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What could a Quantum PSO be?

The quantum Particle Swarm Optimization algorithms that have been published so far are not particularly convincing. There is potential to explore a more quantum approach, albeit in a hybrid manner. The primary challenge lies in the fact that PSO relies on an implicit probability distribution rather than an explicit one. Therefore, it remains uncertain whether we can completely eliminate the use of classical computations, or if at least a few of them are indispensable.

Motivation

If you search using the keywords "quantum particle swarm optimization," you can easily locate numerous papers (Sun, Lai, and 

Part I

Playing with qubits, gates and states In this discussion, we focus solely on the pure mathematical approach to quantum methods, excluding any physical interpretation. This is particularly important due to the existence of multiple interpretations, with no consensus on determining the "correct" one.

Technically speaking, a quantum method can be delineated through manipulations of qubits using operators, often referred to as gates, which are essentially unitary matrices 1 . I assume you are familiar with these concepts, but you can refer to the Appendix 6 for a more detailed explanation.

Alternatively, a quantum method can be depicted as a quantum circuit, where a computation involves a series of quantum gates and measurements (D. C. Marinescu and G. M. Marinescu 2012). Notably, the circuit may exhibit dynamic behavior, with certain qubits being reset and reused [START_REF] Hua | Exploiting Qubit Reuse through Mid-circuit Measurement and Reset[END_REF].

1 I assume you know what they are but you may have a look at the Appendix 6 2 A quantum algorithm operates by altering the components of a set of qubits so that the nal measurement yields a binary sequence that is most likely the desired outcome. Generally, it is assumed that all qubits start in the state |0|.

The primary challenge lies in executing these modications "blindly" since observing or measuring a qubit results in its destruction, providing only a binary outcome of 0 or 1.

Binary function, Boolean function

The usual denition of a binary function is a function that can takes only two values: 0 and 1, no matter what are the variables.

For a Boolean function, the variables can take only two values, True and False and the value of the function is dened by logical manipulations of these variables. But for such a function, you can not dene something like sin(True).

So, in what follows, a binary function is simply any function dened on {0, 1} D .

A simple example

Let us promptly provide an illustration based on the W states (Wikipedia 2023).

Our objective is to construct all m×n binary matrices A that contain exactly one '1' in each row.

There are at least three methods to achieve this:

1. A conventional approach utilizing a deterministic (potentially recursive)

algorithm. This poses a stimulating exercise that you should attempt.

2. A stochastic method involves minimizing a tness function, such as m i=1 n j=1 A (i, j) -1 on {0, 1} mn .

3. A quantum approach involves simultaneously generating all these matrices.

Method 1 is deterministic, making it arguably the superior choice. Method 2, on the other hand, may encounter signicant challenges in generating all possible solutions. Now, let's delve into the details of the latter. The diagram labeled 1.1 illustrates the corresponding quantum circuit for the parameters m = 3 and n = 2. It's worth noting that the standard convention involves numbering the qubits starting from 0. This circuit accurately produces the 2 3 = 8 solutions, requiring the utilization of three types of unitary operators (commonly referred to as gates when visually represented). The M box serves to signify that the qubit is measured, leading to its destruction, and the outcomeeither 0 or 1is recorded as a classical bit.

Result

If we display the state vector (i.e. the superposition of the eight states) just before measure, which is possible only in a simulation on a classical computer, not on an actual quantum device, we nd

  0 1 1 0 1 0   2 Grover Adaptive Search
This is a classical quantum optimizer [START_REF] Baritompa | Grover's Quantum Algorithm Applied to Global Optimization[END_REF] Ortega Ballesteros 2021). We consider here only for further comparison with our quantum PSO on a simple problem which I'll refer to as G6 and dened as follows (see also Figure 2.1 for a possible 1D landscape

2 ). There are many local optima but it is relatively easy to escape them for they contains at most two points and even often just one.

Find the binary position x = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) of length n = 6 that minimizes 2 There are 2 6 = 64 possible strings, so 64! such landscapes f (x) = -15

+ n-1 i=1 (4 -x i -2x i+1 + x i x i+1 ) (2.1)
The problem, can be resolved using ten qubits.

It requires six qubits to represent positions, along with m qubits for the possible values of a position (more precisely the dierence relatively to a variable threshold). If the maximal value is f max theoretically mshould be so that f max ≤ 2 m-1 -1

Here f max = 5, so we have m = ⌈log 2 (5) + 1⌉ = 4

Let s be the number of solutions. The optimal number of iterations for the Grover search is given by r = π 4 1 arcsin s 2 n+m As we are not supposed to know there are more than one solution we set s = 1 and the formula gives r = 25. We will use this value but, actually there are two solutions and 17 would be better, because the eciency (the probability of success) follows a sin 2 law: too few iterations certainly reduces it but too many may also reduce it.

By running the Qiskit code (given in the Appendix 8.1) we indeed nd the two solutions, on positions x = (0, 0, 0, 0, 0, 0) and (0, 1, 1, 1, 1, 1) for which the f value is -5 (see the gure 2.2). By combining dierent strategies it is possible to dene many binary PSO variants [Maurice Clerc 2005). But to illustrate the transformation classical ⇒ quantum let us consider just the oldest one [START_REF] Kennedy | A discrete binary version of the particle swarm algorithm[END_REF]. Of course more sophisticated variants do exist (see for example [START_REF] Lee | Modied binary particle swarm optimization[END_REF].

A classical binary PSO

The problem is dened by a tness function f on {0, 1} D and a position x is said to be better than a position y i f (x) < f (y).

The velocity update formula is

v i,(t+1),d = wv i,t,d + ci,t,d (p i,t,d -x i,t,d ) + ci,t,d (g i,t,d -x i,t,d ) (3.1)
and the position update formula 3

x i,(t+1),d = 1 -x i,t,d if U (0, 1) < S v i,(t+1),d 0 else (3.2)
where w is the inertia weight i is the rank of the particle in the swarm of size N . t is the time step. d is the current dimension. Note that terms like p -x and g -x can take only three values: -1, 0 and 1. ci,t,d is a random positive number generated for each (i, d, t), whose upper limit is an undened parameter. Usually drawn from the uniform distribution.

x i,t = (x i,t,1 , . . . , x i,t,D ) the position of the particle i at time t, an element of {0, 1} 

v i,(t+1),d → max min v i,(t+1),d , V max , -V max (3.3)
Only later the constriction coecient made it possible to avoid this arbitrary parameter (M. [START_REF] Clerc | The particle swarm -explosion, stability, and convergence in a multidimensional complex space[END_REF]. In [START_REF] Kennedy | A discrete binary version of the particle swarm algorithm[END_REF] V max is set to 6.

p i,t = (p i,t,1 , . . . , p i,t,D ) the best position found so far at time t by the particle i, usually called previous best.

g i,t = (g i,t,1 , . . . , g i,t,D ) the best of the best positions found so far at time t by the neighbors of the particle i.

U (0, 1) a random value drawn from the uniform distribution on [0, 1]. S a logistic transformation that maps ]-∞, +∞[ to ]0, 1[:

S (u) = 1 1 + e -λu (3.4)
for which λ = 2 seems to be a good choice. The idea is that if for a dimension d the velocity is high then the d-th bit of the position should probably be switched.

The mapping function S can easily be modied. Not clear whether there exists a best one or not, though.

The neighborhood N i of the particle i is dened by what is called topology and there are many possible ones, either constant, variable or adaptive.

At each time step and for each particle i we apply the velocity update and the position update formulae and then we take the tness function f into account to possibly update the previous best

p i,(t+1) = x i,(t+1) if f x i,(t+1) < f (p i,t ) = p i,t else (3.5)
and the best previous best in the neighborhood g i,(t+1) = arg min j∈Ni f p j,(t+1)

(3.6)
In what follows, for simplicity I use rst the so called global topology: for each particle the neighborhood is the whole swarm so there is just one g.

Quantum Imitation

We can try to mimic classical PSO with quantum operations. Actually this is a hybrid approach. The main idea is Replace bits by qubits, but some classical computations are still needed. There are two diculties:

we can not precisely know a position; apparently we can not write something as simple as p i = x i for cloning an unknown quantum state is impossible.

To cope with the rst one, we estimate the probability density by launching many shots with measure. The second one is due to an easy to prove theorem [START_REF] Wootters | A single quantum cannot be cloned[END_REF]. However we do not really care here for several reasons:

It is not valid if you know the state, particularly after a forced (re)initialization.

Similarly to the No Free Lunch theorem, which is valid only on sets of problems that are closed under permutations, a situation that never occurs in practice, this one is valid only for pure quantum states, not mixed ones (see the Appendix for denitions) that usually have to be used if you want to take advantage of the main quantum properties (superposition, entanglement).

An imperfect cloning (quasi-copy) is always possible [START_REF] Buºek | Quantum copying: Beyond the nocloning theorem[END_REF]Hillery 1996, Mastriani 2022).

Finally, the no-cloning theorem holds true only when all applicable operators are unitary. When, for instance, a qubit is reset, not only is its state revealed, but the associated operator is no longer unitary. In such instances, it becomes feasible to eectively copy a qubit, a process we will apply in the subsequent discussion. Note that, though, it implies that the quantum device can perform qubit resets.

Velocity and position updates

For each i in {1, . . . , N } we dene two lists of qubits that can be called qparticles:

x i = (x i,1 , . . . , x i,D ) for the positions, i.e. the explorer swarm; p i = (p i,1 , . . . , p i,D ) for the previous best positions, i.e. the memory swarm.

In the formula 3.1 a term like p i,t,d -x i,d can be interpreted as how much the qubits p i,d and x i,d are dierent, and depending on its sign it will implies attraction or repulsion.

The closeness between them can be evaluated by the delity in [0, 1] (see the Appendix 6) and therefore the distance by 1-delity which is in [0,1].

But as we want a value that can be either positive or negative we use in fact

1 -2 × f idelity, which is in [-1, 1]. The formula 3.1 becomes v i,d ⇐ wv i,d + ci,d 1 -2 ||p i,d x i,d || 2 + ci,d 1 -2 ||g d x i,d || 2 (4.1)
Then we apply a modied mapping so that the result is in [-1,1]:

S (u) = 2 1 + e -λu -1 (4.2)
From a quantum point of view the formula 3.2 has to be transformed

x i,(t+1),d = R y (πS (v i,d ) , x i,d ) (4.3)
Why this rotation? Let's consider the extreme case 

x i,d = 1 × |0 > +0 × |1 > and S (v i,d ) (almost)
v max = c 1 -w (4.4)

Global best version

For simplicity we use here the global best topology (although it is bad for classical multimodal problems).

The formula 4.3 becomes

v i,d ⇐ wv i,d + ci,d 1 -||g d x i,d || 2 (4.5)
We consider the qubits independently. Remember that each x i,d can be written

x i,d = α|0 > +β|1 >
Note that we do not even need to use complex numbers.

A pseudo-code is given in the box 1. To be sure you can reproduce the experiments a Qiskit code for simulation (version 0.44.1) is given in the Appendix 8.3.

On a simulation we could have access to the state vector. However it would be a sort of cheating for it is not possible on a real quantum device. So , instead, I run many times the circuit (shots) to build a quasi-distribution, which can be seen as an estimation of the unknowable state vector. Of course, it means that the accuracy of this estimation is depending on the number of shots. In the code of the Tools there is a function that estimate the number of shots for a desired accuracy (say 0.95), but it can not work as soon as the number of qubit is too big. We can test this algorithm with two or three q-particles on a few simple functions.

Sin3 problem

The continuous form of the tness function is dened on [0, 7] by

f (x) = sin (x) (1 -x) (4.6)
It is bimodal as we can see on the gure 4.1.

We convert it into a binary one dened on {0, 1} 3 thanks to the binarization technique (see the Appendix 7)

f (b 0 , b 1 , b 2 ) = sin (b 0 + 2b 1 + 4b 2 ) (1 -b 0 -2b 1 -4b 2 ) (4.7)
The solution is f (1, 1, 1) = -3.942. During a run a sequence of improvement can be for example [0.0, 0.0, 1.3970, -3.9419].

(s i ) if f (s i ) < f p,i x best = s i f p,i = f (s i ) copy x i to g
A circuit (with just two q-particles) is given on the gure 4.2. Note the three CX gates that copy the best position (the rst one) to the global best.

G6

Binary Rastrigin

We dene the continuous function on [0, 7] 2 by

f (x 1 , x 2 ) = 20 + (x 1 -3) 2 -10 cos (2πx 1 ) + (x 2 -5) 2 -10 cos (2πx 2 ) (4.8)
This function is highly multimodal as we can see on Figure 4.3a. The minimum is zero on (3,[START_REF] Lee | Modied binary particle swarm optimization[END_REF].

When considering only integer 2D points it is unimodal (gure 4.3b) but the algorithm doesn't know that. Actually it is not really aware of any landscape but we can better understand why the problem is far more dicult 5 than G6 although the dimension is the same ( 6) by looking at a possible 1D landscape (gure 4.3c) whose local optima contain seven points, instead one or two for G6.

The algorithm proposes as a solution the binary string (101011) = 43. As Qiskit uses the little-endian notation we can reverse the string and if we split it we indeed get (110, 101) = (3, 5).

5 Inversely, it's a good example of a problem that becomes simpler when coded in higher dimension. The algorithm is still hybrid and needs more qubits than for the global best topology, (2N D vs (N + 1)D) .

The Qiskit code is given in the appendix 8.4. It is a of course longer than the one for the global best approach.

Discussion

The above results are not particularly good, even if better than with random search. They are far worse than with exhaustive search, that would need 2 D evaluations, i.e. 64 for D = 6. Of course the hope is that it would be dierent for higher D values.

Although only very simple examples has been treated it seems that, contrarily to the continuous case, the local best topology is not more ecient than the global best one. As it needs less qubits the global best topology seems preferable but, of course, more and bigger examples are needed to conclude. But is it worth?

These two approaches do use qubits and quantum gates (H , CX and R y ) but are not satisfying for at least three reasons:

Not elegant, for they are hybrid methods.

They need a lot of qubits. The Grover search needs less qubits. However its Qiskit code used here works well only for Quadratic unconstrained binary optimization (QUBO) but not, for example, on the Rastrigin problem 6 .

They don't truly leverage specic quantum features such as entanglement and superposition. Therefore, in reality, both of them are essentially just another instance of "fake quantum PSO."

For the classical iterative approach let's temporarily call state a position in the search space.

The philosophy of this approach is then Progressively nd a state better than the previous one.

But for the quantum approach it is Progressively increase the probability of desirable states.

They appear similar, but they dier, as evident in this study when comparing Grover's approach with our "quantum" PSO ones.

When we assert that a position is represented by a set of qubits, a qparticle, it implies that this q-particle essentially represents all potential po- To simplify calculations the qubit 1 0 is noted |0 > and the qubit 0 1

is noted |1 >. This is the so called bra notation.

A notation like |010 > means we consider the tensor product |0 > ⊗|1 > ⊗|0 > and is a state. This is then a column vector of size 2 3 . A notation like |ψ > is a concise way to say that ψ is a complex column vector (of any dimension) as the ket notation < φ| is a complex row vector, a linear form, actually.

Inner product

Applying a ket to a bra is the inner product < φ||ψ > noted < φψ > and the result is a complex number. In particular we assume < ψψ >= 1, which is a generalisation of the formula 6.2.

Outer product

Applying a bra to a ket is the outer product |ψ >< φ| noted |ψφ| and the result is a matrix (product of a column vector by a row vector).

Qubits are manipulated thanks to unitary matrices, usually called operators or gates.

H gate

The name comes from Hadamard. This gate places the qubit in the intermediate state, which would give 0 or 1 with probabilities equal to 1/2, if measured.

Such a gate therefore induces the transformation

|0 > → |0 > +|1 > √ 2 = 1 √ 2 1 1
In matrix representation, we have

H = 1 √ 2 1 1 1 -1 (6.3)
It also induces the transformation

|1 > → |0 > -|1 > √ 2 = 1 √ 2 1 -1
It is often used as the analogue of the classic uniform random initialization in population-based algorithms, when all qubits at the very beginning are in state |0 >.

X gate

X for ex change. Sometimes called Pauli-X or NOT gate or bit-ip.

When a qubit `passes' through such a gate, it becomes, as it were, its opposite: |0 > becomes |1 > and |1 > becomes |0 > . More generally α and β components are exchanged.

Its matrix is

X = 0 1 1 0 (6.4)
and to apply this gate is to perform the product

X × α β = β α
This is the analogy of Not in classical computing.

CX gate

CX for controlled ex change.

It is also called CNOT because it is indeed a controlled 'negation'. This gate concerns two qubits. When the rst one is |1 > an X gate is applied to the second one. But if it is |0 > the X gate on the second one is ignored. So the matrix is now 4 × 4 :

CX =     1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0     (6.5)
From an algebraic point of view, applying this gate consists of forming a four-element ψ vector by concatenating 'vertically' those of the two qubits, then performing the product

CX × ψ =     1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0         α 1 β 1 α 2 β 2     =     α 1 β 1 β 2 α 2    
In a circuit, this gate is often represented as

Ry gate

This operator needs a parameter θ called rotation angle. Its matrix is

R y (θ) = cos θ 2 -sin θ 2 sin θ 2 cos θ 2 (6.6)
In the so-called Poincaré-Bloch sphere visualization it rotates around the y axis the vector representing the qubit to which it is applied, hence the name. 

Pauli Z gate

This is a single-qubit rotation through π radians around the z-axis. Sometimes also noted σ z . Its matrix is

Z = 1 0 0 -1 CZ gate
The controlled Z gate, applied to two qubits. Although it is called controled one can not really say that a qubit controls another one so its graphical representation in a circuit is symmetrical:

Its matrix is CZ =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1     (6.7)
In fact, of the four possible input states, namely |00 >, |10 >, |01 > and |11 >, only the last one is modied, transformed into -|11 >.

Pure state, mixed state

A pure state can be represented by a vector. Qubits are pure states. However, most of the time, after some manipulations the current state is a linear combination of pure states, and is dened by a matrix, as we have seen for the H gate. However, in practice, it is easier to explicitely give the linear combination, On a simulation we can eectively display the state, but not on a real quantum device.

Any quantum algorithm has to change the probabilities without being able to see them, in order to favour the desirable states before measure.

Density operator

Let us consider an ensemble of pure states ψ j prepared with probabilities p j (of sum 1). Then the density operator is dened by

ρ = j p j |ψ j ⟩ ⟨ψ j |
Note this is a matrix.

Fidelity

If you consider states as probabilistic distributions, a classical estimation of the closeness of two states φ and ψ is the delity based on the density operator.

If the states are pure the formula is simply

F (φ, ψ) = tr √ ρσ √ ρ 2 ) = (tr (| √ ρσ|))
2 where tr is the trace of a matrix ρ is the density operator of φ σ is the density operator of ψ

Although not obvious the delity is symmetrical. However it is not really a distance (no triangle inequality).

For pure states the formula is simply

F (φ, ψ) = |< φ|ψ >| 2 
Let's consider the particular case of two qubits

q 1 = α 1 β 1 and q 2 = α 2 β 2 .
The delity is simply

F (q 1 , q 2 ) = |α * 1 α 2 + β * 1 β 2 | 2 (6.9)
where * means conjugate. Its value in [0, 1] tell us how similar are these two qubits. For example if a qubit is set to |0> and the other initialized thanks to a H gate, the delity is 0.5. But if they are both initialized by H the delity is 1.

Binarization

Let's consider a real function f dened on S = [x min , x max ] whose minimum is on x * . If it is an articial problem of a benchmark for optimization it is alway possible to modify it so that x min = 0 and x * is an integer. So if x max ≤ 2 n the number of bits to represent in base 2 all integers of the search space S is n -1. Now each integer x of S can written

x = n-1 i=0 b i 2 i (7.1)
For example the continuous function

f (x) = (1 -x) 2 on [0, 7]
becomes (we keep the same name for simplicity)

f (b 0 , b 1 , b 2 ) = (1 -b 0 -2b 1 -4b 2 ) 2 on {0, 1} 3 
and its minimum is 0 on (0, 0, 1).

Of course this transformation can be extended to more than one dimension. -------------- print("Minimum ",fmin," on ", solutionMin,sep="") print("Maximum ",fmax," on ", solutionMax,sep="") vu=np.unique(v) print("Possible values") print(vu) print("There are ",len(vu)," possible values",sep = "") end=time.process_time() print("Exhaustive search time = ",end-start,sep="") #---------------------Grover print("n = ", n, ", m = ", m,", nbqubits = ", nbqubits,sep = "") print("nbIter = ",nbIter) # ------------------------Grover's adaptive search if nbqubits<10: # Can run locally on a small laptop from qiskit.primitives import Sampler grover_optimizer = \ GroverOptimizer(nbqubits, num_iterations=nbIter, \ sampler=Sampler())

else: # IBM quantum cloud.

# The needed API token has been saved once on the local computer from qiskit_ibm_runtime import Sampler from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") grover_optimizer = GroverOptimizer(nbqubits, num_iterations=nbIter, \ sampler=Sampler(backend=backend)) results = grover_optimizer.solve(qp) end=time.process_time() print("Exhaustive search time = ",end-start,sep="") print(results.prettyprint()) # - -----------------------Post ------------------------------------------------------ p r i n t ( n s h o t s , " n s h o t s " ) n b i t s = n q b i t s # To s a v e t h e f i t n e s s v a l u e p r i n t ( " n q b i t s " , n q b i t s ) a l l q b i t s = l i s t ( r a n g e ( n q b i t s ) ) p r i n t ( n q b i t s , " q u b i t s " ) p r i n t ("==========================", " I t e r a t i o n " , t ) q = Q u a n t u m R e g i s t e r ( n q b i t s ) c = C l a s s i c a l R e g i s t e r ( m e a s u r e d ) q c = Q u a n t u m C i r c u i t ( q , c ) i f t == 1 : p r i n t ( " A f t e r " , t , " i t e r a t i o n s : " ) p r i n t ( " and " , FEs , " e v a l u a t i o n s " ) p r i n t ( x B e s t , " =>", f M i n ) p r i n t("============================= F i n a l r e s u l t " ) p r i n t ( " F u n c t i o n " , f C o d e )

b1 = x [ 1 ] b2 = x [ 2 ] f = (1 =2*b0=4*b1+b2 ) * * 2 * (3=b0 =2*b1+b2 ) c a s e 5 : # G4 b1 = x [ 1 ] b2 = x [ 2 ] b3 = x [ 3 ] f = =11+(4=b0=2*b1+b0*b1 ) + (4=b1 =2*b2+b1*b2)+(4=b2=2*b3+b2*b3 ) c a s e 5 1 : # G6 . S o l u t i o n s 1 1 1 1 1 1 0 1 1 1 1 1 . D i f f i c u l t b1 = x [ 1 ] b2 = x [ 2 ] b3 = x [ 3 ] b4 = x [ 4 ] b5 = x [ 5 ]
i 1 = D* i +d # c u r r e n t q u b i t o f t h e p o s i t i o n i 2 = n q b i t s =D + d # c u r r e n t q u b i t o f g i f i d 2 = i n f i d N o S v ( i 1 , i 2 , c o u n t s ) v [ i 1 ] = w* v [ i 1 ] + u n i f o r m ( 0 , c 2 ) * i f i d 2 i f a b s ( v [ i 1 ] ) > vMax : p r i n t ( " Warning , v " , v [ i 1 ] ) S . append ( mapping ( v [ i 1 ] ) ) v =
i 1 = D* i +d # c u r r e n t q u b i t o f t h e p o s i t i o n i 2 = n q b i t s =D + d # c u r r e n t q u b i t o f g i f i d 2 =i n f i d N o S v I B M ( i 1 , i 2 , qd , m e a s u r e d ) v [ i 1 ] = w* v [ i 1 ] + u n i f o r m ( 0 , c 2 ) * i f i d 2 i f a b s ( v [ i 1 ] ) > vMax : p r i n t ( " Warning , v " , v [ i 1 ] ) S . append ( mapping ( v [ i 1 ] ) ) v =
i f i d = 1 = s t a t e _ f i d e l i t y ( s v 1 , s v 2 ) # i n [ 0 , 1 ] i f i d = 2 * i f i d =1 # i n [ = 1 , 1 ] i f i d = r o u n d ( i f i d ) # i n { =1 , 0 , 1 } r e t u r n i f i d d e f i n f i d N o S v I B M ( i 1 , i 2 ,
i f i d = 1 = s t a t e _ f i d e l i t y ( s v 1 , s v 2 ) # i n [ 0 , 1 ] i f i d = 2 * i f i d =1 # i n [ = 1 , 1 ] # i f i d = r o u n d ( i f i d ) # i n { =1 , 0 , 1 } r e t u r n i f i d d e f q u b i t S t
IBM = n q b i t s > max_qubits o r IBM i f IBM : p r i n t ( "IBM c l o u d " ) f r o m q i s k i t _ i b m _ r u n t i
p r i n t ( " D i m e n s i o n " , D) p r i n t ( " Swarm s i z e " ,N) p r i n t ( " Number o f q u b i t s " , n q b i t s ) p r i n t ( " Runs " , runMax ) p r i n t ( " I t e r a t i o n s / r u n " , tMax ) p r i n t ( n s h o t s , " s h o t s " ) p r i n t ( " r e s t o r e " , r e s t o r e ) p r i n t ( " T o t a l number o f e v a l u a t i o n s " , FEtot ) p r i n t ( "w , c " ,w , c 2 ) p r i n t ( " B e s t r e s u l t : " ) p r i n t ( x B e s t B e s t , " =>", f M i n B e s t ) p r i n t ( " S u c c e s s r a t e " , s u c c e s s / runMax ) p r i n t ( " S u c c e s s r a t e w i t h random s e a r c h " , 1 / 2 **D) # p r i n t ( " l i s t n " , l i s t n ) l i s t n . remove ( n ) # Not n i t s e l f #p r i n t ( "N, K, n , l i s t n , n " ,N, K, n , l i s t n ) p r i n t ( n s h o t s , " n s h o t s " ) n b i t s = n q b i t s # To s a v e t h e f i t n e s s v a l u e p r i n t ( " n q b i t s " , n q b i t s ) a l l q b i t s = l i s t ( r a n g e ( n q b i t s ) ) p r i n t ("==========================", " I t e r a t i o n " , t ) q = Q u a n t u m R e g i s t e r ( n q b i t s ) c = C l a s s i c a l R e g i s t e r ( m e a s u r e d ) q c = Q u a n t u m C i r c u i t ( q , c ) i f t == 1 : p r i n t ( " A f t e r " , t , " i t e r a t i o n s : " ) p r i n t ( " and " , FEs , " e v a l u a t i o n s " ) p r i n t ( x B e s t , " =>", f M i n ) p r i n t("============================= F i n a l r e s u l t " ) p r i n t ( " F u n c t i o n " , f C o d e ) p r i n t ( " D i m e n s i o n " , D) p r i n t ( " Swarm s i z e " , N) p r i n t ( " N e i g h b o r h o o d s i z e " , K) p r i n t ( " Number o f q u b i t s " , n q b i t s ) p r i n t ( " Runs " , runMax ) p r i n t ( " I t e r a t i o n s / r u n " , tMax ) p r i n t ( n s h o t s , " s h o t s " ) p r i n t ( " T o t a l number o f e v a l u a t i o n s " , FEtot ) p r i n t ( "w , c1 , c 2 " , w , c1 , c 2 ) p r i n t ( " B e s t r e s u l t : " ) p r i n t ( x B e s t B e s t , " =>", f M i n B e s t ) p r i n t ( " S u c c e s s r a t e " , s u c c e s s / runMax ) p r i n t ( " S u c c e s s r a t e w i t h random s e a r c h " , 1 / 2 **D) Below is a Qiskit code to temporarily copy the state of a set of qubits (here two) to another one. It is possible only if the system accepts reset. This feature can be used to apply rules like if f (x) ≤ f (best) then best = x # 2 qubits => 2 qubits example from qiskit import * from qiskit.quantum_info import Statevector # Define a circuit q = QuantumRegister(4) qc = QuantumCircuit(q) qc.h(0) qc.h(1) qc.barrier(q) # For clarity qc.reset([2, 3]) qc.cx(0, 2) qc.cx(1, 3) print(qc) # Note:This visualization is possible # only in a simulation sv = Statevector.from_instruction(qc) sv.draw ('latex') By running this code we generate the circuit of the gure 8.1, and the state vector (visible only in a simulation, not on a real quantum device) is

n e i g h = [ ] f o r _ i n
= i n f i d N o S v ( i 1 , i 3 , c o u n t s ) i f i d 2 = i n f i d N o S v ( i 1 , i 2 , c o u n t s ) v [ i 1 ] = w* v [ i 1 ] + u n i f o r m ( 0 , c 2 ) * i f i d 2 \ + u n i f o r m ( 0 , c 1 ) * i f i d 1 i f a b s ( v [ i 1 ] ) > vMax : p r i n t ( " Warning , v " , v [ i 1 ] ) S . append ( mapping ( v [ i 1 ] ) ) v = np .
= i n f i d N o S v I B M ( i 1 , i 3 , qd , m e a s u r e d ) i f i d 2 = i n f i d N o S v I B M ( i 1 , i 2 , qd , m e a s u r e d ) v [ i 1 ] = w* v [ i 1 ] + u n i f o r m ( 0 , c 2 ) * i f i d 2 \ + u n i f o r m ( 0 , c 1 ) * i f i d 1 i f a b s ( v [ i 1 ] ) > vMax : p r i n t ( " Warning , v " , v [ i 1 ] ) S . append ( mapping ( v [ i 1 ] ) ) v =
1 2 |0000 > + 1 2 |0101 > + 1 2 |1010 > + 1 2 |1111 >
Instead of 16 states we have only 4, because qubits 2 and 3 are always equal to qubits 0 and 1.
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 122 Figure 1.2: After measure the probability of each bit string is not exactly the theoretical one (0.125)
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 22 Figure 2.2: Solving a 6-bits problem by Grover's search. Two solutions.

  Figure 4.1: A simple bimodal function

Figure 4

 4 Figure 4.2: A typical circuit. The rst q-particle (three qubits) is an improvement and copied to save it.

  In 1D representation on integer points it is multimodal. Each local valley contains seven points so it is dicult to escape.
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 43 Figure 4.3: Rastrigin landscapes.

Figure 4

 4 Figure 4.4: A typical circuit (N = 2, , K=1,D = 2). At this time step explorer1 (qubits 0 and 1) moves and nds a better position. After, thanks to the saved S values, it is rebuilt and copied to its memory (qubits 4 and 5).

Let2

  So if we want to initialize a qubit in the α β state we just have to reset it to |0 > and then apply R y (2 arccos (α)). The β value is set to sin (arccos (α)).

  something like S = α 1 |01...10 > +α 2 |10...00 > +...α n |001...0 > (6.8) in which each bit string has the same length and with n i=1 |α i | 2 = 1 for each |α i | 2 is a probability. It means that if we measure the state we will nd one (and just one) of the bit string sequences and with the associated probability.

(

  If we have f (x, y) and if x needs n x bits and y needs n y bits then the resulting binary function will be f b 0 , . . . , b nx-1 , b nx , . . . , b nx+ny-1 learn Python and Qiskit (0.44.1 version) to write these codes. I didn't become an expert, but someone skilled could surely make the codes shorter and better. I did tests on a Linux laptop using Anaconda/Jupyter, and the operating system was Ubuntu 22.04. qiskit_optimization.algorithms \ import GroverOptimizer, MinimumEigenOptimizer # Works well only for Quadratic unconstrained binary optimization from qiskit_optimization.translators \ import from_docplex_mp from docplex.mp.model import Model model = Model() # G6 x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") x3 = model.binary_var(name="x3") x4 = model.binary_var(name="x4") x5 = model.binary_var(name="x5") n=6 def c(xa,xb): cv=4-xa -2*xb +xa*xb return cv def fit(x0,x1,x2,x3,x4,x5): f=-(15-c(x0,x1)-c(x1,x2)-c(x2,x3)-c(x3,x4)-c(x4,x5)) return f #-

  -processing res=results.samples lres=len(res) x=list(range(lres)) pr=list(range(lres)) for i in range(lres): pr[i]=res[i].probability s = [str(element) for element in np.int_(res[i].x)] x[i] =.join(s) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_axes([0,0,1,1]) ax.bar(x,pr) ax.set_ylabel('Probability') ax.set_xlabel('Position') plt.xticks(fontsize=7,rotation = 90) plt.show()

  *b1+4*b2+8*b3 = 3 u2 = b4+2*b5+4*b6+8*b7 = 5 f = 2 0 + u1 *u1=10*math . c o s ( 2 * P i *u1 ) \ + u2 *u2=10*math . c o s ( 2 * P i *u2 ) # J u s t t o d e t e c t p o s s i b l e b i a s random , uniform , sample , randrange , randint , choice from qiskit . quantum_info import DensityMatrix from qiskit import Aer from qiskit . extensions import Initialize def IBM_backends_list (): # List of available backends from qiskit_ibm_runtime import QiskitRuntimeService backends = QiskitRuntimeService (). backends () for i in range ( len ( backends )): print ( backends [ i ])# -

  def initPos ( rank1 , rank2 , qc ): # Init explorer swarm qc . h ( range ( rank1 , rank2 )) def initPos2 ( rank1 , rank2 , qc ): for i in range ( rank1 , rank2 ): theta = uniform (0 ,2* Pi ) qc . ry ( theta , i ) def mostProbable ( counts , tolerance ): values = list ( counts . values ()) keys = list ( counts . keys ()) # With " local " run , the length of the keys # is exactly the number of measured qubits proba = np . array ( values )/ sum ( values ) probaMax = max ( proba ) # Find more or less equivalent ones sList =[] for i in range ( len ( values )): if values [ i ] >= tolerance * probaMax : sList . append ( keys [ i ]) # Random choice string = choice ( sList ) return string , probaMaxdef mostProbableIBM ( qd0 , tolerance , measured ): # Extract from a quasi -distribution # ( coming from the IBM cloud , for example ) proba = list ( qd0 . values ()) # Probabilities keys = list ( qd0 . keys ()) # Bit string ( coded as integer ) ''' proba0 =0 for k in range ( len ( keys )): string = keys [ k ] ind = len ( string ) -i -1 # Because litte -endian notation if string [ ind ]== '0 ': proba0 = proba0 + values [ k ] qDensity = DensityMatrix ([[ proba0 ,0] ,[0 ,1 -proba0 ]]) return qDensity def diagSquare ( M ): diag = np . sqrt ( np . diagonal ( M )) return diag def assignProba0 ( qc ,i , dm , p ): # dm = density matrix of a qubit # p = desired probability for |0 > # Just a bit of algebra p0 = np . array ( dm )[0][0] # Initial probability A = math . sqrt ( p0 * p ) B = math . sqrt ( max ( p0 * p -p -p0 +1 ,0)) # It may be slightly <0 # Because numerical instability x1 = max ( min ( A +B ,1) , -1) x2 = max ( min (A -B ,1) , -1) theta1 =2* math . acos ( x1 ) theta2 =2* math . acos ( x2 ) theta = min ( theta1 , theta2 ) # Then you have to apply Ry ( theta , i ) qc . ry ( theta , i +100 # Should be +1 , but faster pt = probaEach (m , n ) # To cope with the numerical instability # Warning : may induce infinite loop # or incorrect results if m is too big if pt <0 or pt >1: range ( m +1): comb = combin (m , i ) # print (" comb " , comb ) p = p +(( -1)** i ) * comb * (( i / m )** nd ) # print (" p " , p u s r / b i n / e n v p y t h o n # c o d i n g : u t f =8 # I n [ ] : i m p o r t numpy a s np i m p o r t math P i = math . p i f r o m random i m p o r t random , u n i f o r m , s a m p l e , r a n d r a n g e , r a n d i n t , c h o i c e f r o m q i s k i t . qu a nt u m_ in f o i m p o r t s t a t e _ f i d e l i t y d e f i n i t V e l (N, D, vMax ) : # (N, D, vMax ) : # ' V e l o c i t y ' i n i t i a l i s a t i o n v = [ ] f o r _ i n r a n g e (N*D ) : v . append ( u n i f o r m (=vMax , vMax ) ) r e t u r n v d e f u p d a t e V e l N o S v (N, D, n q b i t s , v , c o u n t s , w , c2 , vMax ) : # V e l o c i t y u p d a t e S = [ ] f o r i i n r a n g e (N ) : f o r d i n r a n g e (D ) :

  np . a r r a y ( v ) S = np . a r r a y ( S ) r e t u r n v , S d e f updateVelNoSvIBM (N, D, n q b i t s , v , qd , w , c2 , vMax , m e a s u r e d ) : # V e l o c i t y u p d a

  np . a r r a y ( v ) c x ( r a n k 1+d , r a n k 2+d ) d e f u p d a t e P o s ( S , N, D, q c ) : # ' P o s i t i o n ' u p d a t e f o r i i n r a n g e (N ) : f o r d i n r a n g e (D ) : j = D* i +d q c . r y ( P i *S [ j ] , j ) d e f d i s p C i r c u i t ( q c ) : qcDec = q c . d e c o m p o s e ( ) . d e c o m p o s e ( ) . d e c o m p o s e ( ) . d e c o m p o s e ( ) #qcDec . draw ( ) p r i n t ( qcDec ) d e f i n f i d N o S v ( i 1 , i 2 , c o u n t s ) : s v 1=q u b i t S t a t e C o u n t s ( c o u n t s , i 1 ) s v 2=q u b i t S t a t e C o u n t s ( c o u n t s , i 2 )

  qd , m e a s u r e d ) : s v 1=q u b i t S t a t e C o u n t s I B M ( qd , i 1 , m e a s u r e d ) s v 2=q u b i t S t a t e C o u n t s I B M ( qd , i 2 , m e a s u r e d )

  a t e C o u n t s I B M ( qd0 , i , m e a s u r e d ) : k e y s= l i s t ( qd0 . k e y s ( ) ) v a l u e s= l i s t ( qd0 . v a l u e s ( ) ) # For q u b i t i , p r o b a b i l i t y t o be 0 p r o b a 0=0 f o r k i n r a n g e ( l e n ( k e y s ) ) : s t r i n g = f o r m a t ( k e y s [ k ] , ' b ' ) l s =l e n ( s t r i n g ) i f l s <m e a s u r e d : # C o m p l e t e w i t h l e a d i n g z e r o s s t r i n g = s t r i n g . z f i l l ( m e a s u r e d ) i n d=l e n ( s t r i n g )= i =1 # B e c a u s e l i t t e =e n d i a n n o t a t i o n i f s t r i n g [ i n d ] = = ' 0 ' : p r o b a 0=p r o b a 0+v a l u e s [ k ] p =[ math . s q r t ( p r o b a 0 ) , math . s q r t (1= p r o b a 0 ) ] r e t u r n p d e f q u b i t S t a t e C o u n t s ( c o u n t s , i ) : k e y s= l i s t ( c o u n t s . k e y s ( ) ) v a l u e s=np . a r r a y ( l i s t ( c o u n t s . v a l u e s ( ) ) ) v a l u e s=v a l u e s /sum ( v a l u e s ) # For q u b i t i , p r o b a b i l i t y t o be 0 p r o b a 0=0 f o r k i n r a n g e ( l e n ( k e y s ) ) : s t r i n g = k e y s [ k ] i n d=l e n ( s t r i n g )= i =1 # B e c a u s e l i t t e =e n d i a n n o t a t i o n #i n d= i i f s t r i n g [ i n d ] = = ' 0 ' : p r o b a 0=p r o b a 0+v a l u e s [ k ] p =[ math . s q r t ( p r o b a 0 ) , math . s q r t (1= p r o b a 0 r i d Quantum PSO f o r b i n a r y p r o b l e m s by M a u r i c e . C l e r c @>WriteMe . com L a s t u p d a t e : 2024 =01=13 T h i s v e r s i o n d o e s n o t u s e t h e s t a t e v e c t o r , s o i t i s more s u i t a b l e f o r a r e a l quantum d e v i c e J u s t f o r a p r o o f o f c o n c e p t : = g l o b a l b e s t t o p o l o g y = m i m i c k i n g t h e c l a s s i c a l b i n a r y PSO May n e e d ( L i n u x ) e c h o 1 | s u d o t e e / p r o c / s y s /vm/ overcommit_memory ' ' ' f r o m T o o l s 2 i m p o r t * f r o m T o o l s 1 i m p o r t * f r o m F u n c t i o n s i m p o r t * np . s e t _ p r i n t o p t i o n s ( p r e c i s i o n =3) f r o m q i s k i t . qu a nt u m_ in f o i m p o r t s t a t e _ f i d e l i t y # ====================================================== max_qubits = 17 # The max f o r my c o m p u t e r IBM = F a l s e # Note : i t w i l l b e f o r c e d t o True # i f more q u b i t s t h a n max_qubits f C o d e = 8 # *** H e r e c h o o s e t h e f u n c t i o n runMax = 1 0 0 tMax = 4 # Number o f i t e r a t i o n s f o r e a c h r u n # You may s e t i t t o I n f b u t # WARNING: p o s s i b l e i n f i n i t e l o o p v e r b o s e=F a l s e p l o t C i r c u i t=F a l s e r e s t o r e =F a l s e # J u s t f o r t e

  m e a s u r e d = N*D #n q b i t s m e a s u r e d Q b i t s= l i s t ( r a n g e (N*D) ) i f v e r b o s e : p r i n t ( " F u n c t i o n " , f C o d e ) p r i n t ( " D i m e n s i o n " , D)

  m e i m p o r t S a m p l e r , S e s s i o n , Q i s k i t R u n t i m e S e r v i c e f r o m q i s k i t _ i b m _ r u n t i m e i m p o r t E s t i m a t o r s e r v i c e = Q i s k i t R u n t i m e S e r v i c e ( c h a n n e l ="ibm_quantum " ) b a c k e n d = s e r v i c e . b a c k e n d ( " ibmq_qasm_simulator " ) e l s e : b a c k e n d = Aer . g e t _ b a c k e n d ( ' s t a t e v e c t o r _ s i m u l a t o r ' )

  (N, D, n q b i t s , v , qd , w , c2 , vMax , m e a s u r e d ) e l s e : v , S=u p d a t e V e l N o S v (N, D, n q b i t s , v , c o u n t s , w , c2 , vMax ) u p d a t e P o s ( S , N, D, q c ) q c . m e a s u r e ( m e a s u r e d Q b i t s , m e a s u r e d Q b i t s ) i f p l o t C i r c u i t : q c . b a r r i e r ( r a n g e ( n q b i t s ) ) # J u s t t o b e t t e r s e e t h e c i r c u i t d i s p C i r c u i t ( q c ) # =========== i f IBM : w i t h S e s s i o n ( b a c k e n d=b a c k e n d ) : s a m p l e r = S a m p l e r ( ) r e s u l t = s a m p l e r . r u n ( qc , s h o t s=n s h o t s ) . r e s u l t ( ) qd = r e s u l t . q u a s i _ d i s t s [ 0 ] b i t s t r i n g , p r o b a = mostProbableIBM ( qd , t o l e r a n c e , m e a s u r e d ) e l s e : j o b = e x e c u t e ( qc , b a c k e n d , s h o t s=n s h o t s ) r e s u l t = j o b . r e s u l t ( ) c o u n t s = r e s u l t . g e t _ c o u n t s ( q c ) b i t s t r i n g , p r o b a = m o s t P r o b a b l e ( c o u n t s , t o l e r a n c e ) i f v e r b o s e : p r i n t ( " Most p r o b a b l e " , b i t s t r i n g , " p r o b a : " , p r o b a ) # For e a c h q= p a r t i c l e # e v a l u a t e i t s f i t n e s s and com par e f o r n i n r a n g e (N ) : # r a n g e (N) ? ? N=1 ? ? x = np . z e r o s (D, d t y p e=i n t ) l s = l e n ( b i t s t r i n g ) f o r d i n r a n g e (D ) : # ( l i t t l e =e n d i a n n o t a t i o n ) x [ d ] = i n t ( b i t s t r i n g [ l s =d=1 = n *o b a l b e s t p o s i t i o n i f v e r b o s e : p r i n t ( " Improvement . x B e s t =" , x B e s t , fMin , "=>", f ) f M i n = f c o p y P o s ( n , i B e s t , qc , D) # To g l o b a l b e s t q= p a r t i c l e g i f f M i n < f M i n B e s t : f M i n B e s t = f M i n x B e s t B e s t = x B e s t s t o p = t >= tMax o r f M i n <= minimum i f t >= tMax : p r i n t ( "STOP t >=", tMax ) i f f M i n <= minimum : p r i n t ( "STOP f B e s t <=", minimum ) s u c c e s s=s u c c e s s +1 F E s u c c e s s . append ( FEs ) i f p l o t C i r c u i t : d i s p C i r c u i t ( q c )

  n t ( " Mean number o f e v a l u a t i o n s f o r s u c c e s s f u l r u n s : " ,mFE ) r i d Quantum PSO f o r b i n a r y p r o b l e m s by M a u r i c e . C l e r c @>WriteMe . com L a s t u p d a t e : 2024 =01=15 J u s t f o r a p r o o f o f c o n c e p t : = l o c a l b e s t t o p o l o g y = m i m i c k i n g t h e c l a s s i c a l b i n a r y PSO May n e e d ( L i n u x ) e c h o 1 | s u d o t e e / p r o c / s y s /vm/ overcommit_memory ' ' ' f r o m q i s k i t . qu a nt u m_ in f o i m p o r t s t a t e _ f i d e l i t y f r o m F u n c t i o n s i m p o r t * f r o m T o o l s 1 i m p o r t * f r o m T o o l s 2 i m p o r t * d e f n e i g h b o u r (N, K, n ) : # N e i g h b o u r s o f n . Random t o p o l o g y OK = F a l s e l i s t n = l i s t ( r a n g e ( 0 , N) )

  u p d a t e V e l (N, K, D, n q b i t s , v , c o u n t s , w , c1 , c2 , vMax , f P r e v ) : # V e l o c i t y u p d a t e S = [ ] f o r i i n r a n g e (N ) : # F i n d t h e l o c a l b e s t n e i g h = n e i g h b o u r (N, K, i ) fPrev_n = [ f P r e v [ i ] f o r i i n n e i g h ] p_rank = n e i g h [ np . a r r a y ( fPrev_n ) . argmax ( ) ] f o r d i n r a n g e (D ) : i 1 = D* i +d # c u r r e n t q u b i t o f t h e p o s i t i o n i 2 = p_rank *D+d # l o c a l b e s t i 3 = N*D+ i *D+d # p r e v i o u s b e s t i f i d 1

  updateVelIBM (N, K, D, n q b i t s , v , qd , w , c1 , c2 , vMax , f P r e v , m e a s u r e ) : # V e l o c i t y u p d a t e S = [ ] f o r i i n r a n g e (N ) : # F i n d t h e l o c a l b e s t n e i g h = n e i g h b o u r (N, K, i ) fPrev_n = [ f P r e v [ i ] f o r i i n n e i g h ] p_rank = n e i g h [ np . a r r a y ( fPrev_n ) . argmax ( ) ] f o r d i n r a n g e (D ) : i 1 = D* i +d # c u r r e n t q u b i t o f t h e p o s i t i o n i 2 = p_rank *D+d # l o c a l b e s t i 3 = N*D+ i *D+d # p r e v i o u s b e s t i f i d 1

  np . a r r a y ( v ) S = np . a r r a y ( S ) f i t e r a t i o n s f o r e a c h r u n # You may s e t i t t o I n f b u t # WARNING: p o s s i b l e i n f i n i t e l o o p v e r b o s e = F a l s e p l o t C i r c u i t = F a l
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  Figure 8.1: Copying qubits. 2 ⇒ 2 example

  Note that if you consider bits as logical values you can replace 1 -x i,t,d by ¬x i,t,d (i.e. switching the bit).

	3 In	the	original	paper	the	formula	is	wrongly	noted
	x i,(t+1),d = 1 if U (0, 1) < S v i,(t+1),d				
			0 else						

Table 1 :

 1 equal to 1. Then the Ry rotation switches the qubit, as in the non-quantum approach (formula 3.2). But here the process is smoother for smaller S values: only the probabilities of |0 > and |1 > are modied. How a qubit goes towards another thanks to R y rotations. Note the We can estimate what could be the maximum value for v i,d . The worst-case scenario occurs repeatedly when the delities are zero and the random ci,d equal to c. At the limit, as w < 1 we nd

	Example We have x i,d = for which the qubit d is √ 0.2×|0 > + √ 0.9 × |0 > + √ 0.8×|1 > and a better position has been found √ 0.1 × |1 >. So the qubit x i,d should go
	towards this one. Assuming there is no more improvement for eight iterations,
	a possible evolution of x i,d is given in Table 1. As expected the probability of
	state |0> (and, of course also the one of |1>) rst tends to the good one (0.9)
	and then oscillates.

Table 2 :

 2 Global best HQPSO -Sin3 problem -100 runs. The success rate of

	random search would be 12.5 %.				
	Swarm size	1	1	2	2	3
	Qubits	6	6	9	9	12
	Shots	500	500	1024	1024	1024
	Iterations/run	4	10	4	10	4
	Evaluations	396	1089	382	804	327
	Success rate	66 %	92 %	88 %	99 %	98 %

Table 3 :

 3 Global best HQPSO -G6 problem -100 runs. The success rate of random search would be 3.125 %.

	Swarm size	1	1	2	2	3
	Qubits	12	12	18	18	24
	Shots	2048	2048	2048	2048	2048
	Iterations/run	4	10	4	10	4
	Evaluations	493	2131	468	904	597
	Success rate	31 %	81 %	84 %	100 %	91 %

Table 4 :

 4 Global best HQPSO -Binary Rastrigin problem on [0, 7] 2 -100 runs.The success rate of random search would be 1.56 %.

	Swarm size	1	1	2	2	2	3	3
	Qubits	12	12	18	18	18	24	24
	Shots	1024	1024	1024	2048	2048	1024	2048
	Iterations/run	4	10	4	4	10	4	4
	Evaluations	555	3959	1138	1096	7950	1617	1611
	Success rate	10 %	16 %	11 %	13 %	14 %	16 %	15 %

(a) Continuous. Highly multimodal. (b) On integer 2D points it is unimodal but our HQPSO doesn't see that.

Table 5 :

 5 Local best HQPSO -Some results

			Sin3	Sin3	G6	G6	G6	Rastrigin	Rastrigin
		Swarm size	2	2	2	2	3	2	2
	Neighborhood size	1	1	1	1	2	1	1
		Qubits	24	24	24	24	36	24	24
		Shots	1024	1024	1024	1024	2048	2048	2048
	Iterations/run	4	10	4	10	4	4	10
		Evaluations	594	2440	1046	6936	5904	1112	7798
		Success rate	70 %	89 %	21 %	28 %	24 %	10 %	15 %
	4.3	Local best topology				

We can try with a local best topology, a random variable one with at most K neighbors (like say in SPSO 2007, available on the Particle Swarm Central PSC 2024). The velocity update formula is now the complete one 4.1.

These values comes from the classical Standard PSO but nothing proves this is a good choice here.

On the IBM cloud the length of the key as bit string may need leading zeros so that the string has the right length ( i . e .) the number of measured qubits . # For qubit i , probability to be 0