N
N

N

HAL

open science

Mapping Facts to Concrete Game Elements
for (Generation Purposes: A Conceptual Approach

Bérénice Lemoine, Pierre Laforcade

» To cite this version:

Bérénice Lemoine, Pierre Laforcade. Mapping Facts to Concrete Game Elements for Generation
Purposes: A Conceptual Approach. Games and Learning Alliance - 12th International Conference,

Nov 2023, Dublin, Ireland. pp.342-352, 10.1007/978-3-031-49065-1_33 . hal-04434158v2

HAL Id: hal-04434158
https://hal.science/hal-04434158v2
Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04434158v2
https://hal.archives-ouvertes.fr

Mapping Facts to Concrete Game Elements for
Generation Purposes: A Conceptual Approach

0000—0002—7608—-3223 0000—0001—8498—2731]

Bérénice Lemoinel I and Pierre Laforcadel

LIUM Computer Science Laboratory, Le Mans Université, Laval, France
{berenice.lemoine, pierre.laforcade}@univ-lemans.fr

Abstract. Designing serious games or serious game activities requires
mapping the educational elements and the game elements. This mapping
is mainly addressed from a high-level game design perspective. More-
over, low-level mapping methods are generally domain-specific. Our aim
is to address this problem, at an algorithmic level, in the context of ac-
tivity generation (i.e., automatic creation of activities) for declarative
knowledge training. This paper presents a generic modelling approach of
questioned facts and gameplays, and an algorithm for the automatic and
domain-independent generation of various gameplays for training pur-
poses. The approach has been applied to multiplication tables training.

Keywords: Modelling - Generation - Gameplay - Serious Games.

1 Introduction

Recently, the design and use of learning games has become a recurrent theme [3].
Designing learning game activities requires to map the game elements with the
educational elements [12]. This mapping requirement is more important in the
context of game activity generation, since the generation algorithm needs to
know the relations between elements to automatically build a coherent activity.
The relations between elements might vary in regard to the game genre, the
targeted knowledge, and the didactic domain. Some works propose methods for
mapping game elements and educational elements during game general design [1,
8]. However, to the best of our knowledge, no work guides the implementation
of these relations at an algorithmic level.

Declarative knowledge (DK), i.e., factual information, is part of the nec-
essary knowledge to perform a task. Their memorisation, generalisation, and
retention requires repetition [9]. Retrieval practice is a form of test-based learn-
ing, which has been shown to improve long-term retention of facts [14]. In our
context, training on DK is considered a form of retrieval practice that involves
repeatedly providing learner-players with various forms of questions about facts.
Such training can generally be performed through formative quizzes or dedicated
serious games. In order to reduce the feeling of boredom caused by repetition,
serious games designed for declarative knowledge training must offer a wide vari-
ety of activities. However, existing training games are often lacking variety (e.g.,
no variation of gameplays, no aesthetic variation of the activities). In addition,

2 B. Lemoine et P. Laforcade

these games are always specific to a single didactic domain. Activity generation
is a solution for designing varied training activities that few works addresses in
Technology-Enhanced Learning [2].

This article tackles the domain-independent mapping of questioned facts (i.e.,
questions on facts/declarative knowledge) to gameplays (i.e., fun things that can
be controlled, decided and achieved by players [12], which are described by game
elements) at the implementation level. Our proposal is a generic modelling of
questioned facts and gameplays, as well as a domain-independent algorithm for
gameplay (i.e., structured game elements) generation.

2 Research Context

2.1 Related Works

Several works have approached the mapping problem between game and educa-
tional elements by proposing relations between high-level concepts. Rapeepisarn
et al. [13] proposed an extension of Prensky’s work [12] by adding the relation-
ships between learning styles to the existing relationships between game genres,
knowledge to be learned and learning activities. Gosper and McNeill [7] de-
fined relationships between learning outcomes, learning processes, assessment
and game genres. Moreover, Dondi and Moretti [6] attempted to link knowledge
types and learning objectives to high-level game features (e.g., content engine,
evaluation engine) that the game should possess. Although very interesting for
the general design of learning games, these relationships cannot be used at the
implementation level to match learning content to concrete game elements.

Some works offer methods to guide the specification of relations (i.e., either
to analyse or conceive games). Arnab et al. [1] proposed the LM-GM framework
that supports the transition between learning objectives and game mechanics
(e.g., collaboration, orientation, exploration) through concepts called Serious
Game Mechanics. The game mechanics considered are high-level concepts that
can have many concrete implementations in a game. Hall et al. [8] proposed a
method that guides designers in defining the transition between learning content
to core-gameplays, by having them answer questions from both real-world and
game-world perspectives. Although interesting, this work is also more aimed at
general game design.

In conclusion, mappings between learning elements and game elements are
not addressed from a low-level design standpoint, but only at high conceptual
levels or at low-level in studies for very specific contexts [4]. Indeed, it is not
easy to propose reusable techniques at a sufficiently generic level of abstraction.

2.2 AdapTABLES project

AdapTABLES is a research project that aims to build a Roguelite-oriented game
for multiplication tables training. This project includes a user group composed
of mathematics experts who have also been involved in the game design (e.g.,
training specification, gameplays evaluation).

Mapping Facts to Concrete Game Elements for Generation Purposes 3

Roguelite has been shown to be an adequate genre for DK training [10]. A
Roguelite training activity is a dungeon (cf. Figure 1), i.e., a set of interconnected
rooms traversed by an avatar in which the training takes place. A dungeon has
an entry room and an exit room. A room has accesses to others rooms (i.e., its
neighbours), is associated to a training task (e.g., complete the fact, identify the
correctness of a fact) and a gameplay, i.e., a set of positioned game elements
that can be interactive (e.g., blocks to be pushed by the avatar, pots to be
moved) or not (e.g., decoration blocks, texts). Based on the gameplay, and facts
questioned, a room has a set of positioned elements. A positioned element has a
type (i-e., game element that it implements, e.g., a chest, a pot, an enemy) and
a position in the room. These elements can also have zero to multiple display
values that displays facts propositions or statements of a specific questioned fact,
or simple textual information. To enable the game to evaluate learners’ actions,
when a positioned element proposes choices or expects responses, it must declare
whether it represents a correct response (i.e., isAnswerElement) or what values
it expects (i.e., expectedAnswers).

PositionedElement

otherRoomsAccesses - type: GameElement
*

- position: Position

Room *
- displayValues: String[]

[* 0.1
D — - task: Task l

entry 1 isAnswerElement: Bool 2|

- gameplay: Gameplay . QuestionedFact

4'; - expectedAnswers: String[] %
ext 1 . - - fact: QuestionnableFact

Fig. 1: Conceptual Modelling of Roguelite Activities for DK Training.

2.3 Research Questions

Our overall objective concerns the generation of Roguelite-oriented activities for
training DK. In previous work, we identified training tasks with teachers and
education specialists in mathematics and history-geography, such as complete
a fact where the multiplicand is missing, place historical dates in chronological
order, identify the results of a table, name and locate countries of the Furopean
Union, and so on. For a genericity purpose, an abstraction of these tasks led us
to define four task types: Completion (i.e., completing a fact with missing ele-
ments), Order (i.e., ordering facts using a heuristic), Identification (i.e., attesting
the validity or invalidity of facts) and Membership Identification (i.e., identifying
elements sharing a given property). In addition, the definition of gameplays for
Roguelite activities led us to define 5 gameplay categories inspired by the game
classification of Djaouti et al. [5]: SELECT (i.e., selecting objects with the right
answer), MOVE (i.e., moving the correct objects to the expected areas), ORI-
ENT (i.e., orienting the objects to the right answers), POSITION (i.e., placing
the avatar in the right positions) and DIRECT RESPONSE (i.e., typing in the

4 B. Lemoine et P. Laforcade

right answers). In order to design such activities independently of any specific
didactic domain (i.e., consider declarative knowledge in general), we identified 4
design questions:
1. How can training tasks be mapped onto gameplays? (mapping)
2. How can the facts questioned (i.e., build from tasks) be defined domain-
independently in order to be used generically? (modelling)
3. How can gameplays be defined in terms of variable game elements? (mod-
elling)
4. Once a task is paired with a compatible gameplay. How can these questioned
facts be transformed into specific game elements? (instantiation)

To answer #1, we proposed a systematic approach for mapping task types
(e.g., Completion, Order) to gameplay categories (e.g., SELECT, MOVE) [11].
This approach guides the specification of machine-readable relations that de-
scribe the conditions under which a gameplay category is compatible with a
task type. Thus, to select a gameplay for a given task, the algorithm must sort
the gameplays according to their categories (i.e., the categories that are com-
patible on the basis of the defined relations). It is important to note that some
gameplays may be specially designed for a specific task type and thus have a
parameter restricting their availability to that type only.

Mapping approach (Lemoine et al., 2023)

Task Types > Gameplay Categories

| \dentify if a fact is correct 1| Correctly replace every |

| Identify ifa fact s correct A

Complete afact with |] Complete a fact with |
missing result missing operand & result |

Questioned Facts . Game elements
3x5=2 3x5=207

1
1

1 [1.0

1 World war I {5,2.6,9,3} Ll - N,
| happened n? Results table

1

Fig. 2: Research Problem Illustration.

Facts are raw information such as 3 x 5 = 15. Depending on the task and
its parameters, the questions about the facts to practice changes. For example,
completing a fact with the missing operand will yield questions such as 3 x ?
= 15, while identifying if elements share a given property will yield questions
such as “Which ones are results of tables three? {3, 5, 9, 13}”. These questioned
facts have different structures. In addition, gameplay also have different struc-
tures and elements (e.g., some elements can wear one proposition, others can
wear multiple propositions, some game elements are simple elements, others are
composites). Preliminarily, it would seem that the association of questioned facts
with gameplays must be performed specifically for each task/gameplay pair. To

Mapping Facts to Concrete Game Elements for Generation Purposes 5

that extent, our question (cf. Figure 2) concerns #2, #3, and #4: How to model
facts being questioned and gameplays to drive the generation of corresponding
game elements? Our proposal consists in modelling both concepts (i.e., the facts
being questioned and the gameplays) at a sufficient level of abstraction. Such
modelling would allow coverage of different forms of questioned facts, as well as
variety in terms of game elements available for a given gameplay.

3 A Conceptual Design Approach
This section presents our proposal for modelling the questioned facts, the game-

plays as well as a possible generation algorithm. In this article, the illustrative
examples focus on multiplication tables.

3.1 Questioned Facts Model

QuestionedFact ¢ question 1 <<abstract>>
i Parameter
lo propositions *
- originalFact: Fact [- value: String
. solutions *
*>
~ numberOfAnswers 1

Fig. 3: Proposed modelling of questioned facts.

Questioned facts are questions about facts. To represent questioned facts
generically, our main idea is to consider them as elements with possible parame-
ters. Accordingly, each parameter is instantiated if necessary. Although the form
of the questioned facts varies according to the training task concerned, the con-
cepts that compose questioned facts are generic. Let’s take two tasks T'1 and
T2 as an example. T1 consists in choosing from a set of propositions the answer
corresponding to the multiplication result for each fact. From the parameters
of T1, the facts questioned would be constructed to give a question such as
2 x 6 = 7 and a set of propositions such as {8, 12, 14} for example. T2 consists
in choosing from a set of propositions those that are the possible results of a
given table. From the parameters of T2, the constructed questioned facts would
give questions such as “Which elements are results of table 37" as well as a set of
propositions such as {3, 5, 7, 9, 12}. It can be seen that, although the questions
associated with the facts do not have the same form, the facts from both tasks
are composed of a question (i.e., a text) and a set of propositions. Consequently,
a questioned fact has a parameter question, describing the question to be asked,
and a parameter propositions, representing the list of possible choices for answer-
ing. Since questioned facts represent questions about facts, they need to know
their solutions. Knowing the question and the propositions alone is not enough

6 B. Lemoine et P. Laforcade

to assess a learner’s answer. To this extent, the facts questioned have another
parameter which indicates the correct solutions to the corresponding question.
Furthermore, from an automation standpoint, it is necessary to know the num-
ber of expected answers (e.g., for a question such as 3 x 7 = ?, two answers are
expected) to declare whether a learner has entirely answered a question or not.
It is important to note that this parameter could be deduced from the number
of solutions, but for the sake of clarity we decided to make it explicit.

[[[N
T1: Completion T2: Membership T3: Membership
Targeted Knowledge = {Table 2} Targeted Knowledge = {Table 3} Targeted Knowledge = {Table 2}
Missing elements = RESULT Response Modality = CHOICE Missing elements = OPERAND
Response Modality = CHOICE Response Modality = INPUT
Questioned Fact Questioned Fact Questioned Fact
Original fact = 2 x 6 = 12 Original fact = {3,6,9,...} are results of table 3 . _ _
Question =2x6 = ? Question = Which are results of table 3? gﬂg;’éi’nfid{xzﬂéﬁ iz
Propositions = {8, 12, 14} Propositions = {3, 5, 7, 9, 12} Solutions _ {6}‘ B
Solutions = {12} Solutions = {3, 9, 12} Number of_answers -1
Number of answers = 1 Number of answers = 3 B

Fig. 4: Examples of questioned facts in generic form.

Furthermore, our previous example of tasks only considered tasks where the
response modality was choice (i.e., selecting from a list of propositions). Let’s
consider a task T3, which consists, for each fact, of typing the answer corre-
sponding to the operand of the multiplication. A questioned fact built from T3
would have a question such that 2 x 7 = 12, its propositions parameter would
not be instantiated, its solutions parameter would contain 6, and the expected
answers parameter would be equal to 1. Figure 4 presents the questioned facts
examples built in a generic form from the different tasks. It is obviously im-
portant to note that facts can be constructed in a generic form, but that their
construction necessarily depends on the domain.

3.2 Gameplays Model

In a game, gameplay is represented by the set of elements with which the players
interact or which provide them with information. Statically defining gameplays
in terms of specific game elements allows a certain level of variety. However, it
creates two principal constraints: 1) it is time-consuming, i.e., gameplays have
to be described one by one according to the game elements available; and 2) it
is static, i.e., adding a game element means having to specify new gameplays
for that element. Our proposal is to use abilities to describe gameplays through
variable game elements. This involves describing game elements in terms of abil-
ities, such as: a block can be pushed (i.e., pushable), a pot can be moved (i.e.,

Mapping Facts to Concrete Game Elements for Generation Purposes 7

Gameplay H < <abstract>> requiredAbility 1 Ability 1 1 ‘ GameElement 1
% AComponent
o - name: String - type: String
’I‘ expectedElementSize 0.1 L size: String

Structure Component <<abstract>>

Parameter
- isPerFact: boolean - isPerProposition: boolean | gefauitDisplay 0.1

- value: String

- isPerProposition: boolean - isPerStatement: boolean quantity 0.1

- isPerInput: boolean

Fig.5: Proposed modelling of gameplays & game elements.

movable), a bridge can be crossed (i.e., crossable), etc. Abilities capture the el-
ements’ behaviour (i.e., how avatars can interact with them). This enables the
definition of different elements with the same ability, for example: a cube and
a pot can be moved (i.e., movable). Such modelling of game elements allows
gameplays to be described in terms of components' that rely on a specific abil-
ity rather than a specific game element. Thus, it creates gameplay variability in
the sense that the ability is known, but the actual game element will be chosen
by the algorithm. There are two types of gameplays components: simple compo-
nent, i.e., elements that are not composed of other components (e.g., chest, pots,
enemies), and 2) structure components, i.e., elements that are composed of other
components (e.g., components that describe blocks to be pushed on specific tiles:
structure = [block, tile])). As the context is DK training, gameplay components
have an intention. They can represent a fact, a statement, a proposition, and
so on. Structures (i.e., composite components) can be instantiated for each fact
questioned in a room or for each proposition of a fact (cf. Figure 6).

2RSS /

Structure Components

Structure
Components

Fig. 6: Gameplays with structures per fact (left) / per propositions (right).

Simple components can be instantiated to represent statements, propositions,
or input area. These component parameters are necessary for the algorithm to
correctly instantiate the game elements corresponding to the gameplay, as they

! Gameplays are described by means of components, since this is a conceptual descrip-
tion of the gameplays and not a description of their implementation in the activities.
The concrete gameplay elements of activities are called PositionedElement in Fig. 1.

8 B. Lemoine et P. Laforcade

allow the algorithm to know which parts of questioned facts must be associated
to which components. Some simple components can describe decoration elements
or answer areas (e.g., tiles where the player must place elements). These elements
can therefore have a default display or specify a default necessary quantity that
can depend on the expected number of answers to the question. In addition,
game elements are described according to their size. Therefore, a specific ability
can be represented by different sized elements. As a result, a game component
can specify an expected size so that the algorithm maintains consistency when
instantiating a gameplay.

3.3 Generation Algorithm

As mentioned in the previous sections, our overall objective is to generate train-
ing activities (i.e., dungeons) for DK training. A dungeon is a set of intercon-
nected rooms that are associated to a training task and a corresponding game-
play. The game elements composing the gameplay (i.e., called positioned ele-
ments) must be built based on the questioned facts to work on. Algorithm 1
describes the main structure of the generation algorithm. The general idea is to
go through the gameplay components and, depending on the type (i.e., Structure
or Simple Component), to call the corresponding method, to build positioned
elements, with the required parameters.

Algorithm 1: Generate Room Positioned Elements (simplified)

1 Function createRoomElements (gameplay, facts, room):

2 for AComponent comp: gameplay.getComponents() do

3 L room.element.addAll(buildComponentElements (comp, facts, []));
4 Function buildComponentElements (comp, facts, listElems):

5 gameE < findGameElement(comp.getAbility(), comp.getSize());

6 if comp is Structure then

7 listElems.add(buildElement(comp, facts, gameE);

8 for AComponent sComp: comp.getComponents() do

9 L return buildComponentElements (sComp, facts, listElems);
10 else

11 L return list Elems.add(buildElement(comp, facts, gameE);

For example, let’s take the following questioned fact QEI = {question=2 x ?
= 127, propositions=|8, 4, 6], solutions=[6], numberOfExpected Answers=1} and
a gameplay G1 = {Structurel, Componentl}. Structurel = {isPerFact=false,
isPerProp=true, ability=HORIZONTAL, components=[StrComp1, StrComp2]}
describes a horizontal structure that must be instantiated for each proposition of
a questioned fact (i.e., the number of structure in the room equals the number of
propositions of the questioned fact). StrComp1 = {isPerProp=true, isPerState-
ment=false, isPerInput=false, ability=PUSHABLE} is a simple component that
describes that each horizontal structure must comprise a pushable element that

Mapping Facts to Concrete Game Elements for Generation Purposes 9

bears one of the facts propositions. StrComp2 = {isPerProp =false, isPerState-
ment=false, isPerInput=false, ability=DETECTOR, ezpectedSize=small} is a
simple component that describes that each horizontal structure must comprise
a small element that can detect another element (i.e., the pushable element).
Component! = {isPerProp=false, isPerStatement=true, isPerInput=false, abil-
ity=DISPLAY} is a simple component that describes that the room must con-
tain an element to display the statement (i.e., question). This description can
instantiate gameplays such as the one shown on the right in Figure 6.

Hence, building the positioned elements of a room consists in: 1) finding a
game element with the correct size and ability, 2) selecting a position in the room,
3) linking questioned facts parameters values to positioned elements parameters
values based on component parameters, 4) adding the built positioned element
to the room. Figure 7 shows an example of positioned elements that can be
generated from game elements, a gameplay description, and a questioned fact.

Room Positioned Elements

Game Elements PositionedElem2

PositionedElem1 |y o~ ¢ gy PositionedElem3 Gameplay Components
ELEM1 ELEM3 ot ELEQAZZ diplayvalues T 181 Heston - pa2
position = sition = P2.1 positior »
name = BLOCK name = Detector [~ false Structurel
ability = PUSHABLE || ability = DETECTOR isPerFact = false
— isPerProp = true
ELEM2 ELEM4 PositionedElems P’:’:’éﬁ;ﬁfﬂms PositionedElemé ability = HORIZONTAL
name = HStructure || name = Statement type = ELEM2 | cosamaiuse = (6] type = ELEM3
ability = HORIZONTAL || ability = DISPLAY o pla Ction = CompStruct1 CompStruct2
position = P3| position = P3.1 position = P3.2 . tion = true ||isper ton = false
_ PO = D =
isAnswerElement = true <P _talse | iep tale
" eeitionedtoms isPerInput = false isPerInput = false
- PositionedElem8 ility = ility =
Questioned Fact PositionedElem? | o~ Eﬁ'h A fem! PositionedElem9 ability = PUSHABLE ability = DISPLAY
type = ELEM2 | displayValues = [4] type = ELEM3
Original fact = 2 x 6 = 12 position =P4 | position =P4.1 f posiion = P42 Component2
Question = 2x ? = 12 = false isPerProposition = false
Pmpqslt\ons ={8,4,6} — isPerStatement = true
Solutions = {6} Pgsg':g;:dﬂemw isPerlnput = false
Number of answers = 1 zﬁla?/\/a\ues x6=7] ability = DISPLAY
position = P1

Fig. 7: Example of generated positioned elements.

3.4 Real-Case Study Application

The proposed approach has been applied for the implementation of an activity
generator dedicated to multiplication table training. Our activity generator is
implemented in Java and uses the Eclipse Modelling Framework (EMF) to model
every piece of data required for generation. This generator produces detailed
XML descriptions of dungeons that are currently being used in a game prototype
developed in the context of AdapTABLES project. The prototype acts as a game
player which interprets XML files and translates them into playable dungeons.
Figure 6 presents screenshots of the prototype.

4 Conclusion & Perspectives

To conclude, this article proposes an approach to model questioned facts and
gameplays generically. Our research work targets game-based activities for declar-
ative knowledge training. The proposed approach enables abstraction from any

10

B. Lemoine et P. Laforcade

didactic domain and facilitates the variety of gameplays proposed for the pur-
pose of game activity generation. The approach has been implemented in an
activity generator for multiplication table training. This generator is currently
being used in a prototype designed as part of the AdapTABLES project. Fur-
thermore, we intend to implement the approach in a second didactic domain
about history-geography facts.

References

10.

11.

12.

13.

14.

Arnab, S., Lim, T., Carvalho, M.B., Bellotti, F., de Freitas, S., Louchart, S., Suttie,
N., Berta, R., De Gloria, A.: Mapping learning and game mechanics for serious
games analysis: Mapping learning and game mechanics. Br J Educ Technol 46(2),
391-411 (2015)

. Bezza, A., Balla, A., Marir, F.: An approach for personalizing learning content in

e-learning systems: A review. In: Second International Conference on E-Learning
and E-Technologies in Education. pp. 218-223. IEEE, Lodz, Poland (2013)
Codish, D., Ravid, G.: Detecting playfulness in educational gamification through
behavior patterns. IBM Journal of Research and Development 59(6), 1-14 (2015)
Debabi, W., Champagnat, R.: Towards Architecture for Pedagogical and Game
Scenarios Adaptation in Serious Games (2017)

Djaouti, D., Alvarez, J., Jessel, J.P., Methel, G., Molinier, P.: A Gameplay Defini-
tion through Videogame Classification. IJCGT, pp. 1-7 (2008)

Dondi, C., Moretti, M.: A methodological proposal for learning games selection
and quality assessment. BJET 38(3), 502-512 (2007)

Gosper, M., McNeill, M.: Implementing game-based learning: The MAPLET
framework as a guide to learner-centred design and assessment. In: Assessment
in Game-Based Learning, pp. 217-233. Springer Nature, United States (2012)
Hall, J.V., Wyeth, P.A., Johnson, D.: Instructional objectives to core-gameplay: A
serious game design technique. In: Proceedings of the 1st ACM SIGCHI Annual
Symposium on CHI PLAY ’14. pp. 121-130. ACM, Toronto Ontario Canada (2014)
Kim, J.W., Ritter, F.E., Koubek, R.J.: An integrated theory for improved skill
acquisition and retention in the three stages of learning. Theoretical Issues in
Ergonomics Science 14(1), 22-37 (2013)

Lemoine, B., Laforcade, P., George, S.: An analysis framework for designing declar-
ative knowledge training games using roguelite genre. In: Proceedings of the 15th
CSEDU, Volume 2, Prague, Czech Republic, April 21-23. pp. 276-287 (2023)
Lemoine, B., Laforcade, P., George, S.: Mapping task types and gameplay cate-
gories in the context of declarative knowledge training. In: Proceedings of the 15th
CSEDU, Volume 2, Prague, Czech Republic, April 21-23. pp. 264-275 (2023)
Prensky, M.: Computer Games and Learning: Digital Game-Based Learning. Hand-
book of Computer Game Studies (2005)

Rapeepisarn, K., Wong, K.W., Fung, C.C., Khine, M.S.: The Relationship between
Game Genres, Learning Techniques and Learning Styles in Educational Computer
Games. In: Technologies for E-Learning and Digital Entertainment, vol. 5093, pp.
497-508. Springer Berlin Heidelberg (2008)

Roediger, H.L., Pyc, M.A.: Inexpensive techniques to improve education: Applying
cognitive psychology to enhance educational practice. Journal of Applied Research
in Memory and Cognition 1(4), 242-248 (2012)

