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Abstract

In this paper, we consider identified directed networks where processes know an
upper bound on the maximum ancestor distance. Under these settings, we study the
conditions on the network topology allowing the self-stabilization of two fundamental
problems: the leader election and the synchronous unison. Precisely, we show that
those two problems can be self-stabilizingly solved in our settings if and only if the
network contains a unique source component. In particular, to show that our condition
is sufficient, we propose two algorithms and study their complexity. Notice that our
topological condition covers a wide spectrum of digraphs since, for example, strongly
connected digraphs, dipaths, and out-trees have a unique source component.

Keywords: directed networks, self-stabilization, necessary and sufficient condi-
tions, leader election, synchronous unison.

1 Introduction

1.1 Context
Fault tolerance, i.e., the ability of a system to withstand or recover from failures, is a major
concern in modern networks. Indeed, on the one hand, these distributed systems are broadly
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autonomous and large-scale; thus, human intervention to repair them is often difficult and
even sometimes impossible. On the other hand, their lifespan and availability must be
maximized. However, fault tolerance is usually hard to obtain in distributed computing
and, when it can be achieved, it often comes at the the price of sacrificing efficiency; see,
e.g., [DR82, CYZG14]. To circumvent this issue, one can consider self-stabilization [Dij74],
a general lightweight fault tolerance paradigm [ADDP19]. Precisely, a distributed system
achieving this property inherently tolerates any finite number of transient faults.1 Indeed,
starting from an arbitrary configuration, which may be the result of such faults, a self-
stabilizing system recovers within finite time, and without any external intervention, a
so-called legitimate configuration from which it satisfies its specification.

In many today’s networks —such as Wireless Sensor Networks (WSNs), Optical
Transport Networks, or Internet of Things— the topology is a directed graph (digraph for
short) since several communication links may not be bidirectional. In other words, the
possibility of sending information to some process does not necessarily imply the possibility
of receiving information from that process. For example, in WSNs, communication is
made by radio waves. Now, antennas may have different ranges due to the heterogeneity
of radio supplies making then some communication channels one-way only. Now, despite
the pioneer work of Dijkstra [Dij74] deals with unidirectional rings, most of the self-
stabilizing literature actually focuses on bidirectional networks [KP93, CD94, CDV05,
CDV06, DLV11a].

In bidirectional networks, most of the tasks can be made self-stabilizing as soon as
the topology is connected [KP93]. When considering directed graph topologies, the
connectivity is declined into two widely different notions: the weak connectivity and
the strong connectivity. Most of distributed computing problems cannot be solved in an
arbitrary weakly connected topology since several nodes may not be able to exchange
information each other in any direction. In contrast, most of existing self-stabilization
solutions working in directed graphs assume strong connectivity; see, e.g., [AB98, KY02].
Now, there is a huge gap between these two notions and the main question tackles in this
paper is where to place the line between what is feasible and what is not, i.e., what are the
necessary and sufficient conditions for self-stabilization in directed networks?

In this paper, we partially answer this question. We consider identified directed networks
where processes know an upper bound α on the maximum ancestor distance MAD(i.e.,
the maximum distance from a ancestor to one of its descendent). In such networks, we
propose a condition on the network topology that is necessary and sufficient for the self-
stabilization of two important benchmark problems of the literature: the leader election and
the synchronous unison. Interestingly, these two problems are two agreement problems

1A transient fault occurs at an unpredictable time, but does not result in a permanent hardware damage.
Moreover, as opposed to intermittent faults, the frequency of transient faults is considered to be low.
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but of widely different nature in the sense that leader election is a static problem, while
synchronous unison is a dynamic problem. As opposed to dynamic problems such as token
circulation, a static problem (e.g., computing a spanning tree) defines a task of calculating a
function that depends on the system in which it is evaluated [Tix06].

1.2 Contribution
We consider the atomic-state model, the most commonly used model in the self-stabilizing
area. In self-stabilization, deterministic solutions often require unique identifiers and the
knowledge of some global network parameter is usually mandatory to bound process local
memories. Recall that we deal here with identified directed networks where processes know
an upper bound α on MAD, the maximum ancestor distance.

In these settings, we first show that there exists a self-stabilizing leader election al-
gorithm if and only if the network topology contains exactly one source component, i.e.,
a strongly connected component where all nodes have no predecessor out of the compo-
nent. This necessary and sufficient condition holds both in asynchronous (precisely, the
distributed unfair daemon, the most general scheduling assumption of the model) and
synchronous settings. The sufficient condition is constructive as we propose a (silent)
self-stabilizing leader election algorithm that stabilizes in O(α) rounds using O(logα+B)
bits per process (B being the number of bits required to store any identifier) under the
distributed unfair daemon.

Then, from our leader election algorithm, we easily derive a self-stabilizing synchronous
unison algorithm for networks with a unique source component. This latter problem is
a clock synchronization problem: each process holds a local clock and at each step all
clocks have to synchronously increment modulo K (with K ≥ 2) so that all clocks of the
network are always equal. This latter specification requires the system to be synchronous.
Our algorithm stabilizes in O(α) synchronous rounds using O(logα + B + logK) bits
per process. From this outcome and the results in [ACDD23], we deduce that the fact that
the network should have a unique source component is both necessary and sufficient for
solving the self-stabilizing synchronous unison.

Overall, our results show, maybe surprisingly, that in directed networks the weakest
topological condition to solve two widely different problems —namely the “static” leader
election and the “dynamic” synchronous unison— is the same.

Notice that our topological condition covers a wide spectrum of digraphs since, for
example, strongly connected digraphs, dipaths, and out-trees have a unique source compo-
nent.
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1.3 Technical Overview
To simplify the design of our solutions and increase the soundness of their proof, we design
our solutions as compositions of several simple building blocks. To that goal, we extensively
use a composition technique called the hierarchical collateral composition [DLD+13]. Up
to now, this composition was only used assuming a distributed weakly fair daemon. Hence,
we had to develop a few general properties to prove the self-stabilization of a composite
algorithm under the more general distributed unfair daemon. Actually, our leader election
algorithm is a composition of three different instances of the same basic building block
called Algorithm C-MAI(D,≺, I). Algorithm C-MAI(D,≺, I) is a (silent) self-stabilizing
algorithm that simply computes at each process the minimum value among the inputs of all
its ancestors; the input of each process p being I(p) ∈ D, where D is a set totally ordered
by ≺. Notice that to prove the termination of Algorithm C-MAI(D,≺, I) we use the notion
of limit inferior of an infinite sequence, a powerful general tool that allows us to drastically
refine the proof.

1.4 Related Work
Self-stabilization in Directed Networks. In directed networks, the maybe asymmetric
communication between surrounding processes often makes problems more complicated,
and sometimes even impossible to solve. A folklore example is the token circulation
that cannot be solved in any arbitrary weakly connected network: the network topology
should be at least strongly connected. In such a context, a preliminary important task is
then to properly define the minimum assumptions for which the considered problem is
solvable. Furthermore, switching from undirected to directed topologies may also impact
the complexity when the problem remains solvable. For example, some problems, such as
the self-stabilizing vertex coloring in anonymous networks under a central scheduler, can
be implemented in undirected networks with a space requirement linear on the degree of
vertices [ADDP19], while the space complexity lower bound becomes dependent on the
number of processes in the directed case; see [BDPT09].

Maybe surprisingly, the self-stabilizing literature on directed networks is far less ex-
tensive than on undirected networks. Many works actually focus on restricted topolo-
gies, namely unidirectional rings [Dij74, MOY96, HL99, KY02]. Yet, some other works
deal with more general topologies [AB98, DDT06, BDPT09]. More precisely, Afek and
Bremler [AB98] consider strongly connected directed networks for which they propose
efficient self-stabilizing solutions to leader election and rooted spanning trees. Delaët et
al. [DT01, DDT06] propose a method to design (silent) self-stabilizing algorithms for a
class of fix-point problems, namely fix-point problems which can be expressed using r-
operators. This method applies as soon as the network topology admits a solution to the con-
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sidered problem. In [DT01], they consider the link-register, while in [DDT06], they general-
ize their approach to asynchronous message-passing systems. In both papers, they establish
a stabilization time in O(MAD+ |S|) rounds where S is the set on which the r-operator ap-
plies.2 However, this bound is proven for the synchronous case only. Finally, self-stabilizing
vertex-coloring of arbitrary directed networks is considered in [BDPT09, ADDP19]. Over-
all, all these aforementioned papers [AB98, DDT06, BDPT09] deal with static problems.
To the best of our knowledge, self-stabilization for dynamic problems have never been
addressed in wide classes of directed networks, except in [ACDD23]. Precisely, token
circulation [Dij74], clock synchronization [HL99], and mutual exclusion [KY02] have been
considered in the restricted case of unidirectional rings. In [ACDD23], the synchronous
unison is investigated in wide classes of anonymous directed networks. We will further elab-
orate on [ACDD23] in the last part of this related work, which focuses on the synchronous
unison problem.

Self-stabilizing Leader Election. There are numerous (deterministic) self-stabilizing
leader election algorithms for identified networks [AG94, DH97, AB98, AK93, BK07,
DLP10, DLV11a, DLV11b, KK13, ACD+17]. They all assume any identifier can be stored
in O(log n) bits. Most of these solutions consider bidirectional links; more precisely, the
network topology is modeled as an undirected connected graph.

Actually, to the best of our knowledge, until now only the algorithm of Afek and
Bremler [AB98] considered directed networks. Yet, they assume the topology is strongly
connected and consider the message-passing model where the link-capacity is bounded by a
value c, known by all processes. In these settings, they propose an algorithm that stabilizes
in O(D) rounds using O(log n) bits per process, where D is the network diameter and n is
the number of processes.

Self-stabilizing leader election algorithms for bidirectional networks have been proposed
in the message-passing model [AK93, BK07]. Both solutions assume processes know some
upper bound D on D and stabilizes in O(D) rounds using O(log D log n) bits per process.

Dolev and Herman [DH97] consider the self-stabilizing leader election in the link-
register model. They assume that all processes know an upper bound N on n. Their
solution stabilizes in O(D) rounds using O(N logN) bits per process.

Several solutions are also given in the atomic-state model [AG94, DLP10, DLV11a,
DLV11b, KK13, ACD+17]. The solution in [DLP10] uses infinite local memories. All
other solutions need the knowledge of an upper bound N on n and achieve a memory
requirement in O(logN) bits per process. The algorithm of Arora and Gouda [AG94]

2In [DT01, DDT06], the claimed complexity is O(D + |S|), where D is called the diameter and is defined
as the maximum of the distances between all couples of vertices for which a distance is defined; this latter
notion being equivalent to MAD.
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works under a weakly fair daemon and stabilizes in O(N) rounds. The algorithm proposed
by Kravchik and Kutten [KK13] assumes a synchronous daemon and stabilizes in O(D)
rounds. The solutions in [DLP10, DLV11a, DLV11b, ACD+17] assume a distributed unfair
daemon and have a stabilization time in O(n) rounds.

Self-stabilizing Synchronous Unison. The synchronous unison problem has been in-
troduced by Even and Rajsbaum [ER90]. In their paper, Even and Rajsbaum consider the
problem in a non-fault-tolerant context, yet assuming that processes do not necessarily start
at the same time. The network is assumed to be a strongly connected directed graph.

Gouda and Herman [GH90] have proposed the first self-stabilizing synchronous unison.
Their algorithm works in anonymous synchronous systems of arbitrary bidirectional and
connected topology using infinite clocks. A solution working with the same settings, yet
implementing bounded clocks, is proposed in [ADG91]. Both solutions stabilize in O(D)
rounds.

To the best of our knowledge, self-stabilizing synchronous unison in directed networks
has been only considered in [HL99, ACDD23]. [HL99] focuses on the restricted case of
unidirectional rings of odd size. [ACDD23] studies the impact in terms of both require-
ments and efficiency when extending the self-stabilizing synchronous unison of [ADG91]
to directed network topologies. In particular, our condition on network topology is demon-
strated to be necessary in anonymous settings, but it is not proven to be sufficient: there is
still a little gap between the necessary and the sufficient conditions proposed in [ADG91].

The synchronous unison has been generalized to tackle asynchronous networks. The
so-called asynchronous unison requires neighboring clocks to differ from at most one
increment. To the best of our knowledge, this problem has been only investigated in bidirec-
tional networks. Yet, in [JADT02], a solution is proposed for networks already containing a
spanning tree and only the tree links toward its root are used. Hence, the proposed algorithm
also works in directed trees. This solution uses only two states per process and stabilizes in
0 round since using two clock values no configuration is illegitimate.

Then, there are several self-stabilizing solutions for general connected anonymous
networks [CFG92, AK93, BPV04, EK21]. The first one has been proposed by Couvreur et
al. [CFG92]. However, no complexity analysis was given. Another solution which stabilizes
in O(n) (asynchronous) rounds has been presented by Boulinier et al. in [BPV04]. Both
solutions require O(logN) bits per process, where N is an upper bound on n known
by all processes, to work on any bidirectional topology. Boulinier proposed in his PhD
thesis [Bou07] a parametric solution which generalizes both the solutions of [CFG92] and
[BPV04]. In particular, the complexity analysis of this latter algorithm reveals an upper
bound in O(D .n) rounds on the stabilization time of the Couvreur et al.’s algorithm.

Awerbuch et al. [AK93] gives a self-stabilizing asynchronous unison (called clock
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synchronizer in their paper) that uses unbounded state space and stabilizes in O(D) rounds.
Another self-stabilizing asynchronous unison algorithm is presented in [DJ19]. It stabilizes
in O(n) rounds using unbounded local memories. Emek and Keren [EK21] come up with a
self-stabilizing asynchronous unison that stabilizes in O(D3) rounds, where D is an upper
bound on D known by all processes. Their solution requires O(log(D)) bits per processes.

Notice that most of the aforementioned asynchronous unison algorithms for general
connected graphs are not suited for directed networks since they use reset mechanism that
inherently need bidirectional links for synchronization purposes.

1.5 Roadmap
The rest of the paper is organized as follows. Section 2 is dedicated to basic definitions
and computational model. In particular, the section includes the definition of hierarchical
collateral composition and some of its properties. We present in Section 3 our basic
building block, Algorithm C-MAI(D,≺, I). In Section 4, we demonstrate our necessary
and sufficient condition for the self-stabilizing leader election, in particular we propose our
silent self-stabilizing leader election algorithm, Algorithm PEL. In Section 5, we propose
our self-stabilizing synchronous unison algorithm, Algorithm U(K). This algorithm allows
us to conclude that our condition on network topologies is also necessary and sufficient
for the self-stabilization of the synchronous unison in our settings. In Section 6, we make
concluding remarks and perspectives.

2 Preliminaries

2.1 Graph Definitions
Let G be a directed graph (digraph for short). We denote by V (G) (resp. E(G)) the node set
(resp. the arc set) of G. Let p be a node. We denote by Γ−

G (p) the set of p’s predecessors in G.
A node q is an ancestor of p in G if there is a path in G from q to p (n.b., by definition, there
is an empty path from p to p, so p is one of its own ancestors). We denote by AncG(p) the
set of p’s ancestors in G. The distance from any node q to p in G, denoted by ∥q, p∥G , is the
length of the shortest (directed) path from q to p in G. By convention, we let ∥q, p∥G =∞ if
there is no path in G from q to p. Let MADG = max{∥q, p∥G | p ∈ V (G) ∧ q ∈ AncG(p)}
be the Maximum Ancestor Distance. Notice that MADG ≤ |V (G)| − 1. In the sequel, we
systematically omit the subscript G when it is clear from the context.
G is strongly connected if ∀p, q ∈ V (G), there is a directed path in G from p to q.

Let S ⊆ V (G). We denote by G(S) the subgraph of G induced by S. G(S) is a strongly
connected component of G if G(S) is strongly connected and S is maximal, meaning that
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the subgraph induced by any proper superset of S is not strongly connected. We call source
component of G any strongly connected component SC of G where all nodes have no
predecessor out of the component, namely ∀p ∈ V (SC), ∀q ∈ Γ−

G (p), q ∈ V (SC). Any
non-empty digraph has at least one source component.

2.2 Distributed Systems
We consider distributed systems made of n ≥ 1 interconnected processes running on
the top of a communication network conveniently modeled as a digraph N , where V (N )
represents the n processes and E(N ) represents the direct unidirectional communication
links connecting processes. We assume processes are endowed with unique constant (i.e.,
immutable) identifiers and a common constant input value α ∈ N such that α ≥ MAD.
The identifier of any process p is denoted by p.Id and belongs to an arbitrary domain
denoted by IDSET , ordered by <I , and satisfying |IDSET | > |V (N )|.

2.3 Computational Model
We consider the atomic-state model introduced by Dijkstra [Dij74] in which processes
communicate using locally shared registers, called variables. Each variable named v at
a given process p will be denoted by p.v. Each process can read its own variables and
those of its predecessors but they can only write its own variables. The state of a process is
defined as the value of its variables (including its inputs). A configuration of the system is
a vector consisting of the states of each process. Let C be the set of configurations of the
system. For every configuration γ ∈ C, we denote by γ(p) the state of p in γ. Moreover,
we denote by γ(p).v the value of the variable p.v in γ(p).

Processes run according to a (deterministic) distributed algorithm. A distributed algo-
rithm is a collection of n local programs, one per process. The local program of a process
p consists of the set of its variables and a set of actions modifying them. Each action of p is
of the following form: ⟨label⟩ :: ⟨guard⟩ → ⟨statement⟩. Labels are only used to identify
actions in the reasoning. The guard is a boolean predicate involving variables of p and its
predecessors. The statement is a sequence of assignments modifying process variables.
We exclude trivial actions that do not modify the state of the executing process. An action
can be executed only if its guard evaluates to true; in which case, the action is said to be
enabled. A process is said to be enabled if at least one of its actions is enabled. Recall that
the exact values of inputs are not pre-defined, only their requirements are a priori known
(e.g., identifiers are constant, unique, and belong to IDSET ). Consequently, a distributed
algorithm should be insensitive to its inputs meaning that it should correctly operate as long
as the input variables satisfy their requirements.
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Let γi ∈ C. We denote by Enabled(γi) the set of enabled processes in configuration γi.
If Enabled(γi) = ∅, then γi is said to be terminal. Otherwise, a step is performed as follows:
a non-empty subset S of Enabled(γi) is nondeterministically activated by an adversary
called daemon. Then, every process p in S atomically executes one of its enabled actions in
γi, leading the system to a new configuration γi+1. The step from γi to γi+1 is denoted by
γi 7→ γi+1: 7→ is the binary relation over the configurations. An execution (of the distributed
algorithm in the network) is a maximal sequence e = γ0γ1 . . . γi . . . of configurations such
that γi−1 7→ γi (and so, γi−1 ̸= γi) for all i > 0. The term maximal means that the execution
e is either infinite or ends at a terminal configuration. We mainly consider two daemons:
the distributed unfair daemon (the most general one) and the synchronous daemon. A
distributed daemon chooses at least one process (maybe more) at each step. An unfair
daemon might never select a process, unless it is the only enabled one. The synchronous
daemon activates all enabled processes at each step of the execution. When an execution
satisfies the requirements of the daemon D, we said that it is an execution under D.

2.4 Time Complexity
To measure the time complexity, we use the notion of round. A round computes the
execution time according to the speed of the slowest processes. The definition of round uses
the concept of neutralization. If a process p is enabled in a configuration γi but not enabled
in γi+1 and does not execute any action between γi and γi+1, then p is said to be neutralized
during the step γi 7→ γi+1. Neutralization of p is caused by the following situation: at
least one predecessor of p changes its state between γi and γi+1, and this change makes
the guards of all actions of p false. Then, rounds are inductively defined as follows. The
first round of an execution e = γ0γ1 . . . is its minimal prefix e′ such that every process
that is enabled in γ0 either executes an action or is neutralized during a step of e′. If e′ is
finite, then the second round of e is the first round of the suffix γtγt+1 . . . of e starting from
the last configuration γt of e′, and so on and so forth. Notice that, under the synchronous
daemon, rounds coincide with steps.

2.5 Self-stabilization and Silence
Below, we define a specification as a predicate over sequences of configurations.

Definition 1 (Self-Stabilization) An algorithm A is self-stabilizing in the networkN under
the daemon D for a specification SP if there exists a non-empty subset of configurations,
called the legitimate configurations, satisfying the following two conditions:

Convergence: Starting from any configuration, every execution of A inN under D contains
a legitimate configuration.
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Partial correctness: Every execution of A in N under D that starts from a legitimate
configuration satisfies SP .

In the atomic-state model, an algorithm is silent in the network N under the daemon D
if all its executions in N under D are finite [DGS99, ADDP19].

When an algorithm is both self-stabilizing and silent, the specification can be reformu-
lated as a predicate over configurations since this algorithm eventually reaches a terminal
configuration; see [ADDP19] for a detailed explanation.

Definition 2 (Silent Self-Stabilization) Let Pred be a predicate over configurations. An
algorithm A is silent self-stabilizing in the network N under the daemon D for Pred if

Termination: starting from any configuration, every execution of A in N under D is finite,
and

Partial Correctness: every terminal configuration satisfies Pred.

2.6 Hierarchical Collateral Composition
Below, we recall the definition of hierarchical collateral composition introduced in [DLD+13].

Definition 3 (Hierarchical Collateral Composition) Let A and B be two distributed algo-
rithms. The hierarchical collateral composition of A and B is the distributed algorithm B ◦ A,
where the local algorithm of every process p, noted (B ◦ A)(p), is defined as follows:

1. (B ◦ A)(p) contains all variables of A(p) and B(p),3

2. (B ◦ A)(p) contains all actions of A(p), and

3. every action Li :: Gi → Si of B(p) is rewritten in (B ◦ A)(p) as the action

Li :: ¬Cp ∧Gi → Si

where Cp is the disjunction of all guards of all actions in A(p).

By convention, ◦ is right-associative.

3N.b. some variables may be common to A(p) and B(p), e.g., some outputs of A(p) may be inputs in B(p).
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Let A0 and A1 be two distributed algorithms. Let γ be a configuration of A1 ◦ A0. The
Ai-projection γ|Ai (with i ∈ {0, 1}) is the configuration of Ai obtained by removing from
γ the values of all variables that do not exist in Ai. Let s = γ0 . . . γj . . . be a sequence
of configurations of A1 ◦ A0. By extension, we also call Ai-projection the sequence of
configurations γ0|Ai . . . γj|Ai . . . (with i ∈ {0, 1}). We also denote by SQ(s) the maximal
subsequence of s where no two consecutive configurations are identical.

Algorithms have to deal with input variables (inputs for short). Inputs are not written
by the algorithm and are directly encoded in local states. For example, in our model,
identifiers and α are inputs. There may have requirements on the values of inputs, e.g.,
identifiers are immutable and unique. Of course, all executions are assumed to satisfy all
such requirements. In the case of the composition B ◦ A of two silent algorithms A and
B, some inputs of B may be computed by A. Of course, if one considers the execution of
B alone, inputs coming from A are constant (by definition, B cannot modify them). The
following two results give properties for the composition B ◦ A in cases where B has no
requirement on the value of its inputs provided by A.

Lemma 1 Let A and B be two algorithms that are silent in the network N under a dis-
tributed unfair daemon such that (1) no variable written by B appears in A and (2) B has
no requirement on the values of its inputs written by A. Then, B ◦ A is silent in N under a
distributed unfair daemon.

Proof. Let e be any execution of B ◦ A in N under a distributed unfair daemon. By (1),
SQ(e|A) is an execution prefix of A. Since A is silent under a distributed unfair daemon, all
executions of A under a distributed unfair daemon are finite, and so are their prefix. Thus, e
has a suffix e′ containing no execution of any action of A: only actions of B can be executed
in e′. Moreover, by (2), B has no requirement on the values of its inputs that may have been
modified by A, hence all requirements of B for its inputs are satisfied in e′|B and, thus, e′|B is
an execution prefix of B in N under a distributed unfair daemon. Again, since B is silent
under a distributed unfair daemon, e′|B is finite and so e′ is (indeed, e′|B and e′ have the same
length, by definition). Hence, e is finite, and we are done. □

Corollary 1 Let A and B be two algorithms that are silent in the network N under a
distributed unfair daemon. If (1) no variable written by B appears in A, (2) B has no
requirement on the values of its inputs written by A, (3) A reaches a terminal configuration
in N in at most RA rounds, and (4) B reaches a terminal configuration in N in at most RB

rounds, then B ◦ A reaches a terminal configuration in N in at most RA +RB rounds.

Proof. Let e = γ0 . . . be any execution of B ◦ A in N . By (1), (2), and Lemma 1, e is
finite. Let e′ = γi . . . be the maximum suffix of e containing no execution of any action of
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A. By (2), B has no requirement on the values of its inputs that may have been modified by
A, so e′|B is an execution of B in N under a distributed unfair daemon. Hence, by (4), e′|B
reaches a terminal configuration in at most RB rounds, and so e′ does. By construction, for
every γj ∈ e and every process p, p is enabled for an action (of A) in γj|A if and only if p
is enabled for the same action in γj . Moreover, by (1), B does not modify A’s variables,
so γi is reached in e within at most as many rounds as γi|A in SQ(γ0|A . . . γi|A) which is an
execution prefix of A, i.e., at most RA rounds by (3), and we are done. □

3 Minimum Ancestors’ Input
In this section, we propose a generic silent self-stabilizing algorithm that computes at
each process the minimum value among the inputs of all its ancestors. Actually, our silent
self-stabilizing leader election algorithm will consist of a composition of three different
instances of this basic building block.

3.1 The Problem
Let D be an arbitrary domain totally ordered by ≺. We assume that each process p has a
constant input I(p), where I : V (N )→ D. Our goal is to make every process p compute
into an output variable p.M the smallest input according to ≺ among those of its ancestors
(including p itself); let MinI(p) = min≺{I(q) | q ∈ Anc(p)} be this input value. We
additionally require each process to compute in another output variable, p.d, the minimum
distance Mind(p) from an ancestor having MinI(p) as input. That is, p.d should be set to
Mind(p) = min{∥q, p∥ | I(q) = MinI(p) ∧ q ∈ Anc(p)}.

Overall, we require the system to eventually reach a configuration from which each pro-
cess p forever satisfies the predicate MinOk(p), where MinOk(p) ≡ p.M = MinI(p) ∧
p.d = Mind(p). We call this problem the minimum ancestors’ input problem.

To be self-stabilizing for the minimum ancestors’ input problem, our algorithm will
have to deal with what we call fake values. A fake value for a process p (or simply, fake
value when p is clear from the context) is any value m ∈ D \ {I(q) | q ∈ Anc(p)}, i.e.,
any value (of the domain) which does not appear as an input at any p’s ancestor.

3.2 The Algorithm
In Algorithm 1, we give the code of an algorithm that is silent and self-stabilizing for the
minimum ancestors’ input problem in an arbitrary anonymous network N (n.b., N may
even not be weakly connected). This algorithm is generic in the sense that it works given
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any set D totally ordered by an operator ≺ and any constant returned by any function
I : V (N )→ D. In the following, we refer to this algorithm as C-MAI(D,≺, I).

We first present a non self-stabilizing solution to the minimum ancestors’ input problem
and then explain how to gradually make it silent and self-stabilizing in order to finally obtain
Algorithm C-MAI(D,≺, I). In this non-stabilizing algorithm, each process p maintains two
variables:

• p.M , a variable whose domain is D.

In this variable, p computes the minimum input at p’s ancestors.

• p.d ∈ N.

In this variable, p computes the distance from a closest ancestor having an input equal
to p.M .

The algorithm also uses the following two macros:

• Let p.K = (p.M, p.d) be the key of p.

Keys are (totally) ordered by � following the lexicographic order: ∀(a, b), (c, d) ∈
D ×N, (a, b)� (c, d) ≡ a ≺ c ∨ (a = c ∧ b < d).

In the following, p.K is said to be a fake key when p.M is a fake value for p.

• Let SelfKey(p) = (I(p), 0) be the selfkey of p.

Assume initially p.K = SelfKey(p), for every process p. Then, each process p aims
at minimizing its key according to its selfkey and the keys of its predecessors, if any. If p
has no predecessor, its computation is already done. Otherwise, let q be the predecessor
of p with the smallest key according to �. If p.K � (q.M, q.d + 1), then p.K is set to
(q.M, q.d+ 1). Indeed, in this case, there is an ancestor of q, and so of p, with input q.M
which is at distance at most q.d from q, and so at distance at most q.d+ 1 from p. Using
this approach, a terminal configuration satisfying MinOk(p) for every process p is reached
within at most MAD rounds; see Figure 1 for an illustrative example.

Unfortunately, this simple algorithm is not self-stabilizing for the minimum ancestors’
input problem. Indeed, in an arbitrary initial configuration, the M -variable of some process
p may contain a fake value m. Now, if m is smaller than all p’s ancestors inputs, the
system converges to a terminal configuration where p.M ̸= MinI(p); see Figure 2 for
an illustrative example. To solve this issue, we can modify the algorithm so that p.K is
computed as the minimum key between the selfkey of p and the keys of its predecessors
with their distance increased by one. However, this time we can have a livelock as illustrated
in Figure 3. Now, in this case, we can remark that distance in the keys involved into the
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Figure 1: Example of execution of our non self-stabilizing algorithm with arbitrary integer
inputs. Inside each circle, we give the input and the key of the process (n.b., here MAD =
3).

Figure 2: Example of execution of our non self-stabilizing algorithm with arbitrary integer
inputs that terminates in an illegitimate configuration. Inside each circle, we give the input
and the key of the process. Bold circles indicate processes with fake keys.
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livelock increase infinitely often. Such a livelock can be easily stopped by forbidding
a process to update its K-variable with a key whose distance is greater than α; indeed
α ≥MAD.

Figure 3: Sample of non-terminating execution of the second version of our non self-
stabilizing algorithm with arbitrary integer inputs. Inside each circle, we give the input and
the key of the process. Bold circles indicate processes with fake keys.

Hence, we obtain the code given in Algorithm 1. Let p be any process. In this silent self-
stabilizing algorithm, the domain of p.d is restricted to [0..α] and the action ReplaceKey
consists in computing in p.K the minimum value (according to �) among the selfkey of
p (SelfKey(p)) and the keys of its predecessors with their distance increased by one,
but excluding those reaching the value α; see Macro BestKey(p), and Figure 4 for an
illustrative example.
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Figure 4: Example of execution of C-MAI(N, <, I) where I is an arbitrary function from
V (N ) to N. We assume α = 12 (n.b., MAD = 3). Inside each circle, we give the input
and the key of the process. Bold circles indicate processes with fake keys.

16



Algorithm 1: Algorithm C-MAI(D,≺, I), code for any process p.
Inputs:
I(p) ∈ D : a constant
Γ−(p) : the set of p’s predecessors
α : a natural number satisfying α ≥MAD

Variable:
p.M ∈ D : the estimated minimum ancestors’ input
p.d ∈ [0..α] : the estimated distance from an input equal to p.M

Macros:
p.K = (p.M, p.d)
SelfKey(p) = (I(p), 0)
KeySet(p) = {SelfKey(p)} ∪ {(q.M, q.d+ 1) | q ∈ Γ−(p) ∧ q.d < α}
BestKey(p) = min�(KeySet(p))

Predicate:
Enhance(p) ≡ BestKey(p) ̸= p.K

Action:
ReplaceKey :: Enhance(p) → p.K ← BestKey(p)

3.3 Proof of Silent Self-stabilization
In this subsection, we prove two main lemmas: Lemma 3 (partial correctness) and Lemma 4
(termination). From these two lemmas, we immediately obtain Theorem 1 below which
establishes the correctness of our algorithm.

Theorem 1 Algorithm C-MAI(D,≺, I) is silent self-stabilizing in any directed network N
under the distributed unfair daemon for the specification predicate: ∀p ∈ V (N ),MinOk(p).

Let e = γ0γ1 . . . be any execution of Algorithm C-MAI(D,≺, I). In the following,
we will denote by BestKeyi(p) (resp. KeySeti(p)) the value of BestKey(p) (resp.
KeySet(p)) in the configuration γi, for every i ≥ 0.

Partial Correctness. Let γt be any terminal configuration of Algorithm C-MAI(D,≺, I)
in the network N . The following lemma is an intermediate result which establishes that the
M -variable of any process p is not underestimated in γt.

Lemma 2 ∀p ∈ V (N ), γt(p).K � (MinI(p),Mind(p)).

Proof. Assume by contradiction that ∃p ∈ V (N ), γt(p).K � (MinI(p),Mind(p)). Let
pmin be a process such that γt(pmin).K � (MinI(pmin),Mind(pmin)) where pmin.K is
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minimum. So, SelfKey(pmin)� (MinI(pmin),Mind(pmin))� γt(pmin).K. Then, ∀q ∈
Γ−(pmin) such that γt(q).d < α, q satisfies one of the following two cases.

• γt(q).K�(MinI(pmin),Mind(pmin)). So, (γt(q).M, γt(q).d+1)� (MinI(pmin),Mind(pmin))
� γt(pmin).K

• γt(q).K � (MinI(pmin),Mind(pmin)). In this case, by definition of pmin, γt(q).K
� γt(pmin).K, which implies (γt(q).M, γt(q).d+ 1) � γt(pmin).K

By the above two cases, we can conclude that (γt(q).M, γt(q).d + 1) � γt(pmin).K, for
any predecessor q of pmin such that γt(q).d < α. From this latter claim and owing the
fact that SelfKey(pmin)�γt(pmin).K, we can deduce that BestKeyt(pmin)�γt(pmin).K.
Consequently, ReplaceKey is enabled in γt, a contradiction. □

Now, we show that γt is legitimate, i.e., every process p satisfies MinOk(p) in γt. To
that goal, we will use the property on distances given below.

Property 1 ∀q ∈ Γ−(p), (MinI(q),Mind(q))� (MinI(p),Mind(p)− 1)).

Proof. Let q ∈ Γ−(p). By definition, q ∈ Anc(p) and so MinI(q) ⪰ MinI(p). If
MinI(q) ≻MinI(p), then (MinI(q),Mind(q))�(MinI(p),Mind(p)−1)). Otherwise,
MinI(q) = MinI(p) and Mind(q) ≥ Mind(p) − 1 and so (MinI(q),Mind(q)) �
(MinI(p),Mind(p)− 1)). □

Lemma 3 For every process p, MinOk(p) holds in γt.

Proof. To show this lemma, we now prove by induction on i that ∀i ∈ N, for every process
p such that Mind(p) = i, we have γt(p).K = (MinI(p),Mind(p)).

Base Case. Let p be any process such that Mind(p) = 0. So, MinI(p) = I(p). By
Lemma 2, we have γt(p).K � (MinI(p),Mind(p)) = (I(p), 0) = SelfKey(p). Assume
by contradiction that γt(p).K � SelfKey(p). So, γt(p).K � BestKeyt(p). Thus, p is
enabled, a contradiction. Consequently, γt(p).K = (MinI(p),Mind(p)).

Induction Step. Let p be process such that Mind(p) = i+ 1. We have 0 < i+ 1 ≤
MAD ≤ α. Then, there exists a predecessor q of p such that (MinI(q),Mind(q)) =
(MinI(p),Mind(p) − 1) = (MinI(p), i). By induction hypothesis, we have γt(q).K =
(MinI(q),Mind(q)) = (MinI(p), i) (n.b., this implies that γt(q).d < α). So, (γt(q).M, γt(q).d+
1) = (MinI(p), i+ 1).
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By Lemma 2 and Property 1, for any predecessor q′ of p, we have γt(q′).K� (MinI(q′),Mind(q′))
� (MinI(p),Mind(p)−1). Consequently, (MinI(q′),Mind(q′)+1)�(MinI(p),Mind(p)) =
(MinI(p), i+ 1).

Finally, by definition SelfKey(p)�(MinI(p),Mind(p)) = (MinI(p), i+1). Hence,
BestKeyt(p) = (MinI(p), i+1) = (MinI(p),Mind(p)). Since, γt is terminal, γt(p).K =
BestKeyt(p) = (MinI(p),Mind(p)), and we are done.

□

Termination. To show that Algorithm C-MAI(D,≺, I) is silent self-stabilizing, it remains
to show that all its executions are finite. To that goal, we use the notion of limit inferior
of an infinite sequence x0 . . . xi . . . , denoted by lim infi→∞ xi and defined as follows:
lim infi→∞ xi = limi→∞(infj≥i xj). Remark that if the domain of xi is finite, then the limit
inferior corresponds to the minimum value among those that appear infinitely often in the
sequence.

Lemma 4 Every execution of Algorithm C-MAI(D,≺, I) in any network N under the
distributed unfair daemon is finite.

Proof. Let e = γ0γ1 . . . be an execution of Algorithm C-MAI(D,≺, I) in N under the
distributed unfair daemon. Assume, by contradiction, that e is infinite, meaning that Action
ReplaceKey is executed infinitely many times in e. For every process p, let λ(p) =
lim infi→∞ γi(p).K be the limit inferior of the sequence of values γ0(p).K γ1(p).K . . .

Let S = {I(q) | q ∈ V (N )} ∪ {γ0(q).M | q ∈ V (N )}, i.e., the set containing
the initial values of M -variables and the input values of all processes. By definition of
Algorithm C-MAI(D,≺, I), the set of possible values that M -variables can take during
e belong to S. By definition, |S| ≤ 2n (recall that n is the number of process in N ).
Moreover, by definition of our algorithm, ∀i ≥ 0,∀p ∈ V (N ), γi(p).K ∈ S × [0..α]. Now,
|S × [0..α] | ≤ 2n× (α + 1). Consequently, the number of distinct keys any process can
take during e is bounded. So, ∀p ∈ V (N ), λ(p) exists and λ(p) ∈ S × [0..α].

Let IV be the subset of V (N ) such that for every p in IV , p modifies p.K infinitely
often by executing Action ReplaceKey in e. Since e is infinite and V (N ) is finite, IV ̸= ∅.

Let p be a process in IV . Let q be an ancestor of p such that q ∈ IV and λ(q) is
minimum. Since p ∈ Anc(p) ∧ p ∈ IV , IV ∩ Anc(p) ̸= ∅. So, q is well-defined. Since
q ∈ IV , q executes Action ReplaceKey infinitely often and we have the following two
possible cases for λ(q):

• λ(q) = SelfKey(q). Since q ∈ IV , we have the following two facts:
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1. There exist infinitely many configurations γi of e satisfying q.K ← ki with
ki ̸= SelfKey(q) in γi 7→ γi+1. From the algorithm, we can deduce that, in
each of this configurations γi, ∃x ∈ Γ−(q) such that (γi(x).M, γi(x).d+ 1)�
SelfKey(q)∧γi(x).d < α, which implies that γi(x).M ≺ I(q)∧γi(x).d < α.
Hence, the predicate P (q, i) = ∃x ∈ Γ−(q), γi(x).M ≺ I(q) ∧ γi(x).d < α
holds in infinitely many configurations γi of e.

2. There exist infinitely many configurations γj of e such that q.K ← SelfKey(q)
in γj 7→ γj+1. From the algorithm, we can deduce that ∀x ∈ Γ−(q), (γj(x).M, γj(x).d+
1) � SelfKey(q) ∨ γj(x).d ≥ α, which implies that γj(x).M ⪰ I(q) ∨
γj(x).d ≥ α.
Hence, ¬P (q, j) holds in infinitely many configurations γj of e.

Since the number of predecessors of q is finite and the set of possible keys is bounded,
we can deduce from the above two cases that there exists a predecessor x of q such
that x ∈ IV and λ(x)� SelfKey(q) = λ(q). Finally, since x is the predecessor of
q, x ∈ Anc(p). Thus, x ∈ IV, x ∈ Anc(p), and λ(x)� λ(q), a contradiction.

• λ(q) ̸= SelfKey(q). There exist infinitely many configurations γi of e such that
q.K ← λ(q) in γi 7→ γi+1. From the algorithm, in every such a configuration γi, there
exists x ∈ Γ−(q) such that γi(x).K = (λ(q).M, λ(q).d − 1) with λ(q).d − 1 < α.
Since the number of predecessors of q is finite, there exists y ∈ Γ−(q) such that
y.K = (λ(q).M, λ(q).d − 1) ∧ λ(q).d − 1 < α in infinitely many configurations
of e. So, λ(y) � λ(q) and, by definition of q, y ̸∈ IV . Thus, eventually y.K =
(λ(q).M, λ(q).d−1)∧λ(q).d−1 < α forever. From this moment, BestKey(q)�λ(q)
forever and since q ∈ IV , eventually q.K � λ(q) forever. Now, by definition of λ(q),
eventually q.K � λ(q) forever. Hence, eventually q.K = λ(q) forever, implying that
q ̸∈ IV , a contradiction.

From the above two contradictions, we can deduce that every execution is finite and we
are done.

□

3.4 Complexity Analysis
Given an arbitrary network N , we now prove an upper bound on the stabilization time in
rounds of Algorithm C-MAI(D,≺, I) (Theorem 2). To obtain this bound we proceed in two
main steps. First, we show in Lemma 9 that after at most α+1 rounds there is no fake value
anymore in N . Then, Lemma 10 claims that starting from any configuration containing no
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fake value, the system reaches a terminal configuration within at most MAD + 1 rounds.
Hence, from these two lemmas, we immediately obtain the theorem below:

Theorem 2 The stabilization time of Algorithm C-MAI(D,≺, I) is at most α+MAD + 2
rounds.

In the remainder of the section, we consider an arbitrary execution (under the distributed
unfair daemon) e = γ0 . . . γi . . . of C-MAI(D,≺, I) in N . By Lemma 4, e is finite. So, let t
be the index of the last configuration of e.

The next four technical lemmas (Lemmas 5-8) allow to establish Lemma 9, which states
that fake values disappear from N within at most α + 1 rounds. Those lemmas use the
following three definitions:

• Let Fi(p) = {q ∈ Anc(p) | ∀q′ ∈ Anc(q), I(q′) ̸= γi(q).M}, with i ∈ [0..t], be the
set of p’s ancestor holding a fake key in γi.

• LetMdfi(p) = min({γi(q).d | q ∈ Fi(p)} ∪ {∞}), with i ∈ [0..t], be the smallest
distance value stored in a fake key held in γi by an ancestor of p.

Note thatMdfi(p) = ∞ if Fi(p) is empty. Hence,Mdfi(p) is defined as long as
i ∈ [0..t].

• Let Badji (p, q) ≡ q ∈ Fj(p) ∧ γj(q).d =Mdfi(p), with i, j ∈ [0..t] and j ≥ i, be
the property that is true if in configuration γj , the key of the ancestor q of p consists
of a fake value and a distance value d such that d was the smallest distance value
stored in a fake key of an ancestor of p in γi.

The first technical lemma below (Lemma 5) shows that fake values cannot decrease
along e.

Lemma 5 Let p be any process. ∀i ∈ [0..t− 1],Mdfi+1(p) ≥Mdfi(p).

Proof. Assume by contradiction thatMdfi+1(p) <Mdfi(p) for some i ∈ [0..t− 1]. By
definition, ∃q ∈ Fi+1(q) such that γi+1(q).d =Mdfi+1(p). We have two cases during the
step γi 7→ γi+1:

• q does not move, hence γi(q).K = γi+1(q).K. So, Mdfi+1(p) = γi+1(q).d =
γi(q).d ≥Mdfi(p), a contradiction.

• q moves, and we have two subcases:

1. γi+1(q).K = SelfKey(q) so q ̸∈ Fi+1(p), a contradiction.
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2. γi+1(q).K = (γi(q
′).M, γi(q

′).d + 1) such that q′ ∈ Γ−(q) and we have two
possibilities:

– q′ ̸∈ Fi(p), so q ̸∈ Fi+1(p), a contradiction.
– q′ ∈ Fi(p), so γi+1(q).d = γi(q

′).d+1. By definition, γi(q′).d ≥Mdfi(p)
thus γi+1(q).d = γi(q

′).d+ 1 >Mdfi(p) >Mdfi+1(p). So, γi+1(q).d ̸=
Mdfi+1(p), a contradiction.

□

Lemma 6 below claims that if two processes p and q verify the property Badji (p, q) for
some i, j ∈ [0..t] such that j ≥ i, then we can conclude that q is enabled in γj .

Lemma 6 Let i, j ∈ [0..t] such that j ≥ i. Let p, q be two processes. If Badji (p, q), then
q ∈ Enabled(γj).

Proof. Let i, j ∈ [0..t] such that j ≥ i. Let p and q be two processes such that Badji (p, q).
We have the following two claims:

Claim 1: γj(q).K ̸= SelfKey(q).

Proof of the claim: Since Badji (p, q), q ∈ Fj(p), so γj(q).M ̸= I(q). Consequently,
γj(q).K ̸= SelfKey(q).

Claim 2: ∀q′ ∈ Γ−(q), γj(q).K ̸= (γj(q
′).M, γj(q

′).d+ 1).

Proof of the claim: Let q′ ∈ Γ−(q):

• If q′ ̸∈ Fj(p), then γj(q).M ̸= γj(q
′).M . Consequently, γj(q).K ̸= (γj(q

′).M, γj(q
′).d+

1).

• If q′ ∈ Fj(p), then by definition, γj(q′).d ≥ Mdfj(p). By Lemma 5,Mdfj(p) ≥
Mdfi(p). Moreover, since Badji (p, q) then, γj(q).d = Mdfi(p). Thus, γj(q).d <
Mdfi(p) + 1 ≤Mdfj(p) + 1 ≤ γj(q

′).d+ 1. Consequently, γj(q).d ̸= γj(q
′).d+ 1.

Hence, γj(q).K ̸= (γj(q
′).M, γj(q

′).d+ 1).

By Claims 1 and 2, γj(q).K ̸= BestKeyj(q). Hence, q ∈ Enabled(γj).
□

Lemma 7 below states that if Badji (p, q) is verified by a process p and its ancestor q,
and q moves during γj 7→ γj+1, then Badj+1

i (p, q) is false.
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Lemma 7 Let p be any process. ∀i, j ∈ [0..t− 1] such that j ≥ i,∀q ∈ Anc(p), if q moves
during γj 7→ γj+1, then ¬Badj+1

i (p, q).

Proof. Let i, j ∈ [0..t − 1] such that j ≥ i. By definition, if q moves, we have two
possibilities:

• γj+1(q).K = SelfKey(q) so q ̸∈ Fj+1(p) and consequently ¬Badj+1
i (p, q).

• ∃q′ ∈ Γ−(q), γj+1(q).K = (γj(q
′).M, γj(q

′).d+ 1) and we have two subcases:

1. q′ ̸∈ Fj(p). So q ̸∈ Fj+1(p). Consequently ¬Badj+1
i (p, q).

2. q′ ∈ Fj(p). By definition γj(q
′).d ≥ Mdfj(p) and Mdfj(p) ≥ Mdfi(p),

by Lemma 5. Thus, γj(q′).d + 1 > Mdfi(p), and so γj+1(q).d > Mdfi(p).
Consequently, ¬Badj+1

i (p, q).

Hence, in either cases, Badj+1
i (p, q) is false if q moves during γj 7→ γj+1.

□

Below, we show that Properties¬Badji (p, q) are closed under steps of Algorithm C-MAI(D,≺
, I).

Lemma 8 Let p be any process. ∀i, j ∈ [0..t − 1] such that j ≥ i, ∀q ∈ Anc(p), if
¬Badji (p, q), then ¬Badj+1

i (p, q).

Proof. Let i, j ∈ [0..t− 1] such that j ≥ i. Let p be a process and q ∈ Anc(p). Assume
¬Badji (p, q). We have two cases:

• q moves during the step γj 7→ γj+1 and ¬Badj+1
i (p, q), by Lemma 7.

• q does not move during the step γj 7→ γj+1 and we have two subcases:

1. q ̸∈ Fj(q). Then, q ̸∈ Fj+1(q), and so ¬Badj+1
i (p, q).

2. q ∈ Fj(q) ∧ γj(q).d >Mdfi(p). Then, γj+1(q).d = γj(q).d >Mdfi(p), and
consequently ¬Badj+1

i (p, q).

Hence, in either cases, if ¬Badji (p, q) holds, then ¬Badj+1
i (p, q) holds too.

□

Recall that e is finite in terms of steps (Lemma 4), so any round in e is finite. Let
R : N 7→ N be a function such that ∀i ∈ N:
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• R(i) = 0 if i = 0;

• R(i) = j, where γj is the last configuration of the ith round of e, otherwise.

Using the previous four technical lemmas, we now demonstrate that all fake values
vanish from the network N within at most α + 1 rounds.

Lemma 9 From any initial configuration, in at most α+ 1 rounds there is no fake value in
N .

Proof.
Let p ∈ V (N ). We first prove by induction on i that ∀i ∈ N,MdfR(i)(p) ≥ i.

Base Case: γR(0) = γ0. Now, by definitionMdfR(0)(p) =Mdf0(p) ≥ 0.

Induction Step: If ∃x ∈ [R(j)..R(j + 1)],Mdfx(p) ≥ j + 1, then, by Lemma 5,
MdfR(j+1)(p) ≥ j + 1.

Assume now, by contradiction, that ∀x ∈ [R(j)..R(j + 1)],Mdfx(p) < j + 1. Thus,
Mdfx(p) ≤ j. By induction hypothesis, MdfR(j)(p) ≥ j. So, by Lemma 5, ∀x ∈
[R(j)..R(j + 1)],Mdfx(p) ≥ j. Consequently, ∀x ∈ [R(j)..R(j + 1)],Mdfx(p) = j.

Let q ∈ Anc(p) and consider the following two cases:

• ∃x ∈ [R(j)..R(j + 1)],¬Badxj (p, q). By Lemma 8, ¬BadR(j+1)
j (p, q).

• ∀x ∈ [R(j)..R(j + 1)],Badxj (p, q). By Lemma 6, q ∈ Enabled(γx) for any x
in [R(j)..R(j + 1)], i.e., q is continuously enabled during a complete round. By
definition of a round, ∃y ∈ [R(j)..R(j + 1)− 1], such that q moves during the step
γy 7→ γy+1. By Lemma 7, ¬Bady+1

j (p, q), a contradiction. So, this case is impossible.

Hence, ∀q ∈ Anc(p),¬BadR(j+1)
j (p, q). Consequently,Mdf

R(j+1)
j (p) ̸= j, a contra-

diction. Thus, the induction holds.
By letting i = α+1, we obtain thatMdfR(α+1)q(p) ≥ α+1 from the previous induction.

Now, sinceMdfi(p) ∈ [0..α]∪ {∞},MdfR(α+1)(p) =∞ necessarily. Consequently, after
α + 1 rounds from initial configuration, there is no fake value at p’s ancestors forever, by
Lemma 5. As p is an arbitrary process, the theorem follows.

□

We now conclude the complexity analysis by showing that the system reaches a terminal
configuration within MAD + 1 rounds from any configuration containing no fake value.

Beforehand, we should observe that each time a process p modifies its key, either p sets
p.M to I(p) or to q.M with q ∈ Γ−(p). Hence, follows.
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Remark 1 The set of configurations containing no fake value is closed, i.e., for every step
γ 7→ γ′ of Algorithm C-MAI(D,≺, I), if γ contains no fake value, then so is γ′.

Lemma 10 The system reaches a terminal configuration within at most MAD + 1 rounds
from any configuration containing no fake value.

Proof. Assume the first configuration γ0 of the execution e = γ0 . . . γi . . . contains no fake
value. We first prove by induction on i that ∀i ∈ N∗,∀p ∈ V (N ), at the end of the ith

round of e:

• If MinI(p) < i, then p.K = (MinI(p),Mind(p)) forever,

• p.K � (MinI(p), i) forever, otherwise.

Base Case: i = 1.

• Let p ∈ V (N ) such that Mind(p) = 0. By definition, MinI(p) = I(p). Let j ≥ 0.
Since there is no fake value at all (by Remark 1), BestKeyj(p) = SelfKey(p) =
(I(p), 0) = (MinI(p),Mind(p)). Then, we have the following three claims for
γj(p).K:

1. If γj(p).K is already equal to SelfKey(p), then ∀l ≥ j, γl(p).K = SelfKey(p).

2. If γj(p).K is not equal to SelfKey(p), then γj(p).K ̸= BestKeyj(p). Hence,
p is enabled in γj .

3. By Algorithm C-MAI(D,≺, I), if p moves during γj 7→ γj+1, then γj+1(p).K ←
BestKeyj(p) = SelfKey(p).

By Claims 1-3 and the definition of round, ∀j ≥ R(1), γj(p).K = SelfKey(p) =
(MinI(p),Mind(p)).

• Let p ∈ V (N ) such that Mind(p) ≥ 1. Let j ≥ 0. Since there is no fake value
at all (by Remark 1), ∀q ∈ Γ−(p), γj(q).M ⪰ MinI(p). So, (γj(q).M, γj(q).d +
1) � (MinI(p), 1). Moreover, Mind(p) ≥ 1 implies that I(p) ≻ MinI(p). Thus,
SelfKey(p)� (MinI(p), 1). Hence, BestKeyj(p)� (MinI(p), 1).

Then, we have two cases:

1. p performs at least one action during the round, say during γℓ 7→ γℓ+1. By
definition of Algorithm C-MAI(D,≺, I), p.K ← BestKeyℓ(p). So, from γℓ+1,
q.K � (MinI(p), 1) forever.
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2. p does not perform any action during the round and we have two subcases :

– ∃ℓ ∈ [0..R(1)] such that γℓ+1(p).K = BestKeyℓ(p) and we are done.
– Otherwise, p is continuously enabled during the round without executing
ReplaceKey, a contradiction: this case is impossible.

Induction Step:

• Let p ∈ V (N ) such that Mind(p) < i + 1. If Mind(p) < i, then we are done by
induction hypothesis. Assume now that Mind(p) = i. Let j ≥ R(i). We have the
following three facts:

1. ∃q ∈ Γ−(p) such that MinI(q) = MinI(p) and Mind(q) = Mind(p) −
1 < i. So, by induction hypothesis, γj(q).K = (MinI(q),Mind(q)) =
(MinI(p),Mind(p)− 1).

2. Since Mind(p) = i > 0, I(p) ≻ MinI(p), which implies SelfKey(p) �
(MinI(p),Mind(p)).

3. ∀q′ ∈ Γ−(p), q′ satisfies one of the following two cases:

– MinI(q′) = MinI(p). Then, by definition, Mind(q′) ≥Mind(p)− 1 =
i− 1. Then, we have two subcases:

* Mind(q′) = i−1. By induction hypothesis, γj(q′).K = (MinI(q′),Mind(q′)) =
(MinI(p), i− 1).

* Mind(q′) ≥ i. By induction hypothesis, γj(q′).K � (MinI(q′), i) =
(MinI(p), i).

– MinI(q′) ̸= MinI(p). Then, since q′ ∈ Γ−(p), MinI(q′) ≻MinI(p) by
definition. Since there is no fake value at all (by Remark 1), γj(q′).M ⪰
MinI(q′) ≻MinI(p). Hence, γj(q′).K � (MinI(p), i− 1).

Overall, γj(q′).K � (MinI(p), i− 1) = (MinI(p),Mind(p)− 1).

By Claims 1-3, BestKeyj(p) = (MinI(p),Mind(p)). Hence, as previously we can
deduce that p.K = (MinI(p),Mind(p)) forever at the end of the i+ 1th round.

• Let p ∈ V (N ) such that Mind(p) ≥ i+ 1. We have the following two facts:

1. Since Mind(p) > 1, I(p) ≻MinI(p). So, SelfKey(p)� (MinI(p), i+ 1).

2. Let j ≥ R(i). Let q ∈ Γ−(p), we have the following two cases:
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– MinI(q) = MinI(p). Then, Mind(q) ≥ i by definition. By induction
hypothesis, γj(q).K � (MinI(q), i) = (MinI(p), i).

– MinI(q) ̸= MinI(p). By definition, MinI(q) ≻ MinI(p). Thus, since
there is no fake value at all (by Remark 1), γj(q).K � (MinI(p), i).

Overall, the two previous facts imply that BestKeyj(p)� (MinI(p), i+ 1).

Hence, as previously, we can deduce that p.K � (MinI(p), i+ 1) forever at the end
of the i+ 1th round and the induction holds.

By letting i = MAD + 1, the lemma follows from the previous induction since
MinI(p) < MAD + 1, ∀p ∈ V (N ).

□

4 Leader Election
In this section, we propose a necessary and sufficient condition for solving the self-
stabilizing leader election in any directed identified network where all processes know a
common upper bound α on MAD. Recall that the sufficient part consists in a silent
self-stabilizing algorithm built as a composition of three different instances of Algo-
rithm C-MAI(D,≺, I).

4.1 The Problem
In an identified network N , the public leader election problem, leader election for short,
consists in making processes agree on a unique process identifier. Thus, this problem can
be specified using a (local) function L : V (N ) → IDSET such that L(p) returns the
identifier of the leader appointed by process p in the current configuration. An execution
e = γ0 . . . γi . . . satisfies the specification of the leader election, denoted by SPL, if:

1. in γ0, ∀p, q ∈ V (N ),L(p) = L(q), i.e., all processes agree on the same identifier;

2. in γ0, ∃q ∈ V (N ) such that L(q) = q.Id, i.e., the chosen identifier is held by some
process; and

3. ∀i ≥ 0,∀p ∈ V (N ), if γi is not terminal, then the value of L(p) is the same in γi and
γi+1, i.e., the designated leader is final.

27



Notice that in the case of a silent self-stabilizing leader election algorithm, the partial
correctness property has only to check that in a terminal configuration all processes agree
on the same identifier and the chosen identifier is held by some process (more formally,
∃ℓ ∈ V (N ) such that ∀p ∈ V (N ),L(p) = ℓ.Id). Indeed, the fact that the designated
leader is final is trivial in a terminal configuration.

4.2 Necessary Condition
We now propose a topology-based necessary condition for solving the self-stabilizing
leader election. This condition claims that the network N should have exactly one source
component; see Section 2 for the definition. Intuitively, processes in a source component
cannot learn any identifier of processes outside the component. Consequently, they neces-
sarily elect a process inside their component (Lemma 13). Hence, with at least two source
components, we cannot have the uniqueness of the leader (Corollary 2).

Let X be a subset of processes. In the following, we denote by γ|X the projection of
the configuration γ onto X . Let e be a sequence of configurations. We define the infinite
extension of e, Ext∞(e), as follows:

• Ext∞(e) = e if e is infinite;

• Ext∞(e) = eγω, where γ is the last configuration of e, otherwise.

The infinite extension consists then in extending any finite execution with an infinite suffix
only made of its terminal configuration.

Lemma 11 Let e = γ0 . . . γi . . . be a sequence of configurations. SPL(e) ≡ SPL(Ext∞(e)).

Proof. Since e and Ext∞(e) begin with the same configuration, e satisfies the first two
points of the definition of SPL if and only if Ext∞(e) does. Moreover, since e is a prefix
of Ext∞(e) and contains all non-terminal configurations of Ext∞(e), e satisfies the third
point if and only if Ext∞(e) does. □

The lemma below is inspired from Lemma 2.2 in [ACDD23].

Lemma 12 Let A be a deterministic distributed algorithm. Let SC be any source compo-
nent of N . Let γ0 . . . γi . . . be the infinite extension of a synchronous execution of A in N .
Let π0 . . . πi . . . be the infinite extension of a synchronous execution of A in N that starts
from any configuration π0 satisfying π0|V (SC) = γ0|V (SC). We have πi|V (SC) = γi|V (SC),
∀i ∈ N.
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Proof. By induction on i. The base case i = 0 is trivial by definition of π0. Let
i ∈ N. Assume that πi|V (SC) = γi|V (SC). Let p ∈ V (SC). We have πi(p) = γi(p).
Moreover, ∀q ∈ Γ−(p), q ∈ V (SC), by definition of source component. So, πi(q) = γi(q).
Thus, p ∈ Enabled(πi) ⇔ p ∈ Enabled(γi). Hence, πi+1(p) = γi+1(p) since A is
deterministic and the two considered executions are synchronous. We can then conclude
that πi+1|V (SC) = γi+1|V (SC) and we are done. □

Lemma 13 Let A be a self-stabilizing algorithm for the leader election in N under the
synchronous daemon. Let γ be a legitimate configuration of A in N . Let SC be any source
component of N . The leader ℓ in γ necessarily belongs to SC.

Proof. Assume, by contradiction, that ℓ /∈ V (SC). Let id = γ(ℓ).Id be the value of
the ℓ’s identifier in γ. Let γ0(= γ) . . . γi . . . be the infinite extension of a synchronous
execution e of A in N that starts from γ. Since γ is legitimate, e verifies SPL. From
SPL and by definition of infinite extension, we have ∀p ∈ V (N ), ∀i ∈ N,L(p) = id in
γi. Let id′ be any value in IDSET \ {γ(p).Id | p ∈ V (N )} ( n.b., id′ is well-defined
since |IDSET | > |V (N )|, by hypothesis). Let π be a configuration where ℓ.id = id′ and
π|SC = γ|SC . Notice that π is well-defined since ℓ /∈ V (SC). Moreover, the uniqueness
of identifiers is preserved since, by definition of id′, ∀p ∈ V (N ) \ {ℓ}, p.Id ̸= id′ in
π. Let IDSSC be the set of identifiers of processes in V (SC) in π. Consider now, the
infinite extension π0(= π) . . . πi . . . of the synchronous execution e′ of A in N that starts
from π. By Lemma 12, we have ∀i ∈ N, πi|V (SC) = γi|V (SC). So, ∀p ∈ V (SC), ∀i ∈ N,
L(p) = id /∈ IDSSC in πi. Since |V (N )| ≥ 1 (by hypothesis), V (SC) ̸= ∅ and so no
suffix of π0 . . . πi . . . satisfies SPL. By Lemma 11, e′ is a synchronous execution of A in
N where no suffix satisfies SPL. Since A should be insensitive to its inputs, A is then not
self-stabilizing for the leader election in N under the synchronous daemon, a contradiction.
□

By definition, each process belongs to exactly one strongly connected component, so
we have the following corollary:

Corollary 2 Assuming unique process identifiers and the common knowledge of an upper
bound α on MAD, an algorithm is self-stabilizing for leader election in N under the
synchronous daemon only if N contains exactly one source component.

4.3 The Algorithm
Our leader election algorithm is denoted by PEL. According to Corollary 2, it assumes the
network N has exactly one source component. Algorithm PEL is a hierarchical collateral

29



composition of the three instances of Algorithm C-MAI presented below. In the sequel, for
the sake of clarity, we denote by p.X.v the variable named v at process p in Instance X. We
also denote by mid the smallest identifier of a process in the unique source component
SC, i.e., mid = min{q.Id | q ∈ V (SC)} (mid is well-defined since n ≥ 1 implies that
V (SC) ̸= ∅). The leader identifier computed by PEL will be mid.

1. The first instance MI = C-MAI(IDSET,<I , IMI) computes at each process the mini-
mum identifier of its ancestors, where IMI : V (N )→ IDSET returns IMI(p) = p.Id
for each process p. An example of output identifiers (i.e., the M -variables of MI)
computed by MI is given in Configuration (a) of Figure 5.

By definition, the output identifier of every process in SC will be mid (Corollary 4).

2. The second instance A = C-MAI(B = {0, 1}, <, IA) evaluates at each process whether
the process computed the same output identifier in MI as its ancestors.

This instance uses the input function IA : V (N ) → B that evaluates whether the
process computed the same output identifier in the first instance as its predecessors,
i.e., IA(p) = (∀q ∈ Γ−(p) | q.MI.M = p.MI.M).

In this instance, the boolean output (i.e., the M -variable) of a process will be 1 if
and only if the identifier computed by the process in MI is mid (Lemma 14). Indeed,
since the source component SC is unique, each process has at least one ancestor
(maybe itself) in SC. So, if the output identifier of some process p in MI is not
mid, then there is a path from a process of SC to p containing at least one process q
whose output identifier in MI stabilizes to an identifier different from that computed
by one of its predecessors. So, eventually IA(q) = 0 forever and, consequently, the
boolean output computed by p in A will be 0. Otherwise, all p’s ancestors (including
p) eventually agree on mid and the boolean output computed by p in A will be 1. An
example of boolean output computed by A (i.e., the M -variables of A) is given in
Configuration (b) of Figure 5.

3. The third and last instance E = C-MAI(B × IDSET,<C , IE) computes the leader
identifier.

The input of this instance is a couple in B × IDSET made of the negation of the
boolean output of A and the output identifier of MI. Thus, IE : V (N )→ B×IDSET
returns (p.A.M, p.MI.M) for each process p. Moreover, <C is the lexicographic order
onB×IDSET , i.e., ∀(a, b), (c, d) ∈ B×IDSET, (a, b) <C (c, d) ≡ [a < c∨(a =
c ∧ b <I d)].

By flipping the bit p.A.M , we have the guarantee that each process p eventually
forever satisfies IE(p) = (0, id) if and only if id = mid (Lemma 15). In particular,
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every process q in the source component SC will eventually forever satisfy IE(q) =
(0,mid), which is minimum. Now, every process has at least one ancestor in SC, by
definition. Consequently, the output couple (i.e., the M -variable of E) of the instance
will be identical for all processes: (0,mid); see Configuration (c) in Figure 5 for an
illustrative example.

For each process p, we denote by p.E.M.L (resp. p.E.M.R) the left (resp. right)
member of the output couple p.E.M . Hence, in the terminal configuration, for every
process p, the identifier of the elected leader will be p.E.M.R, i.e., L(p) = p.E.M.R.

Thus, we let PEL = E ◦ A ◦ MI.

Figure 5: Configurations (a), (b), and (c) respectively show values of the inputs and M -
outputs of MI, A, and E in a terminal configuration of PEL. Red rounded rectangles delimit
strongly connected components. For each configuration, the input and M -output of each
process are given inside the corresponding circle, respectively at the top and the bottom.

4.4 Proof of Silent Self-stabilization and Complexity Analysis
We now establish Theorem 3 below. To prove this theorem, we should first show the
silent self-stabilization of Algorithm PEL. This property can be split into termination and
partial correctness. Termination is immediate from Lemma 1 (page 11) and Theorem 1
(page 17). The partial correctness will be stated by Lemma 15. We should then conclude
with the stabilization time in rounds of Algorithm PEL. This latter is direct from Corollary 1
(page 11) and Theorem 2 (page 21).
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Theorem 3 Assuming unique process identifiers and the common knowledge of an upper
bound α on MAD, in any directed network N with a unique source component, Algorithm
PEL is silent self-stabilizing under the distributed unfair daemon for the leader election. Its
stabilization time is at most 3α + 3MAD + 6 rounds.

From the above theorem and Corollary 2, we immediately obtain the following necessary
and sufficient condition for solving the leader election in our settings.

Corollary 3 Assuming unique process identifiers and the common knowledge of an upper
bound α on MAD, there exists a silent self-stabilizing algorithm under the distributed
unfair daemon (resp., the synchronous daemon) for the leader election in a directed network
N if and only if N contains exactly one source component.

Partial Correctness. From now on, we consider any network N with a unique source
component. Recall that mid = min{q.Id | q ∈ V (SC)}. Let γt be any terminal configura-
tion of PEL. By definition, we have:

Remark 2 γt|MI, γt|A, and γt|E are terminal configurations of MI, A, and E, respectively.

By definition of MI, Theorem 1 (page 17), and Remark 2, we have:

Corollary 4 ∀p ∈ V (SC), γt(p).MI.M = mid.

Lemma 14 ∀p ∈ V (N ), γt(p).A.M = 1 if and only if γt(p).MI.M = mid.

Proof. Let p ∈ V (N ).

If Part. By Remark 2, Definition of A, and Theorem 1 (page 17), in γt, if p.A.M = 1,
then ∀q ∈ Anc(p), IA(q) = 1, which implies that ∀x ∈ Γ−(q), x.MI.M = q.MI.M .
By transitivity, we have ∀q ∈ Anc(p), γt(q).MI.M = γt(p).MI.M . By definition,
V (SC) ∩ Anc(p) ̸= ∅. Consequently, by Corollary 4, ∃y ∈ Anc(p), γt(y).MI.M =
mid. Hence, γt(p).MI.M = mid.

Only If Part. Let q ∈ Anc(p). By Theorem 1, Remark 2, and definition of A, γt(q).MI.M ≥I

γt(p).MI.M = mid. By definition, V (SC) ⊆ Anc(q) and V (SC) ̸= ∅. Conse-
quently, by definition of mid, Remark 2, and Theorem 1, γt(q).MI.M ≤I mid. So,
γt(q).MI.M = mid. Thus, ∀x ∈ Anc(p), γt(x).MI.M = mid, which implies that
∀x ∈ Anc(p),∀y ∈ Γ−(x), γt(y).MI.M = γt(x).MI.M , i.e., IA(x) = 1 in γt. Hence,
by definition of A, Remark 2, and Theorem 1, γt(p).A.M = 1.
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□

Lemma 15 ∀p ∈ V (N ), γt(p).E.M = (0,mid), i.e., L(p) = mid in γt.

Proof. Let p ∈ V (N ). By definition, V (SC) ∩ Anc(p) ̸= ∅. Let q ∈ V (SC) ∩ Anc(p).
By Corollary 4, Lemma 14, and definition of E, in γt, we have IE(q) = (q.A.M, q.MI.M) =
(0,mid). Moreover, ∀x ∈ Anc(p), in γt, IE(x) = (x.A.M, x.MI.M) ≥C (0,mid), by
Lemma 14 and definition of E. Hence, by Remark 2, Theorem 1, and definition of E,
γt(p).E.M = (0,mid). □

5 Synchronous Unison
In this section, we propose a necessary and sufficient condition for solving the self-
stabilizing synchronous unison in any directed identified network where all processes
know a common upper bound α on MAD. Namely, the communication network should
contain exactly one source component. Notice that the definition of this problem itself
requires to assume a synchronous daemon. For the sufficient part of the condition, we
propose an algorithm which uses our leader election algorithm, PEL, as basic building
block.

5.1 The Problem
In [ADG91], Arora et al. define the synchronous unison as follows. Each process is
endowed with a bounded integer variable, called its clock, whose domain is [0..K − 1],
where K is a positive integer greater than 1 and called its period. An execution e satisfies
the synchronous unison specification SPSU if the following two properties hold:

• In every configuration of e, all clocks have the same value (safety).

• All clocks are incremented modulo K at each round (liveness).

5.2 Necessary Condition
The necessary part of the condition has been already proven in [ACDD23]. Actually,
in [ACDD23] networks are assumed to be anonymous, but in the paper it is also highlighted
that the proposed proof still holds in identified networks since based on the fact that
processes in two distinct source components cannot, even indirectly, communicate and so
coordinate to agree on a common clock value. Of course, this claim remains true when
processes also agree on a common value α. Hence, follows:
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Theorem 4 Assuming unique process identifiers and the common knowledge of an upper
bound α on MAD, an algorithm is self-stabilizing for the synchronous unison in N under
the synchronous daemon only if N contains exactly one source component.

Below, we focus on the sufficient part. Precisely, we present a self-stabilizing syn-
chronous unison algorithm built as a composition of PEL and a unison algorithm for dags
(directed acyclic graphs) with a unique source.

5.3 The Algorithm
In PEL, processes do not only compute the leader identifier, but also their distance from
the elected leader ℓ. As a by-product, those distances exhibit a dag whose single source
is ℓ. More precisely, in a terminal configuration of PEL, an arc (q, p) of the network
belongs to the dag if and only if q ∈ Γ−(p) ∧ q.E.d < p.E.d (i.e., ∥ℓ, q∥ < ∥ℓ, p∥); see
Figure 6 for an illustrative example. So, to obtain a synchronous unison, we make clocks
of all processes converge to the clock value of ℓ by broadcasting it along the dag using
Algorithm U-DAG(K) whose code is given in Algorithm 2. Overall, our self-stabilizing
synchronous unison algorithm U(K) is then defined as U(K) = U-DAG(K) ◦ PEL where
K is any integer satisfying K > 1. In more detail, once PEL has terminated, the leader ℓ
(the only process satisfying E.d = 0) increments its clock modulo K at each synchronous
step; see Macro NextV alue(p). Furthermore, at each synchronous step, each other process
updates its clock to (c+ 1) mod K, where c is the minimal value among the clocks of its
predecessors in the dag; see Macros V alues(p)4 and NextV alue(p). A sample execution
of U(K) starting from a terminal configuration of PEL is given in Figure 7.

5.4 Proof of Self-stabilization and Complexity Analysis
In this subsection, we assume a synchronous daemon and demonstrate the self-stabilization
of U(K) for the synchronous unison problem in any directed networkN containing a unique
source component (Theorem 5). To obtain this result, we prove the partial correctness and
convergence properties in Lemma 16 and Corollary 6, respectively. In Corollary 6, we also
establish that the stabilization time of U(K) is at most 3α+ 4MAD + 6. Theorem 5 below
is immediate from those intermediate results.

Theorem 5 Assuming unique process identifiers, the common knowledge of an upper
bound α on MAD, and a synchronous daemon, Algorithm U(K) (with K > 1) is a self-
stabilizing synchronous unison algorithm in any directed network N with a unique source
component. Its stabilization time is at most 3α + 4MAD + 6 synchronous rounds.

4We artificially add Value K − 1 to V alues(p) to ensure the set is never empty.
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Algorithm 2: Algorithm U-DAG(K), code for any process p.
Inputs:
Γ−(p) : the set of p’s predecessors
p.E.d : the distance computed by E

Variable:
p.Clock ∈ [0..K − 1] : the clock of p

Macros:
V alues(p) = {q.Clock | q ∈ Γ−(p) ∧ q.E.d < p.E.d} ∪ {K − 1}
NextV alue(p) = if p.E.d = 0 then (p.Clock + 1) mod K

else (min(V alues(p)) + 1) mod K

Action:
Incr :: p.Clock ̸= NextV alue(p) → p.Clock ← NextV alue(p)

Figure 6: Distance values computed by E in the example of terminal configuration given in
Figure 5. Inside each circle, we give the value of Variable E.d. The bold red circle indicates
the chosen leader. The implicit DAG computed by PEL is exhibited with the bold red arcs.
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Figure 7: Sample of execution of U-DAG(4). For each configuration, the distance and clock
value of each process are given inside the corresponding circle, respectively at the top and
the bottom. The bold red circle indicates the leader. The implicit DAG computed by PEL is
exhibited by the bold red arcs.
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From Theorems 4 and 5, we immediately obtain the following necessary and sufficient
condition for solving the synchronous unison in our settings.

Corollary 5 Assuming unique process identifiers and the common knowledge of an upper
bound α on MAD, there exists a self-stabilizing algorithm under the synchronous daemon
for the synchronous unison problem in a directed network N if and only if N contains
exactly one source component.

To prove Theorem 5, we first need to define the legitimate configurations of U(K).

Definition 4 A configuration γ of U(K) in the network N is legitimate if:

• γ is terminal for PEL and

• ∃c ∈ [0..K − 1] such that ∀p ∈ V (N ), γ(p).Clock = c.

The lemma below establishes the partial correctness property.

Lemma 16 Every synchronous execution of U(K) in the network N starting from a legiti-
mate configuration satisfies SPSU .

Proof. Let γ be any legitimate configuration. By definition, no action of PEL is enabled in
γ. So, from the definition of the composition, follows:

Claim 1: A process p is enabled for U(K) in γ if and only if it is enabled for U-DAG(K) in
γ, i.e., if and only if p.Clock ̸= NextV alue(p) in γ.

Moreover, the following claim is direct from the definition of legitimate configurations:

Claim 2: ∃c ∈ [0..K − 1] such that ∀p ∈ V (N ), γ(p).Clock = c.

Finally, we have

Claim 3: In γ, every process p satisfies NextV alue(p) = (p.Clock + 1) mod K ̸=
p.Clock.

Proof of the Claim: Let p be any process. If γ(p).E.d = 0, then in γ, NextV alue(p) =
(p.Clock + 1) mod K ̸= p.Clock since K > 1.

Otherwise, by Theorem 3, there exists a unique process ℓ such that ∀v ∈ V (N ),L(v) =
ℓ.Id in γ, i.e., γ(v).E.M = (0, ℓ.Id). Moreover, ∀v ∈ V (N ), γ(v).E.d = ∥ℓ, v∥ by
Theorem 1. Since γ(p).E.d > 0, there exists q ∈ Γ−(p) such that γ(q).E.d = ∥ℓ, q∥ =
∥ℓ, p∥ − 1. Hence, in γ, we have {q.Clock | q ∈ Γ−(p) ∧ q.E.d < p.E.d} ≠ ∅. By
Claim 2 and owing the fact that K > 1, we can conclude that NextV alue(p) =
(p.Clock + 1) mod K ̸= p.Clock.
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By Claims 1 and 3, all processes are enabled and increment their clock to the same value in
the following synchronous step. Thus, the configuration γ′ reached from γ is still legitimate.
Indeed, γ′ is terminal for PEL, since U-DAG(K) does not write into PEL’s variables, and all
processes have the same clock value in γ′. Hence, inductively all requirements SPSU hold,
and we are done. □

We now prove the convergence of U(K) (Corollary 6). To show this property, we
propose the ad hoc proof below, indeed we cannot use Lemma 1 or Corollary 1 since
U-DAG(K) is not silent.

Lemma 17 No configuration of U(K) in N is terminal.

Proof. Let γ be a configuration of U(K) in N , we have two cases:

Case 1: γ|PEL is not terminal for PEL.

Since any action of PEL exists, and is not modified, in U(K), γ is not terminal for
U(K).

Case 2: γ|PEL is terminal for PEL.

By definition, γ|E is terminal for E. By Theorem 1, ∃p ∈ V (N ), γ(p).E.d = 0. In
this case, we have p.Clock ̸= NextV alue(p) (since K > 1) and consequently p is
enabled in γ: γ is not terminal for U(K).

□

From the previous lemma, we know that every execution of U(K) in N is infinite. So,
let us now consider an arbitrary synchronous infinite execution e = γ0 . . . γi . . . of U(K) in
N .

Lemma 18 ∃i ≤ 3α + 3MAD + 6 such that γi|PEL is terminal for PEL.

Proof. Let γj be an arbitrary configuration of e. Assume that γj|PEL is not terminal for PEL.
We have the following three facts:

1. Every action of PEL exists, and is not modified, in U(K).

2. If a process is enabled for PEL, it will execute PEL in the next step by definition of
the composition and owing the fact that the daemon is synchronous.

3. U-DAG(K) does not write into variables of PEL.
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From those three facts, we can deduce that γj|PEL 7→ γj+1|PEL is a synchronous step of PEL
and by Theorem 3, we are done. □

Definition 5 ∀η ∈ N, we let PseudoLeg(η) be the set of configurations γ such that:

1. γ|PEL is terminal for PEL and

2. ∃c ∈ [0..K − 1] such that ∀p ∈ V (N ), ∥ℓ, p∥ ≤ η ⇒ γ(p).Clock = c, where ℓ is
the leader in γ (ℓ exists by Theorem 1).

Remark 3 Every configuration γ such that γ|PEL is terminal for PEL belongs to PseudoLeg(0).
∀i ∈ N∗, PseudoLeg(i) ⊆ PseudoLeg(i − 1). Since the elected leader ℓ necessar-
ily belongs to the (unique) source component (cf., Lemma 12), for every process p,
∥ℓ, p∥ ≤MAD and so ∀i ≥MAD,∀γ ∈ C, γ ∈ PseudoLeg(i)⇔ γ is legitimate.

Lemma 19 Let γi be a configuration of e such that γi|PEL is terminal for PEL. γi+MAD|PEL
is legitimate.

Proof. Let γi be a configuration of e such that γi|PEL is terminal for PEL. Since, U-DAG(K)
does not write into PEL’s variables, ∀j ≥ i, γj|PEL is terminal for PEL. By Theorem 3,
there exists a unique process ℓ such that ∀j ≥ i, ∀p ∈ V (N ),L(p) = ℓ.Id in γj , i.e.,
γj(p).E.M = (0, ℓ.Id). Moreover, ∀j ≥ i, ∀p ∈ V (N ), γj(p).E.d = ∥ℓ, p∥ by Theorem 1.
We now show by induction on j that ∀j ∈ N, γi+j ∈ PseudoLeg(j).

Base case: γi ∈ PseudoLeg(0) by Remark 3.

Induction step: Assume that γi+j ∈ PseudoLeg(j) from some j ∈ N. By definition
of PseudoLeg(j), ∃c ∈ [0..K − 1] such that for every process p satisfying ∥ℓ, p∥ ≤ j, we
have γi+j(p).Clock = c. Let p be a process such that ∥ℓ, p∥ ≤ j + 1. We have two cases:

∥ℓ, p∥ = 0: Then, p = ℓ and γi+j(p).E.d = ∥ℓ, p∥ = 0. So, in γi+j , NextV alue(p) =
(ℓ.clock + 1) mod K = (c + 1) mod K, by induction hypothesis. Consequently,
γi+j+1(p).Clock = (c+ 1) mod K.

∥ℓ, p∥ > 0: By definition, ∃q ∈ Γ−(p) such that ∥ℓ, q∥ = ∥ℓ, p∥−1 = j. Now, γi+j(q).E.d =
∥ℓ, q∥ < ∥ℓ, p∥ = γi+j(p).E.d. Hence, in γi+j , {q.Clock | q ∈ Γ−(p) ∧ q.E.d <
p.E.d} ̸= ∅. Moreover, ∀q ∈ Γ−(p) such that γi+j(q).E.d < γi+j(p).E.d, we have
γi+j(q).E.d = ∥ℓ, q∥ < γi+j(p).E.d = ∥ℓ, p∥ = j + 1, and so γi+j(q).Clock = c by
induction hypothesis. Thus, NextV alue(p) = (c + 1) mod K in γi+j and, conse-
quently, γi+j+1(p).Clock = (c+ 1) mod K.
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Hence, ∀p ∈ V (N ) such that ∥ℓ, p∥ ≤ j + 1, we have γi+j+1(p).Clock = (c+ 1) mod K,
which implies that γi+j+1 ∈ PseudoLeg(j + 1), and the induction holds.

By letting j = MAD, we have γi+MAD ∈ PseudoLeg(MAD) and the lemma holds,
by Remark 3. □

From Lemmas 18 and 19, we immediately obtain the corollary below. This latter
establishes both the convergence property and the stabilization time of U(K).

Corollary 6 ∃i ≤ 3α + 4MAD + 6 such that γi is legitimate.

6 Conclusion
In this paper, we have proposed a tight topological condition, namely the fact that the net-
work should contain exactly one source component, allowing the design of self-stabilizing
solutions in directed identified networks where processes know an upper bound α on the
maximum ancestor distance. Our results show, maybe surprisingly, that some fundamental
static and dynamic problems can be self-stabilizingly solved in networks of very general
topologies which are not necessarily strongly connected.

The immediate perspective of this work deals with time complexity. Since our leader
election algorithm works under the distributed unfair daemon, its stabilization time in moves
(i.e., the number of state updates) is finite. So, it is worth analyzing this time complexity.

Another interesting perspective concerns α. We use this knowledge for two main
reasons: (1) we need global knowledge on the network to bound process memories, and (2)
our mechanism to remove fake values also requires some global knowledge on the network.
A side-effect of (2) is that the stabilization time of our algorithms depends on α which is
a bound on MAD that could potentially be very far from MAD. Of course, the absence
of global knowledge on any network parameter would imply solutions using infinite local
memories. In contrast, it would be interesting to study whether there exist solutions to our
problems that use some global knowledge, such as α, to have bounded process memories
but whose stabilization times depend on actual parameters of the network rather than this
knowledge.

Finally, a long-term perspective would be to investigate necessary and sufficient con-
ditions for the self-stabilization of more problems and classes of problems in directed
identified networks. Regarding this, a natural and interesting candidate is the asynchronous
unison, which is a powerful tool to emulate synchronous solutions in asynchronous settings.
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