
the endogenous loci. Similar observations have been systematically observed 
over more than 3 independent cultures and experiments. (C) Quantification of 
comparative FRAP assays of GFP fusions with the DNA binding domain of NR5A2 
alone (DBD NR5A2) or with its C-terminal moiety containing the ligand binding 
domain (DBC-Ct). Both constructs were randomly integrated in ES cells.  
(D) Representative live imaging of the DBD or the DBD-Ct fused to GFP.  

Identical results were systematically observed over more than 3 independent 
cultures. The white line represents 10 µm in all panels. (E) Expression of NR5A2-
GFP analyzed by FACS for the three versions analyzed (left panel; WT expressed 
from endogenous locus (22,456 cells); DBD (13,804 cells) and DBD-Ct (28,004 
cells) ectopically overexpressed). For the FRAP assays, cells with low DBD 
and high DBD-Ct expression were selected, as illustrated by quantifying the 
expression in the individual cells subject to FRAP (right). Representative data 
of a minimum of 2 experiments is shown. Boxplots represent the median as the 
horizontal bar, 25-75% percentiles as the box and 1.5-folds the inter-quartile range 
as whiskers measured for.
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Extended Data Fig. 3 | Comparison of ESRRB/NR5A2 binding levels and 
motifs matching the identified consensus. (A-B) Enrichment levels (Reads per 
million) of ESRRB and NR5A2 across the four identified clusters (dB, eB, nB, L), 
represented as boxplots (A) or metaplots (B). All boxplots represent the median 

as the horizontal bar, 25-75% percentiles as the box and 1.5-folds the inter-
quartile range as whiskers. All ESRRB and NR5A2 quantifications in this figure 
were obtained by averaging 2 (ESRRB) and 3 (NR5A2) independent replicates in 
interphase and in mitosis.
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Extended Data Fig. 4 | Relationships between ESRRB/NR5A2 binding 
and other chromatin properties at distinct gene regulatory elements. 
(A) Enrichment levels of the indicated factors across dB, eB, nB and L regions 
separated as promoters, active enhancers or enhancers. All boxplots represent 
the median as the horizontal bar, 25-75% percentiles as the box and 1.5-folds the 

inter-quartile range as whiskers. A minimum of 2 independent datasets from 
Encode (H3K27ac and RNAP2) or from published datasets10 were used (ATAC, 
OCT4, SOX2, NANOG). (B) Mosaic plots describing the relative proportions of 
promoters, active enhancers and enhancers across dB, eB, nB and L regions (left) 
and vice-versa (right).
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Extended Data Fig. 5 | Additional correlations between ESRRB/NR5A2 and 
post-mitotic gene transcription. (A) Comparison of the proportion of genes 
identified as dB, eB, nB and L regions for groups of 1000 genes sliding from top 
to bottom of the heatmap shown in (Fig. 5A), with a step of 10 genes, when the 
gene-region association is based on known enhancers and promoters  

(left, identical to Fig. 5B for comparison purposes) or when it is based on the 
presence of a binding regions within 50 kb of the promoter (right), as previously 
done9. (B) Post-mitotic gene transcription dynamics when the associations 
consider exclusively promoters (Prom, left), exclusively enhancers (Enh, right), 
or any peak located within 50 kb of the promoter (50 kb, bottom).
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Extended Data Fig. 6 | Analysis of transcription reactivation timing.  
(A) Heatmap displaying the percentage of expression at each time-point versus 
the end point, ordered by increasing reactivation (calculated by the mean of t30 
to t90). (B) Heatmap showing the Log2(FC) post-mitosis, for genes ordered as 

in A, calculated as in Fig. 5B and ED5A. (C) Correlation between ESRRB/NR5A2 
binding categories and gene reactivation as evaluated by the % of t120, computed 
and presented as in Fig. 5B.
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Extended Data Fig. 7 | Double Auxin depletion system. (A,B) Immuno-
fluorescence of ESRRB and NR5A2 in control (top) and IAA-treated cells (bottom). 
The rectangle denotes a region selected for a zoom view in (B). The horizontal 
line represents 10 µm. Identical observation were for all replicates used (n = 3). 
(C) Quantification of ESRRB and NR5A2 immuno-fluorescence in mitotic 
chromatin. Note NR5A2 staining produces more background than ESRRB upon 
IAA treatment. (D) Western-blot analysis of ESRRB/NR5A2 depletion upon IAA 
treatment in mitotic cells, after fractionation of the cytoplasm (cyt.) and the 

chromatin (chr.). Histone H3 and TUBULINE (TUB.) were used as controls of the 
purity of the fractionation. Similar results were obtained in two independent 
preparations. (E) Schematic representation of the protocol to deplete ESRRB/
NR5A2 in mitosis and during the M-G1 transition. (F) Western-blot analysis of 
ESRRB/NR5A2 in interphase and in mitosis in the three replicates used for RNA-
seq analysis following the experimental scheme shown in (D). Ponceau stainings 
are shown as a loading control.
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Extended Data Fig. 8 | Regulation of selected genes by ESRRB/NR5A2 during 
the M-G1 transition. (A) Reactivation heatmap presented as in Fig. 5A but in 
control (left) or ESRRB/NR5A2-depleted cells (right). (B) Global gene reactivation 
profile of all genes shown in (A) in presence (-IAA) or absence (+IAA) of ESRRB/
NR5A2. (C) PCA analysis of post-mitotic transcription dynamics in presence 
(-IAA) or absence (+IAA) of ESRRB/NR5A2. (D) Fold-change of expression levels 
upon ESRRB/NR5A2 knock-out in two different media14 (FCSL or 2iL) for the 
genes extracted from PC5/PC6 loadings as shown in Fig. 6A, B. (E) Transcription 
dynamics of an extended list of genes downregulated (top panel) or upregulated 

(bottom panel) upon ESRRB/NR5A2 depletion during the M-G1 transition;  
3 independent experiments for each time-point and condition were averaged. 
(F) Expression profile of the two groups of genes shown in (E) during embryoid 
bodies differentiation, organized by timing of maximal expression, with 
the identification of the groups they belong and their mitotic bookmarking 
status shown on the right. (G) Identical analysis to (F) but during early mouse 
embryogenesis. All boxplots in this figure represent the median as the  
horizontal bar, 25-75% percentiles as the box and 1.5-folds the inter-quartile  
range as whiskers.
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Extended Data Fig. 9 | Additional analyses of ESRRB/NR5A2-depleted 
cells. (A) Boxplots depicting log2FC expression upon IAA treatment for genes 
identified as statistically significant (FDR < 0.1) at each timepoint (organized in 
rows of boxplots) and plotted across all timepoints (organized in columns). All 
boxplots represent the median as the horizontal bar, 25-75% percentiles as the 
box and 1.5-folds the inter-quartile range as whiskers; 3 independent experiments 
for each time-point and condition were averaged. (B) Previous genes known to 
change expression in ESRRB and NR5A2 KO ES cells14 were separated by their 
statistical response to IAA treatment after mitosis. (C) Cells were arrested in 

mitosis in the presence or absence of IAA as shown in Fig.S7D. Subsequently  
they were shaken off, counted and plated at clonal density in the presence/
absence of IAA for 2 h, covering the length of G1. Next, IAA was withdrawn and 
cells were cultured for 7 days, when Alkaline Phosphatase staining was used to 
count the number of undifferentiated ES cell colonies. The results are shown  
as a % of clonogenicity in +IAA versus -IAA. The assay is subject to high variability 
due to intrinsic cell manipulations and counting but, overall, shows a reduction  
in clonogenicity upon the depletion of ESRRB/NR5A2 during a single mitosis/
M-G1 transition.
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Extended Data Fig. 10 | ESRRA is a primary candidate conferring additional 
redundancy to ESRRB/NR5A2 bookmarking. (A) Correspondence of the motifs 
identified in our datasets with known motifs present in the Jaspar database. 
The short motif carrying a T at the 7th position, found in dB and eB regions, 
corresponds both to ESRRB and ESRRA. (B-C) Binding of ESRRA in asynchronous 

and mitotic ES cells across the 4 ESRRB/NR5A2 clusters presented as a heatmap 
(B) or as an average profile (C). The results are perfectly aligned with the presence 
of ESRRA consensus motifs in dB and eB and much less in nB and L, and strongly 
suggest that ESRRA is an additional mitotic bookmarking nuclear receptor acting 
conjunctly with ESRRB and NR5A2.
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