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Effective Engineering Constants for Micropolar 
Composites

with Imperfect Contact Conditions

R. Rodríguez-Ramos, V. Yanes, Y. Espinosa-Almeyda, C. F. Sánchez-Valdés, 
J. A. Otero, F. Lebon, R. Rizzoni, M. Serpilli, S. Dumont, and F. J. Sabina

Abstract In this work, the homogenization theory is applied within the framework
of three-dimensional linear micropolar media. The fundamental results derived by
the asymptotic homogenization method to compute the effective engineering moduli
for a laminated micropolar elastic composite with centro-symmetric constituents are
summarized, in which the interface between the layer phases is considered imperfect
spring type. The layers are considered with isotropic symmetry. Non-uniform and,
as a particular case, uniform imperfections are assumed, where different imperfec-
tion parameters and cell lengths in the y3-direction are assigned for the analysis.
The analytical expressions of the engineering constants related to the stiffness and
torque are given as functions of the imperfection parameters. The behavior of the
engineering coefficients depending on the imperfection is studied. The influence of
the imperfection and the cell length in the direction of the imperfection is observed.
The present study allows validating other models and experimental results, as well
as the investigation of fracture prediction in laminated composite materials.
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1 Introduction

Several investigations in biomechanics have shown that models related to Cosserat-
type media better capture the actual response of biological tissues (Eringen 1968;
Cowin 1970; Yang and Lakes 1981, 1982; Lakes et al. 1990). The micromechanical
study in Cosserat’s media has had an impact on the mechanics of bones (Park and
Lakes 1987; Lakes 1993; Tanaka and Adachi 1999; Fatemi et al. 2002, 2003; Goda
et al. 1990; Jasiuk 2018), cardiac tissues (Sack et al. 2016; Hussan et al. 2012), etc.

The applicability of laminated structures in various branches of industry is well
known. The investigation of their properties is important to improve and design new
materials. There are micromechanical methods based on multiscale homogenization
schemes that provide information about the properties of heterogeneous laminated
micropolar or Cosserat media, for example: Properties of micropolar multi-layered
media have been calculated using the finite element technique (Adhikary and Dyskin
1997; Riahi and Curran 2009; Lebée and Sab 2010). In these works, the potentiality
of the Cosserat continuum model to predict the mechanical behavior of layered struc-
tures is analyzed. Moreover, the Cosserat continuums with 2D and 3D layered-like
microstructure are analyzed by a finite element scheme in Riahi and Curran (2009,
2010). On the other hand, multiscale homogenization approaches applied to microp-
olar heterogeneous structures have been carried out by Nika (2022); Bigoni and
Drugan (2007); Forest and Sab (1998); Forest et al. (2001); Forest and Trinh (2011);
Gorbachev and Emel’yanov (2014, 2021), among others. In these approaches, the
generalized stress and strain are linked to the displacements, strains, and stresses
defined in the representative volume element.

Different works address the imperfect interface effects on multi-laminated media
through the linear spring interface with zero thickness and the interphase models,
(Bövik 1994; Ensan et al. 2003; Duong et al. 2011; Sertse and Yu 2017; Khoroshun
2019; Brito-Santana et al. 2019), among others. In the framework of heterogeneous
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micropolar or Cosserat elastic media, the problem of the existence of an imperfect
interface between two contiguous phases has been considered. For example, the
imperfect interface model applied to elastic composites (Achenbach and Zhu 1989;
Hashin 2002) is generalized to micropolar media assuming that the couple tractions
are continuous across the interface and proportional to the jumps of the out-of-plane
microrotation (Videla and Atroshchenko 2017). In addition, the boundary element
method is used to simulate microstructured Cosserat media with both perfect and
uniform imperfect interfaces. The asymptotic analysis (see, for example, Ciarlet
1997) has proven to be a powerful mathematical tool to derive simplified models for
thin films and structures (Geymonat et al. 2014; Serpilli et al. 2013). This technique
has also been extensively used to study the mechanical behavior of layered com-
posites, constituted by two solids bonded together by a thin interphase, considering
different continuum theories with microstructure, such as micropolar elasticity (Ser-
pilli 2018), poroelasticity (Serpilli 2019), and flexoelectricity (Serpilli et al. 2022).
Recently, the effective behavior of multi-laminated micropolar composites is studied
using the asymptotic homogenization method (Yanes et al. 2022; Rodríguez-Ramos
et al. 2022). In both works, centro-symmetric cubic or isotropic constituents and
perfect interface conditions are assumed. Other previous works dealing with the
problem of imperfection in micropolar structures can be found in Rubin and Ben-
veniste (2004); Dong et al. (2014, 2015); Kumari et al. (2022). Therefore, further
analyses are required on this topic.

In the present work, based on the methodology presented in Yanes et al. (2022);
Rodríguez-Ramos et al. (2022); Espinosa-Almeyda et al. (2022), the main results
derived by the asymptotic homogenization method (AHM) to compute the effec-
tive engineering moduli for a laminated micropolar centro-symmetric composite are
summarized, in which the interface between the layer phases is considered imperfect
spring type. The layers are considered with isotropic symmetry. The imperfection
is considered non-uniform and as a particular case uniform, controlled by different
imperfection parameters and the cell length in the y3-direction. The analytical expres-
sions of the effective engineering moduli associated with the stiffness and torque are
given as a function of the non-uniform imperfect parameters. An analysis of the
behavior of the effective engineering coefficients depending on the imperfection is
performed. The influence of the imperfection and the cell length in the direction of
the imperfection is observed.
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2 Heterogeneous Problem Statement and Fundamental

Equations

A periodic centro-symmetric linear elastic micropolar continuum � at the Carte-
sian coordinate system x =

{

x1, x2, x3
}

⊂ R
3 is defined by two independent sets

of degrees of freedom given by the displacement um(x) [m] and the microrotation
ωs(x) fields associated with each material point (Eringen 1999). For the static case,
it is formulated by the linear and angular balance equations

(

Ci jmn(x) enm(x)
)

, j
+ fi (x) = 0,

(

Di jmn(x) ψnm(x)
)

, j
+ ǫi jk

(

Ck jmn(x) enm(x)
)

+ gi (x) = 0, (19.1)

where Ci jmn(x) [N/m2] is the stiffness tensor, Di jmn(x) [N] is the torque tensor,
fi (x) [N/m3] are the body forces, and gi (x) [N/m2] are the body couples functions,
with i, j, k, m, n, s = 1, 2, 3. The micropolar strain emn(x) and the torsion-curvature
ψmn(x) [m−1] tensors are given by

enm(x) = um,n(x) + ǫmnsωs(x), ψnm(x) = ωm,n(x), (19.2)

where ǫmns is the Levi-Civita tensor, um is the displacement vector, and ωm is the
microrotation vector, independent of the displacement. The notation f, m ≡ ∂ f/∂xm

and the square brackets contain the physical units of measure for the variable. In
Eqs. (19.1) and (19.2), the symmetric part of emn(x) corresponds to the classical strain
tensor, whereas its skew-symmetric part accounts for the local reorientation of the
microstructure. Also, the symmetry conditions Ci jmn(x) = Cmni j (x) and Di jmn(x) =

Dmni j (x) are satisfied.
The system, Eq. (19.1), together with the boundary conditions on ∂�

um(x) |∂�1 = 0,
(

Ci jmn(x) enm(x)
)

n j |∂�2 = Fi (x),

ωm(x) |∂�3 = 0,
(

Di jmn(x) ψnm(x)
)

n j |∂�4 = G i (x), (19.3)

where Fi (x) and G i (x) are the surface body forces and moments, representing the
static boundary value problem associated with the linear theory of micropolar elas-
ticity whose coefficients are rapidly oscillating. In Eq. (19.3), n j is the unit outer
normal vector to ∂� and the subsets ∂�i satisfy ∂�i

⋂

i �= j

∂� j �= ∅ (disjoint sets) and

∂� =
4
⋃

i=1
∂�i .

In addition to the problem statement (Eqs. ( 19.1)–(19.3)), we deal with the spring
model described above considering imperfect contact conditions at the interface Ŵ,
such as
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(

Ci jmn(x)enm(x)
)

n j = Ki j

[[

u j

]]

,
[[(

Ci jmn(x)enm(x)
)

n j

]]

= 0, on Ŵ
(

Di jmn(x)ψnm(x)
)

n j = Qi j

[[

ω j

]]

,
[[(

Di jmn(x)ψnm(x)
)

n j

]]

= 0, on Ŵ
(19.4)

where [[p]] = p(1) − p(2) means the jump of the function p across the interface
Ŵ. Ki j [N/m3] and Qi j [N/m] are the extensional and microtational imperfec-

tion parameters, such that Ki j =

⎛

⎝

Kt 0 0
0 Ks 0
0 0 Kn

⎞

⎠ and Qi j =

⎛

⎝

Qt 0 0
0 Qs 0
0 0 Qn

⎞

⎠. Here,

Kt , Ks, Kn, Qt , Qs , and Qn are the interface parameters in the normal and tangen-
tial directions, which are considered equals for the sake of simplicity as follows:
Kt = Ks = Kn and Qt = Qs = Qn . An equivalent form of the imperfect contact
conditions (19.4) has been derived for soft micropolar interfaces in Serpilli (2018),
by means of the asymptotic analysis.

3 Asymptotic Homogenization Method and Effective

Engineering Moduli for Periodic Laminated

Micropolar Media

From now on, let us consider that the three-dimensional heterogeneous centro-
symmetric linear elastic micropolar continuum � is described by a parallelepiped
of dimensions li (i = 1, 2, 3) generated by repetitions of a periodic cell Y, whose
layered direction is along the y3-axis. At the microscale, the transversal cross-section
of Y is characterized by a bi-laminated composite in the plane Oy2 y3, see Fig. 19.1,
where the constituent material phases are denoted by Sγ (γ = 1, 2) with volume Vγ ,
such as Y = S1 ∪ S2, S1 ∩ S2 = ∅, and V1 + V2 = 1. Imperfect contact conditions

Ωε

∂Ωε

x
2

x
3

x
1

L

y
20

y
3

l3 Y

Layer 1 (V1)

Interface Γ

Layer 2 (V2)

l2
Θ1l2

1
Y

1
Γ

Θ2l2

2
Y

2
Γ

. . .

ΘNl2

N
Y

N
Γ

(a) (b)

Fig. 19.1 a Heterogeneous Cosserat composite; b Cross-section of a periodic bi-laminated structure
Y at the plane Oy2 y3 with non-uniform imperfect interface Ŵ partitioned in N disjoint sub-interfaces
r Ŵ (r = 1, 2, . . . , N )
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(uniform or non-uniform) are assumed at the interface region Ŵ between the layers
following Eq. (19.4).

The non-uniform imperfect interface is defined by partitioning Ŵ along the y2

direction, where θr ℓ2 is the length of the r-partition (denoted by rŴ) with imperfection
length fraction θr (r = 1, . . . , N ), ℓ2 is the characteristic length of Y along the y2

direction, and N is the number of partitions, such as Ŵ =
N
⋃

r=1

rŴ. In this context, Ki j

and Qi j are considered piecewise linear functions in each unit cell partition r Y (with r

fixed), such as r Y =
{

y ∈ R
3 : 0 < yi < ℓi , and

∑r−1
s=0 θsℓ2 < y2 <

∑r
s=1 θsℓ2, θ0

= 0} and Y =
N
⋃

r=1

r Y. Also, r f =

⎧

⎪

⎨

⎪

⎩

1f in 1Y
...
N f in N Y

, where f might be replaced by Ki j and

Qi j or any function defined in r Y. On the other hand, as a particular case, a uniform
interface is taken into account when the values of the imperfection parameters in
each cell partition r Y are equal.

In this framework, the applied methodology based on the AHM for centro-
symmetric micropolar composites with perfect contact conditions (Yanes et al. 2022;
Rodríguez-Ramos et al. 2022) is implemented in the case of an imperfect interface.
The AHM provides averaged expressions for the rapidly oscillating elasticity tensors
of the original problem and proposes a homogeneous equivalent medium with the
same behavior. Its main assumptions are that all fields are considered as power series
of the small and positive definite dimensionless parameter ε whose coefficients are
dependent on the macro (x) and micro ( y) scales; see, for instance, (Sanchez-Palencia
1980; Pobedrya 1984; Bakhvalov and Panasenko 1989). Both scales are related as
y = x/ε, where ε = ℓ/L ≪ 1 is defined by the ratio between the characteristic size
of the periodicity cell (ℓ) and the diameter of the body (L).

The AHM starts from the substitution of the expansions for the displacements
uε

m(x) and the microrotations ωε
m(x)

uε
m(x) =

∞
∑

α=0

εαu(α)
m (x, y), ωε

m(x) =

∞
∑

α=0

εαω(α)
m (x, y), (19.5)

into the problem (Eqs. 19.1–19.4), and following algebraic operations and differ-
entiation rules. Here, u(i)

m (xxx, yyy) and ω(i)
m (xxx, yyy) (i = 0, 1, 2, . . . ) are infinitely differ-

entiable and Y-periodic functions with respect to yyy. Thus, a sequence of problems
given by partial differential equations is obtained in relation to the power of the ε

parameter. From them, the formulation of local problems on Y, the effective moduli,
and the equivalent homogenized problem with its asymptotic solution are obtained.
Details about the AHM methodology related to micropolar laminated composites
are shown in Forest et al. (2001), Gorbachev and Emel’yanov (2014), Yanes et al.
(2022), Rodríguez-Ramos et al. (2022) and are omitted here.

The mathematical statement of the pq
rL

1 and pq
rL

2 (with p, q = 1, 2, 3) local
problems over each partition r Y are given by
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r
pqL

1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

Ci3pq + Ci3m3
r
pq N ′

m

)′
= 0, in r Y

[[

Ci3pq + Ci3m3
r
pq N ′

m

]]

n3 = 0, in rŴ
(

Ci3pq + Ci3m3
r
pq N ′

m

)

n3 = r Ki j

[[

r
pq N j

]]

, in rŴ
〈

r
pq Nm

〉

rY
= 0,

(19.6)

r
pqL

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

Di3pq + Di3m3
r
pq M ′

m

)′
= 0, in r Y

[[

Di3pq + Di3m3
r
pq M ′

m

]]

n3 = 0, in rŴ
(

Di3pq + Di3m3
r
pq M ′

m

)

n3 = r Qi j

[[

r
pq M j

]]

, in rŴ
〈

r
pq Mm

〉

rY
= 0,

(19.7)

where (•)′ = d(•)/dy3. In Eqs. (19.6) and (19.7), r
pq N m and r

pq Mm are the local pq-
displacements and pq-microrotations defined in the r-partition of the cell Y, respec-
tively. The periodicity conditions pq Nm(0) = pq Nm(li ) and pq Mm(0) = pq Mm(li )

are satisfied and the unknown functions r
pq N m and r

pq Mm only depend on y3 as well.

The symbol 〈p〉 denotes Voigt’s average of the property p, i.e. 〈p〉 =
N
∑

i=1
p(i)Vi with

N the number of phases in Y and
N
∑

i=1
Vi = 1. In case of a bi-laminated composite,

〈p〉 = p(1)V1 + p(2)V2 where V1 = γ /ℓ3 and V2 = 1 − γ /ℓ3 are the volume frac-
tions per unit length occupied by layers 1 and 2, respectively, such as V1 + V2 = 1.
γ is the y3 coordinate of the constituent contact.

Once the unknown functions r
pq N m and r

pq N m are determined, the corresponding
effective properties in terms of the r -interface-partition formulation can be found as
follows:

C∗
i j pq =

N
∑

r=0

θr

〈

Ci j pq + Ci jm3
r
pq N

′

m

〉

r Y
, (19.8)

D∗
i j pq =

N
∑

r=0

θr

〈

Di j pq + Di jm3
r
pq M

′

m

〉

r Y
. (19.9)

The local functions r
pq N ′

m and r
pq M ′

m can be determined as it is shown in Yanes et al.
(2022), Rodríguez-Ramos et al. (2022) and after their replacement into Eq. (19.8),
the corresponding stiffness and torque effective properties are obtained as functions
of the constituent’s properties, the imperfection parameters, and the constituent’s
volume fractions

C∗
i j pq =

〈

Ci j pq − Ci jm3C−1
m3a3Ca3pq

〉

+

∑N
r=1 θr

〈

Ci jm3C−1
m3a3

〉 (〈

C−1
a3b3

〉

+ ℓ−1
3

r K −1
ab

)−1 〈

C−1
b3c3Cc3pq

〉

, (19.10)

D∗
i j pq =

〈

Di j pq − Di jm3 D−1
m3a3 Da3pq

〉

+

∑N
r=1 θr

〈

Di jm3 D−1
m3a3

〉 (〈

D−1
a3b3

〉

+ ℓ−1
3

r Q−1
ab

)−1 〈

D−1
b3c3 Dc3pq

〉

. (19.11)
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Since both local problems (Eqs. 19.6 and 19.7) and the effective properties (Eqs.
19.10 and 19.11) have the same structure, only the analytical expressions for the
stiffness are shown. The analytical expressions for effective torque moduli can be
found replacing D for C , and Q for K .

3.1 Effective Engineering Moduli

Assuming that the constituents are centro-symmetric isotropic materials, these are
characterized by 6 independent constants C1122, C1212, C1221, D1122, D1212, and D1221,
see Hassanpour and Heppler (2017), through the relations

Ci jmn = C1122δi jδmn + C1212δimδ jn + C1221δinδ jm, (19.12)

Di jmn = D1122δi jδmn + D1212δmδ jn + D1221δinδ jm, (19.13)

where δi j is the Kronecker delta tensor.
The global symmetry after the homogenization process is orthotropic, defined by

18 non-zero effective moduli, as it is pointed out in Yanes et al. (2022), Rodríguez-
Ramos et al. (2022). The nine non-zero stiffness effective properties are C∗

1111 =

C∗
2222, C∗

3333, C∗
1122, C∗

1133 = C∗
2233, C∗

1313 = C∗
2323, C∗

3232 = C∗
3131, C∗

1331 = C∗
2332,

C∗
1212 = C∗

2121, and C∗
1221. Similarly, the other nine torque properties can be derived.

Following the strain-stress relationships for a centro-symmetric micropolar media
according to Eq. (19.1), and applying the effective relations reported in Eqs. (64)–(66)
of (Rodríguez-Ramos et al. 2022) for the corresponding stiffness effective properties
(see, Eq. 19.10), the independent effective engineering moduli written as functions
of the stiffness matrix components and the imperfection parameters are given as
follows:

Effective Young’s moduli:

S E∗
1 = S E∗

2 =

(

〈C1111〉 − 〈C1122〉
)(

〈C1111〉 + 〈C1122〉 − 2
〈

C2
1122 C−1

1111

〉

)

〈C1111〉 −
〈

C2
1122 C−1

1111

〉 ,

S E∗
3 =

(

〈C1111〉 + 〈C1122〉 − 2
〈

C2
1122C−1

1111

〉

)

B1(
r K33)

〈C1111〉 + 〈C1122〉 − 2
〈

C2
1122C−1

1111

〉

+ 2
〈

C1122C−1
1111

〉2
B1( r K33)

.

(19.14)
Effective shear moduli:
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SG∗
12 = SG∗

21 =
〈C1212〉

2 − 〈C1221〉
2

〈C1212〉
,

SG∗
13 = SG∗

23 =

(

〈C1212〉 −
〈

C2
1221C−1

1212

〉

)

B2(
r K22)

〈C1212〉 −
〈

C2
1221C−1

1212

〉

+
〈

C1221C−1
1212

〉2
B2( r K22)

,

SG∗
32 = SG∗

31 = 〈C1212〉 −
〈

C2
1221C−1

1212

〉

.

(19.15)

Effective Poisson’s ratios:

Sν
∗
21 =

〈

C2
1122C−1

1111

〉

− 〈C1122〉
〈

C2
1122C−1

1111

〉

− 〈C1111〉
,

Sν
∗
32 = Sν

∗
31 =

〈

C1122C−1
1111

〉

B1(
r K33)

〈C1111〉 + 〈C1122〉 − 2
〈

C2
1122C−1

1111

〉

+ 2
〈

C1122C−1
1111

〉2
B1( r K33)

.

(19.16)
Effective shear-strain ratios:

Sζ
∗
2112 =

〈C1221〉

〈C1212〉
, Sζ

∗
3223 =

〈

C1221C−1
1212

〉

, (19.17)

where the following parameters B1(
r K33) and B2(

r K22) are introduced for better
presentation of the formulae

B1(
r K33) =

N
∑

r=1

θr

(

〈

C−1
1111

〉

+
1

ℓ3

r K −1
33

)−1
,

B2(
r K22) =

N
∑

r=1

θr

(

〈

C−1
1212

〉

+
1

ℓ3

r K −1
22

)−1
.

(19.18)

The effective engineering constants for torque moduli can be written in the analogous
form, and they are denoted by a subscript T , for example: the torsional Young’s
moduli T E∗

i , the torsional shear moduli T G∗
12, T G∗

13 and T G∗
32, the twist Poisson’s

coefficient Tν∗
21 and Tν∗

32, and the twist shear-strain ratios Sζ
∗
2112 and Sζ

∗
3223.

4 Numerical Results

In this section, Eqs. (19.14)–(19.18) are implemented to analyze the effect of a
non-uniform or uniform imperfect interface Ŵ on the effective engineering mod-
uli of a centro-symmetric bi-laminated Cosserat composite (layer 1/layer 2 =
SyF/PUF) with isotropic constituents. The values of the Cosserat elastic parame-
ters listed in Table 19.1 are used for computations through the relations C1122 ≡ λ,
(C1212 + C1221)/2 ≡ μ, (C1212 − C1221)/2 ≡ α, D1122 ≡ β, (D1212 + D1221)/2 ≡
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Table 19.1 Constituent material properties. a Syntactic foam—hollow glass spheres in epoxy resin,
and b Dense polyurethane foam

Material
properties

λ (MPa) μ (MPa) α (MPa) β (N) γ (N) ǫ (N)

SyFa 2097.0 1033.0 114.8 −2.91 4.364 −0.133

PUFb 762.7 104.0 4.333 −26.65 39.98 4.504

γ , and (D1212 − D1221)/2 ≡ ǫ, where λ and μ are the Lamé parameters, α is the
micropolar couple modulus, and the properties β, γ , and ǫ represent the additional
micropolar elastic constants introduced in micropolar theory, according to the fol-
lowing constitutive law for a micropolar isotropic centro-symmetric material:

σi j = (μ + κ)ei j + (μ − κ)e j i + λekkδi j ,

χi j = (γ + β)ψi j + (γ − β)ψ j i + αψkkδi j ,
(19.19)

where σi j and χi j represent the stress and couple-stress tensor components, respec-
tively. These material data are taken from Hassanpour and Heppler (2017). For the
micropolar constants, the same notation of (Hassanpour and Heppler 2017) is used,
where α is κ , β is α, γ remains γ , and ǫ is β.

4.1 Non-uniform Imperfect Interface

Here, the non-uniform imperfect interface Ŵ is defined by a partition of N disjoint
sub-interfaces rŴ characterized by an imperfection length fraction rθ and by two sets
of imperfection parameters (r Ki j and r Qi j ) with a considerably large gap between
their values for each partition; see Sect. 19.3.

In Table 19.3, the effective engineering moduli related to the stiffness
(

S E∗
3 ,

SG∗
13, Sν

∗
31

)

and torques
(

T E∗
3 , T G∗

13, Tν∗
31

)

affected by the imperfection are shown
for four SyF volume fractions (V1) equal to 0.2, 0.4, 0.6, and 0.8. Two different
partitions of Ŵ are analyzed, one with N = 2 partitions and another with N = 4

Table 19.2 Sets of values for the r Ki j and r Qi j imperfection parameters considered in each
partition of r Ŵ

N = 2 N = 4

Set 1 K i j
2 K i j

1 Qi j
2 Qi j

1 K i j
2 K i j

3 K i j
4 K i j

1 Qi j
2 Qi j

3 Qi j
4 Qi j

S1 103 104 101 102 103 104 105 106 101 102 103 104

S2 105 106 103 104 105 106 107 108 103 104 105 106

S3 107 108 105 106 107 108 109 1010 105 106 107 108
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Table 19.3 Variation of the effective engineering moduli related to non-uniform imperfect interface
for four SyF volume fractions (V1). The moduli S E∗

3 , SG∗
13 are measured in [MPa]; T E∗

3 , T G∗
13 in

[N]; Sν∗
31, T ν∗

31 are dimensionless

Moduli V1 N = 2 N = 4 Perfect

S1 S2 S3 S1 S2 S3

S E∗
3 0.2 0.0055∗ 0.5493 48.8405 0.2774 25.1987 307.7864 581.9802

0.4 0.0055∗ 0.5495 50.4403 0.2775 25.7829 392.7140 853.5091

0.6 0.0055∗ 0.5496 51.5785 0.2776 26.2485 489.5963 1194.0030

0.8 0.0055∗ 0.5497 52.5544 0.2776 26.6766 626.0288 1719.9066

S G∗
13 0.2 0.0055∗ 0.5437 25.9370 0.2752 14.7569 47.3517 62.7962

0.4 0.0055∗ 0.5457 31.2829 0.2759 17.0148 67.8537 97.8025

0.6 0.0055∗ 0.5470 35.9172 0.2765 19.1634 92.8556 142.0619

0.8 0.0055∗ 0.5481 41.0084 0.2770 21.6470 135.7580 218.5210

Sν∗
32 0.2 3.2 × 10−6 3.2 × 10−4 0.0283 2 × 10−4 0.0146 0.1785 0.3376

0.4 1.9 × 10−6 1.9 × 10−4 0.0171 9 × 10−5 0.0088 0.1335 0.2901

0.6 1.3 × 10−6 1.3 × 10−4 0.0118 6 × 10−5 0.0060 0.1117 0.2724

0.8 0.9 × 10−6 0.9 × 10−5 0.0086 5 × 10−5 0.0044 0.1024 0.2813

T E∗
3 0.2 6 × 10−5∗ 0.0044 0.0219 0.0025 0.0210 0.0227 0.0228

0.4 6 × 10−5∗ 0.0041 0.0151 0.0024 0.0147 0.0155 0.0156

0.6 6 × 10−5∗ 0.0033 0.0083 0.0021 0.0081 0.0084 0.0084

0.8 5 × 10−5∗ 0.0010 0.0012 0.0008 0.0012 0.0012 0.0012

T G∗
13 0.2 6 × 10−5∗ 0.0055∗ 0.5043 0.0028∗ 0.2585 3.9585 8.2248

0.4 6 × 10−5∗ 0.0055∗ 0.4800 0.0028∗ 0.2477 2.7316 5.1540

0.6 6 × 10−5∗ 0.0055∗ 0.4512 0.0028∗ 0.2360 1.9728 3.3367

0.8 6 × 10−5∗ 0.0055∗ 0.3998 0.0028∗ 0.2179 1.2555 1.7927

T ν∗
32 0.2 −0.0024 −0.1943 −0.9585 −0.1085 −0.9211 −0.9964 −0.9990

0.4 −0.0035 −0.2605 −0.9704 −0.1511 −0.9432 −0.9965 −0.9987

0.6 −0.0065 −0.3955 −0.9833 −0.2483 −0.9677 −0.9975 −0.9989

0.8 −0.0439 −0.8207 −0.9973 −0.6981 −0.9949 −0.9994 −0.9996

∗ The values with more significant digits are given in Appendix A

partitions. In the case of N = 2, θ1 = θ2 = 0.5 and the corresponding imperfection
parameters are defined by r Ki j and r Qi j (r = 1, 2), whereas, for N = 4, θ1 = θ2 =

θ3 = θ4 = 0.25 and the imperfection parameters are r Ki j and r Qi j (r = 1, . . . , 4)

with i j = 22, 33. For both partitions, three different sets of imperfection parame-
ters (S1, S2 and S3) are considered for r Ki j and r Qi j ; see Table 19.2. For example,
when N = 2, S1 is the set of values 1 K i j = 10−1, 2 K i j = 100, 1 Qi j = 10−1, and
2 Qi j = 100. The remaining sets can be understood in a similar form. The charac-
teristic lengths of Y along the x2 and x3 directions are ℓ3 = 10−6m and ℓ2 = 1,
respectively. In addition, the effective values associate with the perfect contact case
are reported for the same volume fractions.

From Table 19.3, it can be observed that the influence of the non-uniform imperfect
interface is remarkable in the effective engineering properties, regardless of the V1

volume fraction, and even the microstructure of the imperfection region determined
by the partition N affects the behavior of the properties. A non-uniform interface
with values for r Ki j and r Qi j as in S1 or lower implies the delamination of the
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material, and, hence, a loss of the effective properties. However, as the values of the
imperfection parameters increase as in S2 and S3, an approach to the existence of a
perfect interface is appreciated, and then the engineering moduli have an increment.
The perfect contact is reached when the values of r Ki j and r Qi j parameters are
1014 in each rŴ. The highest values of the engineering constants are achieved in
this perfect case. Furthermore, it can be seen that the effect of the imperfection is
more noticeable in the engineering moduli related to compliance

(

S E∗
3 , SG∗

13, Sν
∗
31

)

than those related to torque
(

T E∗
3 , T G∗

13, Tν∗
31

)

, and is even more pronounced for
high SyF volume fraction. As N increases, the microstructure of the imperfection
becomes finer, and its effect on the constant engineering behaviors is evident.

On the other hand, in Table 19.4, the remaining effective engineering moduli,
which are independent of the imperfection effect, are reported for four SyF volume
fractions (V1 = 0.2, 0.4, 0.6, and 0.8). As can be seen in Eqs. (19.14)–(19.18), these
effective moduli only depend on the material constituents and their volume fractions,
therefore, their behaviors are related to the hardness or softness of the SyF material
properties. According to Table 19.1, we can see that SyF is harder than PUF. Thus, for
the perfect case, as V1 volume fraction increases, the effective engineering constants
S E∗

1 , S E∗
3 , SG∗

13, SG∗
12, and SG∗

31 for compliance and the other ones Tζ ∗
2112 and Tζ ∗

3223
for torques increase too. The opposite happens for the remaining Cosserat elastic
parameters, which are softer for SyF and thus for the composite as V1 increases. The
effective engineering constants are stiffer in this case.

4.2 Uniform Imperfect Interface

Now, the effect of a uniform imperfect interface on the effective engineering moduli
is analyzed. The uniform imperfect interface is defined as a particular case of the
previously described non-uniform imperfect ones assuming that the values of r Ki j

and r Qi j imperfection parameters are the same along Ŵ, such as K ≡ r Ki j and
Q ≡ r Qi j .

The numerical simulations are conducted for different grades of imperfection,
such that the values for K are 106, 5 × 106, 107, 3 × 107, 5 × 107, 108, and the
latest 1010 (perfect contact); and for Q they are 105, 2 × 105, 3 × 105, 5 × 105,
106, 5 × 106, and finally 107 (perfect contact), respectively. Also, the characteristic
lengths ℓ3 = 10−4 and ℓ2 = 1.

In Figs. 19.2 and 19.3, only the behaviors of the effective engineering moduli
affected by the imperfection are illustrated for a bi-laminated Cosserat composites
(SyF/PUF) versus SyF volume fraction considering different imperfect parameters.
We remark that these effective engineering moduli are sensitive to the imperfection,
that is, they get weaker and only reach their highest values in the case of perfect
contact. Notice that S E∗

3 , SG∗
13, and Sν

∗
32 are more sensitive to the imperfection K

when V1 increases, whereas T G∗
13 and Tν∗

32 have the same performance for Q when
low values of V1 are attached. However, T E∗

3 undergoes slight changes caused by the
effect of the Q imperfection. In this sense, a zoom illustrates the slight weakening
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Table 19.4 Effective engineering moduli calculated for four SyF volume fractions V1. The moduli
S E∗

1 , SG∗
12, and SG∗

31 are measured in [MPa]; T E∗
1 , T G∗

12, and T G∗
31 in [N]; and the others Sν∗

21,
Sζ ∗

2112, Sζ ∗
3223, T ν∗

21, T ζ ∗
2112, and T ζ ∗

3223 are dimensionless

V1 S E∗
1 SG∗

12 SG∗
31 Sν∗

21 Sζ ∗
2112 Sζ ∗

3223

0.2 793.4487 96.8720 95.9654 0.3690 0.8329 0.8960

0.4 1285.0272 176.1125 175.2921 0.3510 0.8149 0.8720

0.6 1776.1720 255.2062 254.6187 0.3427 0.8071 0.8480

0.8 2267.1612 334.2504 333.9454 0.3380 0.8027 0.8240

V1 T E∗
1 T G∗

12 T G∗
31 T ν∗

21 T ζ ∗
2112 T ζ ∗

3223

0.2 0.0228 12.9020 12.8438 −0.9997 0.8037 0.8506

0.4 0.0156 9.6077 9.4956 −0.9997 0.8133 0.9036

0.6 0.0084 6.3040 6.1475 −0.9998 0.8306 0.9567

0.8 0.0012 2.9721 2.7994 −0.9999 0.8706 1.0098

of the property when V1 is close to 0.4. Despite the imperfection effect, the S E∗
3 and

SG∗
13 become stronger as V1 increase, whereas the opposite occurs for T E∗

3 and T G∗
13.

On the other hand, the behavior of the effective Poisson Sν
∗
32 and twist Poisson

Tν∗
32 moduli is remarkable. The module Sν

∗
32 has a concave upward behavior, whereas

Tν∗
32 is concave downward for all r Ki j and r Qi j imperfection parameters in the whole

V1 interval. Also, Sν
∗
32 is positive and Tν∗

32 is negative. These behaviors are similar
to the one reported by Dunn and Ledbetter (1995) for an elastic solid weakened by
porosity and microcracks. Paraphrasing his statement 4 from the conclusions (Dunn
and Ledbetter 1995), the Poisson and twist Poisson moduli can increase, decrease,
or remain unchanged depending on the imperfection parameters and the SyF volume
fractions. The trend of the pictures is reversed by passing from Figs. 19.2 and 19.3,
they are mirror-like. This can be understood by looking at the values in Table 19.1;
the elastic coefficients are larger for SyF, but the opposite happens for the micropolar
constants—they are larger for PUF.

Notice the existence of a change correlation point for Tν∗
32 in V1 = 0.8333087

(Fig. 19.3). This point is a consequence of 〈D1111〉 + 〈D1122〉 − 2
〈

D2
1122 D−1

1111

〉

= 0

in Eq. (19.16) for the torque. Thus, T ν∗
32 = T ν∗

31 = 0.5
〈

D1122 D−1
1111

〉−1
≡ H (V1). All

the curves are intercepted in this correlation point and H (V1) shows the indepen-
dence of Tν∗

32 with respect to r Qi j . Moreover, it is worth mentioning that the com-
puted values for S E∗

3 and Sν
∗
32 in Fig. 19.3 are comparable with those obtained exper-

imentally in Hassanpour and Heppler (2017). Indeed, the experimental values for
the torsional micropolar Young’s modulus and twist Poisson’s ratio are, respectively,
equal to 0 and -1. The slight difference, highlighted in the present plots, is likely due
to the presence of the interface and numerical approximations.
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Fig. 19.2 Effective engineering moduli
(

S E∗
3 , SG∗

13, and Sν∗
32

)

related to stiffness versus V1
volume fraction of a bi-laminated Cosserat composite with uniform imperfect contact conditions

Fig. 19.3 Effective engineering moduli
(

T E∗
3 , T G∗

13, and T ν∗
32

)

related to torque versus V1 volume
fraction of a bi-laminated Cosserat composite with uniform imperfect contact conditions
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5 Conclusions

In this work, the asymptotic homogenization method is applied to heterogeneous
micropolar media. In particular, effective engineering expressions with isotropic sym-
metry layers are provided for multi-laminated Cosserat media under non-uniform
imperfect contact conditions. The effective engineering properties for centro-
symmetric laminated Cosserat composites are derived as a function of the material
properties, the imperfection parameters, the cell length in the y3 direction, and the
constituent’s volume fractions. The typical length scales of the periodic cell and the
microstructure imperfection play an important role in the macroscopic behavior of the
laminate structures. The homogenized Cosserat engineering constants are character-
ized by two effective Young’s moduli, three effective shear moduli, two effective Pois-
son’s ratios, and two effective shear-strain ratios. Actually, only the transverse proper-
tiesperpendicular to the layerdistribution, i.e. along the x3, dependon the imperfection
parameter. Finally, numerical results are discussed. In general, we conclude that

(i) The stiffness
(

S E∗
3 , SG∗

13, Sν
∗
31

)

and torque
(

T E∗
3 , T G∗

13, Tν∗
31

)

effective engi-
neering constants transverse to the distribution of the laminae are sensible to the
imperfection effects;

(i i) The effective engineering constants related to stiffness and torque, i.e. Young’s
moduli E∗

1 = E∗
2 , shear moduli G∗

12 = G∗
21, G∗

32 = G∗
31, Poisson’s coefficientν∗

21, and
shear-strain ratios ζ ∗

2112 and ζ ∗
3223 are independent of the imperfection parameters and

the cell length;
(i i i) The volume fraction has an influence on the behavior of the stiffness and

torque effective engineering moduli when the imperfect contact is considered; and
(iv) The cell length changes the effective engineering constants when imperfect

contact conditions are assumed.
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Appendix

The corresponding full approximation values with more significant digits of the
effective engineering moduli S E∗

3 , SG∗
13, T E∗

3 , and T G∗
13 labeled with the symbol “*”

in Table 19.5 are given.

Table 19.5 The values with more significant digits of the effective engineering moduli. The moduli
S E∗

3 and SG∗
13 are measured in [MPa]; T E∗

3 , and T G∗
13 in [N]

Moduli V1 N = 2 N = 4

S1 S2 S1

S E∗
3 0.2 0.00549993 – –

0.4 0.00549995 – –

0.6 0.00549996 – –

0.8 0.00549997 – –

S G∗
13 0.2 0.00549937 – –

0.4 0.00549957 – –

0.6 0.00549970 – –

0.8 0.00549981 – –

T E∗
3 0.2 5.48674 × 10−5 – –

0.4 5.48063 × 10−5 – –

0.6 5.46415 × 10−5 – –

0.8 5.25861 × 10−5 – –

T G∗
13 0.2 5.49995 × 10−5 0.00549501 0.00277542

0.4 5.49992 × 10−5 0.00549196 0.00277411

0.6 5.49988 × 10−5 0.00548791 0.00277255

0.8 5.49979 × 10−5 .00547929 0.00276982
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