N
N

N

HAL

open science

Generator of Personalised Training Games Activities: A
Conceptual Design Approach

Bérénice Lemoine, Pierre Laforcade

» To cite this version:

Bérénice Lemoine, Pierre Laforcade. Generator of Personalised Training Games Activities: A Con-
ceptual Design Approach. Games and Learning Alliance - 12th International Conference, Nov 2023,

Dublin, Ireland. pp.321-331, 10.1007/978-3-031-49065-1_31 . hal-04434180v1

HAL Id: hal-04434180
https://hal.science/hal-04434180v1
Submitted on 2 Feb 2024 (v1), last revised 16 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04434180v1
https://hal.archives-ouvertes.fr

This preprint has not undergone peer review (when applicable) or any post-submission improvements or
corrections. The Version of Record of this contribution is published in Lecture Notes in Computer Science
Volume 14475, and is available online at https://doi.org/10.1007/978-3-031-49065-1_31

Generator of Personalised Training Games
Activities: A Conceptual Design Approach

First ‘Author[0000711117222273333]7 Second Author[ll11722227333374444]7 and
Third Author[2222——3333—4444—5555]

NOWHERE

{no-one}@research.com

Abstract. Memorizing declarative knowledge requires repetition, which
can become wearing for learners. In addition, redundant game activities,
offering unbalanced challenges in relation to the player’s skills, can also
lead to a sense of boredom. To reduce this feeling, learning games must
provide adapted and varied activities. Automated generation is one way
of building such activities. This article proposes a conceptual framework
for the design of activity generators for training declarative knowledge
in Roguelite games. The framework has been applied in the context of
the {anonymised} project for multiplication tables training.

Keywords: Training Activities - Generation Design - Serious Games.

1 Introduction

Long and short term memorization of declarative knowledge (DK), such as facts
and laws, requires repetition [12]. However, repetitive tasks can become boring
for learners [17], which can lead to their abandonment. Furthermore, serious
games that offer redundant activities with challenges that do not match their
skills can also become wearing for learners [18]. Thus, to limit the feeling of
boredom, serious games aimed at working on DK must offer a wide variety of
varied and adapted activities. Adaptation can be implemented in various ways
and can be aimed at one or more targets (e.g., game preferences, learning content,
difficulty). Personalisation can be defined as the use of models for the purpose
of tailoring systems to each person [4, 10].

Literature in cognitive psychology has shown that the process of retrieving
concepts or facts through testing increases their long-term acquisition [6]. Re-
trieval Practice is a form of test-based learning consisting of repeated recall of
what one has learned (e.g., through the use of flashcards, quizzes). Therefore, we
define training on DK as a form of retrieval practice that consists of repeatedly
providing the learners-players with various forms of questions on facts.

Activity generation is a solution for designing adapted and varied training
activities that few works address in Technology-Enhanced Learning [5] (TEL).
Generators are software components that use structured data to create elements

2 F. Author et al.

(e.g., text, documentation, activities). Building activity generators involves iden-
tifying and specifying the necessary elements for generation and their interac-
tions. Our interest lies in the design of generators of learner-player personalized
and varied game activities for DK training. To that extent, this article presents
a conceptual approach for the design of such generators.

2 Research Context

Related Works. Although not widely addressed in TEL, content generation
has been approached from three main angles: non-adapted content, learner-
adapted content and player-adapted content. Most of these works have one thing
in common: they use models to represent and structure the data required for gen-
eration (e.g., game elements, targeted knowledge, targeted content structure).
Only, these models tend to be domain-dependant. Moreover, the elements not
captured by the models, such as the adaptations rules, are captured in algo-
rithms. Holohan et al. [9] defined an ontology to allow the description of rela-
tional databases. They then use this ontology to automatically generate online
exercises for learning procedural knowledge (i.e., relational databases). Carpen-
tier and Lourdeaux [8] have proposed an approach for dynamically generating
scenarios adapted to learners’ abilities and pedagogical needs in virtual environ-
ments. Their approach is part of a framework based on three models: the domain
(i.e., static description of the world, its elements and their relationships), the ac-
tivity (i.e., hierarchical structure of the observed activity), the causality (i.e.,
expresses the relevant causal chains occurring in the environment). Sehaba and
Hussaan [16] have proposed a general architecture for learner-adapted (i.e., com-
petencies, skills, needs) game scenario generation. This architecture is based on
several models: the domain model models the domain concepts and their rela-
tions; the learner model models learners’ personal information, motivation, skills
and interactions; the presentation model describes the structures of the scenarios;
the serious game model associates game resources to pedagogical ones. More-
over, adaptation knowledge is represented as a rule-based system. Laforcade and
Laghouaouta [13] have proposed a Model Driven Engineering (MDE) approach
to understand the specification of generators of activities sequences (i.e., game
scenario) adapted to individual learner’s needs. This approach is based on [16],
and mainly use the same models. Callies et al. [7] have proposed an adaptive
architecture consisting in generating adapted pedagogical plans as well as in
adapting the behaviours of the non-player characters according to the players’
actions in simulation-type games. This work is based on a player model composed
of his/her game and domain knowledge, as well as an adaptation module.
Outside a generation standpoint, some works propose architectures to guide
the design of personalised learning systems. Roepke et al. [15] proposed a mod-
ular, component-based architecture for implementing personalised pipelines for
learning games for anti-phishing education. A pipeline is a three steps process:
data collection, content generation, content delivery. Ismail and Belkhouche [10]
proposed a reusable architecture for the design of personalised learning soft-

Generator of Personalised Training Games Activities 3

ware systems decomposed in 4 units: learner (i.e., maintains data about the
learner), knowledge (i.e., maintains learning resources), personalisation (i.e.,
maps learner’s model to learning resources), and presentation (i.e., represents
the software environment). However, although the design of game activity gen-
erators requires choices to be made about game design, their design varies from
pure game design. Furthermore, Tang and Hanneghan [19] discovered that there
was no game model that offered a complete representation of game concepts
from a design viewpoint for the use of MDE. Therefore, they propose a game
ontology representing design aspects of video games for simulation and role-play
genres, which also describes concepts linked to game activities.

Research Positioning. Our work targets declarative knowledge training (i.e.,
repeatedly providing the learners-players with various forms of questions on
facts), independently of a specific didactic domain, through games. Consequently,
the proposal must be reusable in a similar way to [10] in order to be extended
to domain-specific DK. Training requires repetitive activities [12] as well as var-
ied and personalised activities to avoid boredom caused by redundancy and
inadequate challenges [17,18]. Depending on the genre, the structure of a game
activity changes completely. Therefore, it was necessary to select a suitable game
genre for DK training. Roguelite is a dungeon-like genre that meets DK training
needs [2]. Tt is mainly characterized by the procedural generation of dungeons
with pseudo-random content, permanent death (each death of the avatar forces
the player to start a new game), and the limited possession of unlockable ele-
ments (e.g., avatars, items, power-ups). Therefore, a training game activity is a
dungeon, i.e., a set of interconnected rooms in which the avatar moves around
and in which the training takes place. In our context, adaptation focuses on both
educational dimension and game dimension by considering teachers’ viewpoint
on training for each learner, learners’ progress in their training, and players’
preferences. Consequently, our research questions are as follows: 1) What are
the elements involved in an activity generator? 2) What are the relationships
between these elements? 3) How can the elements and their relations be struc-
tured to construct such generators? and 4) How to consider DK independently of
a specific didactic domain? Our proposition is a framework extensible to domain
specific DK. This extensible framework is a conceptual and software infrastruc-
ture composed of models and tools to formalize and guide the implementation
of varied and adapted activity generators. This is a contribution in engineering
research of TEL systems [20] contributing to the exploration and orientation of
solutions for the generation of adapted activities. This article focuses on the
conceptual aspects of the framework, describing the different models involved
in the generation process, how they are built, and their relationships.

3 Activity Generation Needs

Activity generators are software components that take structured data as input
and provide detailed descriptions of activities as output (e.g., XML files). They

4 F. Author et al.

are composed of knowledge about the structure of the data they need and a
generation algorithm (e.g., rule-based system, procedural generation) they follow
to create activities. Dungeon generators for DK training require different models
to work, cf. Figure 1. First, a domain model describing the training path and
the facts to be worked on. Second, a learner-player model that keeps track of
the learner’s progress in his/her training and in the game, and his/her game
preferences so that the generator can personalise the activity on the basis of these
data. Next, a game model which describes the game elements available (e.g.,
gameplays, game objects). Then, a relation model that describes the relations
between the game elements and the training elements so that the generator builds
coherent activities. In the literature, relationships are often implemented directly
in the generation algorithm and rarely made explicit or modelled. Finally, to
build an activity, the generators need to know its structure, which is why the
activity model describes the structure of a dungeon for DK training.

Activity Generator
Game Elements Training Path & Learner-Player Dungeon Activity
Structure Knowledge Structure Profile Structure Structure
Training
Path & 4 4 ' }
Knowledge
Learner-
Player Generation Algorithm L
Profile (based on conceptual Activity
Game rules)
Elements

Fig. 1. Training Game Activity Generator Overview.

3.1 Domain Model: Training Paths & Knowledge

In the context of the {anonymised} project, that aims at building a game for
multiplication tables training, we conducted an exploratory research [1] with the
help of experts in mathematics (i.e., teachers and didacticiens). The exploratory
research had two main objectives: 1) how to organize training, and 2) what adap-
tations to consider for training on multiplication tables (i.e., source and targets
of adaptation). This led us to organize training into a structure called training
path. A training path is a set of objectives to achieve, ordered by prerequisite
relationships. An objective concerns a set of facts to work on, and is unlocked
when its prerequisites are met (i.e., making training a step-by-step process with
increasing difficulty). Each objective is decomposed into progressive difficulty
levels. A level is composed of a series of tasks, having domain-specific parame-
ters, which the learner must complete in order to progress in the training. Such
training paths, from objectives to task parameters, are defined by a teacher for
a learner or a group of learners. Therefore, each path is adapted, based on the
teacher’s viewpoint, to each learner individually.

Generator of Personalised Training Games Activities 5

v 4
Knowledg 1 Training * + DomainModel <<enum>>
EGPCategory <<abstract>>
Task
*
* - type: ETaskType
<<abstract>> =« Obiecti * <<abstract>> - parameters: Parameter
Fact i \g Level

Fig. 2. Simplified UML class diagram of the domain model.

DK are specific to the targeted didactic domain. For example, a multiplication
table fact can be represented as an object with three integers x (operand), y
(table) and res (result). On the other hand, a historical date would rather be
represented by an object with a string (event) and a date or a period (integers).
In addition, level and task parameters are also domain-dependant. For example,
multiplication tables facts can be built in different ways, operand x table or table
x operand, which is solely dependent on the domain of mathematics. Moreover,
for a task consisting of completing facts with a missing element (e.g., find the
historical date, the result of a multiplication), the element sought depends on the
domain too (e.g., result, operand, or table for multiplication, and event or date
for history). As a result, this model needs to be extended, by an engineer, on
the basis of data provided by the teacher, at three strategic points: Fact, Level,
Task. Figure 2 presents a simplified overview of the model, extension points are
represented as abstract classes. On the basis of this study and discussions with
history-geography teachers, specific tasks were defined for each field. Observation
of these tasks led to the definition of four types of task (i.e., super-classes of
the different tasks): Completion (i.e., completing a fact with missing elements),
Order (i.e., ordering facts using a heuristic), Identification (i.e., attesting the
validity or invalidity of facts) and Membership Identification (i.e., identifying
elements with a common property).

3.2 Game Model: Game Elements Structure

QuestionGP GameModel ._)[RnomTypeM Position
<<abstract>>
- cat: EGPCategOFY <<ab5"act>> ElementType
NoQuestionGP| EGPCategory
GameProgression o *,| GameLevel

- activated: Bool [)«) (
e — < ype

mnd\t\un

1.1 [EquipmentType |

Fig. 3. Simplified UML class diagram of the game model.

Prensky [14] said that the main reason for learning game failure lies in their
lack of gameplay. To that extent, we decided to provide a variety of gameplay
(i.e., action that the avatar can perform within a dungeon that impacts the

6 F. Author et al.

learner-player’s progress). On the basis of informal interviews with game design-
ers, we designed gameplays and gameplay categories (i.e., they do not claim to be
exhaustive) for DK training through Roguelite: SELECT (i.e., selecting objects
with the right answer), MOVE (i.e., moving the correct objects to the expected
areas), ORIENT (i.e., orienting the object to the right answers), POSITION
(i.e., placing the avatar in the right positions) and DIRECT RESPONSE (i.e.,
typing in the right answers) [2]. Consequently, the game model is composed of
gameplays. There are two types of gameplay: gameplays for answering questions
and gameplays purely for gaming. Question gameplays all fall into one of the five
categories mentioned above. The other gameplays describe game elements such
as traps to avoid, objects to break to get more coins, and so on. Every gameplay
are described by components that refer to a concrete type of game element (i.e.,
element that can be used within gameplays, such as pots, statues, traps).

Roguelites often feature an economic game mechanic, meaning that coins
are collected throughout the levels, enabling the player to buy and activate
items such as equipments. It is important to note that the creation of a game
activity generator does not require the creation of a game (as it is an independent
software component). However, creating game activities does require choices to
be made in terms of game design. For this reason, our design choices included
this mechanism. As a result, our game model features equipment and items that
the learner-player can purchase and activate according to his or her preferences.
To ensure that these preferences have an impact on generation, and are not just
aesthetic preferences, our choice was to offer items which, once activated, unlock
new gameplays. So if a learner does not like a gameplay, they can deactivate the
item and make it unavailable to the generator. In order to have a variety of rooms,
we have chosen to model room types that describe the different room shapes
that the generator can use. Finally, the game model describes the progression
of the game in terms of difficulty levels. A game level can modify the size of the
dungeon (i.e., the number of rooms), its shape (i.e., linear or labyrinthine) and
the possible traps (i.e., difficulty and number). This model must be specified by
game designers or engineers. Figure 3 presents an overview of the model.

3.3 Relation Model

Relation

_ *

N | |
- cat: EGPCategory

Fig. 4. Simplified UML class diagram of the relation model.

For the purpose of generating coherent activities, the generator must be able
to associate the game and training elements correctly. In order to define the re-
lationships between our elements, we proposed a systematic method for defining

Generator of Personalised Training Games Activities 7

machine-readable relationships between gameplay categories and task types for
DK training. The method is described here [3]. The resulting relationships asso-
ciate a gameplay category and a task type with a condition (i.e., a set of valued
parameters required to associate them within an activity). Figure 4 describe an
overview of the relation model. This model must be defined by engineers.

3.4 Learner-Player Model

GameProgession N <<abstract>>
(1_|—’ 7 = TrainingResult QuestionableFact
- currentLevel: GameLevel earnerPlayer B)
[) 1_| - obj: Objective fact: Fact
- name: String — "

- level: Level
SamePieforence m - path: TrainingPath
. R _ - task: Task Result
- items[]: Equipment "

Fig. 5. Simplified UML class diagram of the learner-player model.

Facts present in the domain model are raw information such as 3 x 5 = 15.
Depending on the task and its parameters, the questions about the facts to
practice changes. For example, completing a fact with a missing element will yield
questions such as 3x?7 = 15, while identifying if elements share a given property
will yield questions such as “Which ones are results of tables three? {3, 5,9, 13}”.
Therefore, like the facts, level and tasks, these questions need to be modelled
dependently of the didactic domain (i.e., another extension point). The questions
present in the dungeon will have both correct and incorrect propositions (when
the answer modality is Choice). From a didactic perspective, it is more interesting
if the incorrect answers vary constantly. However, in order to compare learners’
results on a given fact, it is necessary to have a common base that does not
change (i.e., keep the question format but not the elements that vary). To this
end, we propose a two-stage fact transformation process. First, questionable facts
are built based on the raw facts present in the domain model. A questionable fact
represents a question about a fact without incorrect propositions. Such facts are
used to retain learners’ results in the learner-player model (e.g., response times,
given answers). Secondly, questioned facts are built based on questionable facts
(i.e., they are questionable facts with incorrect answers). These facts will be
those present in the activity (cf. Figure 6).

As mentioned earlier, players’ preferences reside in the items they purchase
and activate. As a result, the learner-player model keeps track of which items
are purchased/activated. In addition, the model keeps track of the player’s game
level (i.e., game progression). Figure 5 presents an overview of this model.

3.5 Dungeon Activity Model

Figure 6 describes the simplified structure of a Roguelite-like activity for DK
training. An activity is a dungeon composed of rooms including an entry and

8 F. Author et al.

an exit. A room dispose of access to other rooms (i.e., its neighbours) as well as
a type (i.e., its shape) and a gameplay (cf. Section 3.2). Moreover, rooms with
question gameplays are also associated to a specific task and a set of questioned
facts (i.e., facts that are questioned in the room). Finally, each room is described
by their concrete positioned game elements that can be linked to questioned facts
(e.g., elements wearing choices or statements).

otherRoomsAccesses
*

Room Element ‘
- task: Task - position: Position J QuestionedFact l
exit 1t gameplay: Gameplay N fact: QuestionnableFact

Fig. 6. Simplified UML class diagram of the activity model.

4 A Design Framework of Activity Generators

4.1 Design Framework: Presentation

For proof-of-concept purposes, the presented conceptual design approach has
been implemented inside a framework (i.e., software infrastructure composed
of models and tools) using Model-Driven Engineering [11] tools and principles.
The aim of this framework is to guide the implementation of varied and adapted
game activity generators for DK training.

Model

Relation . .
yetamode! IR ctivity Generation
instance of Algorithm
Game
Model

Came Extension Rules
for metamodels, models,
and code extension

5
i
o
0o
€ E
9 g
o S
>‘I.I.
= C
2.9
- 0
°
<4

Fig. 7. Activity Generator Design and Implementation Framework Overview.

The framework (cf. Figure 7) is composed of metamodels (i.e., models whose
instances are also models), models (i.e., instances of the metamodels), an activ-
ity generation algorithm implemented in Java, and a set of extension rules (i.e.,
description of the different parts of metamodels, models and code to extend in
order to build a domain-specific activity generator). In this framework, every
conceptual model has been translated into a metamodel. The framework also in-
cludes an instance of the relation and game metamodels (i.e., models) as default.

Generator of Personalised Training Games Activities 9

However, domain/knowledge model and learner-player model (i.e., only his/her
personal information, such as name) must be instantiated and their metamodel
extended by following the extension rules.

4.2 Design Framework: Application to {Anonymised}

{Anonymised} is a research project that aims at building a game for multipli-
cation tables training. Currently, a game prototype has been implemented. This
prototype uses an activity generator built by using the framework presented
in Section 4 (i.e., creation of an extension of the framework for multiplication
tables). This generator provides XML files describing the dungeons (i.e., each
element and its position), which the game player (i.e., prototype) interprets to
create a playable dungeon. Figure 8 shows screenshots from the prototype dis-
playing two different gameplays. Both gameplays are questioning the same fact
- 3 x5 =15 - and both questioned facts were built from the same questionable
fact (cf. Section 3.4). However, both questioned facts are different in terms of
their possible incorrect answers. In addition, one gameplay is of the SELECT
category (i.e., the player must touch the correct rabbit) while the second is of
the MOVE category (i.e., the player must place the correct pot on the tile).

Fig. 8. Example of SELECT and MOVE gameplays for a Completion Task.

5 Conclusion & Perspectives

In conclusion, this article describes a conceptual approach for the design of game
activity generators for DK training. This conceptual approach has been imple-
mented in a model-driven engineering framework that is extensible to specific
didactic domains. This framework has been extended to build an activity gen-
erator for multiplication table training that is currently being used in a game
prototype. The main limitation of our work is that the models and metamodels
present within the framework are dependent on the game genre, in the way that
they target DK learning through Roguelite activities (i.e., dungeons). In addi-
tion, there are many ways of modelling the information presented, and each of
our choices can be argued according to different viewpoints. In the future, we
intend to extend that framework to a second didactic domain: history-geography
facts of the Diplome National du Brevet an exam taken in Year 10 in France.

10

F. Author et al.

References

Ll

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Author: Title3. In: Anonyme (2022)

Author, N.: Titlel. In: Anonyme (2023)

Author, N.: Title2. In: Anonyme (2023)

Bakkes, S., Tan, C.T., Pisan, Y.: Personalised gaming: A motivation and overview
of literature. In: Proceedings of The 8th Australasian Conference on Interactive
Entertainment: Playing the System. pp. 1-10. ACM, Auckland New Zealand (2012)
Bezza, A., Balla, A., Marir, F.: An approach for personalizing learning content in
e-learning systems: A review. In: Second International Conference on E-Learning
and E-Technologies in Education. pp. 218-223. IEEE, Lodz, Poland (2013)
Brame, C.J., Biel, R.: Test-Enhanced Learning: The Potential for Testing to Pro-
mote Greater Learning in Undergraduate Science Courses. LSE 14(2) (2015)
Callies, S., Sola, N., Beaudry, E., Basque, J.: An empirical evaluation of a serious
simulation game architecture for automatic adaptation. In: R. Munkvold & L.
Kolas, Proceedings of the 9th ECGBL. pp. 107-116 (2015)

Carpentier, K., Lourdeaux, D.: Generation of Learning Situations According to
the Learner’s Profile Within a Virtual Environment. In: Agents and Artificial In-
telligence, vol. 449, pp. 245-260. Springer, Berlin, Heidelberg (2014)

Holohan, E., Melia, M., McMullen, D., Pahl, C.: The Generation of E-Learning Ex-
ercise Problems from Subject Ontologies. In: 6th International Conference on Ad-
vanced Learning Technologies. pp. 967-969. IEEE, Kerkrade, Netherlands (2006)
Ismail, H., Belkhouche, B.: A Reusable Software Architecture for Personalized
Learning Systems. In: 2018 International Conference on Innovations in Information
Technology (IIT). pp. 105-110. IEEE, Al Ain (2018)

Kent, S.: Model Driven Engineering. In: Integrated Formal Methods. pp. 286—298.
Springer Berlin Heidelberg (2002)

Kim, J.W., Ritter, F.E., Koubek, R.J.: An integrated theory for improved skill
acquisition and retention in the three stages of learning. Theoretical Issues in
Ergonomics Science 14(1), 22-37 (2013)

Laforcade, P., Laghouaouta, Y.: Generation of Adapted Learning Game Scenarios:
A Model-Driven Engineering Approach. In: 10th International Conference CSEDU,
Funchal, Madeira, Portugal. vol. 1022, pp. 95-116. Springer (2018)

Prensky, M.: Computer Games and Learning: Digital Game-Based Learning. Hand-
book of Computer Game Studies (2005)

Roepke, R., Drury, V., Schroeder, U., Meyer, U.: A modular architecture for per-
sonalized learning content in anti-phishing learning games. In: Software Engineer-
ing (Satellite Events) (2021)

Sehaba, K., Hussaan, A.M.: GOALS: Generator of adaptive learning scenarios.
TIJLT 8(3), 224 (2013)

Smith, R.P.: Boredom: A review. Human factors 23(3), 329-340 (1981)

Streicher, A., Smeddinck, J.D.: Personalized and Adaptive Serious Games. In: En-
tertainment Computing and Serious Games, vol. 9970, pp. 332-377. Springer In-
ternational Publishing, Cham (2016)

Tang, S., Hanneghan, M.: Game Content Model: An Ontology for Documenting
Serious Game Design. In: 2011 Developments in E-systems Engineering. pp. 431-
436. IEEE, Dubai, United Arab Emirates (2011)

Tchounikine, P., Mgrch, A.I., Bannon, L.J.: A Computer Science Perspective on
Technology-Enhanced Learning Research. In: Technology-Enhanced Learning, pp.
275-288. Springer Netherlands, Dordrecht (2009)

