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Highlights

New Perspectives on Semiring Applications to Dynamic Program-
ming

Ambroise Barila, Miguel Couceiroa, Victor Lagerkvistb

• We unify many algorithmic extension under the semiring formalism.

• We identify new relevant extensions that are part of this formalism.

• We construct two efficient algorithms for semiring extensions of two well-
known computational problems.
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aUniversité de Lorraine, CNRS, LORIA, Nancy, F-54000 Nancy, France
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Abstract

Semiring algebras have been shown to provide a suitable language to for-
malize many noteworthy combinatorial problems. For instance, the Shortest-
Path problem can be seen as a special case of the Algebraic-Path problem
when applied to the tropical semiring. The application of semirings typically
makes it possible to solve extended problems without increasing the computa-
tional complexity. In this article we further exploit the idea of using semir-
ing algebras to address and tackle several extensions of classical computational
problems by dynamic programming.

We consider a general approach which allows us to define a semiring ex-
tension of any problem with a reasonable notion of a certificate (e.g., an NP
problem). This allows us to consider cost variants of these combinatorial prob-
lems, as well as their counting extensions where the goal is to determine how
many solutions a given problem admits. The approach makes no particular
assumptions (such as idempotence) on the semiring structure. We also pro-
pose a new associative algebraic operation on semirings, called ∆-product,
which enables our dynamic programming algorithms to count the number of
solutions of minimal costs. We illustrate the advantages of our framework on
two well-known but computationally very different NP-hard problems, namely,
Connected-Dominating-Set problems and finite-domain Constraint Sat-
isfaction Problems (Csps). In particular, we prove fixed parameter tractabil-
ity (FPT) with respect to clique-width and tree-width of the input. This also
allows us to count solutions of minimal cost that, to the best of our knowledge,
cannot be done by any algorithm in the literature.

Keywords:
Semiring, Dynamic Programming, Fixed Parameter Tractability, Constraint
Satisfaction Problems, Connected Dominating Set

1. Introduction

In this article we investigate semiring extensions of computational problems.
First, we take an algebraic viewpoint and define a novel semiring operation that
increases the range of semiring algorithms. Second, we apply our semiring
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framework algorithmically and construct fixed-parameter tractable algorithms
for semiring extensions of Connected-Dominating-Set and the Constraint
Satisfaction Problem (Csp).

1.1. Background

A semiring is an algebra A = (A,+,×, 0A, 1A) where (A,+, 0A) is a com-
mutative monoid, (A,×, 1A) is a monoid, × distributes over +, and where 0A is
absorbing with respect to×. Well-known examples include the Boolean semiring
({⊥,⊤},∨,∧,⊥,⊤), the integer semiring (N,+,×, 0, 1), and the tropical semir-
ing (R∪{∞},min,+,∞, 0). Semirings have proven to be versatile in extending
various types of algorithms. A classic example is the Floyd-Warshall algorithm
used for computing the minimal path between any two nodes in a weighted
graph [15, 33]. Hence, in this problem we are interested in computing the min-
imum value of all sums of weights corresponding to paths in the given graph,
and from the semiring perspective we are then simply evaluating an expres-
sion with respect to the tropical semiring. Extending the basic Floyd-Warshall
algorithm to an arbitrary semiring is relatively easy and increases the expres-
sive strength tremendously (see, e.g., Lehmann [26] for a general treatment).
For example, if we use the Boolean semiring instead of the tropical semiring
then the Floyd-Warshall algorithm can be used to compute the transitive clo-
sure of a given graph. Generally, when a problem is generalized by a semiring
then the resulting problem is called a semiring extension. This problem has
attracted significant attention and is in its most general form known as the al-
gebraic path problem, whose roots can be traced back to Kleene’s algorithm for
converting regular expressions to finite automata [24]. For a comprehensive dis-
cussion of the literature, see e.g. Mohri [28]. However, semiring extensions are
by no means limited to graph problems. Notable formalisms include the semir-
ing constraint satisfaction problem (Scsp) by Bistarelli et al.[4] which greatly
generalizes various forms of fuzzy reasoning where constraints are allowed to be
soft (an arbitrary semiring value) rather than crisp (true or false). This problem
is in turn subsumed by the sum-of-product CSP problem which is currently of
central importance in artificial intelligence [1, 13].

In this article we are interested in semiring extensions and take a very gen-
eral approach and define a semiring extension over any computational problem
in NP. Thus, for any problem Π in NP and any reasonable notion of a solution
space (e.g., the set of certificates) and any semiring we consider the problem of
computing a semiring expression of the set of solutions of a given instance of Π
(see Section 3 for a definition of a semiring expression). This strictly generalizes
the problem of counting the number of solutions (typically denoted #Π) and
the problem of finding a solution of minimal cost (Cost-Π). Let us consider
two examples. First, the well-known problem of determining whether an in-
put graph G admits a homomorphism to the template graph H is known as
the H-Coloring problem. Here, a natural certificate of a yes-instance is sim-
ply the homomorphism itself. Then #H-Coloring is the problem of counting
the number of homomorphisms, while in the Cost-H-Coloring each assign-
ment of a variable to a value is associated with a weight, and the goal is to
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find the homomorphism which minimizes the total sum of weights. Notice that
the decision problem H-Coloring asks for an element of the Boolean semir-
ing 2 = {⊥,⊤} (⊤ if a homomorphism exists and ⊥ otherwise), and that the
counting extension #H-Coloring expects an answer in the natural semiring
(N,+,×, 0, 1). The cost version Cost-H-Coloring can be modelized using the
tropical semiring Rmin = (R,min,+,∞, 0). Moreover, the well studied List-k-
Coloring problem, where each vertex is restricted to a list of “allowed colors”
[22, 31], can also be seen as an extension of k-Coloring, even if it also lies in
the boolean semiring. The semiring extension of H-Coloring then generalizes
all of these problems under a single umbrella, potentially allowing one to benefit
from a single algorithm. For a second example, the Dominating-Set problem
is the problem of deciding whether a given graph contains a subset of k vertices
such that every other vertex has at least one neighboor in the subset. In the
Connected-Dominating-Set problem, we, as the name suggests, addition-
ally require that the subset of vertices is connected. This problem is important
in, for example, network communication where the connected dominating set
is viewed as network backbone that the other nodes can communicate via (for
more applications see e.g. the book [10]). A natural certificate is then simply the
subset of vertices, and the semiring extension of (Connected-)Dominating-
Set then makes it possible to count the number of (connected) dominating sets
as well as finding a (connected) dominating set of minimal cost.

Solving semiring extensions is thus highly desirable from a practical perspec-
tive since one effectively gets many algorithms for the price of one and can reuse
the algorithm in different applications simply by choosing new semirings. From
a complexity perspective many complexity classes have been introduced in or-
der to study semiring extensions of NP problems (corresponding to the Boolean
semiring B since they are decision problems). For example, the class #P [32] for
the counting extension (lying in the natural semiring N), the class MODp [21]
for the counting problems modulo an integer p ≥ 2 (in the semiring Zp), and
the class OptP for optimization problem [25] (often computed in the tropical
semiring Rmin). More generally, Eiter & Kiesel [13] define a semiring extension
NP(R) of NP for any commutative semiring R and a notion of a semiring Tur-
ing machine. This makes it possible to prove a unifying meta-theorem which
identifies the corresponding variant of Sat as a complete problem for each of
the aforementioned classes. Despite this, there has been comparably little re-
search done on combining semiring extensions. For example, consider problems
consisting in counting the number of solutions of minimal cost (described by the
class #·OptP [20]). Thus, intuitively, one wishes to combine the natural semir-
ing N (counting) and the tropical semiring Rmin (weighted) into a new semiring
with the hope of efficiently solving the associated problem of counting solutions
of minimal cost. This raises an intriguing question: can counting solutions of
minimal cost (or similar variations) be addressed using the same algorithmic
techniques as counting problems or minimal cost problems alone? And can we
accomplish this while staying in the familiar semiring framework? Or do these
combinations yield fundamentally different problems?
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1.2. Our contribution

We begin (in Section 3) by introducing our semiring framework. As re-
marked, we adopt a very general approach and define a semiring extension for
every problem in NP. This drastically increases the reach of our semiring frame-
work and makes it possible to study both the aforementioned finite domain Csp
problem and the (Connected-)Dominating-Set even though these problems
have a very different flair. Furthermore, to obtain as general results as possible
we avoid the (otherwise commonly assumed) assumption that the semiring in
question is idempotent. We remark that idempotence is typically assumed in
the algebraic path problem as well as in the Scsp formalism by Bistarelli [4]
via so-called c-semirings. Semiring approaches that requires the milder, but
arguably less natural, assumptions such as the k-closure, was considered by
Mohri [28] in the context of the Algebraic-Path problem. Idempotency is
typically assumed since it in an algorithmic context makes it easier to combine
(via union) two partial (but not necessarily disjoint) sets of solutions into a larger
one. For instance, if we want to solve a problem of the form Cost-Π, we can
find the minimal cost in the union of two sets by computing the minimal costs
in both sets, and keep the minimum. This approach is correct because of the
idempotence of the underlying tropical semiring Rmin. However, this approach
would fail to solve the #Π problem, as the cardinality of the union can only
be expressed as the sum of the cardinality of both sets if the sets are disjoint.
The approach fails because of the non-idempotence of the natural semiring N.
The basic objects in our approach is then that one is given a computational
problem with a reasonable notion of a solution and is tasked with constructing
a semiring expression representing the set of solutions of a problem instance.
The interest is that individual components in the semiring expression can be
interpreted as dynamic programming operations, e.g., combining two solutions
to subproblems to a solution to a larger problem. Given this link one might
suspect that polynomial sized semiring expressions cannot always be computed
efficiently, and we indeed provide examples (in Section 3.6) where this is not
possible (unless P = NP). Since this is a purely combinatorial statement it is an
interesting open question whether this could be proved unconditionally.

In Section 4 we then completely resolve the problem of combining different
semiring extensions. Our main technical tool is the ∆-product which, given two
semirings D and A effectively produces a new semiring D∆A which combines
the relevant properties. More specifically, we assume that A is a commutative
semiring and D a totally ordered, idempotent, commutative dioid, which allows
it to represent a set of weights. The algorithmic applications of this new semir-
ing correspond exactly to applying the semiring A to optimal solutions with
respect to the weights in D. In particular, by choosing A = N and D = Rmin,
it enables us to count the solutions of minimal cost. Our construction therefore
makes the problems in the class #·OptP [20] fall into the category of semiring
extensions. In particular, the results of completeness of the problems #Min-
Card-Sat and #Min-Weight-Sat [20] now become particular improved cases
of the meta-theorem over the completeness of any semiring variant of Sat [13].
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Moreover, since the ∆-products implies that #·OptP is subsumed by the semir-
ing formalism, any general positive result applicable to all semirings are now
applicable specifically to these problems.

Parameterized problem
(Π, λ) with Π ∈ NP

FPT algorithm that solves
Semiring-Π

See Section 5 for (Π, λ) =
(Connected-Dom-Set, cw)

See Section 6 for (Π, λ) =
(CSP, tw)

See Section 3
for the

construction
of measures

B-measures N-measures Rmin-measures (Rmin∆N)-measures

See Section 4
for the

∆-product

FPT algorithm
that solves List-Π

FPT algorithm
that solves #Π

FPT algorithm
that solves Cost-Π

FPT algorithm
that solves #Cost-Π

See Lemma 1
and Example 4

See Section 4.4

Figure 1: General overview of our contributions.

We showcase our framework on two distinct problems. First, in Section 5 we
target the Connected-dominating-set problem under the lens of the clique-
width of the input graph. Clique-width is, together with tree-width, the most
well-known graph parameter, and measures how many basic operations that are
required to construct the graph. The class of graphs (with labelled vertices)
with clique-width at most k ≥ 1 is defined as the smallest class of graphs that
contains the one vertex graphs •i with 1 vertex labelled by i ∈ [k], and that
is stable by the following operations for (i, j) ∈ [k]2 with i ̸= j: (i) disjoint
union of graphs, (ii) relabelling every vertex of label i to label j, and (iii)
constructing edges between every vertex labelled by i and every vertex labelled
by j. Note that the class of cographs (which contains cliques) is exactly that
of graphs with clique-width at most 2. For graph parameters such as clique-
width the task is usually to prove fixed parameter tractability (FPT), i.e., an
algorithm with a running time bounded by f(k) · ||I||O(1) where (1) f : N → N
is a computable function, (2) k is the parameter associated with the instance I,
and (3) ||I|| is the number of bits required to represent I. For classes of instances
where the parameter k is believed to be reasonably small an FPT algorithm is
thus essentially as good as a polynomial time algorithm. It is known that the
Connected-dominating-set problem can be solved by a FPT (with respect to
the clique-width of the input graph) one-sided error Monte-Carlo algorithm [17],
as it can be solved in O∗(5cw) time, knowing that an exact algorithm solving
this problem can not run in O∗((5− ε)cw) time for any ε > 0, unless the SETH
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fails. The SETH [7] is a well-known conjecture within complexity theory which
states that for all ε > 0, there exists k ≥ 3 such that the k-Sat problem can
not be solved in time O∗((2− ε)n) (where n is the number of variables).

Second, in Section 6 we turn our attention to the finite-domain constraint
satisfaction problem, i.e., the problem of verifying whether a set of finite-domain
constraints admits at least one satisfying assignment. For this problem we
consider the tree-width of the Gaifman graph of an input instance and produce
an FPT-algorithm for Semiring-Csp. The algorithm is based on the algorithm
by Ganian et al. [16] for #Csp but is strictly more general since it can also
solve the associated cost problem as well as counting solutions of minimal cost
(via the ∆-product). We additionally remark that for every finite domain D
our O∗(|D|k) (where k is the tree-width of the Gaifman graph) algorithm is
optimal (under the SETH) since it as a special case includes the H-coloring
problem which is known to not admit an improved algorithm under the SETH
via Okrasa & Rza̧żewski [29]. In Section 3.7 we also notice that our approach
can be extended to solve the more general Sum-Product-Csp problem.

1.3. Organization of the article

In Figure 1 we summarize the role of each contribution to our novel semiring
formalism. The upper half of the Figure 1 (that refers to Sections 5 and Section
6) deal with algorithmic results: we explain how to solve the Semiring exten-
sion of Connected-Dominating-Set and Csp in FPT time (with respect to
respectively the clique-width and the tree-width). Whereas, the lower half of
Figure 1 refers to the algebraic results of Section 3 and Section 4: we construct
algebraic tools that enables us to construct an algorithm that solves the count-
ing, cost and list extensions of any NP problem, provided that an algorithm for
the Semiring version is given.

2. Preliminaries

2.1. Sets and functions

For any integer n, we let [n] := {1, . . . , n}. Given a set V , we denote by 2V

the set of subsets of V .
For two finite sets S and T let TS be the set of functions from S to T . Note

that its cardinal is |TS | = |T ||S| and that, in particular, the cardinal of T ∅ is
|T |0 = 1 since it contains the only function with codomain T and empty domain.
For all s ∈ S and t ∈ T , we denote by

(s 7→ t) :
{s} 7→ T
s 7→ t

the function with domain {s} and codomain T , and that maps s to t. Given
S′ ⊆ S and f ∈ TS , the restriction of f to S′ is the function f |S′ : S′ → T
defined by f |S′(s) = f(s), for every s ∈ S′.
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For a set V and S ⊆ V , if there is no ambiguity on the set V , we denote by

1S :
V → {0, 1}

u 7→
{

1 if u ∈ S
0 if u /∈ S

the indicator function of S. Notice that the mapping of any S ∈ 2V to 1S is an
isomorphism between 2V and {0, 1}V .

2.2. Permutations

Let n ≥ 0. We write [n] for the set {1, . . . , n} and Sn for the set of permu-

tations of [n]. A permutation σ ∈ Sn is denoted by σ =

(
1 . . . n

σ(1) . . . σ(n)

)
.

For k ∈ {2, . . . , n} and k pairwise distinct elements a1, a2 . . . , ak of [n],
(a1a2 . . . ak) denotes the element of Sn that maps a1 to a2, a2 to a3, . . . , and ak
to a1 (the other elements of [n] are sent to themselves). A permutation σ ∈ Sn

is said to be a k-cycle if it is of the form (a1a2 . . . ak). We write Cn for the set
of n-cycles of Sn.

2.3. Graph and trees

By a graph we mean a tuple G = (VG, EG) where VG a finite set called the
set of vertices of G, and EG is an irreflexive and symmetrical relation over VG

called the set of edges of G. The set of vertices and edges of a graph G will
always be denoted VG and EG. Given S ⊆ VG, we let G[S] := (S,EG ∩ 2S) be
the graph induced by S on G.

A tree is a connected graph T = (NT , ET ) with no cycle, NT is said to be
the set of nodes of T . A rooted tree is a pair (T, r) where T = (NT , ET ) is a
tree and r ∈ NT is said to be the root of (T, r). Abusing notation, we will say
that r is the root of T . The ancestors of a node N ∈ NT in a rooted tree (T, r)
are the nodes on the unique simple path from r to N . A descendant of a node
N ∈ NT is a node N ′ ∈ NT such that N is an ancestor of N ′. The children of a
node N ∈ NT are the descendant of N that are also neighbors of N . A leaf of
a rooted tree is a node that has no children.

2.4. The dominating set problem

The Dominating-Set problem is a widely known and important NP-complete
problem over graphs, which is not subsumed by the Csp formalism.

Given a graph G and u ∈ VG, the closed neighborhood of u in G is the set
NG[u] = {v ∈ VG | {u, v} ∈ EG} ∪ {u}.

Definition 1. A dominating set of a graph G is a subset S ⊆ VG such that
NG[S] = VG.

The goal of the Dominating-Set problem is then to determine the smallest
size of a dominating set of an input graph. We present here the optimization
problem associated with the NP-problem.
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Dominating-Set:
Input: A graph G.
Output: The smallest k ≥ 0 such that there exists S ⊆ VG where |S| ≤ k

and NG[S] = VG.

Recall that a semiring expression can only represent a set of functions. It is
therefore natural to represent a subset S ⊆ VG by its indicator function 1S .

In this section, we focus on the significatively more difficult variant where
we in addition require that the dominating set is connected. This problem is
important in, for example, network communication [10] and is essentially an
entire research field in itself.

Connected-Dominating-Set:
Input: A graph G.
Output: The smallest k ≥ 0 such that there exists S ⊆ VG where |S| ≤ k,

NG[S] = VG and G[S] is connected.

Such a set S (satisfying NG[S] = VG and that G[S] is connected) is called a
connected dominating-set.

2.5. The constraint satisfaction problem

A finite set of relations Γ over a finite domain D is called a constraint lan-
guage. We define the constraint satisfaction problem (Csp) over a constraint
language Γ as follows.

Csp(Γ):
Input: I = (V,C) where V is a set of variables and C a set of constraints

R(x1, . . . , xm) ∈ C where R ∈ Γ is an m-ary relation and x1, . . . , xm ∈ V .
Question: Does there exist a function f : V 7→ D which satisfies all con-

straints, i.e., (f(x1), . . . , f(xm)) ∈ R for every R(x1, . . . , xm) ∈ C?

The function f : V → D is sometimes said to be a model, or a solution. A
function f ′ : V ′ → D with V ′ ⊆ V which satisfies every constraint R(x1, . . . , xm) ∈
C where x1, . . . , xm ∈ V ′ is said to be a partial solution.

Remark 1. The finite domain D of a Csp instance is the codomain of the
valuations f : V 7→ D (their domain is the set of variables V ).

Let us also remark that the well-known problem of deciding whether an input
graph G admits a homomorphism to a template graph H (the H-Coloring
problem) can be seen as a particular case of Csp, by simply letting Γ = {EH}.
It is also easy to see that the Boolean satisfiability problem for instances
in conjunctive normal form can be seen as a special case of Csps with Boolean
domain.
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H-Coloring:
Input: A graph G.
Question: Does there exist a function f : VG → VH which satisfies for all

{u, v} ∈ EG that {f(u), f(v)} ∈ EH ?

For example, if we let Kk be the k-vertex clique, Kk-Coloring is an alterna-
tive formulation of the well-known computational problem of deciding whether
a graph with n vertices can be colored with k distinct colors (k-Coloring).

The Gaifman graph [30] of an instance I = (V,C) of Csp is the graph
G = (V,E), with {x, y} ∈ E if there exists a constraint c ∈ C that involves both
x and y (for all pair {x, y} ⊆ V ). Note that in the case of H-Coloring, the
Gaifman graph of any input graph G is G itself.

2.6. Computational complexity

Given two infinite sequences (un)n∈N and (vn)n∈N in RN, we write un =
O∗(vn) if there exists a polynomial p such that un = O(vn × p(n)).

The class NP is the class of computational decision problems Π for which
there exists a deterministic Turing machine M running in polynomial time and
a polynomial p, such that for all n ≥ 0 and x ∈ {0, 1}n:

x ∈ Π ⇐⇒ ∃y ∈ {0, 1}p(n), M(x, y) accepts,

in which case such an y ∈ {0, 1}p(n) is called a certificate for the instance
x. Here, we stick to the fixed alphabet {0, 1} to simplify the presentation,
but, naturally, any other alphabet involving at least two symbols could be used
instead.

Take a computational problem Π in NP. A certificate y = y1 . . . yp(n) ∈
{0, 1}p(n) of an instance of size n ≥ 0 of Π (where p is polynomial) can be
represented bijectively by the function

ỹ :
[p(n)] → {0, 1}

i 7→ yi
.

However, most of the time it is more natural to give a higher level representa-
tions of “solutions” (i.e., certificates) as functions that have other domain and
codomain than [p(n)] and {0, 1}. For instance, a “solution” of k-Coloring
(with k ≥ 1) on an input graph G will be seen as a function from VG to [k].
Generally, we assume that the set of “solutions” of our problem Π on a given
instance is a subset of TS , for some sets finite sets S and T having polynomial
size in the size of the input (which can safely be assumed since Π is in NP). In
this context we refer to S and T as the domain and codomain of the solutions.

The class #P is the class of the counting versions of the NP problems. For-
mally, the class #P is described by the problems of the form:
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Input: x ∈ {0, 1}n with n ≥ 0.
Output: How many y ∈ {0, 1}p(n) are there such that M(x, y) accepts ?

where M is a deterministic Turing machine running in polynomial time and
p a polynomial.

Let Π be a computational problem, and I the set of instances of Π. A
parameter of Π is a function λ : I → N computable in polynomial time1. The
computational problem Π is said to be fixed-parameter tractable (FPT) when
parameterized by λ if there exists a computable function f and an algorithm
that solves Π in time:

f(λ(x))× ∥x∥O(1)

on any instance x ∈ I (where ∥x∥ is the size of x).

3. Semirings and Measures

In this section we introduce semiring extensions of computational problems
and our method based on measures.

3.1. Computational problems extensions

Let Π be a problem in NP, and p a polynomial such that for every n ≥ 0,
the size of the certificates of instances of size n is bounded by p(n). Note that
Π can be reformulated as:

Π :
Input: An instance x.
Output: Does x have a certificate?

For example, it is easy to see that Csp is in NP for every finite-domain
constraint language Γ since a satisfying assignment can be used as a certificate.
It is common to consider some extensions of Π consisting in asking a more
general question than determining whether the set of certificates (often simply
called solutions) is empty or not. For example, let us consider the following
extended problems.

#Π :
Input: An instance x of Π.
Output: How many solutions does x have?

1In the case of treewidth and cliquewidth, it is common to assume that the tree decompo-
sition and cliquewidth expression are given.
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The problem #Π is refered as the counting version of the decision problem
Π. Notice that if the decision problem Π is in NP, then its counting version
#Π is in the class #P.

List-Π :
Input: An instance x and for all i ∈ [p(n)], Li ⊆ {0, 1}.
Output: Does x have a solution y1, . . . , yp(n) such that for all i ∈ [p(n)],

yi ∈ Li?

In particular, the List-k-Coloring problem defined thereby is the well
studied extension of k-Coloring where each vertex can be restricted to a list
of “allowed colors” [22, 31].

Cost-Π :
Input: An instance x, and for all i ∈ [p(n)], (C0

i , C
1
i ) ∈ R2.

Output: What is the minimal
p(n)∑
i=1

Cyi

i for a solution y1, . . . , yp(n) of x ?

The goal of this section is to show how all of these extensions of Π are
subsumed by one particular extension:

Semiring-Π :
Input: An instance x.
Output: A semiring expression of the set of solutions of x.

See Definition 6 and 7 for the formal definition of a semiring expression
of a set. Intuitively, the point of a semiring expression is to give a compact
description of the set of solutions that factors the computations necessary to
compute the counting, list and cost extensions. Note also that the Semiring-Π
problem depends on the set of “solutions” considered for Π. However, this set
will most of the time be clear from the context (and since we assume that Π is
in NP a set of certificates of polynomial size can always be chosen).

Note that the Semiring-Π problems do not belong to complexity classes of
the form NP(R) (for any semiring R) [13] since the output (a semiring expres-
sion) does not belong to any specific semiring.

3.2. Semirings and Dioids

Many algorithms that are able to solve counting versions of a problem can
often be adapted to solve a cost version. This adaptation uses the fact that
both algorithms implicitly rely on a common algebraic structure, the semiring.

Definition 2 (Semiring). A semiring is a structure A = (A,+,×, 0A, 1A)
such that (A,+, 0A) is a commutative monoid, (A,×, 1A) is a monoid, × is
distributive over +, 0A is absorbing for ×, and 0A ̸= 1A. The semiring A is said
to be commutative if × is commutative.

11



Fact 1. Observe that a ring is a semiring A = (A,+,×, 0A, 1A) where (A,+A, 0A)
is a group.

Throughout this paper, we implicitly assume that the operations of the
semiring can be performed in constant time. For more precise computational
considerations we refer the reader to the model of semiring Turing machines [13].

Example 1. Typical examples of semirings subsume:

• the Boolean semiring B = (2,∨,∧,⊥,⊤), where 2 := {⊥,⊤}. Here, ⊥ and
⊤ are constants (to be interpreted as true and false, respectively), and ∨
and ∧ denote the disjunction and conjunction.

• the integer semiring (N,+,×, 0, 1), where + and × respectively denote the
usual addition and multiplication over the natural numbers N, with their
respective neutral elements 0 and 1, and

• the tropical semiring Rmin := (R,min,+,∞, 0) where R = R ∪ {∞} is
the set of real numbers together with the neutral element ∞ for min. We
also have the dual tropical semiring Rmax := (R,max,+,−∞, 0), with the
neutral element −∞ for max.

Throughout this paper, we will further assume that A = (A,+,×, 0A, 1A) is
commutative, that is, x× y = y × x, for every x, y ∈ A.

Remark 2. Tropical semirings have been used in the context of finding the
minimal cost of a path: the cost of the path is the product of the costs of its
edges, and the best cost amongst two distinct paths is given by the sum. Here, +
is interpreted as the product of the tropical semiring, whereas min is interpreted
as the sum.

The properties entailed by the interpretations in Remark 2 are captured by
notion of “dioid”.

Definition 3 (Dioid). A dioid is a semiring (D,min,+D,∞D, 0D), where ≤D

is the binary relation given by

∀(d1, d2) ∈ D2, d1 ≤D d2 ⇐⇒ ∃c ∈ D,min(d2, c) = d1,

that orders D. Such a dioid D is said to be idempotent if ∀d ∈ D,min(d, d) = d,
and it is said to be totally ordered if the order ≤D is total, i.e., ∀d1, d2 ∈ D,
d1 ≤D d2 or d2 ≤D d1.

Example 2. The structures of Example 1 give rise to natural examples of
dioids.

• The Boolean semiring B = ({⊥,⊤},∨,∧,⊥,⊤) is endowed with a totally
ordered idempotent dioid structure with the ordering ⊤ ≤B ⊥. This or-
dering is rooted in Remark 2 where the elements of the dioid are thought
of as weights to minimize.

12



• The natural semiring (N,+,×, 0, 1) ordered by the usual≥ on N is a totally
ordered dioid, which is not idempotent.

• The tropical semiring Rmin = (R,min,+,∞, 0) is also a totally ordered
idempotent dioid, its order coincides with the usual order ≤ on R.

• If we let ω the first infinite ordinal number [23], the structure (Ω,min,+,∞, 0)
with Ω := {a+ b×ω | (a, b) ∈ N2} ∪ {∞} (where the symbol ∞ is neutral
for min and absorbing for +) is a totally ordered idempotent dioid. More
generally, for any set Ω of ordinal numbers, where a neutral symbol ∞
for min has been added, (Ω,min,+,∞, 0) is a totally ordered idempotent
dioid.

From now on, D = (D,min,+,∞D, 0D) will denote a totally ordered idem-
potent dioid. We remark that the assumption of total ordering will most of the
time not be necessary in our results. However, it seems natural to require that
the costs are totally ordered.

Let us now verify that the sum “min” of the dioid effectively returns the
minimum of its two arguments relatively to the order ≤D.

Property 1. For a totally ordered idempotent dioid D = (D,min,+,∞D, 0D),
the following properties hold.

1. For every (d1, d2) ∈ D2, if d1 ≤D d2, then min(d1, d2) = d1.

2. For every (d1, d2, d3) ∈ D3, if d1 ≤D d2 and d1 ≤ d3, then d1 ≤ min(d2, d3).

Proof. (1). If d1 ≤D d2, then there exists d3 ∈ D such that d1 = min(d2, d3).
By commutativity and associativity of min, it follows that

min(d1, d2) = min(min(d2, d3), d2) = min(min(d2, d2), d3),

and, by idempotency of min, min(d1, d2) = min(d2, d3) = d1.

(2). If d1 ≤D d2 and d1 ≤ d3, then min(d1, d2) = min(d1, d3) = d1. Hence,

min(min(d2, d3), d1) = min(min(d1, d2), d3) = min(d1, d3) = d1.

Thus d1 ≤ min(d2, d3).

3.3. Uplus and Join

In dynamic programming, one generally designs algorithms that inductively
compute over incomplete sets of solutions (where some solutions are missing),
or over sets of solutions that only cover a subset of the whole domain (meaning
that some variables are not assigned any value). In the former case, these partial
sets of solutions F1 and F2 are then combined together to form a larger set of
solutions via union ∪ or disjoint union ⊎. In the latter case, two (or more) partial
solutions f1 and f2 over disjoint subsets of the whole domain are combined to
obtain a solution denoted by (f1 ⋊⋉ f2) over a larger domain, an operation that
is isomorphic to Cartesian product. The idea is to establish a correspondence
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between the semiring operations + and × and the two operations for combining
(partial) solutions.

To simplify the presentation, we let S and T be two finite sets. Recall from
Section 3.1 that we aim to associate functions S → T with solutions to a given a
computational problem. Under this interpretation, two disjoint subsets S1 and
S2 of S correspond to domains of partial solutions, which can be combined into
a solution with a larger domain.

Definition 4 (Disjoint union ⊎). Let F1 ⊆ TS and F2 ⊆ TS , with F1∩F2 =
∅. The disjoint union F1 ⊎ F2 is defined by

F1 ⊎ F2 = {f ∈ TS | f ∈ F1 or f ∈ F2}.

Notice that ∅ is neutral for ⊎: for every F ⊆ TS . Indeed, F ⊎ ∅ is well
defined and F ⊎ ∅ = F . We can observe the correspondence between ∅ and ⊎,
and 0A and + of a semiring A. This observation will be further exploited in
Section 3.5.

We proceed by describing the operator corresponding to the product × in
the underlying semiring. Here, the idea is to combine partial functions f1 and
f2 over two disjoint domains S1 and S2 into a function f1 ⋊⋉ f2 with the greater
domain S1 ⊎ S2. The condition that S1 and S2 are disjoint is indeed necessary
to ensure that f1 ⋊⋉ f2 is well-defined.

Definition 5 (Join ⋊⋉). Given f1 ∈ TS1 and f2 ∈ TS2 , we define the join
f1 ⋊⋉ f2 ∈ TS1⊎S2 of f1 and f2 by

(f1 ⋊⋉ f2) : s 7→
{

f1(s) if s ∈ S1

f2(s) if s ∈ S2

Then, given F1 ⊆ TS1 and F2 ⊆ TS2 , the set F1 ⋊⋉ F2 is defined as

F1 ⋊⋉ F2 = {f1 ⋊⋉ f2 | (f1, f2) ∈ F1 ×F2}

Note that T ∅ is neutral for ⋊⋉: for every F ⊆ TS : F ⋊⋉ T ∅ is well defined
and F ⋊⋉ T ∅ = F . Also, ∅ is absorbing for ⋊⋉: for every F ⊆ TS : F ⋊⋉ ∅ is well
defined and F ⋊⋉ ∅ = ∅. Thus, to relate to semirings, if ⋊⋉ corresponds to the
product of the semiring, it is expected that ∅ corresponds to the zero, and that
T ∅ correspond to the unit. This remark justifies the links between T ∅ and the
unit element of the semiring developed in Section 3.5.

This operator, although typically not explicitly named, is central in dynamic
programming. For example, “divide-and-conquer algorithms” works by solving
smaller sub-problems and then “combining” the solutions of the small problems
to a solution to the larger problem. The way small solutions are combined is
often implicit with the aforementioned ⋊⋉ operator. However, it should be noted
that this operator is typically not given an explicit name.

Example 3. Recall that a cograph G is by definition either
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• the graph K1 (ie. G is a single vertex),

• the disjoint union G = G1⊕G2 := (VG1
⊎VG2

, EG1
⊎EG2

) of two cographs
G1 and G2 with disjoint set of vertices,

• the joint union G = G1 ⊗ G2 = (VG1
⊎ VG2

, EG1
⊎ EG2

⊎ {{u1, u2} |
(u1, u2) ∈ VG1 × VG2}) of two cographs G1 and G2 with disjoint sets of
vertices.

As an example of an implicit use of the ⋊⋉ operator, note that deciding if a
cograph G on n vertices is k-colorable (with k ≥ 1) can be done in O(kn) time
by dynamic programming, by the following observations.

• K1 is k-colorable.

• G1 ⊕G2 is k-colorable if and only if G1 and G2 are k-colorable.

• G1 ⊗G2 is k-colorable if and only if there exists k′ ∈ [k− 1] such that G1

is k′-colorable and G2 is (k − k′)-colorable.

Indeed, the second item relies implicitely on the fact that if G1 and G2 are
both k-colorable by the k-colorings f1 and f2, then so is G1 ⊕ G2, with the k-
coloring f1 ⋊⋉ f2. An equivalent remark also holds for the third item. Note that
in order to efficiently compute a k-coloring of the cograph with this method,
the ⋊⋉ operator would be used implicitly.

3.4. Semiring Expressions

We now turn to the problem of building a semiring expression representing
the set of solutions of a problem instance.

Definition 6 (Syntax of an expression). A semiring expression E over the
sets (S, T ) is an element of the grammar:

E : ∅ | T ∅ | (s 7→ t) | E ⊎ E | E ⋊⋉ E

with (s, t) ∈ S × T .

The size of an expression E denoted ∥E∥ is its number of leaves (viewing
E as a binary tree, where the leaves are labelled by ∅, T ∅ and the (s 7→ t) for
(s, t) ∈ S × T , and where the internal nodes are labelled by either ⊎ or ⋊⋉).

The domain of an expression E (denoted dom(E)) is the set of all s ∈ S
such that E has a leaf of the form (s 7→ t) with t ∈ T .

Definition 7 (Semantic of an expression). Given a semiring expression E
over the sets (S, T ), its semantic [E] is either a special symbol FAIL, or a subset
of T dom(E) defined inductively as:

• [∅] = ∅,
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• [T ∅] = T ∅,

• [s 7→ t] = {(s 7→ t)} for all (s, t) ∈ S × T ,

• [E1 ⊎ E2] =



FAIL if [E1] = FAIL or [E2] = FAIL
[E1] else, if [E2] = ∅
[E2] else, if [E1] = ∅
FAIL else, if dom(E1) ̸= dom(E2)
FAIL else, if [E1] ∩ [E2] ̸= ∅

[E1] ⊎ [E2] else,

• [E1 ⋊⋉ E2] =

 FAIL if [E1] = FAIL or [E2] = FAIL
FAIL else, if dom(E1) ∩ dom(E2) ̸= ∅

[E1] ⋊⋉ [E2] else.

We say that a semiring expression E is correct if [E] ̸= FAIL. A semiring
expression of a set F ⊆ TS is a correct semiring expression E such that F = [E].
Alternatively, we say that E encodes or represents F if [E] = F .

3.5. Measures and Matrix Representations

Using dynamic programming, it is sometimes possible to compute a semiring
expression of the set of solutions of an instance of a computational problem Π.
Then, in order to take advantage of this semiring expression to solve computa-
tional variants of Π (such as #Π or Cost-Π) we introduce the concept of a
measure, which takes its values in a semiring while mapping the fundamental
operations ⊎ and ⋊⋉ of the semiring expressions to the sum and product of the
semiring.

Definition 8 (Measure). An A-measure over the finite sets (S, T ) is a func-
tion µ such that for all S′ ⊆ S and F ⊆ TS′

, µ maps F to µ(F) ∈ A, respecting:

1. zero axiom: µ(∅) = 0,

2. unit axiom: µ(T ∅) = 1,

3. additivity: for F1,F2 ⊆ TS′
disjoint: µ(F1 ⊎ F2) = µ(F1) + µ(F2),

4. elementary multiplicativity: for all f1 ∈ TS1 and f2 ∈ TS2 (with S1

and S2 disjoint): µ({f1 ⋊⋉ f2}) = µ({f1})× µ({f2}).

Once we know an expression of the set SOL of solutions of an instance
of a computational problem, one deduces easily for any A-measure µ how to
compute µ(SOL) as a sum and product of the µ({s 7→ t}) with (s, t) ∈ S × T
by transforming the ⊎ into +, and the ⋊⋉ into ×.

Let us remark that the distributivity of × over + in the semiring ensures
that the elementary multiplicativity axiom of measures can be extended to true
multiplicativity (over whole sets).

Property 2 (multiplicativity). Let µ be a A-measure. Let F1 ⊆ TS1 and
F2 ⊆ TS2 . Then µ(F1 ⋊⋉ F2) = µ(F1)× µ(F2).
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Proof. The proof follows from the following sequence of identities that are not
difficult to verify:

µ(F1 ⋊⋉ F2) = µ({f1 ⋊⋉ f2 | (f1, f2) ∈ F1 ×F2}) (By definition of F1 ⋊⋉ F2)

= µ( ⊎
(f1,f2)∈F1×F2

{f1 ⋊⋉ f2})

=
∑

(f1,f2)∈F1×F2

µ({f1 ⋊⋉ f2}) (By additivity of µ)

=
∑

(f1,f2)∈F1×F2

µ({f1})× µ({f2}) (By elementary multiplicativity of µ)

= (
∑

f1∈F1

µ({f1}))× (
∑

f2∈F2

µ({f2})) (By distributivity of × over +)

= µ( ⊎
f1∈F1

{f1})× µ( ⊎
f2∈F2

{f2}) (By additivity of µ)

= µ(F1)× µ(F2).

We summarize the conclusion of Property 2 by saying that measures are
multiplicative. Given a set F ⊆ TS , and a measure µ, we then realize that µ(F)
only depends2 on the values of µ({s 7→ t}), for (s, t) ∈ S×T . Indeed, remarking

F = ⊎
f∈F
{f} = ⊎

f∈F
⋊⋉
s∈S
{s 7→ f(s)},

it then follows from the properties of measures that

µ(F) =
∑
f∈F

∏
s∈S

µ({s 7→ f(s)}).

Now that we have identified the minimal information to describe a measure,
we can easily represent this as a matrix.

Definition 9 (Matrix of a measure). The matrix of the measure µ is the
matrix Mµ = (µ({s 7→ t}))(s,t)∈S×T ∈ AS×T .

Reciprocally, we can associate a measure µM to every matrix M ∈ AS×T by
∀S′ ⊆ S, ∀F ⊆ TS′

, µM (F) :=
∑
f∈F

∏
s∈S′

M [s, f(s)]. It is indeed easy to verify

that the function µM defined thereby is a measure, and that for all measure ν,
µMν

= ν and that for all matrix N , MµN
= N .

The practical relevance of semiring expressions and measures is summarized
in Lemma 1. Here, the link between semiring expressions and measures are
ensured by the additivity and multiplicativity axioms of measures.

Lemma 1. Given a correct semiring expression E over the finite sets S and
T , and an A-measure µ represented by its matrix Mµ = (Mµ[s, t])s,t ∈ AS×T ,
µ([E]) can be computed in O(∥E∥) time.

2Similarly to how a linear application depend only on its image on a linear basis.
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Proof. We inductively compute the result by following the structure of a semir-
ing expression.

• If E = ∅ we can return 0 by the zero axiom.

• If E = T ∅ we can return 1 by the unit axiom.

• If E = (s 7→ t) with (s, t) ∈ S × T , we can return Mµ[s, t] by definition of
the matrix Mµ of µ.

• If E = E1 ⊎ E2, inductively compute µ([E1]) and µ([E2]). We can then
return µ([E1]) + µ([E2]) by additivity.

• If E = E1 ⋊⋉ E2, inductively compute µ([E1]) and µ([E2]). We can then
return µ([E1])× µ([E2]) by multiplicativity (Property 2).

The algorithm performs as many operations as there are nodes in the semir-
ing expression E seen as a binary tree. Recall that any binary tree with m ≥ 1
leaves has 2m− 1 nodes in total: the number of nodes of a semiring expression
is linear in its size. Hence, we compute µ([E]) in O(∥E∥) time.

The main interest of Lemma 1 lies in the fact that many usual computational
extension of NP problems can be formulated as computing the image of the set
of solutions by a semiring-measure.

Example 4. Given a computational problem Π of NP, the problems Π, #Π,
List-Π and Cost-Π all consists in computing the image by a measure of the
set of solutions SOL of Π. For all of these extensions, let us now consider the
semiring and the matrix of the corresponding measure.

• Solving Π means computing 1 ̸=∅(SOL), with 1̸=∅ : F 7→
{
⊤ if F ̸= ∅
⊥ if F = ∅

1̸=∅ is a B-measure, and its matrix only has ⊤ coefficients.

• Solving #Π means computing #(SOL), with # : F 7→ |F|.
# is a N-measure, and its matrix only has 1 as coefficients.

• Solving List-Π means computing L(SOL) with L the B-measure given
by: for all (s, t) ∈ S × T ML[s, t] = ⊤ if sending s to t is allowed, and
ML[s, t] = ⊥ if it is forbidden.

• Solving Cost-Π means computing C(SOL) with C the Rmin-measure of
the cost matrix MC [s, t] ∈ R is the cost of mapping s to t.
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3.6. Computing semiring expressions

In order to take advantage of Lemma 1, it is useful to be able to compute a
semiring expressions of small size representing the set of solutions of the consid-
ered problem. Note that small semiring expression can encode large sets. For
instance, for n ≥ 0, the set [n][n] of all functions from [n] to [n] has the semiring
expression of size n2:

E[n][n] =
n
⋊⋉
i=1

(
n
⊎

j=1
(i 7→ j)).

However, the semiring expression does not seem relevant to efficiently encode
the set Sn of all permutations over [n]. Intuitively, the E1 ⋊⋉ E2 operations
does not allow one to chose the image in the domain of E2 dependently from
the images of the elements chose in E1. Indeed, as we will now prove, such a
semiring expression is unlikely to be computable in polynomial time.

Theorem 1. Unless P=NP, a semiring expression of Sn can not be computed
in time poly(n).

Proof. Recall the definition of the Permanent problem:

Permanent:
Input: A matrix M ∈ {0, 1}n×n with n ≥ 0.

Output: The permanent of M , ie. perm(M) :=
∑

σ∈Sn

n∏
i=1

mi,σ(i).

The Permanent problem is well-known to be #P-complete due to Valiant’s
theorem [32]. Therefore, if it is solvable in poly(n) time, then P=NP.

Assume that there exists an algorithm that takes an integer n as input and
returns a semiring expression ESn

of Sn. This expression has size poly(n) since
it has been computed in poly(n) time.

Let M ∈ {0, 1}n×n with n ≥ 0 be an instance of Permanent. Then, by
Lemma 1 the N-measure µM of matrix M applied to the set Sn can be computed

in poly(n) time, i.e., µM (Sn) =
∑

σ∈Sn

n∏
i=1

mi,σ(i) = perm(M) can be computed

in poly(n) time. This proves that P=NP.

By Theorem 1, we know that a semiring expression of Sn is unlikely to be
computable in poly(n) time. We view it as an interesting open question to prove
this unconditionally and pose the following conjecture.

Conjecture 1. Sn does not have a semiring expression of poly(n) size.

Note that a semiring expression ESn of Sn can be defined recursively by
ESn+1 = ⊎

m∈[n+1]
((n + 1 7→ m) ⋊⋉ ESn [m ← n + 1]), with ESn [m ← n + 1]

being a copy of ESn where every leaf of the form (i 7→ m) have been replaced
by a leaf (i 7→ n + 1). However, this would result in a formula with n! leaves.
The issue is that the replacement of leaves must be operated dependently of the
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image we have chosen for n + 1, which rules out the possibility of an efficient
factorization of the expression.

A similar result can be proven for the set Cn of n-cycles of Sn.

Theorem 2. Unless P=NP, a semiring expression of Cn can not be computed
in poly(n) time.

Proof. Recall the definition of the Travelling-Salesman problem.

Travelling-Salesman:
Input: A graph G on n ≥ 0 vertices, and a weight function w : EG 7→ R+.
Output: The minimal weight of a Hamiltonian cycle in G.

The Travelling-Salesman problem is known to be NP-complete. There-
fore, if it is solvable in time poly(n), then P=NP. Assume that there exists an
algorithm that takes as an input an integer n, and returns a semiring expres-
sion ECn

of Cn. This expression has poly(n) size since it has been computed in
poly(n) time.

Let (G,w) an instance of Travelling-Salesman. Without loss of gen-
erality, assume that VG = [n] with with n := |VG|. Consider the matrix

W = (wi,j) ∈ R[n]×[n]
, with for all (i, j) ∈ [n]2,

wi,j =

{
w({i, j}) if {i, j} ∈ EG

∞ if {i, j} /∈ EG

Then, by Lemma 1, the Rmin-measure µW (of the tropical semiring (R,min,+,∞, 0))
of the matrix W applied to the set Cn can be computed in poly(n) time,

i.e., µW (Cn) = min
c∈Cn

n∑
i=1

wi,c(i) can be computed in poly(n) time. This solves

Travelling-Salesman in polynomial time, implying that P=NP.

Again, Theorem 2 indicates that a semiring expression of Cn of size poly(n)
is unlikely to exist, and we pose the following explicit conjecture.

Conjecture 2. The set Cn of n-cycles of Sn does not have a semiring expres-
sion of size poly(n).

One can also remark that Conjecture 2 implies that a semiring expression
of size poly(n) does not exists for the set of all cycles of Sn. Indeed, if such an
expression exists, we can use it to obtain a semiring expression of size poly(n)
of Cn by replacing every leaf of the form (i 7→ i) by ∅, contradicting Conjecture
2.

3.7. Differences with Sum-Product-Csp

At first, the concept of a measure may seem very reminiscent of the Sum-
Product-Csp framework [12, 14]. Here, we are given a semiring A, a domain D
and a set of constraints Γ where each constraint is a polynomial time computable
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function C : Dar(C) 7→ A, where ar(C) ≥ 0 is the arity of C. The problem Sum-
Product-Csp(Γ) is then defined as follows.

Sum-Product-Csp(Γ) :

Input: A set of variable V , and a finite set of constraints {(Ci, x
1
i , . . . , x

ar(C)
i ) |

i ∈ [m]} with m ≥ 0, and ∀i ∈ [m], Ci ∈ Γ.

Output: The value
∑

f∈DV

m∏
i=1

Ci(f(x1
i ), . . . , f(x

ar(C)
i )) ∈ A.

Note that the constraints defined in the context of Sum-Product-Csp sub-
sumes the less general contraints defined for Csp, as a relation C over D of arity
ar(C) can be seen as a function C : Dar(C) 7→ {⊥,⊤} taking its value in the
Boolean semiring. With this identification, Csp can be seen as a the particular
case of Sum-Product-Csp, where the only semiring considered is the Boolean
semiring B.

However, the general Sum-Product-Csp is not subsumed by the Semiring-
Csp problem. The principal difference is that we in the Sum-Product-Csp
problem use the semiring to to relax the constraints, that can now take arbi-
trary values in a semiring instead of only ⊤ or ⊥ in the Boolean semiring. In
comparison, in our Semiring approach we can only work with a combination of
arbitrary arity “hard constraints” (either true or false), and only unary “relaxed
constraints” (taking values in the semiring). However, recall that our approach
applies to every NP problem and not only Csp, since it is defined as long as the
considered problem has a “set of solutions”, for instance the set of certificate
of the NP problem. For example, the Connected-Dominating-Set problem
does not benefit from the Sum-Product-Csp formalism, but the Semiring-
Connected-Dominating-Set problem is perfectly well defined, and subsumes
the counting, list and cost version of Connected-Dominating-Set.

Moreover, even if we restrict the study to Csps, the Sum-Product-Csp ap-
proach is often too general to benefit from unified algorithms, and we frequently
need to distinguish cases depending on the nature of the semiring [12]. In con-
trast, any upper bound on the complexity of Semiring-Csp is automatically
derived as an upper bound of Csp, #Csp, List-Csp, and Cost-Csp.

4. ∆-product

We have seen that semiring extensions generalizes many natural extensions
of computational problems such as counting, list and cost. We now explain how
to combine some of these algorithmic extensions together by defining a novel
operation over semirings called the ∆-product. As a concrete application, we
will see that Lemma 1 enables to “count the number of solutions of minimal
cost”. Therefore, solving the semiring version of a NP problem is sufficient to
count its solution of minimal cost. To the best of our knowledge, the algebraic
constructions we present are completely novel, and no general semiring based
algorithms for counting solutions of minimal cost exist in the literature. This
new tool enables to create a semiring that makes the class #·OptP [20] fall
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Parameterized problem
(Π, λ) with Π ∈ NP

FPT algorithm that solves
Semiring-Π

See Section 5 for (Π, λ) =
(Connected-Dom-Set, cw)

See Section 6 for (Π, λ) =
(CSP, tw)
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for the

construction
of measures

B-measures N-measures Rmin-measures (Rmin∆N)-measures
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Figure 2: A general overview of our contributions where the contribution in this section is
colored in blue.

into the semiring formalism, similarily as the classes #P [32] corresponds to the
natural semiring (N,+,×, 0, 1) for instance, via the N-measure # : F 7→ |F|.

The contribution of this section to the semiring formalism presented in this
paper is summarized in Figure 2.

For the rest of this section, we let D = (D,min,+D,∞D, 0D) be a totally-
ordered idempotent commutative dioid and A = (A,+A,×, 0A, 1A) be a com-
mutative semiring.

4.1. Regularity

We begin by introducing the notion of multiplicative regularity. Let w a
D-measure over some finite sets (S, T ), and S′ ⊆ S. For F ⊆ TS′

, we say that a
function f ∈ F is of minimal weight in F (with respect to w) if w({f}) = w(F).
This definition is motivated by the fact that w(F) = min

f∈F
w({f}) (since F is

a D-measure). We also denote by argminw(F) the sets of elements of minimal
weight of F (with respect to w).

Given a semiring expression E of F , in order to count the number of solutions
of minimal weight, we in particular need to handle the case where E1 is of the
form E1 ⋊⋉ E2 in order to perform a structural induction. Ideally, it would be
desirable to have argminw([E]) = argminw([E1]) ⋊⋉ argminw([E2]). The issue is
that this equality is not always true, an instance where it fails is is illustrated
in Example 5.

Example 5. Let S1 and S2 be two disjoint subsets of S, f1 ∈ TS1 , f2 ∈ TS2

and f ′
2 ∈ TS2 , with f2 ̸= f ′

2. Let also F1 := {f1} and F2 := {f2, f ′
2}. Finally,
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let w be a Rmin-measure (i.e., of the tropical semiring) with w({f1}) = ∞,
w({f2}) = 7 and w({f ′

2}) = 31.

• We have argminw(F1 ⋊⋉ F2) = {f1 ⋊⋉ f2, f1 ⋊⋉ f ′
2}, as both functions

f1 ⋊⋉ f2 and f1 ⋊⋉ f ′
2 have weight∞ =∞+ 7 =∞+ 31 by multiplicativity

of w (Property 2). Recall that + is the product of the tropical semiring.

• However, argminw(F2) = {f2}, since w(f2) = 7 < 31 = w(f ′
2). Thus

argminw(F1) ⋊⋉ argminw(F2) = {f1 ⋊⋉ f2}.

We see that in this case, argminw(F1 ⋊⋉ F2) ̸= argminw(F1) ⋊⋉ argminw(F2).

The issue in Example 5 comes from the property of ∞ that ∞ + 7 = ∞ +
31, even though 7 < 31. In order to guarantee that argminw([E1 ⋊⋉ E2]) =
argminw([E1]) ⋊⋉ argminw([E2]), we need to separately handle the elements
that behaves similarly to ∞ in Example 5. In Definition 10 we introduce an
algebraic property that guarantees that this undesirable behaviour never occurs.

Definition 10 (Multiplicative Regularity). A multiplicatively regular ele-
ment of A is an element a ∈ A \ {0} such that

∀(b, c) ∈ A2, a× b = a× c =⇒ b = c.

We denote by reg(A) the set of multiplicatively regular elements of the
semiring A, and by reg(A) := A \ reg(A) the set of non multiplicatively regular
elements of A.

We have the following link between multiplicatively regular elements and
products.

Property 3. Let (a, b) ∈ A2. Then a× b ∈ reg(A) ⇐⇒ (a, b) ∈ reg(A)2.

Proof. We prove the two cases separately.

• Assume that (a, b) ∈ reg(A)2. Let (c, d) ∈ A2 with (a×b)×c = (a×b)×d.
Then a× (b× c) = a× (b× d). Since a is regular, b× c = b× d, and since
b is regular, c = d, which proves that (a× b) is regular.

• Assume that a × b ∈ reg(A). Let (c, d) ∈ A2 such that a × c = a × d.
Then, a× c× b = a× d× b ie. (a× b)× c = (a× b)× d, and by regularity
of a × b, c = d, which proves that a is regular. Symmetrically, b is also
regular, which concludes the proof.

We now establish that the product + of the dioid D behaves as expected
with respect to the order of the dioid. We also obtain stronger properties under
a hypothesis of multiplicative regularity.

Remark now that we study the multiplicative regularity in the dioid D where
+ is the product and not the sum.
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Property 4. Let ≤D be the order associated to the dioid D.

• For all (a, b, c, d) ∈ D4, a ≤D b and c ≤D d =⇒ a + c ≤D b + d.

• If, in addition, c or d is a multiplicatively regular element of D where
a <D b, then a + c <D b + d.

Proof. We prove each case in turn.

• It is sufficient to prove that a + c ≤D b + c since this result can be used
to derive c + b ≤D d + b (i.e, b + c ≤D b + d by commutativity), and
a+ c ≤D b+d follows from the transitivity of ≤D. Thus, let us prove that
a+ c ≤D b+ c. Since a ≤D b, there exists b′ ∈ D such that a = min(b, b′).
By distributivity of + over inf (axiom of the semiring (D,min,+,∞, 0)),
we have a+c = min(b+c, b′+c), from where we can conclude a+c ≤D b+c.

• Assume that c is a multiplicatively regular element of D and a <D b. Since
b+ c ≤D b+ d (first item), it is sufficient to prove that a+ c <D b+ c. By
the first item, we already have a + c ≤D b + c. Assume by contradiction
that a + c = b + c. Then, since c is multiplicatively regular, a = b which
contradicts the hypothesis a <D b. The same reasoning holds if d is a
multiplicatively regular element of D.

The result in the second item of Property 4 guarantees that the unwanted
behaviour described in Example 5 does not occur for regular elements.

4.2. ∆-product of semirings

In this section, we construct a new type of semiring, obtained by combining
together a dioid D and a semiring A, through an operation that we call a ∆-
product. The algorithmic applications of this new semiring will typically be to
“count the solutions of minimal weight” of an NP problem.

In order to improve the reading experience the proofs of the theorems of this
section have been moved to Appendix A.

We first define which elements of D × A will belong to the new semiring.
Any regular element d of D can be associated with any a ∈ A, but the non
regular elements can only be associated to 0A. The reason is that when the
minimal weight of a set F = F1 ⋊⋉ F2 is not regular, we can not guarantee that
argminw(F) = argminw(F1) ⋊⋉ argminw(F2). We thus give up on the operations
in A and instead output 0A by default.

Definition 11. For d ∈ D and a ∈ A, denote by

d∆a =

{
(d, a) if d ∈ reg(D)

(d, 0A) if d /∈ reg(D)

}
.

We are now ready to build a semiring that will be able to handle the combi-
nation of the D-measure w and the A-measure µ that is intended to be applied
to the argminw(F).
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Theorem 3. The structure D∆A = (D∆A,⊕,⊗, (∞D, 0A), (0D, 1A)) is a com-
mutative semiring with:

• D∆A := {d∆a | (d, a) ∈ D × A} = {(d, a) ∈ D × A | d ∈ reg(D) or a =
0A}.

• ⊕ :

(D∆A)2 → D∆A

((d1, a1), (d2, a2)) 7→ (min(d1, d2),

 a1 if d1 <D d2
a2 if d2 <D d1

a1 +A a2 if d1 = d2

)

and

• ⊗ :
(D∆A)2 → D∆A

((d1, a1), (d2, a2)) 7→ ((d1 +D d2), (a1 ×A a2))
.

Note that we can reformulate the definition of ⊕ as:

⊕ :

(D∆A)2 → D∆A

((d1, a1), (d2, a2)) 7→

 (d1, a1) if d1 <D d2
(d2, a2) if d2 <D d1

(d1, a1 +A a2) if d1 = d2


by Property 1. We also observe that ⊗ is the Cartesian product of the two

products +D and ×A of the semirings D and A.
Intuitively, ⊕ is defined in order to mimic how we would count the minimum,

and number of minimal elements of a disjoint union of two sets F1 and F2,
given their respective minimum d1, d2 and the number of minimum elements
a1, a2. In order to study the associativity and commutativity of this operation,
we let D1 = (D1,min1,+1,∞1, 01) and D2 = (D2,min2,+2,∞2, 02) be two
commutative totally-ordered idempotent dioids.

It is now natural to study the algebraic properties of this newly defined
∆-product. We prove in the following that the ∆-product is associative.

Theorem 4. The semiring D1∆D2 is also a commutative totally ordered idem-
potent dioid, and the associated order ≤D1∆D2

is the lexicographical order ≤D1lexD2
.

Studying the associativity of the ∆-product requires to compare (D1∆D2)∆A
with D1∆(D2∆A). Even though the definition of D1∆(D2∆A) does not raise
any issue, considering (D1∆D2)∆A requires that we justify that (D1∆D2) is a
commutative totally ordered idempotent dioid, which is ensured by Theorem 4.

Theorem 5. The ∆-product of semirings is associative. More precisely, up to
identifying (D1 ×D2)×A with D1 × (D2 ×A), (D1∆D2)∆A = D1(∆D2∆A).

This is essentially due to the fact that the lexicographic order is associative.
Note that the ∆-product of semirings is not commutative, even up to isomor-
phism, since the lexicographic order depends on the ordering of its coordinates.

Example 6. A surprising application of ∆-product is to build the dioids of the
Kleene algebras of multi-valued logic [3]. The trilean dioid (3,∨,∧,⊥,⊤) (with
3 = {⊥,⊤, ?}) defined by the table:
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∨ ⊤ ? ⊥
⊤ ⊤ ⊤ ⊤
? ⊤ ? ?
⊥ ⊤ ? ⊥

∧ ⊤ ? ⊥
⊤ ⊤ ? ⊥
? ? ? ⊥
⊥ ⊥ ⊥ ⊥

is isomorphic to the dioid B∆B, through the isomorphism Φ defined by
Φ(⊥,⊥) = ⊥,Φ(⊤,⊤) = ⊤,Φ(⊤,⊥) =?. Recall that (⊥,⊤) /∈ 2∆2, since ⊥ is
not regular.

More generally, for all n ≥ 2 the dioid of the Kleene-algebra of the n-valued
logic ([n],max,min, 1, n) is isomorphic to B∆B∆ . . .∆B︸ ︷︷ ︸

n−1 occurrences of B

, through the isomor-

phism:

Φ :

2∆2∆ . . .∆2 7→ [n]
(⊤, . . . ,⊤,⊥, . . . ,⊥)︸ ︷︷ ︸

i occurrences of ⊤

7→ i + 1

However, the algorithmic applications of the dioids of n-valued logic are
limited by the fact that their only multiplicatively regular element is (⊤, . . . ,⊤).
Therefore studying the measures of the dioid [n]∆A withA will not be especially
relevant, since [n]∆A = ({n} ×A) ⊎ {(i, 0A) | i ∈ [n− 1]}.

4.3. ∆-product of measures

The main purpose of ∆-product of semirings is their ability to shelter ∆-
product of measures. More precisely, if w is a D-measure (seen as a weight
function) and µ is a A-measure (for instance, the N-measure of cardinality
# : F 7→ |F|), (w∆µ)(F) is the image by µ of the set of minimal functions
(with respect to w) of F .

Theorem 6. The function w∆µ that associates to every F ⊆ TS′
with S′ ⊆ S:

(w∆µ)(F) :=

{
(w(F), µ(argminw(F))) if w(F) ∈ reg(D)

(w(F), 0A) if w(F) /∈ reg(D)

= (w(F))∆(µ(argminw(F)))

with argminw(F) := {f ∈ F , w({f}) = w(F)} is a (D∆A)-measure.

The main interest of the ∆-compositions of semiring and measures is then
that it makes new extensions of NP computational problems fall under the
various semiring formalism. This is true for the Semiring-Π problems (for
Π ∈ NP) introduced in Section 3 as well as for the related problems in the
Sum-Product family (introduced in Section 3.7).
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4.4. Computational extensions

Let Π be a problem in NP, and let x be an instance of Π. As usual we
assume, without loss of generality, that the set of certificates of x are functions
from a set S to a set T (where S and T have polynomial size with respect to x).

By Lemma 1, for any computable function g, if Semiring-Π is solvable in
time O(g(n)), then so is the #Cost-Π problem defined as:

#Cost-Π :

Input: An instance x of Π, and a cost matrix C ∈ (R)S×T .
Output: How many solutions f of x of minimal cost

∑
s∈S

C[s, f(s)] are there,

and what is this minimal cost ?

Solving #Cost-Π is indeed equivalent to computing the image of to the set
of solutions SOL of the instance by the (Rmin∆N)-measure (C∆#) in the case
where there exists at least one solution of cost ̸=∞. If all solutions have infinite
cost, (C∆#)(SOL) will output (∞, 0), and then all solutions have minimal cost:
we can count them by computing #(SOL).

Note that in practice, to avoid having to compute both (C∆#)(SOL) and
#(SOL) by using the algorithm described in Lemma 1 twice, it is possible to
use the cartesian product

(C∆#)×# : F → (C∆#)(F)×#(F)

of the measures (C∆#) and #. The measure (C∆#)×# is indeed a measure
of the cartesian product of semirings (Rmin∆N)× N.

In particular we observe that the well-known SAT problem of counting so-
lutions of minimal cardinality from Hermann & Pichler [20] is a particular case
of #Cost-SAT.

#Min-Card-Sat:
Input: An instance φ(X) of Sat (i.e., a quantifier-free formula) on a set of

variables X.
Output: The number of models σ : X 7→ {⊥,⊤} of φ of minimal cardinality

(i.e., where |σ−1({⊤})| is minimal).

Similarly, the problem

#Min-Lex-Sat:
Input: An instance φ(X) of Sat (ie. a quantifyier free formula) on a set of

variable X, and (x1, . . . , xℓ) ∈ Xℓ (with ℓ ≥ 0).
Output: The number of models σ : X 7→ {⊥,⊤} of φ where (σ(x1), . . . , σ(xℓ))

is lexicographically minimal with respect to the order ⊥ ≤ ⊤.

from Hermann & Pichler [19] and even the more general problem

#Min-Weight-Sat:
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Input: An instance φ(X) of Sat (i.e., a quantifier-free formula) on a set of
variables X, and a weight function w : X 7→ N.

Output: The number of models σ : X → {⊥,⊤} of φ of minimal weight,
i.e., where ∑

x∈σ−1({⊤})

w(x) is minimal.

from Hermann & Pichler [20] are also particular cases of #Cost-Sat. Indeed,
if we for all w : X 7→ N define the matrix W ∈ (R)X×{⊥,⊤} by W [x,⊤] = w(x)
and W [x,⊥] = 0, the #Min-Weight-Sat problem consists in applying the
(Rmin∆N)-measure µW ∆# to the set of solution of an instance of Sat. Also,
the #Min-Card-Sat problem is the particular case where w is constantly 1,
and the #Min-Lex-Sat problem is the particular case where

w :
X → N

y 7→
{

2ℓ−i if y = xi with i ∈ [ℓ]
0 if y /∈ {x1, . . . , xℓ}

5. Semiring-Connected-Dominating-Set and Cliquewidth

Parameterized problem
(Π, λ) with Π ∈ NP

FPT algorithm that solves
Semiring-Π

See Section 5 for (Π, λ) =
(Connected-Dom-Set, cw)

See Section 6 for (Π, λ) =
(CSP, tw)

See Section 3
for the

construction
of measures

B-measures N-measures Rmin-measures (Rmin∆N)-measures

See Section 4
for the

∆-product

FPT algorithm
that solves List-Π

FPT algorithm
that solves #Π

FPT algorithm
that solves Cost-Π

FPT algorithm
that solves #Cost-Π

See Lemma 1
and Example 4

See Section 4.4

Figure 3: A general overview of our contributions where the contribution in this section is
colored in blue.

Recall that the framework is built upon the existence of an algorithm for
Semiring-Π (with Π ∈ NP), which via Lemma 1 can then be exploited to
solve the usual semiring extensions #Π, List-Π, Cost-Π. The ∆-product
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presented in Section 4 also makes it possible to subsume the problems of the
form #Cost-Π in the semiring formalism. Thus, an algorithm for Semiring-
Π is highly desirable since it can be used to solve many different (combina-
tions of) problem extensions. To exemplify that this is indeed feasible we con-
sider two well-known problems: Connected-Dominating-Set, and Csp. For
both these problems we construct FPT algorithms that solve the semiring ex-
tended problems, and, as a corollary, may derive upper bounds on all of the
aforementioned problem extensions. In particular, we are able to solve both
#Cost-Connected-Dominating-Set and #Cost-CSP by Section 4. The
contribution of this section to the semiring formalism presented in this paper is
summarized in Figure 3.

Both of these algorithms (in Section 5 and 6, respectively) follow a similar
idea since they are both based on bounded width properties of graphs. We utilize
a “method of construction of the graph”, such as a k-expression in Section 5,
or a tree decomposition in Section 6. We will explain in Section 6.1 how tree
decompositions can be seen as a method of construction of a graph.

Remark 3. Our algorithms only require that we “compress” each candidate
solution by considering its so-called trace. The definition of the trace depends
strongly on the problem and the parameter considered, but the trace must always
verify these three properties:

1. there must be only be an FPT number of possible traces,

2. it is possible to decide if a candidate function is a solution knowing only
its trace, and

3. the new trace of a candidate solution after performing a step of the “method
of construction of the graph”, depends only on its trace before this step.

Then, our algorithm maintains the invariant that for every possible trace τ ,
we know a semiring expression Eτ of the set of all candidates that have the trace
τ . Note that if τ and τ ′ are two different traces, Eτ and Eτ ′ represent disjoint
sets, and thus, the semiring expression Eτ ⊎Eτ ′ is always correct. By property
3., this invariant can be preserved through every step of the construction of the
graph, and is therefore eventually true for the whole graph. Then, by property
2., this enables us to recover a semiring expression of the set of solutions via
disjoint union, thereby answering the Semiring extension of our problem. Due
to property 1., all of these operations are done in FPT time.

Also, a variant of this paradigm can be to only encode the set of solutions
with a given trace, instead of all candidate solutions, in which case property
2. is not necessary, but property 3. must apply to sets of solutions instead of
candidates of solutions. This is what we will do in Section 6 to solve Csp.

5.1. Clique-width

In this section, we recall the definition of the clique-width of a graph which,
together with tree-width, is the most well-known and extensively studied graph
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parameter. The general idea behind clique-width is that graphs with low clique-
width can be decomposed into simpler structures, making it amenable to efficient
algorithmic solutions for problems that are otherwise intractable [8, 9].

For k ≥ 1, let [k] = {1, . . . , k}. A k-labelled graph G is a tuple (VG, EG, lG),
where (VG, EG) is a graph and lG : VG → [k]. For i ∈ [k] and a k-labelled graph
G, denote by V i

G = l−1
G ({i}) the set of vertices of G of label i. A k-expression φ

of a k-labelled graph G, denoted [φ] = G, is an expression defined inductively [9]
using:

1. Single vertex: •i with i ∈ [k]: [•i] is a k-labelled graph with one vertex
labelled by i (we sometimes write •i(u) to state that the vertex is named
u),

2. Disjoint Union: φ1 ⊕ φ2: [φ1 ⊕ φ2] is the disjoint union of the graphs
[φ1] and [φ2].

3. Relabelling: ρi→j(φ) with (i, j) ∈ [k]2 and i ̸= j: [ρi→j(φ)] is the same
graph as [φ], but where all vertices of G with label i now have label j,

4. Edge Creation: ηi,j(φ) with (i, j) ∈ [k]2 and i ̸= j: [ηi,j(φ)] is the same
graph as [φ], but where all pairs of the form {u, v} with {lG(u), lG(v)} =
{i, j} is now an edge, and

A graph G has a k-expression φ if there exists l : VG 7→ [k] such that
[φ] = (VG, EG, l). The clique-width of a graph G (denoted by cw(G)) is the
minimum k ≥ 1 such that G has a k-expression.

Moreover, if S ⊆ VG is a subset of vertices of a k-labelled graph G, we denote
by lG(S) := {lG(u) | u ∈ S} ∈ 2[k] the set of labels of vertices in S.

5.2. FPT Algorithm

We propose an algorithm that solves Semiring-Connected-Dominating-
Set that is FPT when parameterized by the clique-width of the input graph.
Thus, we manage to solve all common problem extensions (minimal cost, list,
and counting) as well as problem extensions via the ∆-product from Section 4.
Let us remark that the basic problem Connected-Dominating-Set is known
to be solvable in O∗(2(ω+4)k) time [2], where ω < 2.37188 is the matrix mul-
tiplication exponent [11], and, additionally, in O∗(5k) time via a randomized
(Monte-Carlo) algorithm [17]. However, no FPT algorithm is known for the
counting extension (which we vastly generalize). More formally, we study the
problem:

Semiring-Connected-Dominating-Set:
Input: A graph G.
Output: A semiring expression of the set of indicator fonctions of connected

dominating-sets of G.

and provide an FPT algorithm parameterized by the clique-width of the
input graph.
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+ 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

Table 1: Addition in 3.

Theorem 7. The problem Semiring-Connected-Dominating-Set is FPT
when parameterized by the cliquewidth of the input graph (assuming that a
cw(G)-expression of the input graph G is given).

Proof. We give an algorithm that solves Semiring-Connected-Dominating-

Set in time O∗((32
cw(G) × 2cw(G))2) = O∗(32

cw(G)+1 × 4cw(G)). To do so, take
k ≥ 1, a k-expression φ of a graph G, and S ⊆ VG. The k-expression will play
the role of the “method of construction of the graph” evoked in Remark 3.

In order to define the “trace” of Remark 3, we will use three different labels,
called 0, 1 and 2. They should be interpreted as respectively “zero”, “one” and
“at least two”. We let 3 := {0, 1, 2}, and we define the operation + in 3 in
Table 1 agreeing with this interpretation of 0, 1 and 2.

We define the following operations for all k-expression φ:

• The signature of S in φ, denoted by σφ(S) ∈ 3
2[k]

is the function

σφ(S) :

2[k] → 3

C 7→

 0 if there exists no t ∈ [q] with C = lG(Ct)
1 if there exists is a unique t ∈ [q] with C = lG(Ct)
2 if there exists several t ∈ [q] with C = lG(Ct)

,

where S = C1 ⊎ · · · ⊎ Cq with q ≥ 0 is the partition of S into connected
components of G[S]. The label 2 should be interpreted as “at least 2”.

The quantity (σφ(S))(C) ∈ 3 with C ∈ 2[k] gives the answer to the ques-
tion: “How many connected components Ct ⊆ S of G[S] are there such
that the set of labels (i.e. the labels in [k] of the k-expression φ) that
appear in Ct is exactly C ?”. The value of (σφ(S))(C) is either: 0 if the
answer is “0 connected components”, 1 if the answer is “exactly 1 con-
nected component”, or 2 if the answer is “at least 2 different connected
components”. Note that G[S] is connected if and only if ∥σφ(S)∥ = 1,
with

∥σφ(S)∥ =
∑

C∈2[k]

(σφ(S))(C)

being the number of connected components of G[S] (in 3).

• The domination of S in φ, denoted by domφ(S) ∈ 2[k] is the set domφ(S) =
{d ∈ [k] | V d

G ⊆ NG[S]}. Note that S is a dominating set of G if and only
if domφ(S) = [k].
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• Finally, the trace of S in φ is Trφ(S) = (σφ(S), domφ(S)) ∈ 3
2[k]

× 2[k].

Also, for all (σ,D) ∈ 3
2[k]

×2[k], Tr−1
φ (σ,D) ⊆ VG denotes the inverse image

of {(σ,D)} by the function Trφ, i.e.,

Tr−1
φ (σ,D) := {S ⊆ VG | Trφ(S) = (σ,D)}.

Note that σφ is considered here as a function (that outputs a function):

σφ : 2VG → 3
2[k]

S 7→ σφ(S)

from which we consider the inverse images.
The idea of the algorithm is then to compute the values of Tr−1

φ (σ,D) for

all (σ,D) ∈ 3
2[k]

× 2[k], by induction over the structure of φ. What will be
especially useful will be that:

1. {Tr−1
φ (σ,D), (σ,D) ∈ 3

2[k]

× 2[k]} forms a partition of VG, which makes
it possible to use ⊎. This is a partition into a FPT number of subsets

(32
k × 2k) with respects to k = cw(G),

2. the set of connected dominating set of G is exactly

⊎
∥σ∥=1

Tr−1
φ (σ, [k]), with ∥σ∥ =

∑
C∈2[k]

σ(C), and

3. for S ⊆ VG, the value of Trφ(S) depends only on the Trφ′(S) with φ
being of the form φ = ηi,j(φ

′) or φ = ρi→j(φ
′). A similar remark holds

for φ = φ1 ⊕ φ2. Also, Tr−1
•i(u)

(σ,D) (for (σ,D) ∈ 3
2[k]

× 2[k]) are easy to
compute.

We now focus on justifying this third remark. Since the semiring expressions
are made to express sets of functions and not subsets of vertices, we will give a
semiring expression Eφ(σ,D) of the sets of indicator functions of the subsets of
vertices in Tr−1

φ (σ,D).

To compute the values of the Tr−1
φ (σ,D) for (σ,D) ∈ 3

2[k]

×2[k] (by induction
over the structure of φ), note the following:

• Single vertex: For i ∈ [k], Tr•i(u)({u}) = (σ•i(u)({u}), [k]) and Tr•i(u)(∅) =
(σ•i(u)(∅), [k] \ {i}), with:

σ•i(u)({u}) :
2[k] → 3

C 7→
{

1 if C = {i}
0 otherwise

and
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σ•i(u)(∅) :
2[k] → 3
C 7→ 0

Since {u} and ∅ are the only two subsets of {u} ({u} is the set of vertices
of the graph expressed by the k-expression •i(u)), we have handled all

cases. In other words, we have proven for all (σ,D) ∈ 3
2[k]

× 2[k]:

Tr−1
•i(u)

(σ,D) =

 {{u}} if (σ,D) = (σ•i(u)({u}), [k])
{∅} if (σ,D) = (σ•i(u)(∅), [k] \ {i})
∅ otherwise.

Note that the indicator function of the set {u} (respectively ∅) over the
domain {u} is (u 7→ 1) (respectively (u 7→ 0)). Thus, a semiring expression
of the set of indicator functions of the subsets of Tr−1

•i(u)
(σ,D) would be:

E•i(u)(σ,D) :=

 (u 7→ 1) if (σ,D) = (σ•i(u)({u}), [k])
(u 7→ 0) if (σ,D) = (σ•i(u)(∅), [k] \ {i})
∅ otherwise.

• Disjoint union: Let φ be a k-expression of the form φ = φ1 ⊕ φ2. Let
G = [φ], G1 = [φ1] and G2 = [φ2]. Then, VG1 and VG2 are disjoint.
Let S ⊆ VG, decompose S = S1 ⊎ S2, with S1 ⊆ VG1 and S2 ⊆ VG2

or equivalently, 1S = 1S1
⋊⋉ 1S2

(it is here implicit that the domains
of 1S , 1S1

and 1S2
are respectively VG, VG1

and VG2
). Then, denoting

Trφ1
(S1) = (σ1, D1) and Trφ2

(S2) = (σ2, D2), we have

Trφ(S) = (σ1 + σ2, D1 ∩D2)

with

σ1 + σ2 :
2[k] → 3
C 7→ σ1(C) + σ2(C).

Indeed, the connected components of G are exactly the connected com-
ponents of G1 and the connected components of G2. Also, a label is
dominated in G if and only if it is dominated both in G1 and in G2. This
proves that:

Tr−1
φ (σ,D) =

⊎
σ1 + σ2 = σ
D1 ∩D2 = D

{S1⊎S2 | (S1, S2) ∈ Tr−1
φ1

(σ1, D1)×Tr−1
φ2

(σ2, D2)}.

for all (σ,D) ∈ 3
2[k]

× 2[k].

It follows a similar relation for the indicator functions:
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Eφ(σ,D) :=
⊎

σ1 + σ2 = σ
D1 ∩D2 = D

Eφ1
(σ1, D1) ⋊⋉ Eφ2

(σ2, D2).

• Relabelling: Let φ be a k-expression of the form φ = ρi→j(φ
′), G = [φ]

and G′ = [φ′]. Let S ⊆ VG and (σ′, D′) = Trφ′(S). Note that the
connected components of G[S] are exactly the connected components of
G′[S]. Moreover, if the set of labels of a connected component Ct of G′[S]
is exactly C ′ ∈ 2[k], then the set of labels of Ct in G[S] will be exactly
ρi→j(C

′) with:

ρi→j(C
′) =

{
C ′ if i /∈ C ′

(C ′ ∪ {j}) \ {i} if i ∈ C ′.

It follows that the signature σφ(S) is exactly σφ(S) = ρi→j(σ
′) with

(i) ρi→j(σ
′) :

2[k] 7→ 3
C 7→

∑
C′∈2[k],ρi→j(C′)=C

σ′(C ′)

with the convention that an empty sum equals 0.

Also, as the domination of S in G′ is D′, the domination of S in G is
exactly domφ(S) = ρi→j(D

′) with

(ii) ρi→j(D
′) =

{
D′ if {i, j} ⊆ D′

D′ ∪ {i} \ {j} otherwise.

This proves that:

Tr−1
φ (σ,D) =

⊎
(ρi→j(σ′),ρi→j(D′))=(σ,D)

Tr−1
φ′ (σ′, D′)

for all (σ,D) ∈ 3
2[k]

× 2[k]. The same relation holds for the indicator
function, leading to the semiring expression:

Eφ(σ,D) =
⊎

(ρi→j(σ′),ρi→j(D′))=(σ,D)

Eφ′(σ′, D′).

• Edge creation: Let φ be a k-expression of the form φ = ηi,j(φ
′), G = [φ]

and G′ = [φ′]. Let S ⊆ VG and (σ′, D′) = Trφ′(S).

First, recall that all the vertices have the same label in G and in G′, ie.
lG = lG′ . Note that if the connected components of G′[S] are C1, . . . , Cq

with q ≥ 1, and if the connected components of G′[S] that contains either
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a i-vertex or a j-vertex are Cι+1, . . . , Cq with ι ∈ [q], then the connected
components of G[S] are:

C1, . . . , Cq if {i, j}�⊆ lG(S)

C1, . . . , Cι and
q⋃

t=ι+1
Ct otherwise.

Let Ci,j
0 (σ′) :=

⋃
C ∈ 2[k], σ′(C) ̸= 0
{i, j} ∩ C ̸= ∅

C ∈ 2[k]. Notice that by definition

of the signature

lG(S) =
⋃

C∈2[k],σ′(C )̸=0

C ∈ 2[k]

By what precedes, we have:

{i, j} ∩ Ci,j
0 (σ′) = {i, j} ∩ lG(S)

Thus if Ci,j
0 (σ′) does not contain both a i and j, it means that S does

not contain either a i-vertex or a j-vertex. Then, since no edge is created
in G′[S] after performing ηi,j , we have G[S] = G′[S], and the signature is
thus the same in both graphs.

Otherwise, all connected components that contain either a i-vertex or
a j-vertex are merged into a greater connected component C0, and we
have lG(C0) = Ci,j

0 (σ′). The other connected components of G′[S] (that
contains neither i nor j) are unchanged.

It follows that the signature of σφ(S) is exactly ηi,j(σ
′) with:

ηi,j(σ
′) := σ′ if {i, j} ∩ Ci,j

0 (σ′) ̸= {i, j},

otherwise:

ηi,j(σ
′) :

2[k] → 3

C 7→


σ′(C) if {i, j} ∩ C = ∅

1 if C = Ci,j
0 (σ′)

0 otherwise.

Also, the domination of S in G′ is exactly Di,j(σ
′, D′) with:

Di,j(σ
′, D′) :=


D′ if {i, j} ∩ Ci,j

0 (σ′) = ∅
D′ ∪ {i} if {i, j} ∩ Ci,j

0 (σ′) = {j}
D′ ∪ {j} if {i, j} ∩ Ci,j

0 (σ′) = {i}
D′ ∪ {i, j} if {i, j} ∩ Ci,j

0 (σ′) = {i, j}
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Indeed, assume that S contains a i-vertex. Since, in G, every i-vertex
shares an edge with every j-vertex (because of ηi,j), then every j-vertex
is dominated by S in G. A symmetric argument applies if S contains a
j-vertex.

Finally, letting:

ηi,j(σ
′, D′) := (ηi,j(σ

′), Di,j(σ
′, D′)) ∈ 3

2[k]

× 2[k],

we have:

Tr−1
φ (σ,D) =

⊎
ηi,j(σ′,D′)=(σ,D)

Tr−1
φ′ (σ′, D′).

for all (σ,D) ∈ 3
2[k]

× 2[k]. The same relation is true for the indicator
function, leading to the semiring expression:

Eφ(σ,D) =
⊎

ηi,j(σ′,D′)=(σ,D)

Eφ′(σ′, D′).

This proves (by induction on the structure of a k-expression φ) that during
the execution of Algorithm 1, at the end of each call of CONNECTED-DOM-
SET(φ), the variable Eφ contains a semiring expression of the set Tr−1

φ (σ,D)

for all (σ,D) ∈ 3
2[k]

× 2[k] by induction on the structure of φ.
As Algorithm 1 outputs⊎

σ∈3
2[k]

,∥σ∥=1

EφG
[σ, [k]] (with ∥σ∥ =

∑
σ∈3

2[k]

σ(C)),

it thus outputs a semiring expression of the set of connected dominating set of
G. Indeed, for all S ⊆ VG, letting TrφG

(S) = (σ,D), S is a dominating-set if
and only if D = [k], and G[S] is connected if and only if ∥σ∥ = 1.

Moreover, Algorithm 1 runs in (32
k × 2k)2 = 32

k+1 × 4k time, from the case
φ = φ1 ⊕ φ2,

It would be interesting to investigate whether one could even achieve a
single exponential running time close to the O((2ω+4)k) time algorithm for
Connected-Dominating-Set [2] (with ω < 2.37188 the exponent of the op-
timal time complexity of matrix multiplication [11]).

By performing a simpler variant of this idea it is also possible to derive an
algorithm solving Semiring-Dominating-Set in time O∗(16k), assuming a k-
expression of the input graph is given. The main difference with Algorithm 1
is that we instead define the signature of S ⊆ VG as simply lG(S) ∈ 2[k] (it
is not necessary to distinguish the connected components of G[S]). Thus the

signature takes its values in 2[k] instead of 3
2[k]

, justifying that the complexity
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Data: A graph G, a k-expression φG of G.
Result: A semiring expression of the set of connected dominating sets

of G.

Run CONNECTED-DOM-SET(φG) and return
⊎

σ∈3
2[k]

,∥σ∥=1

EφG
[σ, [k]], with CONNECTED-DOM-SET(φ) being

defined for all k-expression φ as:

CONNECTED-DOM-SET(φ):

for (σ,D) ∈ 3
2[k]

× 2[k] do
Eφ[σ,D] := ∅

end
if φ = •i(u): then

Eφ[σ•i(u)(∅), [k] \ {i}]← (u 7→ 0)
Eφ[σ•i(u)({u}), [k]]← (u 7→ 1)

end
if φ = ρi→j(φ

′): then
Run CONNECTED-DOM-SET(φ′)

for (σ,D) ∈ 3
2[k]

× 2[k] do
Eφ[ρi→j(σ), ρi→j(D)]← Eφ[ρi→j(σ), ρi→j(D)] ⊎ Eφ′ [σ,D]

end

end
if φ = ηi,j(φ

′): then
Run CONNECTED-DOM-SET(φ′)

for (σ,D) ∈ 3
2[k]

× 2[k] do
Eφ[ηi,j(σ,D)]← Eφ[ηi,j(σ,D)] ⊎ Eφ′ [σ,D]

end

end
if φ = φ1 ⊕ φ2 then

Run CONNECTED-DOM-SET(φ1) and
CONNECTED-DOM-SET(φ2)

for (σ1, D1) ∈ 3
2[k]

× 2[k] do

for (σ2, D2) ∈ 3
2[k]

× 2[k] do
Eφ[σ1 + σ2, D1 ∩D2]←
Eφ[σ1 + σ2, D1 ∩D2] ⊎ (Eφ1

[σ1, D1] ⋊⋉ Eφ2
[σ2, D2])

end

end

end
Algorithm 1: An algorithm that solves Semiring-Connected-

Dominating-Set in time O∗(32
k+1×4k). The notations used are introduced

in the proof of Theorem 7.
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is O∗((2k×2k)2) = O∗(16k) instead of O∗((32
k ×2k)2) = O∗((32

k+1 ×4k)2) (the
square comes from the case where the k-expression φ is of the form φ := φ1⊕φ2).

If one is only interested in solving #Dominating-Set, the running time
O∗(16k) is not optimal since there is a faster O∗(4k) time algorithm [6]. However,
this algorithm could still be generalized while keeping the complexity O∗(4k) if
we only consider rings instead of all semirings. The issue of semirings is that
the algorithm requires the use of substractions, which is not always possible
in semirings. If we allow a new operation \ in the semiring expression, we
could define the ring-expressions: the semantic [E1 \ E2] of E1 \ E2 would be
[E1] \ [E2] if [E2] ⊆ [E1] (assuming E1 and E2 are correct), and would fail
otherwise. Note that then, for any measure µ taking its value into a ring, we
would have the property that µ([E1 \E2]) = µ([E1])−µ([E2]) for all E1 and E2

(assuming the expressions involved are correct), thus Lemma 1 could easily be
extended to ring-expressions. This motivates the introduction of the Ring-Π
problem with Π ∈ NP, where one is asked to compute a ring-expression of the
set of solutions of Π. The Ring-Π problem is easier than Semiring-Π since
every semiring expression is in particular a ring-expression. However, it derives
strictly less algorithmic applications, since Lemma 1 then only applies if the
semiring considered is a ring.

To our knowledge, even if one is only interested in solving the decision prob-
lem Dominating-Set parameterized by clique-width, the algorithm running in
time O∗(4k) referred to earlier [6] reaches the best time complexity proposed
in the literature. Note that the extension to Ring-Dominating-Set that we
propose would preserve this complexity.

6. Semiring-CSP, Sum-Product-CSP and Primal Treewidth

As a general application of our approach we turn to Semiring-CSP and the
related problem Sum-Product-CSP (see Section 3.7 for a comparison). The
goal of this section is to obtain a semiring expression of the set of solutions of an
instance of Csp in FPT time parameterized by the so-called primal treewidth.

The contribution of this section to the semiring formalism presented in this
paper is summarized in Figure 4.

6.1. Primal tree-width

Formally, the Gaifman graph [30] of an instance I = (V, C) of Csp(Γ) is the
graph G = (V,EG) where {u, v} ∈ EG if there exists a constraint in C containing
both u and v. Next, we recall the definition of a tree decomposition of a graph.

Definition 12. A tree decomposition [5] of a graph G = (VG, EG) is a tuple
(T, bag) where T = (NT , ET ) is a tree and bag : NT 7→ 2VG is a function that
satisfies the following properties.

1. For all v ∈ VG,∃N ∈ NT with v ∈ bag(N).

2. For all {u, v} ∈ EG, ∃N ∈ NT such that {u, v} ⊆ bag(N).
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Parameterized problem
(Π, λ) with Π ∈ NP

FPT algorithm that solves
Semiring-Π

See Section 5 for (Π, λ) =
(Connected-Dom-Set, cw)

See Section 6 for (Π, λ) =
(CSP, tw)

See Section 3
for the

construction
of measures

B-measures N-measures Rmin-measures (Rmin∆N)-measures

See Section 4
for the

∆-product

FPT algorithm
that solves List-Π

FPT algorithm
that solves #Π

FPT algorithm
that solves Cost-Π

FPT algorithm
that solves #Cost-Π

See Lemma 1
and Example 4

See Section 4.4

Figure 4: A general overview of our contributions where the contribution in this section is
colored in blue.

3. For all (N1, N2, N3) ∈ (NT )3, if N2 is on the (unique) path between N1

and N3 in T , then bag(N1) ∩ bag(N3) ⊆ bag(N2).

The treewidth of a tree decomposition ((NT , ET ), bag) defined as the integer
max
N∈NT

|bag(N)| − 1. The treewidth of a graph G denoted by tw(G) is then the

minimum of the treewidth of its tree decompositions. The primal treewidth of
an instance of Csp is the treewidth of its Gaifman graph. Additionally, a nice
tree decomposition [5] of a graph G is a rooted tree decomposition of G where
every node N is of one of the four following types.

1. Leaf: N is a leaf of T and its bag is empty.

2. Forget: N has one child and the bag of N is of the form bag(N) =
bag(child(N)) \ {v} with v ∈ bag(child(N)).

3. Introduce: N has one child and the bag of N is of the form bag(N) =
bag(child(N)) ⊎ {v} with v ∈ VG and v /∈ bag(child(N)).

4. Join: N has two children N1 and N2 with bag(N) = bag(N1) = bag(N2).

Here, bag(N) designates the bag associated to a node N of the rooted tree
decomposition. We will also use the notation

descbag(N) :=
⋃

N ′descendant of N

bag(N ′).

We remark that any tree decomposition of a graph can easily be transformed
into a nice tree decomposition with the same treewidth and in linear time (in
the size of the tree decomposition).
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We notice in Lemma 2 that descbag(N) and bag(N) depend only on the type
of the node N and on the descbag(N ′), and bag(N ′) for the children N ′ of N .

Lemma 2. Let T be a nice tree decomposition of a graph G, and N ∈ VT .

1. If N is a Leaf: then descbag(N) = bag(N) = ∅
2. If N is of the type Forget(v): then, for v ∈ VG,

descbag(N) = descbag(child(N)) and bag(N) = bag(child(N)) \ {v}.

3. If N is of the type Introduce(v): then, for v ∈ VG, v /∈ descbag(child(N)),
and

descbag(N) = descbag(child(N))⊎{v} and bag(N) = bag(child(N))⊎{v}.

Moreover, for each edge {u, v} ∈ EG with u ∈ descbag(N), u ∈ bag(N).

4. If N is of the type Join, and its two children of N are N1 ∈ NT and
N2 ∈ NT , then descbag(N) = descbag(N1) ∪ descbag(N2) and

bag(N) = descbag(N1) ∩ descbag(N2) = bag(N1) = bag(N2).

Moreover, there is no edge in G with an endpoint in descbag(N1)\bag(N)
and an endpoint in descbag(N2) \ bag(N).

Proof. We prove each item individually, depending on the type of N .

1. If N is a leaf, then descbag(N) = bag(N) = ∅ by definition of a nice tree
decomposition.

2. If N is of the type Forget(v), the result is clear.

3. If N is of the type Introduce(v), we fist prove that v /∈ descbag(child(N)).
Otherwise, there exists Nv ∈ desc(child(N)) that contains v, and child(N)
is thus on the path between N and Nv. By definition of a tree decom-
position, we would have bag(N) ∩ bag(Nv) ⊆ bag(child(N)) and v ∈
bag(child(N)) which is false. Thus, v /∈ descbag(child(N)).
We now prove that for all edge {u, v} ∈ EG with u ∈ descbag(N), we have
u ∈ bag(N). Let Nu be a descendant of N with u ∈ bag(Nu). By definition
of a tree decomposition, there exists a node Nu,v whose bag contains both
u and v. If Nu,v is a descendant of N then child(N) is on the path between
N and Nu,v, and we have that bag(N)∩ bag(Nu,v) ⊆ bag(child(N)). This
is a contradiction since v ∈ bag(N)∩ bag(Nu,v) but v /∈ bag(child(N)), so
this case is impossible. Thus, since Nu,v is not a descendant of N , N is on
the path between child(N) and Nu,v so bag(Nu) ∩ bag(Nu,v) ⊆ bag(N),
which implies that u ∈ bag(N).

4. If N is of the type Join, and its two children of N are N1 ∈ NT and
N2 ∈ NT , then bag(N) = bag(N1) = bag(N2) by definition of a nice
tree decomposition. It follows descbag(N) = descbag(N1) ∪ descbag(N2).
Moreover, by definition of a tree decomposition, we get that descbag(N1)∩
descbag(N2) ⊆ bag(N) through a similar reasoning than in the “Intro-
duce” case. Moreover, bag(N) = bag(N1) ⊆ descbag(N1), and bag(N) =
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bag(N2) ⊆ descbag(N2). It follows that bag(N) ⊆ descbag(N1)∩descbag(N2),
and the equality follows.
We now prove that an edge {u, v} ∈ EG of G can not have an endpoint u ∈
descbag(N1) \ bag(N) and the other endpoint v ∈ descbag(N2) \ bag(N).
Assume by contradiction that this is the case. Let Nu a descendant of
N1 with u ∈ bag(Nu) and symmetrically Nv a descendant of N2 with v ∈
bag(Nv). By definition of a tree decomposition, there exists a node Nu,v

containing both u and v. We remark that N is either on the path between
Nu and Nu,v contradicting that u /∈ bag(N) or on the path between Nv

and Nu,v, contradicting that v /∈ bag(N).

It can be useful to interpret a nice tree decomposition (T, bag) of a graph G
as a construction of a graph with two labels on its vertices, say black and white.
For every node N , we can associate a graph GN built at the node N , whose
vertices satisfy:

• The set of vertices of GN is descbag(N).

• The set of black vertices of GN is bag(N). The other vertices in descbag(N)\
bag(N) are white.

With this interpretation, the treewidth of the tree decomposition is the max-
imum number of black vertices in a GN (for N a node of T ) minus 1. The in-
terpretation GN of a node N can be recursively derived from its children, based
on the four possible types of N .

1. Leaf: Construct the empty graph.

2. Forget(v): The black vertex v in Gchild(N) is now white in GN .

3. Introduce(v): To build GN , we add a new black vertex v in Gchild(N),
and we can build an edge between v and any black vertex.

4. Join: Letting N1 and N2 be the two children of N , GN1 and GN2 must
have the same black graphs (i.e., their black vertices must induce the same
graph). We then obtain GN from GN1

and GN2
by identifying their black

graphs. See Figure 5 for an illustration.

6.2. FPT algorithm

We now give a concrete application of the semiring formalism to the con-
straint satisfaction problem, by giving an FPT algorithm when parameterized
by the primal tree-width. Note that Semiring-Csp subsumes Semiring-Sat,
and that the R-semiring extensions of Sat are NP(R)-complete for any com-
mutative semiring R [13]. Thus, we should not expect to solve these problems
in polynomial time and an FPT algorithm is then highly desirable.
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Figure 5: An example of N being a Join node with two children N1 and N2. Here,
descbag(N1) = {a, b, c, d, e, h}, descbag(N2) = {e, f, g, h, i} and thus descbag(N) =
descbag(N1) ∪ descbag(N2) = {a, b, c, d, e, f, g, h, i} and bag(N) = bag(N1) = bag(N2) =
descbag(N1) ∩ descbag(N2) = {e, h}
.

Theorem 8. For every finite set Γ of relation over a finite domain D, Semiring-
Csp(Γ) is solvable in time O∗(|D|tw(G)) on any instance I, with G the Gaifman
graph of I (assuming that a tree decomposition of G is given).

Proof. Let (T, bag) be a nice tree decomposition of the Gaifman graph G =
(VG, EG) of an instance I of Semiring-Csp(Γ).

Let λ : VG → NT be a function which maps every v ∈ VG to an arbitrary
Introduce(v) node λ(v) ∈ NT with v ∈ λ(v) (clearly, such a node exists for all
v ∈ VG). The interest of the function λ is to prevent the following issue:

In the example of Figure 5, if we had semiring expressions EN1 and EN2 of
the set of solutions over descbag(N1) and descbag(N2), the semiring expression
EN1

⋊⋉ EN2
would not be correct, as the domains of EN1

and EN2
, which are

descbag(N1) and descbag(N2), would not be disjoint since their intersection is
bag(N) = {e, h}. To solve the problem, we only express restrictions of such
solutions, and λ serves to decide (arbitrarly) who (if any) between N1 and N2

takes e and/or h in its domain.
Keeping this technical issue in mind, we introduce the following definitions

for each node N ∈ NT :

• dom(N) := {v ∈ VG | λ(v) ∈ desc(N)} ⊆ descbag(N).

• For each f : bag(N)→ D,

FN (f) := {F : descbag(N)→ D | F is a partial solution s.t. F |bag(N) = f},

i.e., for every constraint C that involves only variables in descbag(N), each
F ∈ FN (f) satisfies C and

EN (f) := {F |dom(N) | F ∈ FN (f)}.

According to Remark 3, when treating a node N , the ”trace” of a partial
solution F : descbag(N)→ D will be its restriction to the current bag(N) (i.e.,
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its restriction to the “black vertices” of GN ). Then, FN (f) is the set of partial
solutions that have the trace f . We provide a semiring expression for EN (f)
instead, as discussed above.

The first item of Remark 3 is indeed respected, as there are at most |D|tw(G)

possible traces at every node (which is FPT with respect to the primal tree-
width). Since we give a semiring expression of the sets of partial solutions, the
second item of Remark 3 is irrelevant.

We now justify the third item of Remark 3 stating that EN (f) can be induc-
tively computed, when given a nice tree decomposition. We prove by induction
(on the structure of T ) that every node N ∈ NT satisfies the property:

P(N): “At the end of the treatment of the node N in Algorithm 2, for each
f : bag(N)→ D, we have [EN (f)] = EN (f).”

1. If N is a Leaf, bag(N) = descbag(N) = dom(N) = ∅: the only function
f to consider is f : ∅ → D. Clearly FN (f) = EN (f) = D∅. Hence, P(N)
is true.

2. If N is of the form Forget(v) with v ∈ bag(child(N)), assume that
P(child(N)) is true. Recall that bag(N) = bag(child(N)) \ {v} and note
that descbag(N) = descbag(child(N)) and dom(N) = dom(child(N)).
We prove that, for each f : bag(N)→ D, we have

EN (f) =
⊎

f ′ : bag(N) ⊎ {v} → D
f ′|bag(N) = f

Echild(N)(f
′)

which implies P(N) by P(child(N)) and the definition of EN (f) in Algo-
rithm 2.

Firstly, notice that v ∈ dom(N) (i.e., λ(v) ∈ desc(N)), because otherwise
N is on the path between child(N) and λ(v) in T , and we obtain by defi-
nition of a tree decomposition that bag(child(N)) ∩ bag(λ(v)) ⊆ bag(N),
which is a contradiction, since v ∈ (bag(child(N)) ∩ bag(λ(v))) \ bag(N).

Then, the partitioning of EN (f) into equivalence classes of ∼ defined by

∀(F1, F2) ∈ (EN (f))2, F1 ∼ F2 ⇐⇒ F1(v) = F2(v),

gives the desired equality.

3. If N is of the form Introduce(v) with v /∈ bag(child(N)), assume that
P(child(N)) is true. Recall that bag(N) = bag(child(N)) ⊎ {v} and that
descbag(N) = descbag(child(N)) ⊎ {v}, and that

dom(N) =

{
dom(child(N)) if λ(v) ̸= N

dom(child(N)) ⊎ {v} if λ(v) = N
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Indeed, v /∈ descbag(child(N)) by Lemma 2, which implies in particular
that v /∈ dom(child(N)).

Recall that proving P(N) knowing P(child(N)), requires a relation be-
tween EN (f) and Echild(N)(f |bag(child(N))). Since EN (f) is defined using
FN (f), it will be usefull to compute FN (f).

We prove:

FN (f) =

{
∅ if f violates a constraint

Fchild(N)(f |bag(child(N))) ⋊⋉ {v 7→ f(v)} if f respects every constraint

Firstly, notice that Fchild(N)(f |bag(child(N))) ⋊⋉ {v 7→ f(v)} is a valid op-
eration, since v /∈ descbag(N).

If f violates a constraint, every function that has f as a restriction also
violates a constraint, and is thus not a partial solution. This justifies that
FN (f) = ∅ if f violates a constraint.

If f respects every constraint, notice that every element F : descbag(N) 7→
D of FN (f) is in particular in Fchild(N)(f |bag(child(N))) ⋊⋉ {v 7→ f(v)}.
Indeed, since F coincides with f on bag(N) = bag(child(N))⊎{v}, we have
F (v) = f(v), and F |bag(child(N)) is a partial solution (it is a restriction of
the partial solution F ) and coincides with f |bag(child(N)) on bag(child(v)).

Conversely, we prove that every map F : descbag(N)→ D of

Fchild(N)(f |bag(child(N))) ⋊⋉ {v 7→ f(v)}

is a partial solution.

Notice first that F |bag(child(N)) is in Fchild(N)(f |bag(child(N))), which is a
solution. Therefore, F respects every constraint that is not involving v.
We now prove that F respects every constraint involving v.

Let u ∈ descbag(N) be such that {u, v} is the edge of the Gaifman graph
G. Let Nu be a descendant of N with u ∈ bag(Nu). By Lemma 2, we have
u ∈ bag(N) and, by definition of the Gaifman graph G of the instance I
of Csp, this proves that any constraint over descbag(N) that involves v
involves only variables of bag(N).

Since f : bag(N) → D respects the constraints over bag(N) (by assump-
tion), and since F coincides with f on bag(N), this shows that F respects
every constraint involving v, and thus F respects every constraint over
descbag(N). Hence, F is a partial solution. This proves that

FN (f) = Fchild(N)(f |bag(child(N))) ⋊⋉ {v 7→ f(v)}.

By restricting to dom(N), we get that:
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EN (f) =



∅ if f violates a constraint

Echild(N)(f |bag(child(N)))
if f respects every

constraint and λ(v) ̸= N

Echild(N)(f |bag(child(N))) ⋊⋉ {v 7→ f(v)} if f respects every
constraint and λ(v) = N

and thus P(N) conforms to P(child(N)) and the definition of EN (f) in
Algorithm 2.

4. If N is of the form Join(N1, N2), assume that P(N1) and P(N2) are
true. Recall that bag(N) = bag(N1) = bag(N2) and that descbag(N) =
descbag(N1) ∪ descbag(N2), bag(N) = descbag(N1) ∩ descbag(N2) by
Lemma 2. Note also that dom(N) = dom(N1) ⊎ dom(N2).

Let f : bag(N)→ D. We prove that FN (f) = FN1,N2
(f), where

FN1,N2(f) := {F1|descbag(N1)\bag(N) | F ∈ FN1(f)}
⋊⋉ {F2|descbag(N2)\bag(N) | F ∈ FN2(f)} ⋊⋉ {f}
= FN1(f) ⋊⋉ {F2|descbag(N2)\bag(N) | F ∈ FN2(f)}
= {F1|descbag(N1)\bag(N) | F ∈ FN1(f)} ⋊⋉ FN2(f).

The idea is that every pair (F1, F2) ∈ FN1(f) × FN2(f) coincides on the
intersection of their domain, since by definition, they both coincide with
f on bag(N) = descbag(N1) ∩ descbag(N2). Note that we cannot use
the notation F1 ⋊⋉ F2 since their domain is not disjoint but that the sets
EN (f), EN1

(f) and EN2
(f) are more convenient to use since dom(N1) and

dom(N2) are disjoint.

Since a restriction of a partial solution is still a partial solution, every
element of FN (f) is in FN1,N2(f). We now prove that FN1,N2(f) ⊆ FN (f).

By Lemma 2, every edge {u, v} ∈ EG in descbag(N) can not have an end-
point in descbag(N1) \ bag(N) and the other endpoint in descbag(N2) \
bag(N). So, by definition of the Gaifman graph, every constraint in
descbag(N) is either a constraint over descbag(N1) or over descbag(N2)
(recall that bag(N) = descbag(N1) ∩ descbag(N2) by Lemma 2.

Take F : descbag(N) → D of FN1,N2
(f). We have that F coincides with

f on bag(N) = bag(N1) = bag(N2), and thus F coincides with a partial
solution F1 ∈ FN1(f) on descbag(N1). This proves that F respects every
constraints over descbag(N1). Symmetrically, F respects every constraints
over descbag(N2). We have proven that F respects all the constraints,
ie. F is a partial solution, and thus F is in FN (f). This proves that
FN (f) = FN1,N2

(f). We get as a corollary (by restricting to dom(N) =
dom(N1) ⊎ dom(N2)) that:
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EN (f) = EN1(f) ⋊⋉ EN2(f)

and P(N) follows.

This proves P(N), for every node N ∈ NT .
Now, since bag(root(T )) = ∅, dom(root(T )) = descbag(root(T )) = VG,

P(root(T )) justifies that [Eroot(T )(∅ → D)] encodes the set of solutions of I.
Lastly, it is straightforward to see that the complexity of Algorithm 2 is

indeed O∗(|D|tw(G)).

In particular, for Semiring-H-Coloring we obtain the following corollary.

Corollary 1. For every graph H, Semiring-H-Coloring is solvable in time
O∗(|VH |tw(G)).

In particular, Corollary 1 implies that H-Coloring, #H-Coloring, List-
H-Coloring and #Cost-H-Coloring can be solved in O∗(|VH |tw(G)) time.
To the best of our knowledge, no general algorithm for counting H-colorings of
minimal cost was previously known in the literature.

We now indicate how to generalize this algorithm to solve the even more
general problem Sum-Product-Csp (Algorithm 3). If we restrict Algorithm
3 to solve only #Csp, this algorithm is a particular case of an already known
algorithm [16]. In Theorem 9, we require that each constraint C is mapped to
a unique Introduce node λ(C) such that every vertex of the Gaifman graph
(i.e., variable) involved in constraint C belongs to bag(λ(C)). This property can
always be ensured because such a set of vertices is a clique (complete graph),
and because a clique in a graph is necessarily contained in the bag of one node
in every tree decomposition.

Theorem 9. For every finite set Γ of constraints over a finite domain D, Sum-
Product-Csp(Γ) is solvable in time O∗(|D|tw(G(I))) on any instance I, where
tw(G(I)) is the treewidth of the Gaifman graph of I (assuming that a tree
decomposition is given).

Proof. Similarly to Theorem 8 we give a proof by induction on every node N of
the rooted tree decomposition via the property:
P(N) :“For every f : bag(N)→ D, in the execution of Algorithm 3, EN (f)

contains ∑
F : descbag(N) → D

F |bag(N) = f

∏
C contraint

λ(C) is a descendant of N

C(F ).”

Moreover, this running time seems to be optimal at least in the case of
k-Coloring and in most cases of H-Coloring, while giving access to every
semiring extension. Indeed, we even have a lower bound for the k-Coloring
problem, that relies on the strong exponential time hypothesis (SETH) [7]. The
SETH is a well-known conjecture within complexity theory which states that for
every ε > 0, there exists k ≥ 3 such that k-Sat problem can not be solved in
time O∗((2− ε)n), where n is the number of variables.
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Data: An instance I of Csp(Γ), a nice tree decomposition
T = (NT , ET ) of its Gaifman graph G, whose root has empty
bag (which can be done by forgetting every node of the bag of
the root), and a function λ : VG → NT where ∀v ∈ VG, λ(v) is
an Introduce node with v ∈ bag(λ(v)).

Result: A semiring expression ESOL over (VG, D) encoding the set of
solutions of I.

Run Expressions(root(T )) and return Eroot(T )(∅ → D) with
Expressions(N) being defined for each node N of T as:

Expressions(N):
if N is a leaf (bag(N) = ∅) then

EN (f) := D∅

end
if N is Forget(v) then

Run Expressions(child(N))
for f : bag(N)→ D do

EN (f) := ∅
end
for f ′ : bag(N) ∪ {v} → D do

EN (f ′|bag(N))← EN (f ′|bag(N)) ⊎ Echild(N)(f
′)

end

end
if N is Introduce(v) then

Run Expressions(child(N))
for f : bag(N)→ D do

if f respects every contraint and λ(v) = N then
EN (f) := Echild(N)(f |bag(N)\{v}) ⋊⋉ {v 7→ f(v)}

end
if f respects every contraint and λ(v) ̸= N then

EN (f) := Echild(N)(f |bag(N)\{v})
end
if f violates a constraint then

EN (f) := ∅
end

end

end
if N is Join(N1, N2) then

Run Expressions(N1) and Expressions(N2)
for f : bag(N)→ D do

EN (f) := EN1
(f) ⋊⋉ EN2

(f)
end

end
Algorithm 2: Algorithm to construct an expression of the set of solutions
of an instance of Csp(Γ) in time |D|tw(G) (with D being the domain of the
relations in Γ).
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Data: An instance I of Sum-Product-Csp(Γ), a nice tree
decomposition T of its Gaifman graph G, whose root has empty
bag, and such that every constraint C is mapped to a unique
Introduce node λ(C).

Result: An element ESOL of the semiring containing∑
F :VG→D

∏
C contraint

C(F )

Run Sum-Product(root(T )) and return Eroot(T )(∅ → D) with
Sum-Product(N) being defined for all node N of T as:

Sum-Product(N):
if N is a leaf (bag(N) = ∅) then

EN (f) := 1
end
if N is Forget(v) then

Run Sum-Product(child(N))
for f : bag(N)→ D do

EN (f) := 0
end
for f ′ : bag(N) ∪ {v} → D do

EN (f ′|bag(N))← EN (f ′|bag(N)) + Echild(N)(f
′)

end

end
if N is Introduce(v) then

Run Sum-Product(child(N))
for f : bag(N)→ D do

EN (f) := Echild(N)(f |bag(N)\{v})
for C constraint with λ(C) = N do

EN (f)← EN (f)× C(f)
end

end

end
if N is Join(N1, N2) then

Run Sum-Product(N1) and Sum-Product(N2)
for f : bag(N)→ D do

EN (f)← EN1
(f)× EN2

(f)
end

end
Algorithm 3: Algorithm to solve an instance of Sum-Product-Csp(Γ) in
time |D|tw(G) (with D being the domain of the relations of Γ).
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Theorem 10. [29] For all k ≥ 3 and ε > 0, k-Coloring is not solvable in
time O∗((k − ε)tw(G)) under the SETH.

This lower bound applies to H-Coloring problems for a broad classes of
graphs. Precisely, Theorem 11 applies as long as H is a so-called projective core
on at least 3 vertices [29].

Theorem 11. [29] If H is a projective core on at least three vertices, then, for
every ε > 0, H-Coloring is not solvable in time O∗((|VH | − ε)tw(G)) under
the SETH.

Thus running time obtained in Corollary 1 (and even more so in Theorem 8
and Theorem 9) cannot not be asymptotically improved under the SETH. Note
also that, asymptotically, almost all graphs are projective cores [18, 27, 29], and
thus Theorem 11 applies to almost all graphs.

7. Conclusion

In this article we explored semiring extensions for computational problems.
We proposed a general approach (Section 3) that does not require particular
a semiring structure, and that is applicable to any problem with a reasonable
notion of a certificate (e.g., any problem in NP). In Section 4 we proceeded
to defining a novel operation on semirings, the ∆-product, which increases
the scope of semiring algorithms and, in particular, that solves the problem
of counting solutions of minimal cost. To illustrate our framework, we turned
our attention to two well-known problems with a vast number of applications:
Connected-Dominating-Set and finite-domain Csps. For the former we suc-
cessfully gave an algorithm that outputs a semiring extension in FPT time when
parameterized by the clique-width of the input graph (Section 5). Despite being
a problem with many practical applications [10], the counting extension of this
problem was not known to be FPT. Moreover, we proved a similar result for the
Csp problem parameterized by primal treewidth, and showed how to extend the
algorithm to the more general Sum-Product-Csp problem (Section 6).

Let us now discuss some potential directions of future research.

7.1. Algorithmic applications

We have seen that existing algorithms in the literature (e.g., the algorithm
by Ganian et al. [16] for #Csp) can be generalized (under some assumptions)
to semiring extensions. Is this a common behaviour? Are there more exam-
ples of algorithms in the literature, whether it is for the counting, list, or cost
version, which can be easily adapted to solving the semiring extension? Or are
there problems where, e.g., counting the number of solutions of minimal cost is
prohibitively more computationally expensive than merely counting solutions?

As discussed at the end of Section 5, our work opens up the study of a novel
ring formalism built on ring-expressions, where a new operation \ corresponding
to the set difference is introduced. Thus, the semantics of [E1 \ E2] for two
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correct ring expressions E1 and E2 such that [E2] ⊆ [E1], would be [E1] \ [E2].
Indeed, it is not hard to verify that if a semiring measure takes its value in a ring
instead, Lemma 1 still applies even if a ring-expression is given (by mapping
\ to the additive inverse −A of the ring A), which enables similar algorithmic
applications.

From a complexity perspective, it would be interesting to unify problems
of the form Semiring-Π with Π in a new complexity class and, similarily,
counting, optimizing, and counting solutions of optimal costs to NP problems
belonging to the classes #P, OptP and #·OptP. Moreover, a convenient notion of
“reduction” preserving this complexity class would be desirable, as well as a com-
pleteteness notion for Semiring problems. Note that some #P-complete prob-
lems of these classes are extensions of NP problems that are not NP-complete
(unless P=NP). For instance, counting the number of perfect matchings of a
bipartite graph is known to be #P-complete [32], whereas deciding if one exists
is in P. Does there also exist easy problems whose semiring extensions become
hard?

7.2. Sum-Product CSP

Even though our formalism extends decision problems (corresponding to the
Boolean semiring B) to arbitrary semirings, our formalism does not subsume
“soft constraints” allowed, e.g., in the Sum-Product-Csp problem. Is there
a possibility that any candidate solution f , instead of being either a solution
(f ∈ SOL) or not a solution (f /∈ SOL), could be mapped to a semiring value
instead? Then, the formalism of “hard constraints” presented in this article
would correspond to the particular case where f ∈ SOL if and only if f is
mapped to ⊤ (and f /∈ SOL if and only if f is mapped to ⊥).

7.3. Combinatoric and algebraic results

The definition of a semiring expression and its algorithmic applications raises
the question of which sets of functions that can be expressed efficiently. In par-
ticular, Theorem 1 and Theorem 2 suggest that the sets Sn and Cn can not be
represented by an expression of polynomial size. Proving or disproving Conjec-
ture 1 and Conjecture 2 would likely provide useful tools to better understand
semiring expressions. As a first step, it would be interesting to see if we could
determine at least if Conjecture 1 implies Conjecture 2, and vice versa. Note
that we indeed have the bijection:

Φ :
Sn → Cn+1

σ 7→ (σ(1) σ(2) . . . σ(n) n + 1)

for all n ≥ 1, whose inverse is

Ψ :
Cn+1 → Sn

c 7→
(

1 2 . . . n
c(n + 1) c2(n + 1) . . . cn(n + 1)

)
.

50



However, it is not clear if the bijection Φ (respectively Ψ) can be used to de-
rive a semiring expression of Cn+1 (respectively Sn) from a semiring expression
of Sn (respectively Cn+1).

7.4. Sequential semiring expressions

It may be useful to introduce sequences of semiring expressions, i.e., se-
quences of the form (E0, . . . , Em) with m ≥ 0, and where E0 is a set of semiring
expressions and, for all i ∈ [m], Ei is a set of semiring expressions whose leaves
can also be expressions of Ej with j < i. We may then obtain an result analo-
gous to Lemma 1 by iteratively computing µ([E]) for E ∈ E0, and then µ([E])
for E ∈ E1, . . . . This may become relevant since, even if a semiring expression E
is repeated multiple times, it would not be necessary to compute µ([E]) several
times, similarly to dynamic programming.

Considering that Theorem 1 and Theorem 2 also apply to sequential semiring
expressions (since their proofs only exploit algorithmic applications), it could be
interesting to answer Conjecture 1 and Conjecture 2 when sequential semiring
expressions are considered.
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Appendix A. Proofs of Section 4

We recall and prove Theorem 3.

Theorem 3. The structure D∆A = (D∆A,⊕,⊗, (∞D, 0A), (0D, 1A)) is a com-
mutative semiring with:

• D∆A := {d∆a | (d, a) ∈ D × A} = {(d, a) ∈ D × A | d ∈ reg(D) or a =
0A}.

• ⊕ :

(D∆A)2 → D∆A

((d1, a1), (d2, a2)) 7→ (min(d1, d2),

 a1 if d1 <D d2
a2 if d2 <D d1

a1 +A a2 if d1 = d2

)

and

• ⊗ :
(D∆A)2 → D∆A

((d1, a1), (d2, a2)) 7→ ((d1 +D d2), (a1 ×A a2))
.

Proof. Note that we can reformulate the definition of ⊕ as:

⊕ :

(D∆A)2 → D∆A

((d1, a1), (d2, a2)) 7→

 (d1, a1) if d1 <D d2
(d2, a2) if d2 <D d1

(d1, a1 +A a2) if d1 = d2


by Property 1.
First, we need to prove that D∆A is indeed stable by ⊕ and ⊗.

• We prove that D∆A is stable by ⊕.

Let ((d1, a1), (d2, a2)) ∈ (D∆A)2.

– Assume that d1 ̸= d2. Then (d1, a1) ⊕ (d2, a2) ∈ {(d1, a1), (d2, a2)}.
It follows that (d1, a1)⊕ (d2, a2) ∈ D∆A.

– Assume that d1 = d2 is multiplicatively regular. Then, (d1, a1) ⊕
(d2, a2) = (d1, a1 +A a2) ∈ D∆A because d1 is regular.

– Assume that d1 = d2 is not multiplicatively regular. Then, since
((d1, a1), (d2, a2)) ∈ (D∆A)2, it follows that a1 = a2 = 0A. Then,
(d1, a1) ⊕ (d2, a2) = (d1, a1 +A a2) ∈ D∆A because a1 +A a2 =
0A +A 0A = 0A.

D∆A is stable by ⊕.

• We prove that D∆A is stable by ⊗.

Let ((d1, a1), (d2, a2)) ∈ (D∆A)2.

– Assume that d1 and d2 are multiplicatively regular. Then, by Prop-
erty 3, d1+Dd2 is multiplicatively regular, and thus (d1, a1)⊗(d2, a2) =
(d1 +D d2, a1 ×A a2) ∈ D∆A.
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– Assume that d1 is not multiplicatively regular, then since (d1, a1) ∈
D∆A, a1 = 0A, and thus (d1, a1) ⊗ (d2, a2) = (d1 +D d2, a1 × a2) ∈
D∆A because a1 ×A a2 = 0A × a2 = 0A.

– Similar reasoning and conclusion if d2 is not multiplicatively regular.

D∆A is stable by ⊗.

• ⊕ and ⊗ are clearly commutative by the commutativity of minD,+D,+A

and ×A.

• We now prove the associativity of ⊕:

Let ((d1, a1), (d2, a2), (d3, a3)) ∈ (D∆A)3. We prove that (d1, a1)⊕((d2, a2)⊕
(d3, a3)) = ((d1, a1)⊕ (d2, a2))⊕ (d3, a3).

We only prove the result when d1 ≤D d2 ≤D d3. The other cases are
similar.

– Assume that d1 <D d2. Then there exists a such that (d2, a2) ⊕
(d3, a3) = (d2, a). Indeed, we take a := a2 if d2 < d3 and a := a2+Aa3
if d2 = d3. Hence,

(d1, a1)⊕ ((d2, a2)⊕ (d3, a3)) = (d1, a1)⊕ (d2, a) = (d1, a1)

and

((d1, a1)⊕ (d2, a2))⊕ (d3, a3) = (d1, a1)⊕ (d3, a3) = (d1, a1),

because d1 <D d3.

– Assume that d1 = d2 <D d3. Then

(d1, a1)⊕ ((d2, a2)⊕ (d3, a3)) = (d1, a1)⊕ (d2, a2) = (d1, a1 +A a2)

and

((d1, a1)⊕(d2, a2))⊕(d3, a3) = (d1, a1+Aa2)⊕(d3, a3) = (d1, a1+Aa2).

– Assume that d1 = d2 = d3. Then,

(d1, a1)⊕ ((d2, a2)⊕ (d3, a3)) = (d1, a1)⊕ (d2, a2 +A a3)

= (d1, a1 +A (a2 +A a3))

and

((d1, a1)⊕ (d2, a2))⊕ (d3, a3) = (d1, a1 +A a2)⊕ (d3, a3)

= (d1, a1 +A (a2 +A a3))

= (d1, (a1 +A a2) +A a3),

by the associativity of +A.
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• We now prove the associativity of ⊗. Let ((d1, a1), (d2, a2), (d3, a3)) ∈
(D∆A)3. Then

(d1, a1)⊗ ((d2, a2)⊗ (d3, a3)) = (d1, a1)⊗ (d2 +D d3, a2 ×A a3)

= (d1 +D (d2 +D d3), a1 ×A (a2 ×A a3))

= ((d1 +D d2) +D d3, (a1 ×A a2)×A a3)

= (d1, a1)⊗ ((d2, a2)⊗ (d3, a3))

= (d1, a1)⊗ (d2 +D d3, a2 ×A a3)

= (d1 +D (d2 +D d3), a1 ×A (a2 ×A a3))

= ((d1 +D d2) +D d3, (a1 ×A a2)×A a3)

= ((d1, a1)⊗ (d2, a2))⊗ (d3, a3),

by associativity of +D and ×A.

• (∞D, 0A) is clearly neutral for ⊕ because∞D is neutral for minD, and 0A
is neutral for +A.

• (0D, 1A) is clearly neutral for ⊗, because 0D is neutral for +D, and because
1A is neutral for ×A.

• (∞D, 0A) is clearly absorbing for ⊗, because∞D is absorbing for +D and
because 0A is absorbing for ×A.

• We now prove that ⊗ is distributive over ⊕.

Let ((d1, a1), (d2, a2), (d3, a3)) ∈ (D∆A)3. On the one hand,

((d1, a1)⊕ (d2, a2)) ⊗ (d3, a3)

=

 (d1, a1) if d1 <D d2
(d2, a2) if d2 <D d1

(d1, a1 +A a2) if d1 = d2

⊗ (d3, a3)

=

 (d1 +D d3, a1 ×A a3) if d1 <D d2
(d2 +D d3, a2 ×A a3) if d2 <D d1

(d1 +D d3, (a1 +A a2)×A a3) if d1 = d2

 .

On the other hand,

((d1, a1) ⊗ (d3, a3))⊕ ((d2, a2)⊗ (d3, a3))

= (d1 +D d3, a1 ×1 a3)⊕ (d2 +D d3, a2 ×A a3)

=

 (d1 +D d3, a1 ×A a3) if d1 +D d3 <D d2 +D d3
(d2 +D d3, a2 ×A a3) if d2 +D d3 <D d1 +D d3

(d1 +D d3, (a1 ×A a3) +A (a2 × a3)) if d1 +D d3 = d2 +D d3

 .

– Assume that d3 is multiplicatively regular. Then, by Property 4
(second item),

d1 <D d2 ⇐⇒ d1 +D d3 <D d2 +D d3,

d2 <D d1 ⇐⇒ d2 +D d3 <D d1 +D d3, and

d1 = d2 ⇐⇒ d1 +D d3 = d2 +D d3.
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Since ×A is distributive over +A, we also have

(a1 +A a2)×A a3 = (a1 ×A a3) +A (a2 × a3).

This proves that ((d1, a1)⊕(d2, a2))⊗(d3, a3) = ((d1, a1)⊗(d3, a3))⊕
((d2, a2)⊗ (d3, a3)).

– Assume that d3 is not multiplicatively regular. Since (d3, a3) ∈ D∆A,
a3 = 0A.

Assume by symmetry that d1 ≤D d2. Then, by Property 4 (first
item), d1 +D d3 ≤D d2 +D d3. Since a3 = 0A, we deduce that:

((d1, a1)⊕ (d2, a2))⊗ (d3, a3) = (d1 +D d3, 0A)

(d1, a1)⊗ (d3, a3))⊕ ((d2, a2)⊗ (d3, a3)) = (d1 +D d3, 0A).

Hence, we have proved that

((d1, a1)⊕(d2, a2))⊗(d3, a3) = ((d1, a1)⊗(d3, a3))⊕((d2, a2)⊗(d3, a3)),

thus showing that ⊗ is indeed distributive over ⊕.

Theorem 4. The semiring D1∆D2 is also a commutative totally ordered idem-
potent dioid, and the associated order ≤D1∆D2 is the lexicographical order ≤D1lexD2 .

Proof. Since D1 and D2 are semirings, D1∆D2 is a semiring. It is idem-
potent: indeed, let (d1, d2) ∈ D1 × D2, then (d1, d2) ⊕ (d1, d2) =

Because d1=d1

(min1(d1, d1),min2(d2, d2)) = (d1, d2) by idempotence of D1 and D2.
It only remains to prove that the relation ≤D1∆D2

defined by:
∀((a1, a2), (b1, b2)) ∈ (D1 × D2)2, (a1, a2) ≤D1∆D2

(b1, b2) ⇐⇒ ∃(c1, c2) ∈
D1 ×D2, (a1, a2) = (b1, b2)⊕ (c1, c2)

is the same relation as ≤D1lexD2 , defined as the lexicographical order with
respects to ≤D1

and ≤D2
.

Indeed, since ≤D1lexD2
is a total order (because ≤D1

and ≤D2
are), this will

prove that D1∆D2 is an idempotent totally-ordered dioid.
Let ((a1, a2), (b1, b2)) ∈ (D1 ×D2)2.

• Assume that (a1, a2) ≤D1∆D2
(b1, b2), ie. ∃(c1, c2) ∈ D1 × D2, (a1, a2) =

(b1, b2)⊕ (c1, c2).

– If b1 <D1
c1, then (a1, a2) = (b1, b2). In particular, (a1, a2) ≤D1lexD2

(b1, b2).

– If c1 <D1 b1, then (a1, a2) = (c1, c2) <D1lexD2 (b1, b2).

– If b1 = c1, then (a1, a2) = (b1,min2(b2, c2)) ≤D1lexD2
(b1, b2)

• Assume that (a1, a2) ≤D1lexD2
(b1, b2).

– If a1 <D1
b1, then (a1, a2) = (b1, b2) ⊕ (a1, a2), which proves that

(a1, a2) ≤D1∆D2
(b1, b2).
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– Else, a1 = b1 and a2 ≤D2 b2. Then, (a1, a2) = (b1, b2) ⊕ (a1, a2),
which proves that (a1, a2) ≤D1∆D2 (b1, b2).

≤D1∆D2 and ≤D1lexD2 are the same relation, which concludes the proof.

Lemma 3. Let (a1, a2) ∈ D1∆D2. Then, (a1, a2) ∈ reg(D1∆D2) if and only if
a1 ∈ reg(D1) and a2 ∈ reg(D2).

Proof. • Assume that a1 and a2 are regular.

Let ((b1, b2), (c1, c2)) ∈ (D1 ×D2)2 be such that

(a1, a2)⊗ (b1, b2) = (a1, a2)⊗ (c1, c2).

By definition of ⊗,

(a1 +1 b1, a2 +2 b2) = (a1 +1 c1, a2 +2 c2).

From the fact that a1 and a2 are regular, it follows that b1 = c1 and
b2 = c2, ie. (b1, b2) = (c1, c2). This proves that (a1, a2) is regular.

• Assume that (a1, a2) is regular. Let (b1, c1) ∈ A2 be such that a1 +1 b1 =
a1 +1 c1. Then, (a1, a2) ⊗ (b1, 02) = (a1 +1 b1, a2) = (a1 +1 c1, a2) =
(a1, a2)⊗(c1, 02). Since (a1, a2) is regular, we have that (b1, 02) = (c1, 02).
In particular, b1 = c1, which proves that a1 is regular. A similar argument
shows that a2 is also regular.

Lemma 4. For all (d1, d2, a) ∈ D1 ×D2 ×A, (d1∆d2)∆a = d1∆(d2∆a).

Proof. • Assume that d1 /∈ reg(D1). Then,

(d1∆d2)∆a = (d1,∞2)∆a = ((d1,∞2), 0A)

by Lemma 3, and
d1∆(d2∆a) = (d1, (∞2, 0A)),

because d1 /∈ reg(D1).

• Assume that d1 ∈ reg(D1) and d2 /∈ reg(D2). Then,

(d1∆d2)∆a = (d1, d2)∆a = ((d1, d2), 0A)

by Lemma 3, and d1∆(d2∆a) = (d1, d2∆a) = (d1, (d2, 0A)).

• Assume that d1 ∈ reg(D1) and d2 ∈ reg(D2). Then,

(d1∆d2)∆a = (d1, d2)∆a = ((d1, d2), a)

by Lemma 3, and d1∆(d2∆a) = (d1, d2∆a) = (d1, (d2, a)). This shows
that (d1∆d2)∆a = d1∆(d2∆a).
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Theorem 5. The ∆-product of semirings is associative. More precisely, up to
identifying (D1 ×D2)×A with D1 × (D2 ×A), (D1∆D2)∆A = D1(∆D2∆A).

Proof. Notice that the product, zero element, and unity elements of the two
structures (D1∆D2)∆A and D1∆(D2∆A) correspond through the identification
(D1×D2)×A = D1× (D2×A). We only have to verify that the two structures
(D1∆D2)∆A and D1∆(D2∆A) have the same sets and the same addition.

• To prove that (D1∆D2)∆A = D1∆(D2∆A), it is sufficient to prove that
∀(d1, d2, a) ∈ D1 × D2 × A, (d1∆d2)∆a = d1∆(d2∆a), which is true by
Lemma 4.

• We now show that the two srtuctures have the same addition.
Let ((d1, d2, a), (d′1, d

′
2, a

′)) ∈ (D1 ×D2 ×A)2. By Theorem 4,

(d1, (d2, a)) ⊕
D1∆(D2∆A)

(d′1, (d
′
2, a

′))

=


(d1, (d2, a)) if d1 <D1 d′1
(d′1, (d

′
2, a

′)) if d′1 <D1 d1
(d1, (d2, a) ⊕

D2∆A
(d′2, a

′)) if d1 = d′1


=


(d1, (d2, a)) if d1 <D1 d′1
(d′1, (d

′
2, a

′)) if d′1 <D1 d1
(d1, (d2, a)) if d1 = d′1 and d2 <D2

d′2
(d′1, (d

′
2, a

′)) if d1 = d′1 and d′2 <D2
d2

(d1, (d2, a +A a′)) if d1 = d′1 and d2 = d′2


=

 (d1, (d2, a)) if (d1, d2) <D1lexD2
(d′1, d

′
2)

(d′1, (d
′
2, a

′)) if (d′1, d
′
2) <D1lexD2

(d1, d2)
(d1, (d2, a +A a′)) if (d1, d2) = (d′1, d

′
2)

 .

We see that the two structures (D1∆D2)∆A and D1∆(D2∆A) have the
same addition, under the identification D1 × (D2 ×A) = (D1 ×D2)×A.

Theorem 6. The function w∆µ that associates to every F ⊆ TS′
with S′ ⊆ S:

(w∆µ)(F) :=

{
(w(F), µ(argminw(F))) if w(F) ∈ reg(D)

(w(F), 0A) if w(F) /∈ reg(D)

= (w(F))∆(µ(argminw(F)))

with argminw(F) := {f ∈ F , w({f}) = w(F)} is a (D∆A)-measure.

Proof. • zero axiom: (w∆µ)(∅) = (w(∅), 0A) = (∞D, 0A) because w is a
measure and ∞D is not regular.
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• unit axiom: (w∆µ)(T ∅) = (w(T ∅), µ(T ∅)) = (0D, 1A) because w and µ
are measures, and 0D is regular.

• additivity: Let F1,F2 ⊆ TS′
be disjoint and S′ ⊆ S. Since w is a

measure, we have

w(F1 ⊎ F2) = min(w(F1), w(F2)). (A.1)

Suppose first that w(F1) = w(F2). By idempotence of min and (A.1),
w(F1 ⊎ F2) = w(F1) = w(F2), and

argminw(F1 ⊎ F2) = argminw(F1) ⊎ argminw(F2).

Since µ is a measure, it is not difficult to verify that

(w∆µ)(F1 ⊎ F2) = (w(F1 ⊎ F2))∆(µ(argminw(F1 ⊎ F2)))

= (min(w(F1), w(F2)))∆(µ(argminw(F1) ⊎ argminw(F2)))

= (min(w(F1), w(F2)))∆(µ(argminw(F1)) +A µ(argminw(F2)))

= ((w(F1))∆(µ(argminw(F1))))⊕ ((w(F2))∆(µ(argminw(F2))))

= (w∆µ)(F1)⊕ (w∆µ)(F2).

Suppose now that w(F1) <D w(F2). By Property 1 and (A.1), we have
w(F1 ⊎ F2) = w(F1), and thus argminw(F1 ⊎ F2) = argminw(F1), and:

(w∆µ)(F1 ⊎ F2) = (w(F1 ⊎ F2))∆(µ(argminw(F1 ⊎ F2)))

= (w(F1))∆(µ(argminw(F1))) = (w∆µ)(F1)

= ((w(F1))∆µ(argminw(F1)))⊕ ((w(F2))∆µ(argminw(F2)))

= (w∆µ)(F1)⊕ (w∆µ)(F2).

The proof in the case when w(F2) <D w(F1) follows similarly.

• elementary muliplicativity: Let f1 ∈ TS1 and f2 ∈ TS2 , for disjoint
subsets S1 and S2 of S. By elementary multiplicativity of w,

w({f1 ⋊⋉ f2}) = w({f1}) +D w({f2}).

Also, argminw({f1}) = {f1} and argminw({f2}) = {f2}.
Suppose that w({f1}) and w({f2}) are multiplicatively regular. By Prop-
erty 3, it follows that w({f1 ⋊⋉ f2}) is multiplicatively regular, and

(w∆µ)({f1 ⋊⋉ f2}) = (w({f1 ⋊⋉ f2}), µ({f1 ⋊⋉ f2}))
= (w({f1}) +D w({f2}), µ({f1})×A µ({f2}))
= (w({f1}), µ({f1}))⊗ (w({f2}), µ({f2}))
= (w∆µ)({f1})⊗ (w∆µ)({f2}),

since w(f1) ∈ reg(D) and w(f2) ∈ reg(D).
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Suppose that one of w({f1}) and w(f2) is not multiplicatively regular.
Without loss of generality, assume that it is the former case. Then

w({f1 ⋊⋉ f2}) = w({f1}) +D w({f2})

is not mulitplicatively multiplicatively regular by Property 3.

There exists a2 ∈ A such that (w∆µ)({f2}) = (w({f2}), a2). Indeed, we
take a2 := µ({f2}) if w({f2}) ∈ reg(D) and a2 := 0A if w({f2}) /∈ reg(D).
Then

(w∆µ)({f1 ⋊⋉ f2}) = (w({f1 ⋊⋉ f2}), 0A)

= (w({f1}+D w({f2}), 0A × a2)

= (w({f1}), 0A)⊗ (w({f2}), a2)

= (w∆µ)({f1})⊗ (w∆µ)({f2}),

by definition of a2 and w∆µ, since w({f1}) is not regular.
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