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ABSTRACT
Topological states have been receiving a great deal of interest in various wave problems, such as photonic, acoustic, and elastic waves. However,
few studies of topological elastic waves in non-periodic systems have been reported. Recently, hyperuniform systems suppressing long-range
order while partly maintaining short-range order have provided new opportunities to control waves. In this work, we study the elastic topo-
logical interface states appearing between two Su–Schrieffer–Heeger (SSH)-like pillared metabeams where each metabeam, is constituted by
a mirror symmetric hyperuniform structure. The SSH-like model is constructed by combining two hyperuniform metabeams with inverted
configurations. We demonstrate that this structure could open new bandgaps at low frequencies, of which some are nontrivial and can sup-
port topological interface modes. We further show that the number of low-frequency bandgaps supporting the topological modes increases
with the level of randomness, hence providing a high number of interface modes in the same structure. The robustness of the topological
interface states against random perturbations in the pillars’ positions is further verified. Our work offers a reliable platform for studying
topological properties and hyperuniform metamaterials and designing wave control devices for low-frequency wave attenuation and robust
energy localization.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0184699

I. INTRODUCTION

Artificially structured materials such as phononic crystals1–4

and acoustic metamaterials,5–7 which consist of periodic or non-
periodic arranged units, have attracted much interest owing to their
unusual properties in terms of wave attenuation, energy harvesting,
waveguiding, and sensing. In recent years, topological physics, as
an emerging field, has provided anomalous wave properties and is
being used to design novel artificially structured materials to manip-
ulate acoustic and elastic waves robustly.8–11 The key feature of a

topological system is the existence of topologically protected states
at the interface between two systems with distinct topological invari-
ants, whose existence is robust against defects and impurities and
makes them immune to backscattering in two-dimensional sys-
tems. In a one-dimensional (1D) system, the topological invariant
is expressed by the Zak phase, which is a special kind of Berry
phase associated with each 1D bulk band.12 Then, various topo-
logical effects, such as topological interface states,13,14 topological
exceptional points,15 and robust Fano resonances,16,17 have been
investigated.
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One of the most widely used models to predict and inves-
tigate the topological states in one-dimensional systems is the
Su–Schrieffer–Heeger (SSH) model.18 This model describes a dis-
crete system with a dimerized unit cell, where the trivial or nontrivial
character is defined by the fact that the ratio between the hopping
integrals of intracell and intercell atoms is less or greater than one.
Accordingly, the existence of a topological edge (or surface) mode
localized at the free boundary of the system is demonstrated. Based
on the original SSH model, many effective SSH-like models have
been proposed in photonics as well as in acoustic and mechanical
continuous systems.12,19–22 The SSH-like models are constructed by
associating two subsystems with different topological phases, usu-
ally accompanied by symmetry inversion of the modes at the band
edges.17,22 The topological edge states appear now at the interface
between the two topological phases instead of at the open boundary
of the subsystems. The bulk-boundary correspondence for the SSH-
like models relates the difference between the topological phases of
the two subsystems and the topological interface mode of the com-
bined system. To predict the existence of the topological interface
modes, the Zak phases of the 1D systems can be determined by
the symmetry of the band-edge states of the subsystems.12 If the
Zak phases of the common bandgaps for the two subsystems are
different, the bandgaps are nontrivial, and a topological interface
mode is expected in the nontrivial bandgap. In practice, these inter-
face modes can be studied in two ways: either by associating two
semi-infinite (or sufficiently long finite) subsystems or by consid-
ering a periodic structure in which the unit cell is a large supercell
made up of the association of two finite subsystems. In both cases,
they are localized around the interface and decay when going far
from the interface. Both approaches are used in the following study.
Note that in the periodic case, the interface modes appear ideally
as flat (dispersionless) branches among the dispersion curves; how-
ever, the degree of their flatness is related to the size of the supercell
that avoids the interaction between the topological interfaces in two
neighboring unit cells.

Recently, the topological states in non-Hermitian systems have
been studied with the development of non-Hermitian physics.23–25

Fan et al. presented an SSH-like elastic metamaterial and showed
that topological edge states can be obtained when uneven absorptive
dampings are applied to the unit cell, even if the hopping strengths
are identical.26 The interplay between non-Hermiticity and topo-
logical systems will lead to topological physics beyond the Bloch
band theory and bulk-boundary correspondence, in which the non-
Hermitian skin effect appears and has drawn lots of attention.27–29

However, most of the topological states are studied in periodic
systems.

Lately, the concept of hyperuniform disorder has been intro-
duced to metamaterials, which were first used to estimate point
patterns according to their local density fluctuations30–33 and exhibit
the properties of liquids (amorphous) and crystals (periodic) simul-
taneously.34 Hyperuniform systems can suppress large-scale density
fluctuations, but they are statistically isotropic and lack long-range
order.32,35 Hyperuniform systems represent the low-k limit of stealth
systems, which can completely suppress the scattering of incident
waves for a set of wave vectors; namely, the hyperuniform systems
are transparent in the long-wavelength limit.36–38 Consequently,
periodic systems belong to the hyperuniform systems, which can
suppress the scattering for all wavelengths except those associated

with Bragg scattering. The hyperuniform metamaterials were found
to possess large isotropic photonic/phononic bandgaps39,40 and have
been efficiently used for free-form waveguides,41 high-Q cavities,42

integrated waveguide polarizers,43 vibration concentration,44 and
graded effective index materials.45 Recently, the topological prop-
erties of hyperuniform systems have been studied. Mitchell et al.
constructed amorphous Chern insulators from arbitrary underlying
structures, including hyperuniform systems, where local decorations
control the topology of the vibrational spectrum.46 Kuznetsova et al.
experimentally presented the topological interface modes between
two SSH-like one-dimensional hyperuniform acoustic systems with
different geometrical representations.34 However, few explorations
of hyperuniform systems for topological elastic waves have been
reported, especially owing to the fact that elastic structures such as
beams support multiple modes.

In this work, we present the topological interface modes
between two SSH-like hyperuniform pillared metabeams with dif-
ferent Zak phases. We first state the model of the pillared metabeam
and illustrate the hyperuniform distribution with the structure fac-
tors. Then we calculate the band structures of hyperuniform pillared
metabeams by the supercell method and obtain the Zak phases
of bandgaps via the symmetry of band-edge states. Furthermore,
we construct the SSH-like model by combining the two hyperuni-
form metabeams, which have inversed left half and right half, and
demonstrate the topological interface modes by band structures,
eigenmodes of finite metabeams, and transmissions. We empha-
size the increase in the number of bandgaps at low frequencies and
associated interface modes when increasing the level of disorder in
the hyperuniform supercell. Finally, the robustness of the topologi-
cal interface modes is checked by introducing perturbations in the
pillars’ positions. Our study connects hyperuniform systems and
topological elastic waves and could open new pathways to appli-
cations, such as broadband wave attenuation, sensing, and robust
energy localization. The outline of the paper is as follows: After the
introduction in Sec. I, the model of the metabeam and hyperuniform
distribution are presented in Sec. II; in Sec. III, the Zak phases of the
hyperuniform metabeam are obtained, and the topological interface
states of the SSH-like model are demonstrated and discussed, in par-
ticular, as a function of the disorder level. Section IV is devoted to the
conclusions and remarks.

II. MODEL OF THE METABEAM WITH HYPERUNIFORM
DISTRIBUTION OF PILLARS

A hyperuniform pillared metabeam is constructed by arranging
the pillars symmetrically on the upper and lower surfaces of the host
beam, as shown in Fig. 1(a). The number N of pillars is 20, and the
positions of pillars follow the hyperuniform distributions. The pillar
distribution has mirror symmetry, with the mirror plane indicated
by the orange dashed line in Fig. 1(a). The left and right halves, each
with ten pillars, are, respectively, called S and S∗. To construct an
SSH-like model, we invert the left and right halves and get the coun-
terpart S∗S. Then we put the supercells SS∗ and S∗S together and
obtain the combined supercell SS∗S∗S, as shown in Fig. 1(b). The
topological interface modes will occur at the interface of SS∗ and
S∗S, as marked by the vertical black dotted line in Fig. 1(b).

The host beam and pillars are made of aluminum, with a den-
sity of 2730 kg/m3, Young’s modulus of 77.6 GPa, and Poisson’s ratio
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FIG. 1. (a) Schematic illustration of the hyperuniform pillared metabeam with mirror symmetry. The orange dashed line represents the mirror plane. The left and right parts of
the mirror plane are, respectively, called S and S∗. (b) Schematic illustration of the combined supercell SS∗S∗S. The black dashed line indicates the interface.

of 0.35. The diameter d and height h1 of the pillar are 1 and 1.35 cm,
respectively. The width w and height h0 of the host beam are 2 and
1 cm, respectively.

Consider a 1D distribution of N = 20 identical pillars located at
positions xj. The structure factor S(q) of this point pattern is defined
in Fourier space and reads36,47

S(q) =
1
N

RRRRRRRRRRR

N

∑

j=1
eiqxj

RRRRRRRRRRR

2

, (1)

where q = 2πn/L is the reciprocal lattice vector component, and n is
the positive or negative integer, or zero. L = Na is the total size, with
the a lattice constant of the periodic case being 2 cm in our geometry.

Hyperuniform point patterns are characterized by the van-
ishing structure factor S(q) in the long-wavelength limit, namely,
vanishing around the origin.35–37 In particular, this can be expressed
as S(q ≤ qc) = 0, with qc as the cut-off reciprocal vector defining
the bound of constrained reciprocal vectors. The stealthiness para-
meter χ can be introduced to characterize the level of disorder in
the hyperuniform structure, which represents the ratio of the num-
ber of constrained degrees of freedom relative to the total number
of degrees of freedom.35,48 In our studied 1D model, the stealthiness
parameter χ writes47

χ =
qcL

2πN
. (2)

Note that the stealthiness parameter χ is bounded in the interval
[0, 1]. The larger the stealthiness parameter χ is, the more ordered
the structure is, namely, the closer it is to a periodic structure.

To get the target hyperuniform point patterns with different
stealthiness parameters χ, we use the collective coordinate opti-
mization technique to find the point positions xj.32,35,48 Briefly, the
collective coordinate C(q) in the 1D model is defined as

C(q) =
N−1

∑

j=1

N

∑

l=j+1
cos [q(xj − xl)]. (3)

The structure factor S(q) for a configuration can be expressed
in terms of C(q),

S(q) = 1 +
2
N

C(q). (4)

Therefore, the collective coordinate C(q) has the minimum
value of −N/2. For a stealthiness parameter χ, the corresponding
point positions xj can be obtained by making the collective coordi-
nate C(q) in the constrained region q ≤ qc reach the minimum value.
We utilize an optimization program to deal with this, which starts
with a random distribution. In addition, only the points in the left
half or the right half need to be optimized due to the mirror sym-
metry in our model. To avoid the overlap of adjacent pillars, we
generate many samples and choose the distributions that meet the
non-overlapping conditions. In addition, the target hyperuniform
point patterns can also be designed by simultaneously minimizing
the summation of the structure factor and the standard deviation
function.47

The generated point positions and corresponding structure fac-
tors for periodic and one realization of χ = 0.4, χ = 0.2, and random
distributions are shown in Fig. 2. The specific positions of the hype-
runiform distributions can be found in the supplementary material,
Sec. I. For periodic distribution with the periodicity of a shown
in Fig. 2(a), the structure factor map presents the Bragg peaks at
q = 2πn/a. For the wavelength out of the Bragg peaks, the structure
factor is 0. This means that a periodic distribution of scatterers can
suppress scattering for all wavelengths (namely, waves can propa-
gate almost without scattering) except those associated with Bragg
scattering.36 The Bragg bandgap will occur around the wavelength
of 2πn/a due to the Bragg scattering. For the hyperuniform distribu-
tion with χ = 0.4 shown in Fig. 2(b), only the structure factor around
q = 0.5 deviates from zero compared to the periodic case. Moreover,
the structure factor shows peaks at wavelengths corresponding to the
Bragg scattering, which means that the system presents some hints
of periodicity. This implies that the hyperuniform system keeps part
of the bandgap property of the periodic structure (while the trans-
parency range decreases). For the hyperuniform distribution with
χ = 0.2 shown in Fig. 2(c), the system becomes more disordered, and
the structure factor deviates more from zero, representing the more
and stronger scattering effects from the scatters. As soon as the dis-
tribution becomes fully random, as shown in Fig. 2(d), there is no
wavelength with a zero structure factor, and random scattering is
produced.
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FIG. 2. Representation of the point positions (upper panels) and structure factors (lower panels) for (a) periodic, (b) χ = 0.4, (c) χ = 0.2, and (d) random distributions of 20
points with mirror symmetry. The orange dashed lines in the upper panels indicate the mirror planes.

III. TOPOLOGICAL STATES
IN HYPERUNIFORM METABEAM
A. Periodic metabeam

We start with the properties of periodic pillared metabeams.
It is worth noting that the waves propagating in the metabeam can
be characterized by their symmetries and divided into four types.
Indeed, the considered metabeam has two symmetry planes, xOy
and xOz. Consequently, the waves propagating in the beam can be
classified into four independent categories according to their sym-
metric or antisymmetric character with respect to the two symmetry
planes. They are usually named flexural, symmetric shear, antisym-
metric shear, and longitudinal modes. In this work, we focus on
antisymmetric shear waves to illustrate disorder-induced multiple
gaps and several topological interface states. However, the results
for all four modes are presented in the supplementary material,
Sec. II.

Band structures of the antisymmetric shear modes of the peri-
odic case are shown in Fig. 3, where the first bandgap is highlighted
by dark gray. The pillars have bending resonance at 31.4 kHz under
antisymmetric shear wave excitation, which induces this hybrid res-
onant bandgap with the avoiding crossing effect. In the following
study, we focus on the first hybrid resonant bandgap and study the
novel effects associated with the hyperuniform structure.

B. Hyperuniform metabeam with χ = 0.4
In this and the following sections, we regard the hyperuniform

pillared metabeam SS∗ (or S∗S) as a supercell and calculate the band
structures of the corresponding periodic systems, which is a com-
mon approach in the study of hyperuniform structures.40,44 First, we
investigate the properties of a hyperuniform pillared metabeam with
χ = 0.4. Pillar positions for the hyperuniform supercell SS∗ and its
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FIG. 3. Band structures of the antisymmetric shear modes in the periodic case.
The dark gray region represents the locally resonant bandgap.

SSH-like counterpart S∗S are shown in Figs. 4(a) and 4(b), respec-
tively. It is worth noting that the SS∗ and S∗S are both hyperuniform
structures with the same structure factors due to the mirror sym-
metry. We first present the band structure of the metabeam with

the supercell of 20 unit cells in the periodic case in Fig. 4(c). For
the traditional discrete SSH model, the Hamiltonian or equivalent
dynamical matrix can be easily written and investigated analytically
by using the intracell and intercell hopping amplitudes. However, in
the case of continuous systems such as our metabeams, the dynam-
ical matrix cannot be expressed by a finite matrix Hamiltonian,
and numerical methods become necessary to calculate the eigen-
frequencies and eigenmodes. At best, in periodic structures with
simple unit cells, the dispersion curves can be approximately repro-
duced by using fitting parameters for the hopping integrals, but in a
disordered system, these interactions become dependent on the dis-
tances between the pillars and are most likely non-local. In Fig. 4(c),
one can see that the bands fold compared to those in Fig. 3, and
a hybrid bandgap appears as indicated by the dark gray region as
expected, which we call the main bandgap. The band structures of
the metabeams with the supercell SS∗ or S∗S in the hyperuniform
case are exactly the same, as shown in Fig. 4(d). It is noticed that
new bandgaps appear for the hyperuniform metabeam compared to
Fig. 4(c), which originate from the multiple scattering caused by the
disordered hyperuniform distribution of pillars in the supercell. In
addition, the lower boundary of the main bandgap shifts upward,

FIG. 4. Pillar positions for χ = 0.4 hyperuniform supercell SS∗ (a) and its SSH-like counterpart S∗S (b). The orange dashed lines indicate the mirror planes separating S
and S∗. (c) Band structures of the metabeam with the supercell of 20 unit cells in the periodic case. (d) Band structures of the metabeam with the supercells SS∗ (a) and
S∗S (b) in the hyperuniform case. The enlarged view of the high-frequency range is given in the magenta dashed box. The left and right values represent the Zak phases of
bandgaps in the metabeam SS∗ (a) and S∗S (b), respectively. The light and dark gray regions represent the nontrivial and trivial bandgaps, respectively. The modes of the
lower and higher cyan bands at k = 0 in panel (d) are, respectively, given in (e) and (f).
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and the bands near the main bandgap (namely, around the 20th
band) become separated and flat. As a matter of illustration, we
show in Figs. 4(e) and 4(f) the total displacement fields for the lower
and upper cyan branches at k = 0, which appear as localized modes
near the mirror plane in the considered supercell. Note that for bet-
ter visualization, the displacement fields in Fig. 4 and the following
are shown only in the upper half of the metabeam. Such localized
modes near the main bandgap are a significant characteristic of
hyperuniform systems.38

To explore the topological properties of hyperuniform
metabeams, we calculate the Zak phase of the bandgaps. Thanks to
the mirror symmetry of the supercell, the symmetry of band-edge
states can be used to calculate the values of the Zak phase.12 The
band-edge states have either even or odd symmetry with respect to
the mirror planes indicated by the orange dashed lines. For instance,
the modes shown in Figs. 4(e) and 4(f) are of even and odd symme-
try, respectively. If the two band-edge states of a band have the same
symmetry, the Zak phase of this band is zero. Otherwise, the Zak
phase is π. The Zak phase of a bandgap can be determined by the
summation of the Zak phases of bands below this bandgap.49 The
values of Zak phases of bandgaps for hyperuniform metabeam SS∗

and S∗S are labeled on the left and right in Fig. 4(d), respectively.
When we move to the association of the metabeams SS∗ and S∗S,
the common bandgap can be considered nontrivial if the Zak phases
of both metabeams are different; otherwise, it is trivial. According
to the bulk-boundary correspondence, topological interface states
localized between the metabeams SS∗ and S∗S can appear within the
nontrivial bandgaps when we combine the two metabeams together.
The nontrivial and trivial bandgaps are indicated by the light and
dark gray regions, respectively. It is found that multiple nontriv-
ial bandgaps exist, which can be further used to design multiple
topological interface states.

Then we combine the hyperuniform pillared structures SS∗

and S∗S and construct the SSH-like model SS∗S∗S. As the topo-
logical interface states are localized in the middle of the combined
structures rather than the edges, they can exist independently of
the outermost boundary conditions. We first regard the combined
structure SS∗S∗S as a supercell and apply periodic boundary con-
ditions to calculate its band structure, as shown in Fig. 5(a). One
can see that there are two new red bands in each nontrivial bandgap
[indicated by the light gray region in Fig. 4(d)], which are the topo-
logical interface bands. The reason for the two interface branches
is that in the super-periodic structure, each supercell contains two
interfaces, namely, the interfaces in the middle and both ends. In
addition, the small dispersion (deviation from flatness) of the inter-
face branches results from the finite size of the supercell, which does
not sufficiently isolate the consecutive interfaces in the neighboring
supercells, especially in narrow bandgaps where the interface modes
are more extended. To isolate the consecutive interfaces, each sub-
system in the supercell needs to have a larger extension. On the
contrary, there is no new band appearing in the trivial bandgaps.
In addition, in a finite structure with open boundary conditions, the
topological interface modes still exist due to their localized character
at the interface. To illustrate this, we further calculate the eigenfre-
quencies of one supercell SS∗S∗S with free boundary conditions at
both ends, and the results are shown as the green and yellow dots
in Fig. 5(a). It is found that there is an eigenmode corresponding to
the red topological interface bands within each nontrivial bandgap
marked by a yellow dot.

The distributions of the five topological interface eigenmodes
M1–M5 indicated by yellow dots are shown in Fig. 5(b), where
the color scale represents the amplitude of the total displacement.
One can see that most of the energy is localized near the inter-
faces indicated by the black dashed line, which also demonstrates

FIG. 5. (a) Band structures of the metabeam constituted by the combined supercell SS∗S∗S with χ = 0.4 and the eigenfrequencies of one supercell SS∗S∗S with free
boundary conditions at both ends (shown as green and yellow dots). The enlarged view of the high-frequency range is given in the magenta dashed box. The light and dark
gray regions represent the nontrivial and trivial bandgaps, respectively. The red bands represent the topological interface bands. The five topological interface states M1–M5
of one supercell SS∗S∗S, indicated by yellow dots, are shown in (b). The black dashed line in (b) indicates the interfaces of the SS∗ and S∗S structures.
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FIG. 6. (a) Transmission spectra of the combined structure SS∗S∗S with χ = 0.4. The light and dark gray regions represent the nontrivial and trivial bandgaps, respectively.
The displacement fields of M1–M5 are given in (b). The red arrows indicate the incident waves. The black dashed line in (b) indicates the interfaces of the SS∗ and S∗S
structures.

the topological interface modes in analogy to the SSH model. More-
over, the displacements of mode M5 are strongly localized near
the interface. These results also demonstrate that one supercell of
the combined metabeam SS∗S∗S can produce topological interface
modes as well.

Furthermore, we calculate the transmission spectra through
one supercell of the combined structure SS∗S∗S, as shown in
Fig. 6(a). The transmission model consists of 40 pairs of pillars,
which are located according to the SS∗S∗S distribution with χ = 0.4,
and port boundary conditions are applied at both ends to simulate
the incoming and outgoing waves. The transmission is large in the
passband frequency range (white region) and small in the bandgap
frequency range (gray region), as expected. There is a transmis-
sion peak in each nontrivial bandgap, as indicated by the black dot,
which represents the topological interface mode. The total displace-
ment fields of transmission peaks M1–M5 under the left incoming
waves are shown in Fig. 6(b). One can see that the displacements are
localized near the interface indicated by the black dashed line, and
the displacement distributions are very similar to those in Fig. 5(b),
which further illustrates the topological interface modes.

C. Hyperuniform metabeam with χ = 0.2
Now we investigate the properties of hyperuniform pillared

metabeams with χ = 0.2, which means increasing the level of disor-
der. Pillar positions for hyperuniform supercell SS∗ and its SSH-like
counterpart S∗S are shown in Figs. 7(a) and 7(b), respectively. The
band structures of the metabeams with the supercell SS∗ or S∗S are
shown in Fig. 7(c). More bandgaps occur below the main bandgap
as compared to the results for χ = 0.4, originating from the stronger
scattering by the more disordered pillars’ distribution in the super-
cell, which is indicated by the decrease in the zero structure factor in
Fig. 2(c). Therefore, a strongly disordered distribution is conducive

FIG. 7. Pillar positions for χ = 0.2 hyperuniform supercell SS∗ (a) and its SSH-like
counterpart S∗S (b). The orange dashed lines indicate the mirror planes separat-
ing S and S∗. (c) Band structures of the metabeam with the supercells SS∗ (a) and
S∗S (b) in the hyperuniform case. The enlarged view of the high-frequency range
is given in the magenta dashed box. The left and right values represent the Zak
phases of bandgaps in the metabeam SS∗ (a) and S∗S (b), respectively. The light
and dark gray regions represent the nontrivial and trivial bandgaps, respectively.
The mode of the cyan band at k = 0 in panel (c) is given in (d).
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to opening bandgaps at low frequencies. However, their widths
remain small. Similar to the bands for χ = 0.4, the 20th band marked
by cyan near the main bandgap is flat, and the distribution of the
displacement mode at k = 0 is given in Fig. 7(d). One can see that
in the considered structure, vibrations are mostly localized near the
two edges, which is different from Figs. 4(e) and 4(f).

The Zak phases of bandgaps for hyperuniform metabeam with
supercells SS∗ and S∗S are labeled on the left and right in Fig. 7(c),
respectively. The nontrivial bandgaps with different Zak phases and
the trivial bandgaps with the same Zak phases are, respectively,
indicated by the light and dark gray regions. In this case, more
nontrivial bandgaps appear, and a few nontrivial bandgaps exist at
lower frequencies. In addition, there are two wide trivial bandgaps in
this model, which would be beneficial for broadband low-frequency
wave attenuation.

The band structures of the metabeam for SSH-like combined
supercell SS∗S∗S corresponding to χ = 0.2 are shown in Fig. 8(a),
in which red bands represent the topological interface bands. It is
noticed that the first four red bands are relatively dispersive rather
than flat, which means the topological states are weakly localized
and relatively penetrating into the bulk parts. The eigenfrequencies
of one combined supercell SS∗S∗S with free boundary conditions at
both ends are shown as green and yellow dots, where the seven yel-
low dots labeled P1–P7 represent the topological interface modes in
the nontrivial bandgaps (indicated by the light gray regions). The
transmission spectra of the metabeam with one combined supercell
SS∗S∗S with χ = 0.2 are calculated and shown in Fig. 8(b), where the
transmission peaks in light gray regions represent the seven topo-
logical interface modes P1–P7. It is worth noting that the quality
factors of the first two topological interface modes, P1 and P2, are
low, which is related to the narrow bandgaps, dispersive bands, and

expanding states. Furthermore, the transmissions in the two wide
trivial bandgaps are small, which can be utilized for broadband wave
attenuation.

D. Robustness of topological states
Finally, we examine the robustness of the topological modes by

introducing randomness in the pillars’ positions in two ways: max-
imum position perturbation δx along the x-axis (while keeping the
xOz symmetry plane) and δy along the y-axis (without the xOz sym-
metry plane). For the sake of simplicity, we assume that any pair
of upper and lower pillars with central symmetry moves simultane-
ously. We chose the first topological mode M1 for χ = 0.4 and the
second topological mode P2 for χ = 0.2 to show the influences of the
pillar’s position perturbation on the transmission, and the results are
given in Fig. 9. We show the effect of δx in Figs. 9(a) and 9(b), where
one can notice that the transmission curves have almost no change
for 1 and 2 mm perturbations, except for a small peak frequency shift
of less than 0.3% for χ = 0.4 and 0.2, respectively. The transmission
curves start to change significantly for a 3 mm perturbation, includ-
ing a reduction and blueshift of the peak amplitude while remaining
below 1.5%. For the influences of δy shown in Figs. 9(c) and 9(d), the
transmission peaks gradually redshift with the increasing perturba-
tion strength δy for both hyperuniform metabeams, where the shifts
under 1 and 2 mm perturbations are small and become larger under
3 mm perturbations. In addition, the transmission peak amplitudes
for 2 mm perturbations decrease slightly, while those for 3 mm per-
turbations decrease significantly. However, it is observed that the
transmission shapes are always conserved for any of the considered
perturbations, and, in particular, the topological states remain inside

FIG. 8. (a) Band structures of the metabeam constituted by the combined supercell SS∗S∗S with χ = 0.2 and the eigenfrequencies of one supercell SS∗S∗S with free
boundary conditions at both ends (shown as green and yellow dots). The enlarged view of the high-frequency range is given in the magenta dashed box. The light and dark
gray regions represent the nontrivial and trivial bandgaps, respectively. The red bands represent the topological interface bands. The seven topological interface states of
one supercell, SS∗S∗S, indicated in yellow are marked as P1–P7. (b) Transmission spectra of the combined structure SS∗S∗S with χ = 0.2.
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FIG. 9. Robustness of the topological transmission peaks against the pillar’s position perturbation along the x direction with the random degree δx for the χ = 0.4 (a) and
χ = 0.2 (b) combined metabeams, and along the y direction with the random degree δy for the χ = 0.4 (c) and χ = 0.2 (d) combined metabeams.

the bandgap range. Thus, the results can demonstrate that the topo-
logical modes have a certain robustness to external disturbances. In
addition, immunity to perturbations is better satisfied when the sym-
metry of the structure is conserved (as for δx) than when it is broken
(as for δy).

Furthermore, we investigate the influences of stealthiness para-
meters χ on the main bandgaps. The results show that the central
frequency and width of the main bandgap decrease with decreasing
χ values (see the supplementary material, Sec. III).

IV. CONCLUSIONS
In summary, we presented the multiple topological interface

modes in SSH-like hyperuniform metabeams. The metabeams con-
sist of pillars symmetrically positioned on the upper and lower
surfaces of the host beam, with hyperuniform distribution along
the x direction and a mirror symmetry plane. We showed that the
hyperuniform metabeam could open new bandgaps at low frequen-
cies, including nontrivial and trivial bandgaps, and have localized
modes near the main bandgap, which expands the research scope of
traditional metamaterials and phononic crystals and provides more
freedom to design various passbands and bandgaps. Furthermore,
the SSH-like model is constructed by combining the two hype-
runiform metabeams, which have an inverted left half and right
half. We demonstrated that multiple topological interface modes

occur in the nontrivial bandgaps based on several arguments, such
as the Zak phases of the band structures, eigenmodes of finite
metabeams, and transmissions. Moreover, we found that the hyper-
uniform metabeam with lower stealthy parameters χ (namely, more
disorder) could open more bandgaps at low frequencies and support
more topological interface modes. The bandgaps at low frequen-
cies of hyperuniform structures also have great potential for wave
attenuation. Finally, the robustness of the topologically modes is
verified by introducing perturbations in the pillars’ positions along
the x and y directions. The proposed multiple topologically local-
ized states can make up for the shortcomings of the single operating
frequency of the traditional single topological localized state and
improve the efficiency of potential applications such as energy har-
vesting and sensing. Our work presents a versatile platform for
studying disordered hyperuniform metamaterials and topological
properties and may open promising avenues for broadband wave
attenuation, energy localization, sensing, and robust transport.

SUPPLEMENTARY MATERIAL

See the supplementary material for the specific positions of
the points of the hyperuniform configuration used in the study,
the topological states for all types of waves in the hyperuniform
metabeams, and the variation of the main bandgap with χ-values for
antisymmetric shear waves.
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