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                     Mahdi Ghazal, Ankush Kumar, Nikhil Garg, Sébastien Pecqueur and Fabien Alibart  

 

Abstract— Neuromorphic computing is an exciting and rapidly growing 

field that aims to create computing systems that can replicate the complex 

and dynamic behavior of the human brain. Organic electrochemical 

transistors (OECTs) have emerged as a promising tool for developing such 

systems due to their unique bioelectronic properties. In this paper, we 

present a novel approach for signal classification using an OECT array, which 

exhibits multifunctional bioelectronic functionality similar to neurons and 

synapses linked through a global medium. Our approach takes advantage of 

the intrinsic device variabilities of OECTs to create a reservoir network with 

variable neuron-time constants and synaptic strengths. We demonstrate the 

effectiveness of our approach by classifying surface-electromyogram (sEMG) 

signals into three hand gesture categories. The OECT array performs efficient 

signal acquisition by feeding signals through multiple gates and measuring 

the response to a group of OECTs with a global liquid medium. We compare 

the performance of our approach with and without projecting the input on 

OECTs and observe a significant increase in classification accuracy from 40% 

to 68%. We also examined how the classification performance is affected by 

different selection strategies and numbers of OECTs used. Finally, we 

developed a spiking neural network-based simulation that mimics the OECTs 

array and found that OECT-based classification is comparable to the spiking 

neural network-based approach. Our work paves the way for the next 

generation of low-power, real-time, and intelligent biomedical sensing 

systems. 

 

 

 
Index Terms— Biosensors, neuromorphic computing, organic 

electrochemical transistor, spiking neural networks 

  

I. 1 INTRODUCTION 

SIGNAL classification is a contemporary challenge, 

particularly in the domains of human-computer interface, 
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medical science, and robotics, wherein the body signals are 

recorded and analyzed to infer the state of the body's activities  

[1]–[4]. Artificial Intelligence has made significant strides in 

efficient signal classification, with high accuracy rates, by 

leveraging sophisticated machine learning algorithms. 

However, despite these advancements, neural network-based 
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classification still has limitations regarding energy 

consumption and compatibility with edge computing devices. 

 

In contrast, the brain consumes several orders of lower energy 

due to its unique approach to spatiotemporal signal processing. 

In the brain, neurons effectively integrate parallel information 

from different spatial points (i.e., pre-neurons), in which spike 

timing is a major component. To address this challenge, there 

is a growing need for multifunctional bioelectronic devices that 

could gather signal acquisition, amplification and contribute to 

feature extraction and classification [5], [6]. Organic 

electrochemical transistors (OECTs) have shown promising 

results as potential state-of-the-art devices for biosensing and 

neuromorphic applications, offering a new direction for signal 

classification research [7]–[13]. 

To enable the next generation of IoT devices, sensors must not 

only record data but also perform some computing functions. 

Thanks to the unique property of mixed conduction (ionic and 

electronic), OECTs can offer synaptic plasticity at various 

scales based on ionic and electronic charge transport 

mechanisms [14], which can be used to amplify signals of a 

particular frequency and remove signals of irrelevant nature 

[15]. The OECTs exhibit neuromorphic functions based on their 

temporal dynamics [16]. These attributes can be important in 

establishing next-generation non-Von-Neumann architecture 

devices, wherein the memory and computational unit can co-

exist similar to synapses in the brain. Organic electrochemical 

transistors (OECTs) resemble neurons and synapses in their 

ability to transmit electrical signals and can be modulated by 

external factors. The electrochemical doping and de-doping 

process in OECTs is similar to the neurotransmitter release and 

uptake at the synaptic cleft, both involving controlled ion flow 

to modulate system behavior [16], [17].  

 

OECTs are specifically chosen due to their distinct iono-

electronic properties, which offer a unique temporal dimension 

that encompasses both ionic and electronic processes. The 

selection of OECTs as a key element is underpinned by the 

distinctive properties of the semiconductor channel, typically 

composed of PEDOT:PSS. PEDOT:PSS-based OECTs can 

achieve transconductance in the millisiemens range with 

response times within the microsecond range. The temporal 

dynamics of OECTs, coupled with the ability to modulate their 

behavior through electrochemical doping and de-doping 

processes, make them well-suited for applications requiring 

neuromorphic functionalities and biosensors where 

spatiotemporal signal processing plays a significant role in 

achieving high-performance sensing. Acknowledging nuanced 

considerations with PEDOT:PSS is crucial due to its direct 

impact on electrical properties, governed by the volume fraction 

of PEDOT influenced by the bulkiness of the PSS component. 

This interplay significantly guide the OECT channel material 

design based on the packing of the crystalline polymer 

morphology and the ionic mobility within the polymer film. 

This property emphasizing their adaptability for material 

engineering providing a platform for molecular engineering. 

Recent advances in material engineering have addressed these 

challenges by techniques such as side-chain attachment and 

backbone engineering to fine-tune the properties of the polymer 

material. The adaptability in material design is a key advantage, 

allowing for customization based on the requirements of 

different biosensing applications. 

 

 

In addition, the commonly employed strategies for fabricating 

Poly(3,4-ethylenedioxythiophene) doped with poly(styrene 

sulfonate) (PEDOT:PSS) OECTs are via wet coating processes 

that maintain severe top-down limitations for downscaling and 

difficulty in modulating the device characteristics leading into 

variability in performances of different OECT devices 

implemented in one array. We propose to take advantage of this 

intrinsic variability of OECT property and apply it to the bio-

signal classification approach, in which variability of neurons 

and synapse characteristics helps in the effective transformation 

of the signal by projecting input signals onto a higher 

dimensional space. Reservoirs represent a useful tool to 

improve signal classification based on this spatiotemporal 

projection with a simple read-out layer [18], [19]. In this 

manuscript, by capitalizing on the intrinsic behavior of OECTs, 

we determine the highly variable performances (i.e time scale 

behavior and transconductance) of OECTs in an array system 

and turn it into an advantage to perform sensing and 

classification of electromyogram (EMG) biological signals. We 

utilized a data set of Surface electromyogram (s-EMG) spiking 

signals obtained for three different hand gesture classes [20]. 

Using an INTAN setup, a multi-OECTs network is used to 

sense the projected input signals from the source-drain 

characteristics of each individual device. The common 

electrolyte of the OECTs array is used as a shared medium and 

enables the coupling of the different input signals [21].    
 

We compare the response of different OECTs for signals fed at 

different gates and use the integrated signal as feature vectors 

for classifying three different hand gestures. A specific number 

of trials are used for training the classifier, and the task-

classification accuracy is evaluated on the test data. Multiple 

groups of OECTs are compared for classification accuracy, and 

maximum accuracy is identified for OECT arrays.  This 

network achieved 66% accuracy with 13 OECTs, compared to 

39% accuracy from the raw signals, highlighting the important 

role of feature extraction by OECTs as artificial neurons in 

effective signal classification. 

 

OECTs essentially function like neurons, featuring a specific 

time constant of integration and variable synaptic strengths, 

owing to variable distances. The OECT network aids in 

projecting signals into higher-dimensional spaces, enhancing 

the separability of features. Furthermore, OECT network 

filtering contributes to the refinement of temporal signal 

characteristics.      

However, OECTs exhibit device-to-device variability, 

prompting us to investigate whether such variability, even when 

induced with randomness in weight and time constant, can be 

accommodated in bio-sensing. Brain-inspired neural networks, 

or Spiking neural networks, does similar computation with the 

help of trainable weights and LIF neurons. The LIF neurons do 

a low pass filtering on the signal before applying the non-

linearity (spikes). To understand from where does the better 

performances of the OECTs projection comes from, we design 

a spiking neural network simulation with a variable time 
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constant and weights; a spiking neural network-based 

simulation is developed, which mimics the OECTs array and 

provides further insights.  

 

II. EXPERIMENTAL METHODS 

A. OECT microfabrication 

The OECT arrays consist of glass slides (5 × 5 cm sq.) which 

are patterned with gold metallic lines forming the sources and 

drains electrodes. PEDOT:PSS (CleviosTM PH1000) were 

coated, forming the OECT channel between the source and the 

drain. All chemicals were purchased from Sigma Aldrich. The 

OECTs were insulated by a parylene-C layer. The resulting 

W/L for OECTs was 30μm/12μm. 

B. Electrochemical impedance spectroscopy (EIS) 

The EIS measurements were performed with a Solartron 

Analytical (Ametek) impedance analyser from 1 MHz to Hz in 

PBS as an aqueous solution. All impedance measurements were 

done in the same electrical conditions were the source and the 

drain as working electrode and grounded Ag/AgCl wire as a 

reference electrode dipped into the electrolyte.  

An open-source EIS Spectrum Analyzer software was used to 

perform circuit impedance modeling. The resistance and 

capacitance parameter fitting were manually adjusted by 

simultaneous comparison of the Bode’s modulus, Bode’s phase, 

and Nyquist plots  

 

C. DC electrical characterization 

Agilent B1500A semiconductor device analyzer was used to 

bias the transistor and record the output drain current. The 

OECTs were characterized using a PBS solution as the 

electrolyte. An Ag/AgCl wire was used as the gate electrode 

and immersed in the electrolyte. 

 

D. INTAN parallel readout 

The "RHS2000 INTAN 128ch" Stimulation/Recording 

controller is a system that allows users to record potential 

signals up to 128. This device contains 4 ports providing 

connection points for the stim/record headstages; each 

headstage contains 32 channel amplifier chips. Each 

stim/record headstage contains one or two RHS2116 amplifier 

chips. Each channel includes a low-noise amplifier with a 

programmable bandwidth. While we use OECTs with drain 

output current, some electronic setup was implemented to make 

this INTAN device compatible with the OECT array. This 

electronic setup was composed just of passive devices in order 

to achieve compatibility between OECT and INTAN (Figure 1d 

and Figure 2a). The aim is to implement a voltage divider circuit 

setup for each OECT in the array to get voltage outputs so it can 

be compatible with measurements using this INTAN device. 

The REF pin of the headstage is shorted and connected to the 

ground of its amplifier by connecting the REF pin to the circuit's 

ground, the output voltage of each voltage divider setup at each 

electrode pin. All the recorded signals are applied with a 

bandpass filter from 10 Hz to 1000 Hz. 

E. Classification 

The classification is studied on the publicly available 

Roshambo dataset [20] collected through the Myo armband 

(eight locations) for three hand gestures (rock , paper and 

scissor) for ten participants across three sessions. The total 

experimental set of 150 data sets is divided into multiple 

combinations of training data set (100) and test data set (50). 

The continuous time series (eight signals coming from eight 

EMG sensors) are converted into discrete spike trains using a 

Fig.  1 (a) Schematic representation of utilization of OECT array for signal 

classification. Analog s-EMG signal from an armband is recorded during 

various hand gestures. The obtained analog signal is then converted into spike 

trains and is fed to the OECT array. The measured time series on the OECT 

array is used for the signal classification applications, such as specific hand 

gestures. (b) Photograph of a Multielectrode system with 24 electrodes 

consisting of four gates and remaining OECTs. (c) A single sensor consists of 

two Au electrodes acting as source and drain with PEDOT deposition 

between them acting as the Organic electrochemical transistor (Scale bar: 5 

µm). (d) A typical characteristic of two different OECTs (blue and green) with 

different behaviors to a square pulse of width 0.6 ms and 0.1 ms rise and fall 

time applied through the gate. Prior to the recording, the measured signal is 

passed through high pass and low pass filters using INTAN RHS2116 

headstage amplifier chips. (e) Bode plot curve showing the impedance 

modulus of multiple OECT (n=25) from the same chip. Inset: Equivalent 

electrical circuit is used to model the impedance spectroscopy recorded 

through the OECTs. (f) Distribution of capacitance values extracted from the 

impedance Bode plot curve in (e). (g) Transfer characteristic curves of the 

same OECTs represented in (e). Distribution of the maximum 

transconductance (mS) of the OECTs. 
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temporal contrast method [22]. Herein, the spike is generated if 

the difference between successive values exceeds a predefined 

threshold. The eight signals are converted into 16 signals based 

on positive and negative thresholds.  

 

The energy consumption of the spike encoder can be accounted 

for by static power dissipation and dynamic energy per spike. 

While the circuits for spike conversion are not discussed in the 

current study, an implementation has been recently reported in 

the literature.[23] The spike conversion circuit is essentially 

composed of a signal conditioning chain, and an event 

generator. The event generator mainly compares the output of 

signal processing chain to a fixed threshold and produces an 

output spike. Conventional CMOS is the ideal choice for this 

spike generator/comparator. However, the signal conditioning 

chain could potentially be replaced by OECTs by exploiting the 

RC filtering capabilities of these network. Nevertheless, in the 

present study, the spike conversion is performed in software. 

 

 

Due to experimental limitations of the source meter, we could 

only provide four parallel signals simultaneously to the gates. 

Hence, out of 16 signals, four signals were selected based on 

random forest algorithms with higher feature importance. These 

four signals are denoted as ‘raw signals’ for convenience. We 

use three methodologies for classification. (1) Classification 

using raw signals. (2) Classification using recorded signals on 

OECTS. (3) Classification based on spiking neural network 

simulations by feeding the raw signals. For accurate 

comparison, in all the cases, the ratio of training and testing data 

is maintained the same, and classification is performed with 

random forest algorithms with similar hyperparameters. In first 

cases, the classification using raw signals is performed by 

integrating the signals of complete duration and using 

integrated value as a feature vector. 

 

 In the second case, the classification with OECTs arrays is 

performed utilizing N-selected output signals from the OECTs. 

The integrated amplitude response for the time duration is 

considered as the feature vector. The selection of OECTs is 

done randomly or based on the individual best performance in 

classification.  

 

To mimic the effect of OECTs network on signal classification, 

Spiking Neural Network simulation is performed in which 

artificial neurons act as LIF filter similar to OECTs and, 

synapsis act as a global medium. The spiking neural network 

simulations are performed on Brian 2.0 by designing input 

layers with four neurons receiving the raw binary signal, 

connected to LIF hidden layer neurons. The spiking rate of the 

hidden neurons is used as the feature vectors. Further, a similar 

random forest algorithm is applied to train and classify the data. 

For a systematic study, the input-hidden neuron synaptic 

strengths are varied from uniform to random values. To study 

the effect of randomness in the connection strength, the 

synaptic network is constructed with weight W[i,j] from the 

input i to hidden layer j as W[i,j] = C1 Wo + C2 rand(), with C2 

coefficient deciding the random component and C1 + C2 = 1. 

Further, the neurons' integration time constant is also 

systematically varied from 2 ms to 20 ms for the random 

network case. Additionally, we examined the classification as a 

function of neuron time constant values based on the uniform 

distribution in the time constant values. The accuracy in each 

network case is determined for five different sets of training and 

testing data and are plotted in figure 4b and 4c. 
 

III. RESULTS AND DISCUSSIONS 

In Figure 1a, we present a concise overview of our data 

acquisition and signal classification methodology using the 

OECT array. Each spike corresponds to a square pulse with a 

width of 0.6 ms and rise and fall times of 0.1 ms. These signals 

are directed into common gates for subsequent measurement of 

OECT characteristics.  Figures 1b and 1c show the OECT 

arrays having Au source (S) and drain (D) electrodes spaced by 

12 µm, and PEDOT:PSS of 200 nm was deposited using the 

spin-coating technique. Spin-coating is carried out at room 

temperature and ambient atmosphere conditions, which could 

cause significant variations in the electronic mobility of the 

PEDOT:PSS channel of multiple OECTs within  the same array 

[15]. The variability in the mobility values of different OECTs 

implemented in one array chip will induce variability in two 

different important performance characteristics of an OECT: (i) 
Transconductance (gm), which gauges an OECT's ability to 

amplify an input signal from its channel using gate voltage. This 

parameter depends on factors such as electrode geometry and 

material properties, including mobility. (ii) Response time, 

indicating the speed of an OECT's signal response. The 

electronic transient response (τe) is directly linked to the 

OECT's mobility value, while the ionic transient response (τi) 

is influenced by the channel's capacitance [9], [14]. Inherent 

variabilities cause all OECTs to incorporate different time and 

voltage features in response to the pulsed gate signal. To assess 

this concept, Figure 1d presents the transient responses of two 

OECTs from the same array with varying mobility values, 

subjected to 500 mV and 1 ms pulses via a common Ag/AgCl 

gate wire immersed in the electrolyte. As depicted, due to 

inherent variability during fabrication, both devices exhibit 

distinct dynamic responses in terms of amplitude and timing. 

Beyond the intrinsic variability, another factor influencing 

OECT transient response is the gate's material and its proximity 

to the OECT. The ionic transient response (τi) in the electrolyte 

is governed by factors such as the solution resistance and the 

ionic double layer. It adheres to electrolyte relaxation kinetics 

dependent on ionic transport between the gate and the OECT 

[24], Consequently, it varies with the electrolyte's resistance, 

gate material (capacitance), and the distance between the OECT 

and the position of an emitting gate[14], [24]. 

 

Figure 1e displays the Bode's modulus plot showing impedance 

spectra measurements ranging from 1 Hz to 1 MHz in an 

electrolyte containing Phosphate-buffered saline (PBS) 

solution for a set of 25 OECTs from the same array. 

Electrochemical impedance spectroscopy (EIS) modeling was 

employed to extract key electrical parameters, including the 

capacitance of the OECT and the electrolyte resistance. The 

equivalent circuit, as depicted in the inset of Figure 1e, served 

as the foundation for this modeling effort.  

Within the impedance modulus, the quasi-plateau region 
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represents the solution resistance (Rs), while the initial portion 

of the impedance modulus at low frequencies is described by a 

resistor-capacitor circuit (R and C). This model adheres to the 

typical simplified representation employed to characterize the 

electrode-electrolyte impedance. 

 

Figure 1f presents a histogram depicting the distribution of 

extracted OECT capacitance values obtained from the 

impedance measurements. An additional critical parameter 

derived from this model, which can impact the transient 

response of an OECT, is the electrolyte resistance, maintaining 

a consistent value of approximately 10 kΩ (a common 

electrolyte).  In Figure 1g, the transfer curve for the same 

OECTs characterized in Figure 1e is presented. Examining the 

histogram displaying the distribution of maximum 

transconductance (gm) values in Figure 1h for these OECTs 

reveals an initial substantial variability in transconductance, 
with a standard deviation of approximately 25%. This stands in 

contrast to the relatively minor variability in capacitance, as 

shown in Figure 1f (standard deviation of approximately 4%). 

These observations suggest that the primary source of 

variability in transconductance lies in mobility rather than 

capacitance. Furthermore, this variability in mobility values is 

expected to manifest as variability in the response time across 

all OECTs within the same array.  

 

For reservoir computing applications, the spatio-temporal 

responses of OECTs arrays are analyzed systematically for 

time-dependent signals. Figure 2a demonstrates the recording 

of OECT arrays with multiple terminal inputs. Various signals 

can be applied at the four different gates and responses from 

different OECTs can be measured. Firstly, for comparing the 

response of different OECTs, the same periodic signals (similar 

to Figure 1d) are fed successively at different gates, and 

responses are monitored at various OECTs. Figure 2b shows the 

spatio-temporal response on a single plot to compare signals fed 

through different gates. All the OECTs are in the same liquid 

medium with variable gate-OECT distances, offering parallel 

coupling, shared information, and spatiotemporal responses. 

Due to differences in materials and fabrication variability, the 

intrinsic resistance of different OECTs (sensor and gate) is 

variable. Therefore, the gate material, gate-OECTs distances, 

and mainly the variability in the nature of sensing-OECTs (i.e., 

variability in transconductance presented in Figure 1) 

contribute to variable responses. Both the electronic and 

capacitive currents are observed in these devices with different 

strengths [26], [27]. In most cases, the OECTs closer to specific 

gates offer a higher response as compared to OECTs located 

further away. Figure 2c shows the response of several OECTs 

when a typical EMG spike signal is fed at all gates. Signals A-

D reflect the typical nature of signals, exhibiting non-uniform 

firing rates and correlated activities between inputs at specific 

times. As a result, the effective gate voltages are variable, 

leading to variable amplitude responses. For example, signals 

fed from gate C have comparatively higher amplitude response 

on OECTs arrays. Furthermore, OECTs exhibit higher 
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amplitude during the correlated spiking events and exhibit the 

effect of correlation-based firing. A few example cases are 

discussed with individual and correlated firing. As indicated, 

the response is higher when A and B are firing together as 

compared to individual firing (marked with gray circle in Figure 

2d).  

Further, the measured signal amplitude also depends on the 

relative spike-time difference of individual signals; as an 

example, the correlated firing of C and D shows different 

characteristics at two different time durations (see Figure 2d). 

In this way, the information from different gate signals and their 

coincidence gets translated into the characteristics of OECT.  

The variability of OECTs and their spatiotemporal 

characteristics can be utilized as a reservoir network for signal 

classification. We conducted experiments for s-EMG signal 

classification to explore these characteristics using OECTs, as 

shown in Figure 3 (refer to methods for details). The importance 

of 16 spiking channels was evaluated through random forest-

based classification with rate-based feature vectors. Out of 16 

signals, the four most important signals are fed to the gates of 

OECTs, and their time-varying responses are monitored by the 

OECT arrays. The experiments consisted of 150 sets with 

known rock, paper, and scissor classes. We utilized 150 trial 

signals corresponding to three classes and measured the OECT 

array responses for each trial, with two-thirds of the data used 

Fig.  2 (a) Representation of OECT measurement s for various gate signals with the shared medium. Herein, various signals can be fed at different 
gates and measurements can be performed simultaneously for different OECTs. (b) Comparison of characteristics of OECTs for signals fed at 
different gates one by one. The sequential signals applied on different gates are represented with different colors and are plotted on the same time 
axis for comparison. (c) Histogram showing the integrated values of signals obtained from different OECTs over their complete duration. (d) 
Comparison of the characteristics of a few examples of OECTs on applying specific signals (shown in red, green, yellow, and blue) at different gates. 
The OECTs integrate signals from different gates through the global electrolyte. 
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for training the classifier and one-third for testing. We 

generated multiple sets of training and testing sets to calculate 

accuracies, and the mean accuracy and corresponding error are 

presented in the figure. 

 

From a neural network perspective, the variation in the gate-

OECT distances offers different strengths in the recording, 

similar to a fully connected neural network with variable weight 

values and neuron characteristics. Figure 3a shows the 

schematic representation of utilizing the OECT as a neural 

network layer. The OECT integrates the current from different 

gates using the common electrolyte, and the integrated 

amplitude of the OECT for the whole-time duration of the trial 

serves as a feature for classification, with each OECT 

corresponding to an individual feature vector. By computing the 

integral (summation of time series), we convert a vector of a big 

dimension into just one number. 

While traditional synaptic devices exhibit specific weight-

tuning characteristics, it’s important to note that in our model, 

OECTs are conceptualized more as neurons than conventional 

synaptic devices. The learning aspect in this scheme is not 

explicitly driven by synaptic weight tuning, as in traditional 

neural networks. Instead, the learning dynamics emerge from 

the collective spatio-temporal responses of the OECT array to 

input signals. The OECTs act as complex nodes that integrate 

and transform signals, contributing to the overall performance 

of the system in a manner akin to synaptic interactions. This 

distinction is crucial for understanding the unique 

neuromorphic capabilities of the OECT array in signal 

classification tasks. The OECT network acts as a reservoir 

Fig.  3 (a) Schematic representation of utilizing the OECT array for signal classification. The OECT integrates the current from various gates. The rate 

based coding is used for the classification. (b) Signal classification of raw spiking signals. (c) Accuracy comparison for various numbers of OECTs arrays 

selected randomly (shown in red) and based on best individual performance (shown in blue). (d) Confusion matrix of classification with 4 OECTs. 
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neural network while the readout layer is trained ex-situ by 

using the integrated time series response on different OECTs.  

By training the readout layer externally, the neural network is 

endowed with the ability to generalize patterns and features 

extracted from the OECT responses, contributing to the overall 

efficacy of the network in processing and interpreting complex 

datasets. We have two transformations occurring both within 

the Reservoir network and one at the readout layer. The 

Reservoir network, characterized by the OECT arrays, 

processes the temporal dynamics and summation of inputs with 

different weights. We have used a Random Forest classifier at 

the readout layer based on the integrated time series responses 

obtained from the OECT arrays. Rather than a Random Forest 

Classifier, one can in principle also explore SVM or LDA 

classifier which can be closer to vector-matrix multiplication 

operation. 

 

 

We utilize N random feature vectors obtained from N random 

OECTs and calculate the classification accuracy with random 

forest classifiers on the test data. As shown in Figure 3c, the 

mean accuracy is below 40% for 2 OECTs, rises to nearly 60% 

for 5 OECTs, and shows maximum 66 % accuracy for 13 

OECTs. Thus, increasing the number of OECTs increases the 

accuracy of signal classification, and after an optimum number, 

there is no further accuracy enhancement.  

Due to inherent variability among different OECTs, these 

devices may operate in different regimes and offer varying 

signal transformation properties. As a result, the performance 

of a group of OECTs may depend on each device's individual 

signal transformation characteristics. To illustrate this concept, 

the accuracy of an OECT array was measured for different 

OECTs individually. The results showed that various OECTs 

exhibited different accuracy values, ranging from 36% to 50%. 

To select the most effective group of OECTs for signal 

classification, an OECT list was created based on decreasing 

individual accuracy. The classification was then performed 

using multiple OECTs, with the best-performing individual 

devices selected for use. In this selection case, two OECTs 

achieved 58% accuracy, while nine OECTs achieved 68% 

accuracy. The confusion matrix of one of the best-selected 

cases is shown in Figure 3d. Therefore, individual OECT 

selection can be effective for group OECT selection, enhancing 

overall accuracy. This simple approach can be highly useful 

when dealing with a large number of available OECTs. 

However, more optimized OECTs selections can also be 

performed using genotic algorithms or similar approaches. 

Overall, the individual study of OECT classification properties 

can greatly improve signal classification accuracy. The 

application of bandpass filtering by INTAN may introduce a 

trade-off between noise reduction and the potential loss of 

relevant information. The other effect could be that at some 

point, additional OECTs are just increasing the redundancy and 

not the signal projection/features extraction. OECTs are 

different only to some extent and by adding more OECTs we 

only bring correlated or irrelevant information, thus not 

increasing accuracy further. 

As a comparison control, random forest is used to measure the 

accuracy of the four raw spike signals (Figure 3b), with 

accuracy found to be only 40%. The low accuracy offered by 

raw signals, compared to signals obtained through OECTs, 

reflects the efficient signal transformation characteristics of 

OECTs. The classification using the raw signals, by using the 

integral of the signals, does not capture the time-variant non-

uniformity and inter-correlation among the signals. On the other 

hand, the strength of OECTs lies in their ability to efficiently 

capture the non-uniformity of spikes and mutual correlation, 

which is essential in providing an effective feature vector for 

classification. To compare with state of art works, in our other 

publication, it was demonstrated that signal classification using 

Support Vector Machines (SVM) achieved 61% accuracy with 

16 inputs, a metric that could be enhanced to 80% through 

optimized structural plasticity rules. [28] Furthermore, 

employing a Critical Reservoir in the state-of-the-art scenario 

optimized accuracies to 88% with 320 reservoir neurons. [22] 

It's noted that the present work involves sensing and 

measurement, leading to the partial removal of important 

features, and limiting direct accuracy compared to state-of-art 

software approaches. In comparison, the presented work 

achieves an accuracy of 68% with only 9 OECTs, utilizing 4 

inputs and a reduced training dataset of 1/3rd.   

 

As discussed, the OECT arrays offer integration of signals with 

specific time constants leading to increase in conductance of 

OECTs with correlated signals, and different gate-OECT 

distance leads to variable weight contribution from signals 

generated from different gates. Moreover, the material 

characteristics of OECTs are different, which can lead to 

different time constants. Further, the characteristics gates also 

lead to different amplitude contribution. In a modeling 

platform, incorporating all the above variabilities cannot easily 

be mapped one to one. We utilize spiking neural network 

simulations to understand some of these effects controlling the       

OECT array behavior. OECTs offer integration capabilities 

similar to neurons, and the global medium offers a synaptic 

strength among different OECTs. Though the non-linearity in 

OECT and artificial neurons might not be the same, the 

underlying similarity is that both offer integration of current.      

A projection layer is a critical element within a neural network, 

responsible for transforming input data into a new feature 

space. Through the efforts of the OECTs controlled by multiple 

time series, the input data is transformed into a new feature 

space. The OECT offers time series transformation based on the 

integration of correlated signals. We generate a fully connected 

spiking neural network with inputs based on EMG spike 

signals. Two cases are considered: (i) constant connection 

weight between the layers and (ii) random connection weight 

between the layers. The neurons in the second layer are leaky-

integrate and fire neurons and offer non-linearity to the circuit 

by executing temporal integration, and synapses provide spatial 

integration. The postsynaptic neuron integrates the current from 

all incoming synapses from the first layer and fires only if the 

postsynaptic potential rises above a threshold (Figure 4a inset). 

The firing rate of the neurons is used as a feature vector for the 

classification task utilizing a Random Forest classifier. 

 

We compare the constant synaptic weight with random synaptic 

weight by systematically introducing random components in 

the constant weight. This approach reproduces the spatial 

integration properties of the OECTs array, where the response 
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of OECTs differs for different gates due to variable spatial 

distances. The classification task is performed for several such 

networks individually, and the accuracy values are shown in 

Figure 4b. It is found that with a constant weight of the 

connection network, the accuracy is just 37%; on the other 

hand, with a small component of randomness (0.1) the accuracy 

rises to 59%. The classification improves with a systematic 

increase of random components and possesses a maximum 

value of 67% with the complete random case. Thus, the 

uniformity in the synaptic strengths has a huge role in 

increasing accuracy. The variable gate-OECT distances offers 

inherent non-uniformity in the gates- OECTs synaptic 

strengths, which could be an important reason for their high 

accuracy.   

Moreover, we studied the classification as a function of neuron 

time constant values and based on the distribution in the time 

constant value (Figure 4c). The spiking network simulation 

with a variable time constant integrates signals of a particular 

duration. The accuracy is found to be significantly low i.e, 47%, 

for the low time constant value. On the other hand, the accuracy 

is also found to be constant at a very high time constant (which 

integrates signal for a longer duration). The study reflects the 

role of integrating of optimum time duration of signal for 

effective feature extraction. Since the OECT fabrication 

techniques can help in adapt the time constant and its 

distribution, one can design an OECT array for effective 

classification. In neurophysical recordings, many times the task  

is to record the signal from multiple cells and the task is to 

analyze the data based on the firing pattern. The present 

approach of recording the data through OECT arrays would 

help to record and analyze the data.      

 

Noise is known to affect the reservoir computing accuracy due 

to overfitting of the data.  OECTs can offer multiple noises such 

as 1/f noise due to fluctuations in charge at the surface and bulk 

of the channel material [29] Higher channel thickness might be 

the solution to achieve low 1/f noise values, which also provides 

high transconductance [30].  Based on a systematic study by 

Nathe et al.[31], the Low Pass Filter reduces the error in 

classification.  In our system, OECT offers inherent Low pass 

filter properties with the cut-off frequency dependent on the R-

C of the OECTs. Consequently, OECT-based reservoir 

computing could provide an effective approach to enhancing 

accuracy. Moreover, we use the integral of the signal as the 

feature. For a significantly low white noise, the integral of the 

signal would have a low standard deviation due to large data 

points in the time series as a result, low values of white noise 

might not affect the accuracy significantly.  Further, studies can 

be done to systematically optimize the OECTs for effective 

classification. 

 

OECT has a remarkable capacity for precision in performance 

(capacitance and transconductance) control across a wide 

range, a feature primarily achieved through the manipulation of 

material engineering, with PEDOT:PSS playing a key role [32]. 

The biocompatibility of these systems also brings a special 

advantage to the Brain-Computer Interface.  In this study, we 

aim to specifically highlight the beyond CMOS strategy using 

these devices that use spatio-temporal pulse activity correlation 

on few number of nodes to retrieve an environmental activity 

induced by local voltage modulations, for which the complexity 

of the recognition is not strictly related to the number of voltage 

sensing input nodes, and therefore the integration density of the 

OECT technology. As a proof of concept, we showed that such 

a theses micro-scaled devices (from as few as 6 OECT as shown 

in Figure 3) are enough to recognize four-dimensional patterns 

of voltage-spikes to classify them into three different classes: 

the rock-paper-scissor test is obviously used as toy-problem to 

generalized our approach to any ternary classifications for other 

applications than the one we aim, that would require gathering 

computing resources near-sensors out of CMOS.  Also as 

Figure 3 suggests, the classification performances scale with the 

number of input nodes involved in the spike sorting to match 

the dimensional complexity of voltage patterns to sense. In 

many applications, information patterns can be emitted by more 

than 4 input gates, to require more than 6 OECT inputs to sort 

any spike voltage pattern. Therefore, downscaling this 

technology for higher density integration is for sure an asset, 

despite the approach being beyond-CMOS. As 

electropolymerization is a bottom-up strategy, downscaling the 

OECT at the level of lithographically-patterned metal lines is 

perfectly in line future needs to increase the number of sensing 

nodes while keeping the same computational resources on each 

of them. 

 

Fig.  4 (a) Signal classification based on spiking neural network simulations. 

The raw signal neurons (green) are connected to a hidden layer of neurons 

(shown in red). The connection strength between the input and hidden layer 

possesses certain weight values. The neurons in the hidden layer (see inset) 

integrate the current from presynaptic neurons and fire on exceeding the 

threshold. Rate-based coding is used with a Random forest classifier for the 

accuracy comparison. (b) Accuracy comparison for input-hidden layer 

weights (W[i,j]) of varying random components as W[i,j] =  QUOTE  C1  

QUOTE  W0+  QUOTE  C2 rand(), with  QUOTE  C2  QUOTE  coefficient 

deciding the random component. (c) The accuracy comparison for neurons 

of variable values and distribution of time constant. 
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Reservoir Computing consists of converting input data into 

high-dimensional data through the reservoir which is a non-

linear system The training and testing of such systems purely 

through software can be computationally demanding, owing to 

the numerous connections within the network.  It is followed by 

classification based on the spatiotemporal pattern of the 

reservoir states as the read-out layer.  In this context, our 

proposed method leverages arrays of variable Organic 

Electrochemical Transistors (OECTs) to harness the 

capabilities of a reservoir network via a global medium. This 

approach eliminates a significant computational burden that is 

typically associated with traditional software-based reservoir 

computing. Instead, we employ a straightforward summation of 

time series operations as a key feature for the classification 

process. Our analysis demonstrates that a relatively small 

number of OECTs, as few as nine in the case of EMG signal 

classification, can yield remarkably high accuracy when 

integrated into the read-out layer. Moreover, various techniques 

such as Basic Weighted Non-linear Transform and Winner 

Takes All can be employed effectively for edge computing 

applications. 

 

 Currently, values of weights and time constants are not 

identical for different OECTs.      Our findings indicate that 

while OECT arrays and SNN simulations differ in their 

underlying mechanisms, the classification accuracy achieved 

by OECT arrays is statistically indistinguishable from that of 

the SNN simulations. This intriguing congruence between the 

bioelectronic behaviors of OECT arrays and the computational 

capabilities of SNNs underscores the potential of OECTs as an 

innovative and energy-efficient tool for signal classification in 

neuromorphic computing applications. The study helps in 

rethinking the sensing cum computing architecture for edge 

computing which would be needed for low-power applications. 

The OECT arrays can also be explored for spatio-temporal 

brain recording and task classification [7]. 

IV. CONCLUSION 

In this study, we have demonstrated the efficacy of global 

medium-based Organic Electrochemical Transistor (OECT) 

arrays as potent biosensors for signal classification. The 

interconnected network of OECTs significantly enhances the 

spatiotemporal pattern differentiability, akin to the principles 

underlying reservoir computing. Our experimental results 

reveal that the OECT array consistently achieves a 

classification accuracy of ~70%, utilizing just nine OECTs, as 

compared to the more modest 40% accuracy obtained when 

working directly with raw signals.      

The SNN simulation with randomly initialized weights was 

used to enhance the signal from OECT further. The spiking 

neural network simulation is performed to understand better 

classification tasks with variable degrees of random weights 

and neuron’s time constant. Future work can utilize these 

devices for neuron recording and classification tasks based on 

neurons’ firing patterns. Looking ahead, the promising 

outcomes of this research pave the way for a multitude of 

exciting possibilities. These multifunctional bioelectronic 

devices, leveraging the inherent variability of OECT properties, 

hold potential not only for signal classification but also for 

neuron recording and classification tasks centered around the 

intricate firing patterns of neurons. To assess the viability of 

organic electrochemical transistors (OECTs) for interfacing 

with real neurons, key considerations include sensitivity for 

detecting subtle changes in neuronal signals, fast response time, 

a high Signal-to-Noise Ratio (SNR) for clear signal distinction, 

specificity in isolating neuronal signals from background noise, 

biocompatibility to prevent adverse reactions, long-term 

stability, and adaptability to diverse neural networks. 

Evaluation of these factors provides insights into the potential 

applications and limitations of OECTs in neurotechnology. By 

harnessing the unique characteristics of OECTs, we anticipate 

that future work will propel the development of advanced 

neuromorphic systems that can mimic and understand neural 

processing with unparalleled precision. 
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