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It is now well established that materials are stronger when their dimensions are reduced to sub-
micron scale. However, what happens at dimensions such as a few tens of nanometers or lower
remains largely unknown, with conflicting reports on strength or plasticity mechanisms. Here, we
combined first principles molecular dynamics and classical force fields to investigate the mechani-
cal properties of 1–2 nm Si and SiC nanoparticles. These compression simulations unambiguously
reveal that the strength continues to increase down to such sizes, and that in these systems the
theoretical bulk strength can be reached or even exceeded in some cases. Most of the nanoparticles
yield by amorphization at strains greater than 20%, with no evidence of β-tin phase for Si. Original
and unexpected mechanisms are also identified, such as the homogeneous formation of a dislocation
loop embryo for the 〈111〉 compression of SiC nanoparticles, and an elastic softening for the 〈001〉
compression of Si nanoparticles.

Exploring materials at the nanoscale is a successful
story with the discovery of new properties and original
phenomena in various domains like phononics, plasmon-
ics, photonics, etc... In the specific case of nanomechan-
ics, pioneering works by Taylor and Brenner revealed the
surprisingly high strength of various metals at the micron
scale [1, 2]. Later investigations at lower dimensions [3, 4]
confirmed the important finding that the reduction of di-
mensions considerably increases the strength, with values
converging towards the theoretical limit [5].

These works raise fundamental and unresolved ques-
tions. First, one may wonder whether strength keeps in-
creasing down to the smallest possible sizes. It has been
tentatively proposed that there is a threshold size below
which the strength appears to be constant [6–8]. How-
ever other studies reported a weakening at sizes equal to
a few tens of nm [9, 10]. A second unknown concerns the
maximum strength value that can be attained at small
scale. It is assumed that the intrinsic strength of the
perfect bulk crystal represents an upper bound. Values
close to this theoretical limit were recently reported for
several kind of metal nanoparticles (NP) [6, 8, 11]. How-
ever, the maximum strength for even smaller NP made
of other materials like Si was determined to be signifi-
cantly lower [7]. These conflicting results clearly call for
investigations of strength at the lowest possible scales.

Other unknown factors are plasticity mechanisms and
how they are impacted at low dimensions. It is notori-
ous that materials with covalent bonding become ductile
at low dimensions [12]. But our understanding of the
underlying plastic deformation mechanisms remains lim-
ited and controversial. In silicon, the most studied cova-
lent material, classical molecular dynamics calculations
(MD) predicted either the heterogeneous nucleation of
dislocations [10, 13, 14], or the occurrence of phase tran-
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sition [15, 16] during the compression of 10–50 nm NP.
This controversy is possibly caused by classical poten-
tials, which are unable to provide an accurate descrip-
tion of small and highly strained NP [17]. Experiments
are scarce and the most comprehensive study suggests
that both phase transition and dislocations could concur-
rently occur [7]. At the smallest dimensions, i.e. down to
a few nm, the situation is even more complicated since
amorphization becomes another competitive deformation
mode [18]. Further investigations are needed to address
these issues.

Current experimental apparatuses allow for studying
the plastic deformation of nanostructures with dimen-
sions as small as a few tens of nm [19, 20]. But it re-
mains difficult to apply a deformation in a controlled
manner at lower sizes. As previously mentioned, the use
of classical MD is questionable because of the inaccuracy
of interatomic potentials. In order to circumvent this
issue and obtain key answers concerning the mechani-
cal properties of NP at the smallest scales, we applied
a recently developed approach combining first principles
MD together with planar repulsive force fields [21], thus
allowing for dynamic compression at finite temperature
with first principles accuracy [22, 23]. This approach is
used in the present work to investigate the mechanical
properties of small Si and SiC NP, aiming at answer-
ing fundamental and unresolved questions regarding the
strength and plasticity mechanisms in nanometer-scale
materials. Our calculations reveal that the strength of
NP reaches or even exceeds the bulk theoretical limit,
which is an original feat to our knowledge. Incidentally,
we also demonstrate that the strength keeps increasing
down to a few nm in the case of Si and SiC, at odds with
previous reports [9, 10]. We find that these NP yield
mostly by amorphization, with no transition to a high
pressure crystalline phase. Finally, our simulations also
reveal the unexpected homogeneous formation of a small
dislocation embryo in SiC NP. Yet such a mechanism was
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customarily acknowledged to be unfavorable, due to the
reduced dimensions or with respect to heterogeneous nu-
cleation.

Two Si and four SiC NP models, with cuboctahedron
or truncated octahedron shapes and with sizes ranging
from 1.1 nm to 1.8 nm, are studied [24]. Car-Parrinello
molecular dynamics (CPMD) calculations are performed
using the Quantum Espresso code [25]. All NP are lo-
cated in supercells with dimensions adjusted to ensure
a minimum vacuum distance of 10 Å between replicas.
The electronic structure is computed using a 25 Ry plane
wave cutoff, γ-point sampling, the PBE exchange corre-
lation functional [26], and ultrasoft pseudopotentials [27].
Other parameters specific to the CPMD method are sim-
ilar to the ones used in Ref. [22]. The CPMD timestep
is 0.2 fs and the compression speed is 0.1 Å/ps ensuring
a reasonable strain rate [17] but at the cost of typically
3 × 105 ionic iterations. Compression is done at 300 K
in a controlled strain mode along the 〈111〉 or the 〈001〉
crystallographic orientations.

FIG. 1. Force (nN, blue), energy (eV, red), stress (GPa, or-
ange), and contact surface (Å2, green) as a function of strain,
for a Si79C68 NP compressed along 〈111〉. The displayed con-
tact surface and stress are obtained using the S1 surface def-
inition (see Supp. Inf.). Dashed lines are linear interpolation
of force and stress in the strain range 0.05–0.1 where contact
surface is constant. The pink strip shows the strain region
where plastic deformation starts.

We first analyze how properties like energy and force
applied on the NP vary as a function of compression
strain ε. Both are directly obtained from the simula-
tion. The energy averaged before compression is used as

the energy reference. The zero strain is estimated from
a linear extrapolation of the contact force in the elas-
tic regime, with an accuracy at best of ±0.01. We also
determine the contact stress as the ratio of the force to
the contact surface. The latter is inherently prone to un-
certainty, a fortiori in small systems. We used different
calculation methods [28] to determine a meaningful range
of possible contact surface area. Accordingly in the fol-
lowing all stress-related quantities are given as a range
of values.
Figure 1 shows results for Si79C68 as an example. At

low strains, energy and force exhibit a quadratic and
linear variation, respectively, as expected for an elas-
tic deformation. The contact surface is constant in the
0.04–0.11 strain range, leading to an almost linear in-
crease of contact stress. The elastic regime is character-
ized by a stiffness of 303 N/m, and an elastic modulus
of 411–780 GPa (depending on the surface calculation
method) in good agreement with the 〈111〉 bulk SiC value
of 541 GPa. The data and curves for all systems are in-
cluded in Supplementary Material [29]. It is found that
elastic moduli of NP are close to the corresponding bulk
value (for a given material and orientation). As expected,
larger moduli are obtained for SiC and 〈111〉 than for Si
and 〈001〉. For ε > 0.10, small ripples are observed in the
force curves, in association with weak variations of con-
tact surfaces, while the energies grow smoothly. Similar
observations are made for all studied systems.
For the system showcased in Fig. 1, the force, en-

ergy and stress exhibit large drops when the strain ex-
ceeds 0.21–0.23, suggesting the initiation of plastic relax-
ation. Figure 2-a shows the compressed NP just before
(ε = 0.223) and after (ε = 0.225) the activation of the
first plasticity mechanism. The main structural changes
concern atoms in a 〈111〉-normal strip, bordered by the
two red lines in the figure. We observe that the stress re-
laxation mechanism essentially consists of the concerted
motion of four atoms along 〈011〉, Si and C atoms mov-
ing in opposite directions (red arrows in the right side
of Fig. 2-a). It leads to the formation of a point defect
dipole (green lines in Fig. 2-a). Interestingly, this con-
figuration is also equivalent to a dislocation core dipole
embryo with a minimal expansion of the dislocation loop.
In fact, each core defect exhibits the 5/7-ring structure
typical of a 1/2〈110〉 60◦ glide dislocation core [31]. An
atomic displacement analysis reveals that the Burgers
vector magnitude is about 80% of the value expected for
a dislocation in bulk SiC. This is coherent with previous
analyses of the homogeneous nucleation of a dislocation
loop at low dimensions [32, 33]. At ε = 0.242 one of these
cores glides in the Burgers vector direction and annihi-
lates itself at the NP surface, which further confirms the
dislocation nature of the defect. The homogeneous nu-
cleation of a dislocation loop in such a small volume was
unexpected [15] and never reported to our knowledge,
and thus constitutes one of the highlights of the present
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FIG. 2. Plasticity mechanisms occurring in the Si79C68 NP
compressed along 〈111〉 (a), and in the Si123 NP compressed
along 〈001〉 (b). In (a), pictures on the left show the NP
structure at compression strains of 0.223 and 0.225, the com-
pression axis being the vertical of the figure (Si in gold and C
in black). Pictures on the right show a flat view of atoms con-
tained in a 〈111〉-oriented slice (limited by the two red lines
in the left pictures). Red arrows indicate the main atomic
displacements leading to the formation of a dislocation dipole
(emphasized by the green thick lines). In (b), the left picture
displays the NP structure at a strain of 0.26, with atoms col-
ored according to a PTM analysis [30] (blue: cubic diamond,
orange: hexagonal diamond, white: unidentified structure),
whereas the right graph compares RDF for uncompressed and
compressed NP.

study. A similar mechanism is also identified for Si61C61,
which suggests it is specific to the 〈111〉 compression of
SiC NP.

The structural changes associated with large stress
drops in all compressed NP were all thoroughly ex-
amined and the results reported in Tab. I. In most
cases, Polyhedral Template Matching (PTM) and Ra-
dial Distribution Functions (RDF) analyses reveal that a
partial crystal-amorphous transition occurs as primary
or secondary stress relaxation mechanism (Fig. 2-b).
This is in agreement with the generally accepted no-
tion of an improved stability of disordered phases at the
nanoscale [18]. Two other events are noteworthy. First,
we observe a force/stress maximum at 0.20 strain for the
〈001〉 compression of Si123, with only a small inflection
of the energy curve (Tab. I and Fig. S9). Atomic and
electronic structure analyses, detailed in Supplementary

TABLE I. Identified mechanisms and corresponding strains
and stresses (GPa) during the compression.

Model Strain Stress (GPa) Mechanism
Si123 〈001〉 0.2 19–43 softening

0.26 10.7–24 amorphization

Si148 〈111〉 0.195 20.6–39 amorphization

Si71C56 〈001〉 0.30 64–107 amorphization

Si80C92 〈001〉 0.24 76–170 NP rotation
0.30 64–116 amorphization

Si61C61 〈111〉 0.25 85–146 dislocation embryo
0.33 47–82 amorphization

Si79C68 〈111〉 0.21 80–135 dislocation embryo
0.37 49–72 amorphization

Material, were carried on, which indicate a relatively ho-
mogeneous deformation and the absence of amorphous
or β-tin phases formation [34]. The important finding is
that the onset of this 〈001〉 softening would appear as
the ultimate yield stress of the NP by examining the
stress–strain curve, although the deformation remains
purely elastic, with the first irreversible event occurring
at ε = 0.26. The second interesting event is observed dur-
ing the 〈001〉 compression of Si80C92, at ε = 0.24. Com-
pared to the previous case, the stress reaches a maximum
but not the force or the energy (Fig. S7 in Supp. Inf.).
The stress drop is due to an increase of contact surface,
which is a consequence of the disorientation of the NP rel-
atively to the compression axis (Fig. S12 in Supp. Inf.).

FIG. 3. Maximum stress (GPa) versus size (nm) plots for
Si (top) and SiC (bottom), with (a) data from Tab. I, or
compiled from the literature (b) [14], (c) [16], (d) [10], (e) [15],
(f) [35], (g) [36], (h) [37], (i) [38], (j) [39]. The orange squares
show the averages of the four stress values (depending on
surface definition) for each NP. The orange lines run from the
lowest to the highest of these stress values for each NP. The
dashed grey lines show a power fit to the data (see text for
details).
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We now focus on the highest contact stress σ achieved
during compression. In the investigated strain range, σ
is associated with primary events as reported in Tab. I.
It is well acknowledged that decreasing dimensions leads
to an increase of strength for sizes down to a few tens of
nm [17]. Conflicting propositions were made for smaller
dimensions, with either constant [6, 7] or decreasing [9]
strength when size is reduced. Our maximum stress val-
ues are represented in Fig. 3, together with data from the
literature for other Si and SiC systems. Considering the
ranges due to surface area definitions, it is clear that our
values are overall significantly greater than those com-
puted or measured for larger systems. It suggests that
for Si and SiC, and also likely for other zinc-blende or
wurtzite materials, the strength keeps increasing down
to a few nm. Fitting all data with a power law expres-
sion βd−α, d being the size (Fig. 3), α exponents of 0.16
(0.28) are obtained for Si (SiC). The Si value is close
to 0.08–0.11, the estimated exponents for much larger
nanopillars [36], and in the expected range for ceramic-
like materials [40]. Note that there is a debate about the
value and meaning of these scaling exponents [41–43].

FIG. 4. Critical resolved shear stress (GPa) versus strain at
the first contact stress maximum (brown squares for Si and
blue spheres for SiC). For each system, the different CRSS
values correspond to the stress values associated with each
surface definition. The lower and upper yellow strips show
the ranges of theoretical shear strength, built from extreme
values reported for Si [44, 45] and SiC [46, 47], respectively.

Assuming an homogeneous deformation inside the NP
during compression, we determined the critical resolved
shear stress (CRSS) τ , which is the projected shear stress
for a given slip plane and direction and is obtained using
τ = mσ, with m the Schmid factor (see Supp. Inf.). m
is computed from atomic positions at each compression
step for all systems, for a 〈110〉 slip in {111} planes. Ini-
tial values are 0.408 and 0.272 for the 〈001〉 and 〈111〉
compression orientations, respectively. At strains associ-
ated with the maximum contact stresses, m slightly in-
creases up to 0.41–0.42 for 〈001〉 and 0.30–0.32 for 〈111〉.
The corresponding CRSS data are shown in Fig. 4. As
expected, CRSS values are greater for SiC than for Si.
Also, they are relatively close for all clusters, except for
Si80C92 which appears as an outlier. Next we compare

our computed values with theoretical shear strength data
(TSS) from the literature (Fig. 4). TSS, also called ideal
shear stress, is defined as the maximum stress in a perfect
crystal under a uniform shear deformation. Assuming
the upper limit for surface areas (S3 in Supp. Inf.), i.e.
considering the lowest strength values for each case, we
find that the computed CRSS are close or only slightly
lower than the TSS. This suggests that in 1–2 nm NP the
theoretical shear strength is almost reached. This is even
more remarkable since our calculations are carried out at
300 K while TSS is a 0 K calculated quantity. Now con-
sidering the other surface definitions described in Supp.
Inf., the CRSS values are greater than the TSS in several
cases. This surprising finding might be explained by the
large compression strains, since it is known that normal
stresses can significantly change the TSS [47]. Another
rationale is that our original assumption is not correct
i.e., the stress inside the NP is not homogeneous and
then locally not equal to the projection of the compres-
sion stress. Finally, quantum confinement effects might
also play a role at small sizes.
Overall our CPMD simulations reveal a rich and un-

expected picture of the mechanical properties of 1-2 nm
Si and SiC NP. Very high strain/stress are required to
reach the plastic regime, which is in most cases initiated
by amorphization. We also identified the homogeneous
formation of a seemingly dislocation embryo as first plas-
tic event. This finding conflicts with the broad consen-
sus that homogeneous dislocation nucleation is prevented
in such small volumes. Another interesting and original
finding is the occurrence of a softening along the 〈001〉
orientation in Si associated with a compression stress
maximum, although no phase formation occurs and the
deformation remains elastic. The maximum stress values
suggest that the NP strengths, computed at 300 K, are
close to the theoretical strength of the ideal bulk material
at 0 K. It also confirms that for covalent materials the
strength keeps increasing when dimensions are reduced
to a few nm. Note that in this work we investigated
〈001〉 and 〈111〉 compression orientations, which corre-
spond to the normals of well defined facets in Wulff-like
NP. Compression along other orientations like 〈110〉 is
likely to lead to NP rotation and reorientation of the
compression axis along 〈001〉 or 〈111〉. To conclude, this
study opens the way towards a better understanding of
mechanical properties at a previously inaccessible scale.
The originality and importance of our findings is a clear
incentive to apply an equivalent approach to other class
of materials, like FCC and BCC metals.
The computer time for this work was provided

by several sources: the Spin Center at the Univer-
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