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Non-pharmaceutical measures such as preventive quarantines, remote working, school and work-
place closures, lockdowns, etc. have shown effectivenness from an epidemic control perspective;
however they have also significant negative consequences on social life and relationships, work rou-
tines, and community engagement. In particular, complex ideas, work and school collaborations,
innovative discoveries, and resilient norms formation and maintenance, which often require face-to-
face interactions of two or more parties to be developed and synergically coordinated, are particularly
affected. In this study, we propose an alternative hybrid solution that balances the slowdown of epi-
demic diffusion with the preservation of face-to-face interactions. Our approach involves a two-step
partitioning of the population. First, we tune the level of node clustering, creating “social bubbles”
with increased contacts within each bubble and fewer outside, while maintaining the average num-
ber of contacts in each network. Second, we tune the level of temporal clustering by pairing, for
a certain time interval, nodes from specific social bubbles. Our results demonstrate that a hybrid
approach can achieve better trade-offs between epidemic control and complex knowledge diffusion.
The versatility of our model enables tuning and refining clustering levels to optimally achieve the de-
sired trade-off, based on the potentially changing characteristics of a disease or knowledge diffusion
process.

I. INTRODUCTION

The recent experience with COVID-19 has made us all
aware of epidemics, their possible appearance and their
likelihood to overturn our lives all of a sudden. The
COVID-19 pandemic, as of June 2023, has caused almost
800 million cases (among which 7 million deaths) around
the world1. Many containment measures and non-
pharmaceutical interventions (NPIs) have been put in
place before vaccines became available: lockdowns, pre-
ventive quarantines, masks, physical distancing, school
and workplace closures, remote working, etc. [1–5].
All these measures have considerably impacted people’s
lives, social relationships, work, and economy [6–10]. In-
deed, if these measures can represent possible solutions
to reduce disease spreading, the other side of the coin is
that they imply a severe slowdown, or even interruption,
of all the social exchanges and face-to-face interactions
which prove fundamental for the proper functioning of a
society and, specifically, for fruitful collaborative inter-
actions.
Moreover, despite many collaborations, intimate rela-

tionships, and, more in general, information and knowl-
edge sharing can nowadays easily travel through the
Internet, the limits of only remote interactions have
become clear [11–13]. Several studies, indeed, have
highlighted the importance of in-person interactions
for physical, psychological and social wellbeing [14–
17]. In particular, observational, interview-based, and
questionnaire-based studies have found that in work-
places face-to-face interactions are associated with in-
creased trust and improved communication among em-
ployees, efficient problem solving and a positive effect on

1 World Health Organization https://covid19.who.int

the overall organization knowledge diffusion, innovation
ability, and performance [18–21]. Similar results have
been also found using wearable sensors to study face-to-
face interactions and their effect on productivity, perfor-
mance and complex tasks’ completion [22–24].
For this reason it is crucial, along with the epidemic
spreading reduction, to maintain as many physical in-
teractions as possible. These two objectives are not eas-
ily pursued simultaneously. In this work, we will try to
find a trade-off between them by working on the design
of the network of social interactions, a useful exercise
to find alternative solutions allowing us to cope with a
fast-spreading disease. Tackling this problem within a
coupled-dynamics framework can nourish new perspec-
tives for the future management of epidemics and health
emergencies.

Since the behaviour in time of a spreading process on
a network is heavily conditioned by the network topol-
ogy, several studies tried to regulate spreading by acting
on the network structure [25–28]. In this work, inspired
by [29], we explore the “social bubbles” strategy, which
implies partitioning the society into communities where
each individual can physically interact at will inside the
bubble but in a controlled amount (or not at all) out-
side. In this way, people can maintain a normal amount
of face-to-face interactions but restrict them to a set of
people who interact exclusively in the same group. For
example, in a workplace this could imply restricting face-
to-face interactions only among the members of the same
team or department, while in a school and in a university
campus only within a classroom or a dorm. This strategy
has been proposed and largely discussed, and many nu-
merical experiments have been performed to assess the
effect of social bubbles on real populations [30] and in
specific contexts like schools [31–34] and workplaces [35],
always showing important advantages in reducing con-
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FIG. 1. Schematic representation of the combined model dynamics. A) The epidemic spread is modelled through a modified
SIR compartmental model framework. “S” are individuals susceptible to the infection, “Q” are quarantined individuals,
“I” are infected individuals, “Is” are isolated individuals, and “R” are recovered individuals. B) The information dynamics
follows a standard multistrain SI compartmental model. With “Si” representing agents susceptible to information “i”, and
“Ii” representing agents who acquired information “i”. C) Schematically reproduce the main aspects of the two dynamics
over a network of agents. Agents are represented with three concentric circles. The colour of the inner circle represents the
epidemiological compartment the agent is in; the colour of the outer circles represents the progression of the information
diffusion model from time “t” to time “t+ 1”.

tagions. In order to evaluate the effect of the commu-
nity structure it is useful to consider synthetic networks
where we can tune the modularity, i.e. the strength of
division into modules or bubbles, and observe how this
affects the spreading [36–38].
In this work, we explore the effect of the social bub-
bles’ reorganization of a network of proximity interac-
tions. The specific goal of this study is to find an optimal
topological network structure that minimizes the num-
ber of infected individuals (and in particular the number
of simultaneously infected individuals) in order to avoid
burdening hospital intensive care units (ICUs), and, at
the same time, minimizing the social deterioration due
to restrictions [39, 40]. For this reason, we consider two
different and non-interacting spreading processes: one
regarding a disease, and one regarding the diffusion of
knowledge or of a social behaviour [41–46]. The first one
is represented by a simple contagion model, a SIR (Sus-
ceptible, Infected, or Recovered) compartmental model
inspired by [47, 48], while the second one is governed
by a complex contagion approach, the threshold model
with memory [49]. The two processes take place simul-
taneously on an artificial population where individuals
are connected via a temporal network, i.e. a set of pair-
wise links that appear and disappear in time. The way
these links are distributed among nodes heavily affects
the temporal evolution of the two spreading processes.
The effect of social bubbles, which in networks is re-
flected by nodes clustering, is investigated for different
sizes of the groups (e.g. different sizes of teams or de-
partments in a workplace, different sizes of classrooms at
school or university, etc.) and different levels of modular-
ity (i.e. the strength of network partition, represented
by the connectivity inside each bubble with respect to
the admitted contacts between bubbles). Importantly,
all these different networks have the same average num-

ber of links, such that our analysis is not influenced by
the number of connections (a parameter that clearly has
a role in fastening all kinds of spreading processes).

We show that it is possible to find a trade-off between
minimizing the timescale of the knowledge diffusion and
the number of simultaneous infected individuals, two
competing objectives. The effect of social bubbles (with-
out preventive quarantines) is compared with the effect
of quarantines (on a network that is not organized in
bubbles).
We will show that, even if the quarantines are more ef-
fective in containing the number of infected, they do not
allow knowledge diffusion until most of the population
is recovered. In contrast, with the bubbles strategy it
is instead possible to share knowledge in the network
since the beginning of the simulation, and simultane-
ously maintain the number of infected below a critical
level (generally higher but comparable with the case of
quarantines). The bubbles strategy, therefore, allows so-
cial processes to coexist with an epidemic. Addition-
ally, in agreement with [37, 38] we also find an optimal
value of modularity for information diffusion, revealing
a non-monotonic relation between knowledge diffusion
and network structure.

II. RESULTS

Combining simple and complex contagion allows in
general to find strategies that take into account both the
epidemic threats and the socio-economical issues deriv-
ing from prolonged isolation periods, societal fragmen-
tation, and, potentially, segregation. Several works exist
studying the interplay between different spreading pro-
cesses [45, 46, 50]. These works however consider that
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the two processes mutually interact or one strongly af-
fects the other one, while in our work they are considered
two parallel processes (knowledge does not affect disease,
and disease affects knowledge only indirectly, via isola-
tions and quarantines). The focus of this work is indeed
on the network structure and how this can be set so as to
regulate different spreading processes taking place on it.
We hence chose to consider a setting where the interac-
tion between the two processes is minimal, thus avoiding
to insert additional effects with the risk of not being able
to understand from what they are generated, and hence
to complicate the results’ interpretation.

The disease starts from one random infected node at
time 0. Simple contagion implies that nodes can only
be infected if they have an infected neighbour and each
contagion event is independent of the other ones. When
a connection appears between an infected and a suscep-
tible node, the probability that the susceptible node gets
infected is set by ω(τ), which depends on the age τ of
the infected node’s infection, i.e. the time since it has
been in turn infected (see Methods for more details). In-
fected individuals can be identified and isolated, which
means that all their connections are cut and they can-
not spread disease or knowledge for a fixed interval of
time. This happens with a probability per unit time
εI , one of the parameters of the model. Infected nodes,
whether they are isolated or not, eventually become re-
covered, hence immune. This is the baseline model that
we use to simulate the disease spreading and to investi-
gate social bubbles, but we can also additionally consider
the existence of quarantines: in this case, once a node
is isolated, its last contacts are traced and preventively
quarantined with a probability εT , which means cutting
the nodes’ contacts for a short interval of time without
knowing if it is actually infected or not. All infected
nodes that are not isolated or quarantined are classified
as active infected ones, being free to spread the disease
(see Methods for a more detailed description of the dis-
ease spreading).
In parallel, knowledge spreads across the network. We
consider 20 different pieces of knowledge distributed in
the network, they can be thought of as 20 different pieces
of information or expertise spread among different teams
or departments in a workplace. Initially, each piece of
knowledge is possessed by only one random node and we
assume that the other nodes need multiple exposures in
order to acquire them. This is represented by a threshold
model with memory [49]: each susceptible node becomes
infected (i.e. it acquires a specific knowledge) only af-
ter K interactions with nodes possessing that particu-
lar knowledge. Nodes progressively store and accumu-
late the different pieces of information that they get in
touch with and only when the threshold is reached for a
particular knowledge it is considered as acquired. This
is an SI model: we assume that knowledge cannot be
unlearned. See Fig. 1C for a schematic representation
of the two processes: infected nodes (dark blue) infect
their neighbours and then become recovered (grey) or
isolated (bright blue) and their neighbours can be quar-
antined (green). In the meanwhile, nodes which possess
a particular knowledge pass pieces of it to their neigh-
bours. The neighbours start to collect them and when

they obtain the entire set of K pieces that knowledge is
acquired. In Fig. 1 only two different spreading pieces
of knowledge are represented, the purple and the pink
one, while in the numerical experiments we consider 20
pieces of knowledge.
We analyze several scenarios in which the two processes
can interact and several networks of contacts. The tem-
poral networks are generated building each layer with the
Stochastic Block Model [51] where the number of nodes
is fixed (N = 680) and the number of links is fixed on
average (400 links). The number of nodes and connec-
tions are chosen so as to mimic the proximity interac-
tions’ dataset of the Copenhagen Network Study [52].
The population is partitioned in several communities
which are strongly connected inside (random temporal
connections with a probability pintra) and poorly con-
nected between each other (random temporal connec-
tions with a probability pinter). Since the number of
links is fixed, the values of pintra and pinter are not in-
dependent of each other, and increasing pintra implies
decreasing pinter and vice-versa. Thus, we rely on a pa-
rameter p = pintra/pinter which represnets the network
modularity: namely, tuning the value of p allows us to
generate more self-contained bubbles (higher p) or more
interconnected groups less connected inside (lower p).
By doing this, we can explore the effect of stronger or
weaker bubbles as possible ways to reorganize a network
without cutting or adding any link (see Methods for a
detailed description of network generation).

In Fig. 2 we depict the evolution in time of both dis-
ease and knowledge spreading quantities: the number
of active infected (dark blue) individuals, isolated (light
blue) individuals, and quarantined (green) individuals,
plus the number of simultaneous infected (orange) in-
dividuals corresponding to the sum of active infected,
isolated and true positive quarantined individuals (i.e.
those that are actually infected). The horizontal dashed
orange line highlights the maximum number of simul-
taneous active infected individuals reached during the
temporal evolution. Additionally, we plot in purple the
evolution of the mean number of different knowledge ob-
tained by the nodes (averaged on all the nodes). We
report mean knowledge in the y-axis on the right, which
spans from 0 to 20 since we are considering 20 pieces
of knowledge spreading in the network (at time 0 each
piece of knowledge is only possessed by one node so the
mean is 1/N = 0.0015). We highlight three significant
steps of knowledge spreading: the time when the aver-
age reaches the number of pieces of knowledge initially
contained in one cluster, 20/n with n being the num-
ber of clusters (n = 10 in the example of Fig. 2); the
time when it reaches 50% of total pieces of knowledge
(10 in this case); the time when it reaches 80% of total
knowledge (16 in this case). All the reported results are
obtained as averages over 200 stochastic simulations.
The first scenario that is depicted (Fig. 2A) corresponds
to the case without quarantines (εT = 0) and where the
social bubbles’ strategy is not at play (p = 5, meaning
that intra-bubbles and inter-bubbles connections are of
the same order of magnitude). The only NPI is repre-
sented by the isolation of individuals who are identified
as infected. This is the worst case: we have a peaked
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curve of infected individuals and at the maximum peak
more than half of the population is simultaneously in-
fected. The average knowledge stays around 0 for the
entire time span where people are infected and starts to
grow only after the epidemic has been controlled.
Then, we introduce the scenario that serves as a bench-
mark to compare the social bubbles’ strategy: it is the
one with quarantines (εT = 0.1), still without the bub-
bles’ organization of the network of interactions (p = 5).
Quarantines clearly have an effect on infections number,
managing to flatten the curves so as to reduce the num-
ber of simultaneously active infected individuals. How-
ever, this reduction comes at a great social cost, con-
fining a significative fraction of healthy individuals. In
the example reported in Fig. 2B, while the maximum av-
erage number of simultaneous infected is only the 27%
of the population, the average percentage of population
confined at least once without being infected (collateral
confinement) is as high as 30.6% (see Supplementary Ma-
terial Section ?? for collateral confinement in simulations
with different parameters). Moreover, we observe that
flattening the curve also implies extending the time span
of the epidemics and this, in turn, badly affects the pos-
sibility of people having face-to-face interactions, thus
slowing down knowledge diffusion. In fact, we observe
that the purple curve starts to grow only when the other
curves are very low. The time needed to acquire knowl-
edge is hence longer than in the previous case. In other
words, also in this case knowledge spreading via physi-
cal interactions can hardly coexist with an ongoing epi-
demic.
In Fig. 2B we finally introduce the social bubbles’ strat-
egy. In this case, no quarantine strategy is put in place
(i.e. εT = 0) but the network is generated with p = 199,
meaning that the intra-bubbles’ interactions are, on av-
erage, 199 times more frequent than inter-bubbles’ in-
teractions. The number of infected individuals is higher
with respect to the previous case: a simple organiza-
tion of the network of interactions in bubbles is not
able to reduce infections as quarantines, even if they
are reduced with respect to the case without a bubble
structure (Fig. 2A). However, we notice that in this case
knowledge starts to spread inside bubbles already dur-
ing the unfolding of the epidemic. So, even if complete
knowledge spreading remains quite slow, pieces of in-
formation that circulate inside bubbles guarantee that
part of the knowledge is acquired from the beginning (in
the reported case, already at day 59). This important
achievement still has to pay the price of (i) a high number
of simultaneously active infected individuals, and (ii) a
still long time before all the pieces of knowledge are able
to reach all the nodes.
Hence, we consider an additional containment strategy:
we add to the node clustering of nodes, represented by
the social bubbles, a temporal clustering, thus obtaining
temporal social bubbles. We leverage again the value of p
setting the ratio of intra-bubbles’ and inter-bubbles’ con-
nections but, in this strategy, the inter-bubbles’ connec-
tions, instead of involving nodes of random different bub-
bles, are now concentrated only between specific couples
of bubbles (as in the toy example depicted in Fig. 2D).
So, each bubble (e.g. a team or department within an

organization) only interacts with another bubble (e.g. a
different team or department) at a specific time. Then,
with a time periodicity d the couples change in such a
way that, at the end of the simulation, each bubble has
interacted with each other bubble. The result is that
knowledge starts to grow from the early stages of the sim-
ulations inside each couple of bubbles and each node of
one bubble easily acquires the ideas of its matched bub-
ble, doubling the nodes’ average knowledge. In a similar
manner, once matches are updated, nodes are able to
acquire knowledge from another bubble, and gradually
augment their knowledge following a staggered growth.
In Fig. 2D, this dynamic is clearly visible: the purple line
shows the process of knowledge acquisition, which grows
more rapidly in correspondence with the update of bub-
ble matches (every d = 10 days in the reported simula-
tions), and slows down once most of the matched bubble
nodes have acquired the new piece of knowledge. For
what concerns the disease spreading, leveraging the pe-
culiar structure of node interactions, it naturally remains
confined between a limited number of bubbles and, as a
consequence, the number of infected individuals grows
more slowly. Moreover, the number of simultaneously
active infected does not reach a high value since a frac-
tion of the infected nodes can recover within the time
that matches between bubbles are changed. By observ-
ing the curves in Fig. 2D we notice that the disease curve
and the knowledge one are partially overlapping, indi-
cating that, in this framework, the epidemic can coexist
with the diffusion of knowledge by social face-to-face in-
teractions.
In Fig. 3 we report, for different strategies and different
parameters’ settings, four significant quantities charac-
terizing disease and knowledge spreading: (i) the maxi-
mum number of simultaneously active infected individ-
uals (orange horizontal dashed lines in Fig. 2), (ii) the
time at which the average knowledge acquired by nodes
becomes equivalent to the number of different pieces of
knowledge initially present in one cluster, (iii) the time
at which it reaches 50% of the total knowledge, and (iv)
the time at which it reaches 80% of the total knowledge
(the three purple vertical lines in Fig. 2). For the quaran-
tine strategy, these indicators are reported versus εT and
while, clearly, infected individuals decrease with εT , the
knowledge times it is only marginally affected by it. For
the bubbles’ strategy, the indicators are instead depicted
as functions of p, where increasing p means making the
bubbles more self-contained. In particular, we consider
the case with temporal clustering for three different val-
ues of d (i.e. 5, 10, and 20 days), and without temporal
clustering. In all cases, we notice that the number of in-
fected individuals decreases with p, not drastically as for
εT , but significantly. This is due to the fact that closer
bubbles tend to maintain the disease confined to a few
bubbles, while the other nodes remain safe. The lowest
numbers of infected individuals are obtained with tem-
poral clustering of 20 days, in fact with longer temporal
clustering there is more chance that infected individuals
inside a bubble recover or are quarantined before they
have the possibility to meet new susceptible nodes. For
what concerns knowledge times, instead, we notice a pe-
culiar behaviour with respect to the modularity, showing
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in all cases a minimum value in p, corresponding to an
optimal value which varies according to different condi-
tions. We also notice that in order to shorten times to
reach partial knowledge, longer temporal clustering are
to be preferred (see dark purple curves), while to shorten
total knowledge times we need to decrease the length of
the tournament d (see light purple curves).

III. DISCUSSION

In this work, we have investigated the social bubbles’
framework as a potential strategy for controlling disease
spreading and simultaneously allowing higher levels of
face-to-face interactions, which in turn facilitate the pro-
cess of knowledge diffusion. More specifically, we have
considered different settings of the social interactions’
network organization in bubbles with the aim of finding
an alternative strategy to preventive quarantines.

From the point of view of reducing the number of in-
fected individuals, the quarantine strategy is the most
effective one. However, arguably, quarantines impede
social contacts and, as a consequence, all the diffusion
processes that do not rely on simple contagion models
but require multiple contacts to spread, as is the case for
the considered knowledge-spreading process. The bub-
bles’ strategy instead permits face-to-face interactions
between people, albeit limited to smaller groups than to
an entire organization, school, university campus, work-
place, etc. These free physical interactions allow com-
plex dynamics (like complex contagions) to emerge, as it
is demonstrated by the progress of knowledge spreading,
here represented by the threshold process. We notice in
fact that, despite the acquirement of the entire knowl-
edge set is still reached after a long time, the singular
ideas are free to circulate since the beginning inside the
bubbles and are then easily acquired by the nodes (see
Fig. 2C).
Other strategies to flatten the infection curve by mak-
ing use of social bubbles consist in cutting inter-bubble
links instead of rewiring them [29]. However, the reduc-
tion of connections incontestably induces a slowdown of
the epidemic spreading, which is not entirely due to the
organization in bubbles. In our work, we show instead
that the bubbles strategy is effective even if the number
of links is maintained constant. In particular, we use
networks with different levels of modularity, quantified
by different values of p, but we generate the networks
always with the same average number of links.

One of the most salient results of this work is that the
existence of communities in a network facilitates knowl-
edge diffusion (i.e. complex contagion), limiting col-
lateral confinement, while it mitigates disease diffusion
(i.e. simple contagion). An analogous conclusion about
knowledge diffusion, implemented as a linear threshold
model, has been obtained by Nematzadeh et al. [37] (and
by Peng et al. [38] in a follow-up of the first work). They
observe that strong communities enhance local spread-
ing, while weak communities enhance global spreading,
and they find an optimal range of intermediate values
for community strength (analogous to our p) that max-
imize diffusion and the speed of cascades. This result

agrees with our results on knowledge spreading; in fact,
with our analyses we also observe the existence of an op-
timal value of p corresponding to the shortest times of
knowledge diffusion (see Fig. 3). The minimum in p tells
us that the best performances of the bubbles’ strategy
are not monotonic with p, on the contrary, very high
or very low values of p slow down the knowledge dif-
fusion. In fact, trivially, if p is too small we lose the
effect of population partition and what we observe is
a mixed population without bubbles and without quar-
antines, so a very inefficient network structure. If, in-
stead, we increase p, i.e. we make the bubbles progres-
sively more self-contained, we interestingly observe pro-
gressively longer knowledge spreading times, suggesting
that a certain level of promiscuity between bubbles is
instead advisable. It is important to notice that the ex-
istence of quarantines and isolations does not affect the
ratio p between the amount of intra- and inter-bubble
connections. In Supplementary Material, Fig. ??, we
show indeed that, while the number of overall connec-
tions in the network is significantly reduced during the
central phase of the disease epidemic, both within and
between clusters, the ratio pintra/pinter remains stable
around the value p set to generate the networks. This
confirms the validity of the parameter p to discern the
different networks and the resulting processes.
The greatest advantage is however obtained with the in-
sertion of bubbles’ temporal clustering. In fact in that
case we have a combined effect: the existence of bub-
bles allows to keep the epidemics under control, and the
temporal clustering enforce the nodes to be exposed to
periodically different ideas. The result is a faster ac-
quisition of knowledge while the disease is kept under
control. This strategy reveals impressively effective and,
up to our knowledge, it is a completely novel idea.
All these results are confirmed by considering different
sizes of bubbles (with the same number of nodes and the
same average number of links), in particular 5 bubbles
of 136 individuals and 20 bubbles of 34 individuals, as
reported in Section S2 of the Supplementary Material.

Our work comes with some limitations that could be
addressed by further exploring this research direction in
the future. First of all, we are only considering synthetic
networks, which are generated with random interactions
without temporal correlations, clustering, or other struc-
tural information that would make them more similar to
real networks of interactions. The reason for this choice
stemmed from the need to investigate the effect of so-
cial bubbles, disentangled from other possible structural
constraints that could affect the dynamics. The choice of
random networks ensures that the only structure exist-
ing in the considered graphs is the modularity, which we
introduce and control by setting the parameter p when
generating the networks. This allows us to directly scru-
tinize the phenomenon and draw untwisted conclusions.
Envisaging possible applications to real networks will be
matter of future investigations. Moreover, the effect of
network density is not explored, but we test different
network sizes (increasing or decreasing the number of
nodes and changing consequently the number of links so
as to keep density fixed) and different bubble sizes and
we observe that the results essentially do not change (see
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FIG. 2. Time evolution of disease and knowledge spreading, results of 200 simulations on temporal networks organized in 10
bubbles with 68 nodes. A) p = 5 (i.e. connections inside and outside bubbles are of the same order, in practice, bubbles do
not exist), εT = 0 (i.e. no quarantines). B) p = 5, εT = 0.1 (i.e. quarantines without bubbles). C) p = 199, εT = 0 (i.e.
bubbles without quarantines). D) p = 199, εT = 0, plus temporal clustering of 10 days. The parameter εI = 0.1 for all these
cases.

Section S3 of the Supplementary Material). Finally, only
some of the simple and complex spreading parameters
are explored, which implies that the results about opti-
mal p are not general, they only apply in this specific
context. However, the interesting result is that a mini-
mum exists, even if its exact value will probably change
by changing the parameters.
In conclusion, we realize that the temporal social bubbles
strategy represents a valid alternative to other NPIs like
preventive quarantines when looking for a solution per-
mitting to coexist with a spreading disease. This strat-
egy, while still affecting the social structure of interac-
tions, allows the pursuit of a series of otherwise hardly
attainable collective goals that prove fundamental to the
growth and social enrichment of society and individuals,
from collaborations to social relationships, from knowl-
edge transfer to opinion exchange. These results could
spur innovative approaches to epidemic control strate-
gies, for example, based on different interaction-mixing
prescriptions in different settings, such as home, work
and leisure places. While a systematic assessment of
mixed strategy approaches is needed to better inform

policymakers, our results provide a solid proof of concept
for social bubble strategies, proving its efficacy under the
prescription of temporal clustering, evidencing how the
choice of a strategy solely focused on flattening the curve
can dramatically affect knowledge diffusion and social
cohesion.

IV. METHODS

A. Disease spreading

The disease-spreading model is inspired by previous
literature on COVID-19 models [53–55]. Each numerical
simulation starts with one random infected individual,
who has been infected for a number of days, τ , ran-
domly sampled between 0 and 10. The variable τ is
important in the spreading process since we assume that
infectiousness, i.e. the probability of transmitting the
disease, of an infected individual depends on the time
since their own contagion, with a function ω(τ) which
has a maximum peak at around 5 days (see Fig. ?? in



7

Quarantines Bubbles

10 clusters

Bubbles with 10 days 
temporal clustering

Bubbles with 20 days 
temporal clustering

Bubbles with 5 days  
temporal clustering

Time to reach 80% knowledge 

Time to reach 50% knowledge 

Time to reach knowledge  
initially contained in one cluster

Simultaneous infected

 = 0.1εI

 = 0.25εI

 = 0.4εI

(a)

FIG. 3. Scenario with 10 bubbles (i.e. ten different teams or departments in an organization). Orange stars represent the
maximum number of infected individuals, the other symbols represent the time at which the nodes reach on average 10%,
50%, and 80% of knowledge. The first percentage corresponds to acquiring the entire knowledge initially contained in one
bubble from all the nodes. We report results for εI = 0.1 (continuous lines), εI = 0.25 (dashed lines), εI = 0.4 (dotted lines).
The quarantine results are reported vs. εT , the bubbles results vs. p and for different levels of temporal clustering.

the Supplementary Material). Such probability governs
which individuals, among those that the infected seed
meets according to the temporal network, will contract
the disease. These can in turn infect their contacts.
We assume that every infected individual becomes re-
covered, hence immune2, after 25 days [56]. We assume
that 80% of infected individuals become symptomatic
after being infected, with a symptom onset probability
which increases in time according to a function s(τ) [55]
(see Fig. ?? in the Supplementary Material). As soon as
they show symptoms they have a probability εI of being
isolated. If this does not happen they go on spreading,
otherwise their contacts are cut for the next 30 days, at
the end of which they will become recovered. When an
individual is isolated, their past contacts (last 7 days)
are traced and preventively quarantined with a proba-
bility εT . The quarantined individuals can be infected
(true positive) or susceptible (false positive). In the first
case, if they show symptoms during quarantine, they will

2 If we extend the time span of the simulations we should con-
sider the fact that immunity only exists for a finite period of
time, however, since we are considering only around 4 months,
considering that recovered people remain immune until the end
of the simulations is a good approximation of reality.

become isolated (the only difference with quarantine is
that their past contacts are traced and, in the end, they
will be recovered), otherwise, they finish the quarantine
after 10 days and they are released.

B. Network generation

We generate a synthetic temporal network with N
nodes organized in Nc clusters, characterized by a
strength of network modularity p = pintra/pinter, and
a total number of links L. We hence generate a series of
static networks which are going to constitute the layers
of the temporal network. In each layer, nodes are classi-
fied into clusters (the first n1 nodes in the first cluster,
the second n2 nodes in the second cluster, and so on,
with ni the a priori chosen number of nodes in cluster i,
the same for each static network). All the temporal lay-
ers are characterized by the same values of intra-cluster
connections probability pintra and of inter-cluster con-
nections probability pinter.

The static networks are generated using the Stochastic
Block Model [51], once all the parameters (Nc, ni, pintra,
pinter) have been fixed.

Since pintra and pinter are not independent of each
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other but are constrained by the value of L, we need
first to find the function that associates these three vari-
ables. We consider the general case where clusters do
not contain the same number of nodes, but each cluster
i contains a number ni of nodes. This means that, sta-
tistically, in cluster i we can find a number of internal
links given by:

liintra =
ni(ni − 1)

2
pintra (1)

and summing over all clusters we obtain:

lintra =

Nc∑
i=i

liintra =

Nc∑
i=i

ni(ni − 1)

2
pintra. (2)

For what concerns the inter-cluster links, instead, we
should consider that each node in cluster i can be con-
nected to a number of external nodes (N − ni)pinter.
This is true for every node in the cluster, so it should
be multiplied by ni to find the number of connections of
cluster i that point to other clusters:

liinter = ni(N − ni)pinter. (3)

To obtain the total number of inter-cluster links we just
have to sum over all the clusters and divide by 2, to avoid
double counting:

linter =

Nc∑
i=i

liinter
2

=

Nc∑
i=i

ni(N − ni)

2
pinter. (4)

The total number of links can therefore be written as:

L = lintra+linter =

Nc∑
i=i

[
ni(ni − 1)

2
pintra+

ni(N − ni)

2
pinter].

(5)
This equation represents the constraint between L,
pintra, and pinter. In our case we consider all the clus-
ters with the same number of nodes: ni = N/Nc ≡ nc

∀i, hence it reduces to

L = Nc[
nc(nc − 1)

2
pintra +

nc(N − nc)

2
pinter]. (6)

The networks that we generate for this manuscript have
a fixed number of links, L = 400. By varying the cho-
sen value for pintra we can obtain different choices of
pinter (and hence of p), always maintaining constant the
number of links L, by inverting equation 6:

pinter =
2L

Ncnc(N − nc)
− nc − 1

N − nc
pintra. (7)

V. CODE AVAILABILITY

The code used for the generation of temporal net-
work, simulations and analysis is available at: https:
//github.com/giuliacencetti/Social_bubbles
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