
HAL Id: hal-04434386
https://hal.science/hal-04434386

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Digging into Radiance Grid for Real-Time View
Synthesis with Detail Preservation

Jian Zhang, Jinchi Huang, Bowen Cai, Huan Fu, Mingming Gong, Chaohui
Wang, Jiaming Wang, Hongchen Luo, Rongfei Jia, Binqiang Zhao, et al.

To cite this version:
Jian Zhang, Jinchi Huang, Bowen Cai, Huan Fu, Mingming Gong, et al.. Digging into Radiance Grid
for Real-Time View Synthesis with Detail Preservation. European Conference on Computer Vision,
2022, Oct 2022, Tel Aviv, Israel. �hal-04434386�

https://hal.science/hal-04434386
https://hal.archives-ouvertes.fr


Digging into Radiance Grid for Real-Time View
Synthesis with Detail Preservation

Jian Zhang1∗ Jinchi Huang1∗ Bowen Cai1∗ Huan Fu1†

Mingming Gong2 Chaohui Wang3 Jiaming Wang1 Hongchen Luo1

Rongfei Jia1 Binqiang Zhao1 Xing Tang1

1 Tao Technology Department, Alibaba Group
2 School of Mathematics and Statistics Melbourne Centre, University of Melbourne

3 LIGM, Univ Gustave Eiffel, CNRS, ENPC, France

Abstract. Neural Radiance Fields (NeRF) [30] series are impressive in
representing scenes and synthesizing high-quality novel views. However,
most previous works fail to preserve texture details and suffer from slow
training speed. A recent method SNeRG [10] demonstrates that bak-
ing a trained NeRF as a Sparse Neural Radiance Grid enables real-time
view synthesis with slight scarification of rendering quality. In this paper,
we dig into the Radiance Grid representation and present a set of im-
provements, which together result in significantly boosted performance
in terms of both speed and quality. First, we propose an HieRarchical
Sparse Radiance Grid (HrSRG) representation that has higher voxel res-
olution for informative spaces and fewer voxels for other spaces. HrSRG
leverages a hierarchical voxel grid building process inspired by [29], and
can describe a scene at high resolution without excessive memory foot-
print. Furthermore, we show that directly optimizing the voxel grid leads
to surprisingly good texture details in rendered images. This direct op-
timization is memory-friendly and requires multiple orders of magnitude
less time than conventional NeRFs as it only involves a tiny MLP. Fi-
nally, we find that a critical factor that prevents fine details restoration
is the misaligned 2D pixels among images caused by camera pose errors.
We propose to use the perceptual loss to add tolerance to misalignments,
leading to the improved visual quality of rendered images.

Keywords: 3D representation, view synthesis, real-time rendering

1 Introduction

Neural rendering has emerged as a promising new avenue towards controllable
image and video generation of photo-realistic virtual worlds. In the past two
years, there has been an explosive interest in neural volumetric representations,
such as Neural Radiance Fields (NeRF) [30], due to their superiority in synthe-
sizing photo-realistic novel views of scenes. NeRF takes a deep multilayer

∗: These authors contribute equally to this work.
†: Corresponding author.



2 Authors Suppressed Due to Excessive Length

NeRF SNeRG Mip-NeRF

PlenOctree AdaSRG GT

Plenoxels

DirectVoxGo

Captured Image

AdaSRG

Fig. 1. The rendered image by our approach (HrSRG) is perceptually better than
others while contains accurate fine details. Achieving such a quality, HrSRG brings the
real-time rendering practice and requires less storage space compared to SNeRG [10]
and PlenOctree [54] (See Fig. 2). Zoom in for more details.

perceptron (MLP) that can map from 3D points to their volume densities and
view-dependent emitted colors to represent a scene.

The main obstacle to the practical deployment of NeRF is the slow inference
and training speed. It takes roughly 2 minutes to render a 1920×1080 (1080p)
image on a high-performing GPU. Reconstructing a scene from high-definition
(HD) images would take more than 48 hours. One of the main reasons is that
NeRF would query the MLP network hundreds of times even for rendering a
single ray. Recent advances show that caching pre-computed values would bring
real-time rendering experiences [10, 54]; however, their compacted representa-
tions require a large memory footprint and often impose a quality loss of 1∼2dB
compared to NeRF. Towards the slow training speed issue, efforts have been
made to learn image-based rendering by leveraging neural radiance fields [4, 49].
Still, their formulations are not compatible with published real-time rendering
approaches yet since they rely on nearby source images when performing render-
ing. In addition, they are overly sensitive to the pose distances between source
and target views. Several concurrent works [43, 53, 31] study direct voxel grid
optimization for super-fast training.

Another relatively understudied open problem is that NeRF fails to recover
texture characteristics or fine details. To the best of our knowledge, Mip-NeRF
[2] have discussed and partially remedied blurring and aliasing issues. Still, we
find it unable to preserve fine details of real scenes. In fact, NeRF and its variants
commonly generate excessively blurred in close-up views when representing real
scenes instead of synthetic scenes. One possible reason is there are inevitable
misaligned 2D pixels among images caused by camera pose errors. Unfortunately,
neither NeRF nor its variants can handle this issue well.



Title Suppressed Due to Excessive Length 3

Fig. 2. LPIPS vs. FPS. We study the speed-quality tradeoff on Real 360◦ Ob-
jects (1080p images). HrSRG surpasses the two real-time methods [10, 54] on render-
ing speed, rendering quality, and storage space requirements. Obtaining an optimized
HrSRG requires about 5 hours (vs. 1-2 days for NeRF) on a V100 GPU. We measure
the rendering speed on a Lenovo ThinkPad P1 Gen 2 notebook. It has a 4GB NVIDIA
Quadro T1000 mobile graphics card. Zoom in for the runtime texture details.

In the paper, we dig into a Radiance Grid representation raised by SNeRG
[10], which enjoys real-time synthesis at the cost of rendering quality. We present
a series of improvements that lead to significantly boosted performance in terms
of both speed and quality. First, we argue that baking a uniformly high-resolution
voxel grid to represent a scene is memory intensive and not flexible. We no-
tice that, for a ray, only the points sampled around the surfaces contributes to
its color rendering. Thus, we introduce an HieRarchical Sparse Radiance Grid
(HrSRG) representation that has higher voxel resolution around informative
spaces and shows lower voxel resolution for other 3D spaces. We produce HrSRG
for a scene by exploiting an hierarchical voxel grid building process leveraging
[29]. A voxel contains volume density, radiance, and a three-dimensional feature
vector. Second, in light of 2D texture atlas [11], we treat voxel values as pa-
rameters and directly optimize them, leading to surprisingly good texture char-
acteristics in the rendered images. Finally, NeRF often cannot produce images
with excellent quality for real scenes since per-pixel losses such as ℓp-norm nei-
ther address the aforementioned misalignment issue nor consider the perceptual
quality. Luckily, training HrSRG is memory-friendly, which allows us to learn
more than 200K rays simultaneously in one single iteration. We thus incorpo-
rate a perceptual loss [14] to improve the clarity of rendered images further and
preserve more fine details. Our experiments show fitting a scene through HrSRG
requires takes about six hours, requiring multiple orders of magnitude less time
than previous high-performing NeRFs.

In summary, our main contributions are as follows:

– We present an HieRarchical Sparse Radiance Grid (HrSRG) representation
leveraging a hierarchical voxel grid building process. It enables representing
a scene at high resolution without excessive memory footprint.

– We show that it is possible to recover a scene’s texture characteristics by
directly optimizing its radiance grid.



4 Authors Suppressed Due to Excessive Length

– We introduce a perceptual loss to address the misalignment issue caused by
camera pose errors. It can further improves the clarity of rendered images
and preserve more fine details.

– Experiments demonstrate our HrSRG supports real-time rendering and ac-
celerated training while surpasses other methods on rendering quality and
required memory footprint. See Fig. 1 and Fig. 2.

2 Related Work

The computer vision and graphics communities have put tremendous efforts into
studying scene representation and novel view synthesis [5, 8, 21, 9, 45, 39, 18, 26,
15, 47, 42]. Recently, Neural Radiance Fields (NeRF) [30] have emerged as a
promising technique for learning to represent 3D scenes and synthesizing novel
views of the scene in impressive quality. Due to its superior performance, it has
been extended to model deformable objects [6, 34], dynamic scenes [33, 22], and
transparent objects [12]. Nevertheless, the vanilla NeRF fails to reconstruct fine
details of scenes and suffers from slow training and inference speed.

Accelerated NeRF Training. Optimizing a NeRF to represent a scene typi-
cally takes around 1–2 days. To accelerate training, major efforts have been made
to incorporate multi-view geometry into NeRF and utilize depths and pixel-wise
correspondences as priors to guide the optimization process [46, 55, 52, 4, 44, 41,
23]. For example, GRF [46] and PixelNeRF [55] learn dense local features and
retrieve feature vectors from each input image for an interested 3d point. Nerf-
ingMVS [52] predicts dense depth as priors to guide volume sampling in NeRF.
It also exploits uncertainty based on multi-view consistency to determine the
depth ranges of each ray. These image-based rendering approaches are not com-
patible with NeRF’s real-time rendering techniques yet. Some other approaches
[44, 41] study weights initialization by exploring meta-learning for neural repre-
sentations, which result in faster convergence during optimization.

Real-time Volume Rendering. Due to the expensive sampling mechanism
and costly neural network computations, rendering a NeRF is extremely slow.
To speed up the rendering process, Decomposed Radiance Fields [35] and Kilo-
NeRF [36] spatially decompose a scene into multiple cells to reduce the inference
complexity. AutoInt [24] and DoNeRF [32] learns to reduce the samples for each
queried ray. Other efforts have shown faster rendering even real-time rendering
experiences can be reached by catching pre-computed values [10, 54, 7]. Espe-
cially, SNeRG [10] presents a deferred NeRF architecture so that it can store
as many as NeRF values into a radiance grid data structure. PlenOctree [54]
explores SH values to encode view-dependent effects and study octree represen-
tations for real-time view synthesis.

Preserving Details. A few works observe that NeRF, in its vanilla formulation,
is limited in recovering fine details. The previous best practice is from Mip-NeRF



Title Suppressed Due to Excessive Length 5

[2]. It rendered anti-aliased conical frustums instead of rays to provide a partial
remedy to the aliasing and blurring issues. Other works such as NerfMM [51]
and BARF [23] learn to optimize camera poses to reduce the adverse impacts of
imperfect camera poses. NeRF-ID [1] focuses on improving the hierarchical vol-
ume sampling technique of NeRF. However, none of these methods can preserve
fine details for real scenes.

Relation to Plenoxels [53], DirectVoxGO [43], and Instant-NGP [31].
These are some great concurrent works that study direct voxel grid optimization
for super-fast NeRF training [53, 43]. Still, there are some difference betweens
HrSRG and these works. Higher voxel resolution would better describe local
details of scenes, but training a high-resolution voxel grid is memory intensive.
For example, optimizing a 10243 voxel grid often leads to OMM errors on mod-
ern GPUs. Besides, high-resolution voxel grid requires large hardware storage
spaces. [43, 53] provide a solution by utilizing the “Trilinear Interpolation (Tri.
Interp.)” operation for low-resolution voxel grids. However, incorporating “Tri.
Interp.” would degrade the rendering speed (about 3x). Our HrSRG presents to
adaptively consider voxel resolutions for different 3D spaces of a scene. It can
describe a scene at high resolution without excessive memory footprint. Instant-
NGP [31] introduces a great hash encoding approach that can train NeRF in
5 minutes while preserving the texture details. In contrast, HrSRG directly op-
timize the color values (or 3D texture atlas) inspired by the 2D texture atlas
optimization success [11].

3 Method

Beyond NeRF, our primary goal is to design a representation or approach that
(1) can recover scenes’ texture characteristics for scenes, (2) enables real-time
rendering of 1080p images on conventional devices, (3) accelerates the training
procedure, and (4) reduces the hardware storage space requirement. This section
presents our solution HrSRG and explains how it can open a potent avenue
towards these goals.

3.1 Review of NeRF

NeRF [30] takes a continuous volumetric function parameterized by a deep MLP
to represent a scene. The MLP inputs a single 5D coordinates (x, y, z, θ, ϕ), i.e.,
a 3D location x = (x, y, z) and 2D viewing direction d = (θ, ϕ), and outputs a
radiance c = (r, g, b) and volume density σ at this location. The formulation is
expressed as:

c, σ = MLPΘ(x,d), (1)

where Θ denotes the MLP’s weights that to be learned.
To render a 2D pixel, NeRF casts a ray r from its corresponding camera center

o along the direction d passing through the pixel’s center. Then, it samples N



6 Authors Suppressed Due to Excessive Length

points along the ray, and approximate a volume rendering integral [27] to obtain
the pixel’s color Ĉ(r):

Ĉ(r) =

N∑
i=1

wici, (2)

wi = Ti(1− exp(−σiδi)), (3)

where Ti = exp(−
∑i−1

j=1 σjδj) is the accumulated transmittance along r, and δi
denotes the distance of two consecutive samples.

NeRF simply minimizes the mean squared errors (MSE) between the ren-
dered and true pixel colors (Ĉ(r) and C(r)) to learn its MLP:

Lr =
∑
r∈R

∥Ĉ(r)− C(r)∥, (4)

where R is the sampled rays in each batch. In practice, NeRF simultaneously
optimizes a “coarse” network and a “fine” network that have the same architec-
tures. The two networks (or MLPs) allow NeRF to perform hierarchical volume
sampling to secure better rendering quality.

3.2 A Deferred NeRF Variant (Def-NeRF†)

As mentioned in Sec. 1, real-time rendering is possible by caching as many as pre-
computed values. The volume density can be easily stored, but it is non-trivial to
catch the emitted colors because NeRF relies on (θ, ϕ) and the geometry feature
mapping from (x, y, z) to encode view-dependent effects. A subsequent work
SNeRG [10] provides a remedy by introducing a deferred NeRF architecture.
It contains a deep MLP that maps from a 3D location to the diffuse color c,
4-dimension feature vector v, volume density σ at this location.

c, σ, v = MLPΘ(x,d). (5)

Then, for a ray r, it passes the accumulated feature vector V (r) and viewing
direction d to a tiny MLP with parameters Φ to produce a specular color (or
view-dependent residual). The final color Ĉ(r) is obtained by an addition of
MLPΦ(V (r),d) and the accumulated diffuse color Ĉd(r):

Ĉ(r) = MLPΦ(V (r),d) + Ĉd(r),

Ĉd(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci.
(6)

After training, this formulation enables baking diffuse colors, 4-dimension feature
vectors, and opacities within a 3D voxel grid data structure.

Def-NeRF† in this paper has slight differences in two aspects compared to
the vanilla Deferred NeRF. First, we initialize the opacity prediction MLP from
a non-converged NeRF. We incorporate a background regularization term [26]

LBG = −
∑

(log(TBG) + log(1− TBG)). (7)



Title Suppressed Due to Excessive Length 7

Pruned and Optimized AdaSRGHierarchical Voxel Spaces Before Merging

Fig. 3. Constructing HrSRG. We bake a non-converged Deferred NeRF Variant
(Sec. 3.2) into a Adaptive Sparse Radiance Grid structure. We refer to Sec. 3.3 for how
we produce the HrSRG representation by exploiting the hierarchical voxel spaces. A
voxel in HrSRG contains volume density σ, diffuse color c, and a 3-dimension feature
v. Optimizing HrSRG means we treat these values as parameters to be learned (See
Sec. 3.4). Zoom in for a better view.

It ensures NeRF reconstructs the object of interest. We regard the pre-trained
MLP as a backbone, and fixed its parameters while learning the diffuse color
c, feature vector v, and volume density σ. Second, we find learn a 3-dimension
feature vector is sufficient to preserve most of the high-frequency lighting details.

Our experiments show training Def-NeRF† several epochs is sufficient as the
following HrSRG optimization stage is robust to an imperfect initialization. It is
worth mentioning that we surprisingly find, for some cases, the specular feature
v and the emitted color c can be learned from scratch in Sec. 3.4. The more
important thing is to give a good geometry (or volume density σ) initialization.

3.3 Adaptive Sparse Radiance Grid (HrSRG)

We first bake Def-NeRF† into a N3 voxle grid to represent a scene. A voxel
contains opacity (or volume density), diffuse color, and a 3-dimensional specular
feature. For a specific voxel, we randomly cast K rays from K origins passing
through the voxel, and compute their accumulated transmittance values (See Ti

in Eqn. 2). With this operation, we can assign each voxel a maximum transmit-
tance value. Then, we define four transmittance intervals (or 3D spaces) A, B,
C, and D as shown in Fig. 3 (Middle) based on the transmittance thresholds
τ1, τ2, and τ3, respectively. We find from Fig. 3 that space A contains most of
the high-frequency texture details while other spaces contribute slightly to the
base color in the rendering process. This observation motives us to utilize higher
voxel resolution for space A, and lower voxel resolution for spaces B, C, and D.
For the purpose, we introduce the merging and splitting operations leveraging
the octree data structure [28, 54, 29].

Merging. By converting the N3 voxle grid to a tree structure with maximum
depth L, we have a transmittance value for each node and leaf. For each node



8 Authors Suppressed Due to Excessive Length

that is with depth Li and has eight leaves, if the maximum transmittance value
among itself and its leaves is below τ , we delete the eight leaves. We recursively
consider depth L1, L2, and L3 with thresholds τ3, τ2, and τ1, respectively. As
a results, we capture the approximate voxel resolutions (N/2)3, (N/4)3, (N/8)3

for spaces B, C, and D, respectively.

Splitting. After the merging operation, if a leaf is with depth L, we take it as a
parent of eight new leaves. A newly created leaf has the same voxel values (i.e.,
(c, σ, v)) as its parent. With this splitting operation, the space A would have a
voxel resolution of (2N)3.

In this paper, the hyperparameters are set to 512, 100, 0.3, 0.01, 0.001 for
N , K, τ1, τ2, and τ3, respectively. The HrSRG construction process takes about
30 minutes on average. One may capture more 3D space levels and tune τ for
better performance in term of both memory footprint and rendering quality.

3.4 Optimizing HrSRG

We now have the HrSRG representation and a tiny MLP with weights Φ. We
can treat {(c, σ, v)} as parameters and directly optimize them like Φ since the
volume rendering process is differentiable with respect to these values. Note that,
SNeRG [10] only fine-tunes its MLPΦ after obtaining its sparse radiance grid.

Perceptual Loss. NeRF often yields blurry renderings for real scenes. A pos-
sible reason is that there are misalignment errors in estimated camera poses as
discussed in [11]. Per-pixel losses such as ℓp-norm overlook this issue. Besides, ℓp-
norm fails to encourage high-frequency crispness, thus in many cases would result
in perceptually unsatisfying solutions with overly smooth textures, as analyzed in
[20, 14, 13, 19]. [11] has demonstrated a PatchGAN loss [13] can well tackle these
two problems. Here, we simply introduce a perceptual loss [14]. Experiments
show it tolerates the misalignment issue and can largely improve the perceptual
quality of rendered images. It is worth mentioning that it is non-trivial for con-
ventional NeRFs to do so since training them is exquisitely memory-intensive.
Fortunately, optimizing HrSRG is memory-friendly as it does not involve a large
MLP. It allows us simultaneously learn more than 200K rays (vs. 6K for NeRF)
in one single iteration. The perceptual loss encourages the rendered image Î to
be perceptually similar to its ground-truth image I by matching their semantic
features:

Lp =
λp

Hj ∗Wj

∑
h,w

∥ϕj(Î)− ϕj(I)∥, (8)

where ϕj is the output of the jth convolution block of a pre-trained VGG-19
network [40], Hj and Wj are the spatial dimensions of the feature maps. In our
experiments, we render a 384 × 384 image patch per-iteration during training.
We consider the first three convolution blocks and set the hyperparameter λp



Title Suppressed Due to Excessive Length 9

Table 1. Comparisons on Real Scenes. HrSRG achieves competitive or best per-
formance. Especially on the Real 360◦ Objects dataset, it outperforms the compared
methods by a large margin over the image quality metric LPIPS. It is worth mention-
ing that though HrSRG captures more details and produces perceptually better visual
quality as shown in Fig. 1 and Fig. 4, it cannot yield a significant improvement on
PSNR. As stated in [56, 14], PSNR might fail to account for many nuances of human
perception. We find that LPIPS might measure the perceptual quality and texture
details better. SNeRG [10] has the voxel resolution of 10003 (the default hyperparam-
eter).

Tanks and Temples [17] Real 360◦ Objects

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [30] 27.94 0.904 0.168 26.42 0.911 0.103
NSVF [25] 28.40 0.901 0.155 28.48 0.908 0.107
SNeRG [10] 25.39 0.904 0.186 28.37 0.910 0.106

PlenOctree [54] 27.99 0.917 0.131 28.44 0.925 0.077
Mip-NeRF [2] 27.68 0.918 0.113 29.44 0.920 0.072

DirectVoxGo [43] 28.41 0.911 0.155 28.75 0.917 0.079
Plenoxels [53] 27.41 0.906 0.162 28.06 0.905 0.109

HrSRG 27.33 0.919 0.099 29.05 0.927 0.059

to 0.01. It takes about 80 seconds to optimize HrSRG for 100 iterations (or to
optimize 2.0× 107 rays) on a single V100 GPU.

3.5 Further Pruning and Real-Time Rendering

On the Synthetic-NeRF dataset [30], our uncompressed HrSRG require an aver-
age storage space of 210M (See Table 2). Note that, it has an approximate voxel
resolution of 1,024 at 3D space A in Fig. 3. To minimize the file size, SNeRG [10]
applies the PNG compression technique by flattening and reshaping the features
and emitted colors into the image planes. The voxel values here have been pre-
quantified to 8 bits. There is a uncompressing step that we need to reshape the
PNG image to its original data structure when performing rendering. It is OK
for computers but is not friendly to mobile devices as the uncompressing step
might require many computation resources. We utilize the median cut algorithm
to further prune our tree structure [54, 3].

Finally, we obtain a compacted HrSRG of about 40M, an acceptable size for
transmission over the internet. The compacted HrSRG can be directly loaded
without any uncompressing computations. HrSRG enables rendering 1080p im-
ages in unprecedented quality at 61 FPS (vs. 67 FPS of PlenOctree) on a lap-
top GPU. Our main bottleneck is the tiny MLP which targets encoding view-
dependent effects. Removing it can bring an improved real-time rendering expe-
rience (up to ∼75 FPS) with a slight quality loss.

4 Experiments

Implementation Details. As discussed before, our approach contains a Def-
NeRF† pre-training stage and a HrSRG optimization stage. For Def-NeRF†, we



10 Authors Suppressed Due to Excessive Length

Table 2. Comparisons with Baselines. Opt. is the training time. Our approach
can bring the real-time rendering practice while preserving fine details of scenes. Our
unpruned HrSRG already requires small hardware storage space. Applying the median
cut (Med. Cut) algorithm [54, 3] to HrSRG results in approximately 6x compression
rates, i.e.. The PNG compression technique can reduce the file size by more than
10 times, but suffers from a decompressing operation [54, 10]. Our rendering speed is
slightly slower than PlenOctree because HrSRG contains a tiny specular MLP.

Method PSNR ↑ SSIM ↑ LPIPS ↓ MB ↓ FPS ↑ Opt. ↓

Synthetic-NeRF@8002 [30]

NeRF [30] 31.69 0.953 0.068 - 0.03 > 1 day
SNeRG (PNG) [10] 30.38 0.950 0.071 86.7 87.1 > 1 day

PlenOctree-512 (PNG) [54] 31.67 0.957 0.053 340.2 129.8 > 1 day
HrSRG (w/o Med. Cut) 31.06 0.954 0.051 210.4 110.2 6h

HrSRG 31.04 0.954 0.051 35.8 113.4 6h

Real 360◦ Objects@1080p

NeRF [30] 26.42 0.911 0.103 - 0.01 > 1 day
SNeRG (PNG) [10] 28.14 0.902 0.107 139.7 52.8 > 1 day

PlenOctree-1024 (PNG) [54] 28.39 0.923 0.078 1112.0 67.1 > 1 day
HrSRG (w/o Med. Cut) 29.07 0.927 0.059 250.7 60.3 5h

HrSRG 29.05 0.927 0.059 41.2 61.9 5h

pre-cache all the training rays. Then, we train the vanilla NeRF for 5 epochs
with a batch size of 8,192. As stated in Sec. 3.2, we take the pre-trained MLP of
NeRF as a backbone, and fixed its parameters to learn the tiny specular MLP
for another 5 epochs. The learning rate begins at 5×10−3 and linearly decays to
5× 10−5 over the training epochs. For real scenes, we resize the 1080p images to
960× 540 and train Def-NeRF† with mixed precision. When optimizing HrSRG,
we randomly render a 384× 384 image patch per iteration. We train HrSRG in
45 (about 1.4 minutes a epoch) epochs and decay the learning rate from 5×10−2

to 5 × 10−5 over the course of optimization. We use the Adam optimizer [16]
for both the two training stages with default hyperparameters. It takes about
5.5 hours (vs. 1-2 days for NeRF) on average to fitting a Synthetic-NeRF [30]
scene on a single 16GB V100 GPU. For octree things and the web renderer, we
borrow the PlenOctree codes [54]. We implement the view-dependence MLPΦ in
the WebGL shader.

Datasets.We conduct experiments on three datasets, including Synthetic-NeRF
[30], a subset of Tanks and Temples [17], and our Real 360◦ Objects dataset.
Synthetic-NeRF contains eight objects with rendered 800× 800 images, and the
ground truth camera poses. There are 300 images per object, 100 for training
and 200 for testing. We use the same Tanks and Temples subset as NSVF [25].
It provides five real scenes with 1080p images, their manually labeled masks,
and known camera poses. To better study fine details of real scenes, we capture



Title Suppressed Due to Excessive Length 11

NeRF Mip-NeRF NSVF SNeRG PlenOctree ReGrid GTAdaSRG

Fig. 4. Qualitative Comparisons. HrSRG can recover more fine details of scenes
while improve the perceptual quality of the rendered images. See Table 1 and Table 2
for quantitative comparisons. Zoom in for a better view.

eight object-centric videos via a mobile phone to construct the Real 360◦ Objects
dataset. Each object is with rich details in some regions. We select 300 1080p
images per object, 100 for training and 200 for testing. We simply estimate the
camera poses via COLMAP [37, 38] without any post-processing. As discussed
in [25] and [11], the camera pose errors are often unavoidable. Real 360◦ Objects
may also help to investigate weather our approach is tolerant to the misalign-
ment issue caused by camera pose errors or not.

Evaluation. We measure the render-time performance, training speed, storage
cost, and rendering quality in our experiments. The rendering speed is evaluated
via a Lenovo ThinkPad P1 Gen 2 notebook with a 4GB NVIDIA Quadro T1000
mobile graphics card. We compute PSNR, SSIM [50], and LPIPS [56] as pre-
viously. The scores of the compared approaches are source (or computed) from
their papers if provided. We make qualitative comparisons to showcase the tex-
ture details. We argue the LPIPS metric might measure the perceptual quality
and fine details better.

4.1 Benchmark Comparisons

Compared Methods. We take SNeRG [10] and PlenOctree [54] as the base-
line methods. Specifically, we adopt the “PlenOctree after fine-tuning” setting,
which has been labeled as the complete model by the PlenOctree paper. On
the Real 360◦ Objects dataset, we train PlenOctree at the voxel resolution of
10243 on a 32GB V100 GPU. Learning PlenOctree-1024 on a GPU card with
less than 26GB capacity would lead to OMM errors. For SNeRG, we examine
the further fine-tuned version. We also make comparisons with other represented



12 Authors Suppressed Due to Excessive Length

Table 3. Ablation Studies on the “Hat” case of Real 360◦ Objects. Def-NeRF†-Plus
is the converged Def-NeRF†. HrSRG-minus is the diffuse version of HrSRG. HrSRG-N
means we capture the HrSRG representation from a N3 voxel grid (See Sec. 3.3).

Method PSNR ↑ SSIM ↑ LPIPS ↓ MB ↓ FPS ↑

Def-NeRF†-Plus 25.02 0.838 0.128 - 0.01
HrSRG (w/o Lp) 26.43 0.894 0.061 48.0 59.7

HrSRG 26.64 0.895 0.056 48.0 59.7
HrSRG-minus 25.65 0.876 0.069 27.4 68.5

HrSRG-256 24.72 0.847 0.107 8.7 132.4
HrSRG-512 26.64 0.895 0.056 48.0 59.7

NeRF variants such as NSVF [25], Mip-NeRF [2], DirectVoxGo [43], and [53]. For
all the compared methods, we use their released codes (if not specified) and take
care to follow their best configurations. On the synthetic and Tank and Temples
datasets, the scores for NSVF are computed using the pre-trained models shared
by KiloNeRF [36].

Performance. The scores are reported in Table 1 and Table 2. HrSRG achieves
promising performance with respect to rendering quality and rendering speed,
moreover requires less storage space than real-time NeRF baselines. Especially on
the Real 360◦ Objects dataset, HrSRG outperforms the compared methods by a
large margin over the image quality metric LPIPS. Some qualitative comparisons
are presented in Fig. 1 and Fig. 4. HrSRG can produce high-quality rendering
with rich fine details, while images rendered by other methods contain blurring
artifacts. Furthermore, learning to represent a single scene takes around 5.5
hours and 4.5 hours on Synthetic-NeRF [30] and Real 360◦ Objects, respectively.
Other methods take about 1–3 days to obtain a converged model. It is worth
mentioning that our experiments show that fine-tuning a PlenOctree from a
converged NeRF-SH cannot recover more fine details compared to NeRF-SH. We
optimize HrSRG from a non-converged Def-NeRF†. Nevertheless, as shown in the
supplementary, we find that fine-tuning PlenOctree from a non-converged NeRF-
SH often produce unreasonable texture artifacts. Overall, HrSRG surpasses the
compared methods, especially on the texture characteristic preservation ability.

4.2 Ablation Studies

In Table 3 (Top) and Figure 5, we discuss the core techniques of the HrSRG
approach. We take Def-NeRF†-Plus as the baseline. “Plus” means we train Def-
NeRF† until it has converged. Ablation “HrSRG (w/o Lp)” shows (1) removing
Lp has significant effect on the perceptual quality of rendered images; and (2)
directly optimizing color values (vs. Def-NeRF†-Plus) can impressively recover
the fine details. We also study HrSRG-minus which removes the specular effects.
We find it can achieve competitive rendering performance while further boost the



Title Suppressed Due to Excessive Length 13

GT

GT AdaSRG AdaSRG-minusAdaSRG (w/o ℒ!)GT Def-NeRF"-Plus

Fig. 5. A qualitative study of the impact of the key components. HrSRG-minus can
produce reasonable renderings as some reflected content can be hided inside the objects’
surfaces. Zoom in to see the fine details.

!! = 1.0GT !! = 0.1

!! = 0.01 !! = 0.001 !! = 0

Fig. 6. Perceptual Loss. A very large λp yields incorrect colors (See nose and cravat
of the “Bear”) as the model would focus more on optimizing the perceptual quality.
Zoom in to see the fine details.

running performance. As analyzed in [10], a diffuse model may reasonably fake
view-dependent effects by hiding mirrored versions of reflected content inside the
objects’ surfaces. Table 3 (Bottom) studies the HrSRG construction approach
presented in Sec. 3.3. HrSRG-512 is the default HrSRG version in this paper.

Fig. 6 explores the impact on rendering quality of different λp for the per-
ceptual loss (See Eqn. 8). Our main target is to minimize Eqn. 4, thus a very
large λp yields inaccurate colors. A small λp could also help to recover more fine
details (vs. HrSRG (w/o λp)), but has a minimal effect in improving the clarity
of rendered images. We find that the perceptual loss does not has a significant
affect on the studied rendering quality metrics.



14 Authors Suppressed Due to Excessive Length

5 Discussion & Limitation

SNeRG [10] prunes invalid voxels through a sparsity regularization term Ls

and an opacity pruning (OP) policy. The OP approach culls macroblocks that
the voxel visibilities (or maximum transmittance) are low. PlenOctree [54] also
applies OP to reduce the memory footprint. However, our experiments show that
enlarging the loss weight of Ls would easily filters some valid voxels out. As a
result, a rendered image would show different degrees of transparency in some
regions. Besides, OP with a very low threshold τ could also delete many voxels by
mistakes. Examples are shown in the supplementary. Luckily, our 6-DoF viewing
applications show HrSRG is robust to these issues.

One of the limitations of HrSRG is the slow training speed. It takes about
5 hours to obtain a complete HrSRG model of a real scene on a V100 GPU.
Though requiring several multiple orders of magnitude less time than conven-
tional NeRFs, it is still not friendly for practical requirements. Taking E-commerce
as an example, HrSRG can bring 6-DOF immersive viewing experiences of ob-
jects, but there are billions of goods to be reconstructed. Several concurrent
works [53, 43, 31] study the voxel grid representations for super-fast training. We
will investigate their techniques such as coarse-to-fine optimization to quickly
produce a good geometry initialization for HrSRG. Another limitation is that
HrSRG cannot well reconstruct the strong specular materials like other NeRFs.
A recent formulation Ref-NeRF [48] may bring some inspirations.

6 Conclusion

We notice that previous NeRF works fail to preserve texture characteristics
for real scenes. We dig into the radiance grid representation [10], a real-time
paradigm of NeRF, and propose a set of improvements, which together produce
surprising rendering quality and speed. In particular, we present a hierarchical
voxel grid building approach that capture an Adaptive Sparse Radiance Grid
(HrSRG) to represent a scene. It has higher voxel resolution for informative
spaces and fewer voxels for other spaces. Furthermore, taking inspiration from
the 2D texture atlas success [11], we show that directly optimizing the color
and specular feature of HrSRG could surprisingly reconstruct the fine details of
scenes. Moreover, benefiting from our formulation, we introduce a perceptual loss
to tackle the misalignment issues caused by camera pose errors. It can bring more
details to rendered images while largely improving the perceptual quality. HrSRG
enables rendering 1080p images at about 62 FPS in unprecedented quality on
a notebook. A pruned HrSRG requires about 41M storage space to represent a
scene.

References

1. Arandjelović, R., Zisserman, A.: Nerf in detail: Learning to sample for view syn-
thesis. arXiv preprint arXiv:2106.05264 (2021)



Title Suppressed Due to Excessive Length 15

2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: ICCV (2021)

3. Bentley, J.L.: K-d trees for semidynamic point sets. In: Proceedings of the sixth
annual symposium on Computational geometry. pp. 187–197 (1990)

4. Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., Su, H.: Mvsnerf: Fast
generalizable radiance field reconstruction from multi-view stereo. In: ICCV (2021)

5. Davis, A., Levoy, M., Durand, F.: Unstructured light fields. In: Computer Graphics
Forum. vol. 31, pp. 305–314. Wiley Online Library (2012)

6. Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields
for monocular 4d facial avatar reconstruction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8649–8658 (2021)

7. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. arXiv preprint arXiv:2103.10380 (2021)

8. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Pro-
ceedings of the 23rd annual conference on Computer graphics and interactive tech-
niques. pp. 43–54 (1996)

9. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep
blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(TOG) 37(6), 1–15 (2018)

10. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking
neural radiance fields for real-time view synthesis. In: ICCV (2021)

11. Huang, J., Thies, J., Dai, A., Kundu, A., Jiang, C., Guibas, L.J., Niessner, M.,
Funkhouser, T.: Adversarial texture optimization from rgb-d scans. In: CVPR. pp.
1559–1568 (2020)

12. Ichnowski, J., Avigal, Y., Kerr, J., Goldberg, K.: Dex-nerf: Using a neural radiance
field to grasp transparent objects. arXiv preprint arXiv:2110.14217 (2021)

13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: CVPR. pp. 1125–1134 (2017)

14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV. pp. 694–711. Springer (2016)

15. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. arXiv preprint
arXiv:1708.05375 (2017)

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1–13
(2017)

18. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. International
journal of computer vision 38(3), 199–218 (2000)

19. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond
pixels using a learned similarity metric. In: ICML. pp. 1558–1566. PMLR (2016)

20. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: CVPR. pp. 4681–4690 (2017)

21. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. pp. 31–42 (1996)

22. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time
view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 6498–6508 (2021)



16 Authors Suppressed Due to Excessive Length

23. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: Bundle-adjusting neural radi-
ance fields. In: IEEE International Conference on Computer Vision (ICCV) (2021)

24. Lindell, D.B., Martel, J.N., Wetzstein, G.: Autoint: Automatic integration for fast
neural volume rendering. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 14556–14565 (2021)

25. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
NeurIPS (2020)

26. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751 (2019)

27. Max, N.: Optical models for direct volume rendering. IEEE TVCG 1(2), 99–108
(1995)

28. Meagher, D.: Geometric modeling using octree encoding. Computer graphics and
image processing 19(2), 129–147 (1982)

29. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4460–
4470 (2019)

30. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV.
pp. 405–421. Springer (2020)

31. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)

32. Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J.H., Chaitanya, C.R.A.,
Kaplanyan, A., Steinberger, M.: Donerf: Towards real-time rendering of compact
neural radiance fields using depth oracle networks. arXiv preprint arXiv:2103.03231
(2021)

33. Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for
dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2856–2865 (2021)

34. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Deformable neural radiance fields. arXiv preprint arXiv:2011.12948
(2020)

35. Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: Derf: Decom-
posed radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14153–14161 (2021)

36. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. arXiv preprint arXiv:2103.13744 (2021)

37. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

38. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision
(ECCV) (2016)

39. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In-
ternational Journal of Computer Vision 35(2), 151–173 (1999)

40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

41. Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: Metasdf: Meta-
learning signed distance functions. arXiv preprint arXiv:2006.09662 (2020)



Title Suppressed Due to Excessive Length 17

42. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.:
Deepvoxels: Learning persistent 3d feature embeddings. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2437–
2446 (2019)

43. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. arXiv preprint arXiv:2111.11215 (2021)

44. Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P.P., Barron, J.T.,
Ng, R.: Learned initializations for optimizing coordinate-based neural represen-
tations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 2846–2855 (2021)

45. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: Image synthesis
using neural textures. ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019)

46. Trevithick, A., Yang, B.: Grf: Learning a general radiance field for 3d scene repre-
sentation and rendering. In: arXiv:2010.04595 (2020)

47. Tulsiani, S., Zhou, T., Efros, A.A., Malik, J.: Multi-view supervision for single-
view reconstruction via differentiable ray consistency. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 2626–2634 (2017)

48. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.:
Ref-nerf: Structured view-dependent appearance for neural radiance fields. arXiv
preprint arXiv:2112.03907 (2021)

49. Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-
Brualla, R., Snavely, N., Funkhouser, T.: Ibrnet: Learning multi-view image-based
rendering. In: CVPR. pp. 4690–4699 (2021)

50. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004)

51. Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF−−: Neural radiance
fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021)

52. Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., Zhou, J.: Nerfingmvs: Guided optimiza-
tion of neural radiance fields for indoor multi-view stereo. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5610–5619 (2021)

53. Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. arXiv preprint arXiv:2112.05131
(2021)

54. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time
rendering of neural radiance fields. In: ICCV (2021)

55. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from
one or few images (2020)

56. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)


