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Muscle synergies inherent 
in simulated hypogravity 
running reveal flexible 
but not unconstrained locomotor 
control
Camille Fazzari 1*, Robin Macchi 1,2, Yoko Kunimasa 3, Camélia Ressam 4, Rémy Casanova 1, 
Pascale Chavet 1 & Caroline Nicol 1

With human space exploration back in the spotlight, recent studies have investigated the 
neuromuscular adjustments to simulated hypogravity running. They have examined the activity of 
individual muscles, whereas the central nervous system may rather activate groups of functionally 
related muscles, known as muscle synergies. To understand how locomotor control adjusts to 
simulated hypogravity, we examined the temporal (motor primitives) and spatial (motor modules) 
components of muscle synergies in participants running sequentially at 100%, 60%, and 100% body 
weight on a treadmill. Our results highlighted the paradoxical nature of simulated hypogravity 
running: The reduced mechanical constraints allowed for a more flexible locomotor control, which 
correlated with the degree of spatiotemporal adjustments. Yet, the increased temporal (shortened 
stance phase) and sensory (deteriorated proprioceptive feedback) constraints required wider motor 
primitives and a higher contribution of the hamstring muscles during the stance phase. These results 
are a first step towards improving astronaut training protocols.

Human running partly results from musculoskeletal specializations that arose 2 million years  ago1. On Earth, it 
uses a mass-spring mechanism: Muscle–tendon units store elastic energy during the initial braking phase of the 
running cycle, and release it during the subsequent push-off  phase2,3. This occurs because the musculoskeletal 
system is periodically subjected to impact and stretching forces, as a direct result of Earth’s gravity (1 g ~ 9.81 m.
s−2). At a time when human missions to the Moon (0.16 g) and Mars (0.38 g) are being planned, it is critical to 
understand how locomotor control adjusts to hypogravity (0 < g < 1).

In preparation for and following the Apollo 11–17 missions (1961–1972), several devices were developed to 
simulate hypogravity  running4,5. Among these, the Lower Body Positive Pressure Treadmill (LBPPT) applies a 
lifting force at the runner’s center of  mass6 (Fig. 1a). This results in the adoption of a bouncing running pattern 
along with complex, although understudied, neuromuscular  adjustments7. In contrast to the expected overall 
reduction in lower limb muscle surface electromyographic (sEMG)  activity8, the few available studies reported 
reduced sEMG activity of most lower limb muscles during the braking phase of the running cycle but of only 
some of them during the push-off  phase9–11. They also found unchanged or even increased hamstring sEMG 
activity during both  phases11–14. However, they were limited to quantifying the sEMG activity of the lower limb 
muscles independently of each other.

Electrical microstimulation experiments suggest that the central nervous system may activate groups of 
functionally related muscles, called muscle synergies, rather than individual  muscles15–18. This may simplify 
locomotor control by reducing the number of degrees of freedom of the musculoskeletal system that must be con-
trolled  simultaneously19–21. Such muscle synergies are usually extracted from sEMG signals using non-negative 
matrix  factorization22,23 (NMF), which identifies time-invariant muscle contributions (motor modules) scaled 
by time-varying coefficients (motor primitives)24 (Fig. 1b). Although it depends on the chosen reconstruction 
quality criterion, four muscle synergies are generally sufficient to account for lower limb muscle sEMG signals 

OPEN

1Aix-Marseille Univ, CNRS, ISM, Marseille, France. 2French Institute of Sport (INSEP), Laboratory Sport, Expertise 
and Performance (EA 7370), Paris, France. 3Niigata University, Niigata, Japan. 4NeuroSpin, UMR CEA/CNRS 9027, 
Paris-Saclay University, Gif-sur-Yvette, France. *email: camille.fazzari@univ-amu.fr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-50076-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2707  | https://doi.org/10.1038/s41598-023-50076-6

www.nature.com/scientificreports/

during unperturbed running. Each describes a specific phase of the running cycle, namely braking, push-off, 
early flight, and late  flight24,25.

To date, no research has examined the muscle synergies inherent in simulated hypogravity running, which 
substantially reduces the mechanical constraints on the musculoskeletal system. Instead, previous studies have 
focused on external perturbations such as running on uneven  terrain26,27, unpredictable  terrain27, or at extremely 
high  speeds28, that make the task more mechanically demanding. They highlighted the consistency of the muscle 
synergies describing the four phases of the running cycle, with almost unchanged motor modules but adjusted 
motor primitives. The latter would be systematically wider, i.e. of longer duration relative to the running cycle. 
This would increase the overlap between temporally adjacent muscle synergies, facilitating the transition from 
one synergy to  another26–30.

More advanced nonlinear metrics derived from fractal theory provided a complementary approach to the 
analysis of motor primitives, considered as self-affine time  series28,31. Among them, some studies have used the 
Higuchi’s fractal dimension (HFD) to assess their local complexity, i.e. their roughness within a running  cycle27,28. 
Others have used the Hurst exponent (HE) to quantify their global complexity, i.e. is their irregularity across 
running  cycles29 (Fig. 1c). Both the local and global complexity of the motor primitives would decrease when 
running in the presence of the external perturbations mentioned  above27–29. This suggests that such conditions 
require a less flexible, i.e. more constrained, locomotor  control32,33 to maintain functionality.

Here, we sought to better understand how locomotor control adjusts to simulated hypogravity running by 
examining the muscle synergies in the light of fractal theory. We recorded from 38 heathy men sEMG activ-
ity of 11 right lower limb muscles during 3 consecutive running conditions performed at preferred speed on a 
LBPPT. The initial condition (INIT) was run at 100% body weight (1 g), followed by the simulated hypogravity 
condition (HYPO) at 60% body weight (0.6 g), and the reloaded condition (RLD) at 100% body weight (1 g). 

Figure 1.  Experimental design and muscle synergy analyses. (a) Normal ground reaction force and sEMG 
activity (11 muscles; GM, gluteus maximus; VM, vastus medialis; VL, vastus lateralis; RF, rectus femoris; STSM, 
semitendinosus/ semimembranosus; BF, biceps femoris; GaM, gastrocnemius medialis; GaL, gastrocnemius 
lateralis; SOL, soleus; TA, tibialis anterior; PL, peroneus longus) were collected from healthy men (n = 38) during 
2 runs (RUN1 and RUN2) at preferred speed on a LBPPT. Each run consisted of 3 conditions (INIT, HYPO, 
RLD). The darker rectangles indicate the 60 running cycles considered at the end of each condition. (b) Muscle 
synergies were extracted from pre-processed sEMG signals using NMF. They consisted of time-invariant motor 
modules activated by time-varying motor primitives, whose linear combination approximated the pre-processed 
sEMG signals. (c) Motor primitives were compared across conditions and runs using linear and nonlinear 
metrics. The center of activity (CoA) indicated when their main activation occurred in time and the full width 
at half maximum (FWHM) indicated their duration. The HFD described their local complexity (i.e. roughness 
within each running cycle) and the HE described their global complexity (i.e. irregularity across running cycles). 
The explanatory diagrams for the nonlinear metrics are adapted from the work of Santuz et al.34.
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This was repeated twice (RUN1 and RUN2) to account for any familiarization effect. We then extracted muscles 
synergies from pre-processed sEMG signals using NMF and compared them between conditions and runs using 
both linear and non-linear metrics (Fig. 1).

We expected a more flexible locomotor control, characterized by increased complexity and reduced width of 
motor primitives. Instead, we found a specific reorganization of locomotor control in the face of the paradoxical 
nature of simulated hypogravity running. The reduced mechanical constraints on the musculoskeletal system led 
to an increased local and global complexity of the motor primitives. However, the increased temporal (shortened 
stance phase) and sensory (deteriorated proprioceptive feedback) constraints led to a widening of the motor 
primitives and to an increased hamstring contribution during the stance phase. We concluded that simulated 
hypogravity running allows for a more flexible locomotor control, which is not free of all constraints.

Results
Reported results
Muscle synergies did not differ between RUN1 and RUN2, highlighting the repeatability of locomotor control. 
Therefore, both runs were combined for subsequent analysis. Muscle synergies also did not differ between INIT 
and RLD because opposite adjustments occurred from INIT to HYPO and from HYPO to RLD. As a result, only 
the adjustments from INIT to HYPO will be reported. Those from HYPO to RLD and from INIT to RLD remain 
visible in the figures, with details in the Supplementary Tables.

Slowing of stride frequency
The spatiotemporal parameters of running were compared across conditions (Fig. 2). From INIT to HYPO, stance 
time decreased slightly (−12 ± 5%, effect size (ES) = 1.3) while flight time increased largely (+28 ± 4%, ES = 2.9), 
resulting in a slowing of stride frequency (−11 ± 3%, ES = 2.4).

Sharing of similar muscle synergies
The sEMG signals were pre-processed for the 11 recorded muscles: Gluteus maximus (GM), vastus media-
lis (VM), vastus lateralis (VL), rectus femoris (RF), biceps femoris (BF), semitendinosus/semimembranosus 
(STSM), gastrocnemius medialis (GaM), gastrocnemius lateralis (GaL), soleus (SOL), peroneus longus (PL), 
and tibialis anterior (TA) (Fig. 3). Then, the muscle synergies were extracted using NMF. The minimum number 
of synergies required to satisfactorily reconstruct the pre-processed sEMG signals (see Methods for threshold 
criterion) was slightly lower in HYPO than in INIT (3.8 ± 0.1 vs. 3.9 ± 0.1, multiple comparisons with Tukey’s 
adjustment, p < 0.05, ES = 0.4). Reconstruction quality, assessed by the coefficient of determination between the 
original and reconstructed sEMG signals, was high in all conditions (INIT: 0.870 ± 0.003, HYPO: 0.853 ± 0.003, 
RLD: 0.873 ± 0.003), although moderately lower in HYPO than in INIT (multiple comparisons with Tukey’s 
adjustment, p < 0.001, ES = 0.6) (see Supplementary Table 2 for details on RLD vs. HYPO and RLD vs. INIT).

K-means clustering identified four muscle synergies across all three conditions (Fig. 4). The first synergy was 
functionally related to the braking phase: Its main activation occurred during the first half of the stance phase, 
with a major contribution from the hip and knee extensors muscles (GM, VM, VL and RF). The second synergy 
described the push-off phase: Its main activation occurred during the second half of the stance phase, with a 
major contribution from the ankle plantarflexor muscles (GaM, GaL, SOL and PL). The third synergy was related 
to the early flight phase, with a major contribution from the ankle dorsiflexor (TA) and evertor (PL) muscles. 
The fourth synergy differed greatly between conditions: In INIT and RLD, it was functionally related to the late 
flight phase (preactivation before impact), whereas in HYPO it presented an additional activation during the 
push-off phase. In all conditions, it showed a major contribution from the hamstring muscles (BF and STSM). 
In the following, we will refer to this fourth synergy as “S4”. Note that some participants did not show all four 
muscle synergies mentioned above (Supplementary Table 3).

Figure 2.  Spatiotemporal parameters of running. A main effect of condition was found for a stance time 
(ANOVA,  F(2, 180) = 461, p < 0.001), b flight time (ANOVA,  F(2, 181) = 280, p < 0.001), and c stride frequency 
(ANOVA,  F(2, 180) = 913, p < 0.001). Data are averaged over all participants (n = 38), with individual data 
displayed. Significant adjustments determined by post-hoc analysis (multiple comparisons with Tukey’s 
adjustment) are shown for HYPO vs. INIT (*), RLD vs. HYPO ($), and RLD vs. INIT (#) (see Supplementary 
Table 1 for details). The number of symbols indicates the statistical level (three for p < 0.001).
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Increased hamstring contribution
The motor modules were first compared between INIT and HYPO by examining the muscle contributions 
(Fig. 4a). During the braking phase, the SOL contribution decreased (−22 ± 27%, ES = 0.5), but the GM contri-
bution increased (+29 ± 18%, ES = 0.5). No difference was found in the muscle contributions during the push-
off phase. However, the S4 motor primitives showed an additional activation during this phase (see Fig. 4c for 
detailed analysis), highlighting a new contribution of the hamstring muscles (STSM and BF) to this phase. Dur-
ing the early flight phase, the RF and GM contributions decreased (RF: −51 ± 17%, ES = 0.7 and GM: −23 ± 27%, 
ES = 0.3), but the hamstring contribution increased (STSM: +268 ± 12%, ES = 1.1 and BF: +795 ± 18%, ES = 1.0). 
The S4 motor modules showed a decreased TA contribution (−67 ± 16%, ES = 0.9).

They were then compared by calculating a co-contribution index (CI), which assessed the proportion of 
contributions from the anterior and posterior lower limb muscles at the three joints considered (hip, knee and 
ankle) (Fig. 5, see Methods for details). From INIT to HYPO, the CI decreased at the hip and knee joints during 
the early flight phase (−37 ± 6%, ES = 1.0 and −48 ± 5%, ES = 1.3, respectively), indicating an increased contri-
bution of the hamstrings at the expense of the quadriceps. It also decreased at the ankle joint in the S4 motor 
modules (−46 ± 6%, ES = 1.1), indicating an increased contribution of the triceps surae at the expense of the TA.

Widening of stance motor primitives
Motor primitives were compared across conditions using linear metrics. Specifically, their center of activity 
(CoA) and full width at half maximum (FWHM) were calculated. They provided an indication of when their 
main activation occurred in the running cycle and their duration, respectively (Fig. 4b). From INIT to HYPO, 
the push-off and early flight motor primitives were delayed in the running cycle (higher CoA; +20 ± 23%, ES = 1.3 
and +9 ± 14%, ES = 0.7, respectively). Furthermore, the braking and push-off motor primitives were of longer 
duration relative to the running cycle (higher FWHM; +17 ± 35%, ES = 0.8 and +13 ± 35%, ES = 0.8, respectively), 
while the early flight primitive was of shorter duration (lower FWHM; −20 ± 26%, ES = 0.4).

The S4 motor primitives differed greatly between INIT and HYPO, with their additional activation in the 
push-off phase giving them a bimodal profile in HYPO. As they could not be compared using classical metrics, 
they were excluded from the CoA and FWHM analysis. Instead, the S4 motor primitives were compared across 
conditions using one-dimensional statistical parametric  mapping35 (SPM) (Fig. 4c). This allowed the calcula-
tion of the t-statistics, denoted SPM{t}, for each time point of the running cycle (from 1 to 200). When SPM{t} 
exceeded the critical threshold computed using random field theory (t*), the motor primitives were considered 
to be significantly different. From INIT to HYPO, the SPM analysis mainly highlighted the aforementioned 
additional activation of the S4 motor primitives during the push-off phase (between time points 52–122).

The frequency at which the motor primitives exceeded half of their maximum of the 60 running cycles con-
sidered was computed for each time point of the running cycle (Fig. 6a). This enabled to calculate the frequency 

Figure 3.  Pre-processed sEMG signals. The x-axis distinguishes the stance phase from the flight phase, 
normalized to the same number of points. The y-axis shows the normalized sEMG activity. Data are averaged 
over all participants (n = 38), with shaded standard deviation.
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Figure 4.  Comparison of muscle synergies across conditions. (a) Motor modules. The y-axis shows the 
normalized muscle contributions, with individual data displayed. A (Condition x Synergy x Muscle) interaction 
was found (permutation ANOVA,  F(60, 8491) = 4.6, p < 0.001). (b) Motor primitives. The x-axis distinguishes the 
stance phase from the flight phase, normalized to the same number of points. The y-axis shows the normalized 
amplitude with shaded standard deviation. (Condition x Synergy) interactions were found for the FWHM 
(permutation ANOVA,  F(4, 576) = 7.6, p < 0.001) and the CoA (ANOVA,  F(4, 576) = 5.1, p < 0.001). c S4 could not be 
compared using classical metrics (COA and FWHM), but SPM revealed a main effect of the condition (SPM 
ANOVA, F* = 8.3). The blue shaded supra-threshold clusters (t* = 4.02) correspond to the time periods in which 
the S4 motor primitives differed. Motor modules and primitives are averaged across participants presenting 
the synergy of interest (see Supplementary Table 3). Significant adjustments determined by post-hoc analysis 
(multiple comparisons with Holm’s adjustment for panels a-b and with Bonferroni’s adjustment for panel c) are 
shown for HYPO vs. INIT (*) and RLD vs. HYPO ($) (see Supplementary Table 4–5 for details). The number of 
symbols indicates the statistical level (one for p < 0.05, two for p < 0.01, three for p < 0.001).
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of overlaps (Fig. 6b), which we compared between conditions using SPM (Fig. 6c): An overlap occurs when at 
least two primitives simultaneously exceed half of their maximum. Consistent with the aforementioned widening 
of the braking and push-off motor primitives, the heat maps showed that both exceeded half of their maximum 
over a larger range of the running cycle in HYPO than in INIT and RLD. However, these adjustments were not 
systematic over the 60 running cycles considered, as shown by the lighter shades of grey and red on the heat 
maps. This resulted in a decreased frequency of overlaps between the braking and push-off motor primitives 
(between time points 22–34). On the other hand, the heat maps highlighted the additional activation of the S4 
motor primitives during the push-off phase in HYPO, leading to an increased frequency of overlaps between 
the push-off and S4 motor primitives (between time points 48–81).

Figure 5.  Co-contribution from anterior and posterior lower limb muscles. For each joint, the anterior (purple) 
and posterior (green) muscles considered are shown in the header. Arrows pointing to the right indicate a 
greater contribution from anterior muscles while arrows pointing to the left indicate a greater contribution 
from posterior muscles. Arrows pointing upwards indicate a perfect balance between the contribution of 
the anterior and posterior muscles. An interaction (Condition x Synergy x Joint) was found (permutation 
ANOVA, F(12, 2313) = 11, p < 0.001). The CI is averaged across participants presenting the synergy of interest 
(see Supplementary Table 3). The standard deviation is shown with curved lines. The significant adjustments 
determined by post-hoc analysis (multiple comparisons with Holm’s adjustment) are shown for HYPO vs. 
INIT (*) and RLD vs. HYPO ($) (see Supplementary Table 5 for details). The number of symbols indicates the 
statistical level (three for p < 0.001).
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Increased local and global complexity of motor primitives
Finally, the motor primitives were compared across conditions using nonlinear metrics derived from fractal 
theory. Specifically, their Higuchi’s fractal dimension (HFD) and their Hurst exponent (HE) were computed. 
They describe their roughness within each running cycle and their irregularity across running cycles, respectively 
(Fig. 7). From INIT to HYPO, the HFD increased moderately for the braking and early flight motor primitives 
(+2 ± 24% and +3 ± 15%, ES = 0.7 for both), and strongly for the S4 motor primitives (+5 ± 9%, ES = 1.5). It did not 
vary for the push-off primitives (Fig. 7a). On the other hand, the HE increased for all motor primitives, but mod-
erately for the braking and push-off primitives (+23 ± 22%, ES = 0.9 and +21 ± 23%, ES = 0.8, respectively), slightly 
for the flight primitives (+14 ± 25%, ES = 0.5), and strongly for the S4 primitives (+34 ± 12%, ES = 1.7) (Fig. 7b).

Correlations between adjustments in the spatiotemporal parameters of running and motor 
primitives
Finally, the adjustments in the spatiotemporal parameters of running (stance time, flight time, stride frequency) 
were correlated with those in motor primitives (FWHM, COA, HFD, HE) (Fig. 8). When focusing on linear 

Figure 6.  Overlaps of motor primitives. (a) Frequency at which the motor primitives exceeded half of their 
maximum. Each row of the heatmaps corresponds to a participant, each column to a time point. The results 
are color-coded: from white (the primitives never exceeded half of their maximum) to the darkest color 
(the primitives exceeded half of their maximum in all running cycles considered). Missing motor primitives 
are reported as fully white rows (participants did not systematically present the four muscle synergies, see 
Supplementary Table 3). (b) Frequency of overlaps between motor primitives. The x-axis distinguishes the 
stance phase from the flight phase, normalized to the same number of points. (c) The frequency of overlaps 
was compared using SPM, which detected a main effect of the condition (SPM ANOVA, F* = 9.4). The blue 
shaded supra-threshold clusters (t* = 4.2) correspond to the time periods in which the frequency of overlaps 
differed. The significant adjustments determined by post-hoc analysis (multiple comparisons with Bonferroni’s 
adjustment) are shown for HYPO vs. INIT (*) and RLD vs. HYPO ($). The number of symbols indicates the 
statistical level (three forp < 0.001).
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metrics, correlation analysis showed that the participants with the greatest decrease in stance time had the great-
est increase in the FWHM of the push-off primitives (ρ = −0.41, p < 0.05). Furthermore, those with the greatest 
increase in flight time had the greatest increase in the FWHM of the braking primitives and in the CoA of the 
push-off primitives (ρ = 0.40 and ρ = 0.35, p < 0.05 for both) (Fig. 8a). When looking at the non-linear metrics 
derived from fractal theory, correlational analysis showed that the participants with the smallest decrease in 
stance time had the greatest increase in the HFD of the push-off primitives (ρ = 0.51, p < 0.05). Finally, those 
with the greatest decrease in stride frequency had the greatest increase in the HFD of the braking and S4 primi-
tives (ρ = −0.33 and ρ = −0.44, p < 0.05 for both), and in the HE of the S4 primitives (ρ = −0.52, p < 0.05) (Fig. 8b).

Discussion
The present study provided a better understanding of locomotor control during simulated hypogravity run-
ning. As a preamble, simulated hypogravity running resulted in the adoption of a bouncing running pattern, 
characterized by a slowing of stride frequency. Although the gravity simulated in this study (0.6 g) is closer to 
that of Mars than that of the Moon, these biomechanical adjustments are largely consistent with videos from the 
Apollo 11–17 missions, which showed that the astronauts neither walked nor ran, but rather adopted hopping, 
 skipping36 or  loping37 gaits. This suggests a specific reorganization of locomotor control, which we investigated 
by analyzing the muscle synergies in the light of fractal theory.

The extracted muscle synergies described the four usual phases of the running cycle, both in normogravity 
and in simulated hypogravity. In this sense, it has been reported that the postural and walking muscle synergies 
were consistent up to 0.25 g and 0.16 g,  respectively38,39. This suggests that the training protocols that astronauts 
undergo in normogravity (on Earth) may be transferable to hypogravity (e.g., on the Moon or Mars) and vice 
versa. However, it should be noted that three muscle synergies would be sufficient to account for the sEMG signals 
when walking in very low gravity (0.07 g), compared to four at higher gravities (from 1 to 0.16 g)39. Although the 
current study only examined the running muscle synergies at 0.6 g, which is far from the gravity of Mars and the 
Moon, it highlighted some adjustments in the motor modules and motor primitives that should be considered 
in anticipation for future space missions.

Simulated hypogravity running led to a redistribution of muscle contributions within the motor modules. 
During the braking phase, the reduced SOL contribution is consistent with its antigravity  function40. In the S4 
motor modules, the decreased TA contribution is attributed to the shift toward a forefoot strike  pattern41,42. 
Importantly, the push-off phase, showed no change in the contribution of the ankle plantarflexors (SOL, GaM, 
GaL, PL), but an increased contribution of the hamstring muscles (BF and STSM), as evidenced by the additional 
activation of the S4 motor primitive. This was previously reported during simulated hypogravity  walking43 and 
confirms our recent findings of increased hamstring activity during simulated hypogravity running, especially 
in the braking (BF: + 44 ± 18%) and push-off (BF: + 49 ± 12%, STSM: + 123 ± 14%)  phases11. This may have com-
pensated for the disadvantageous force output of the gastrocnemii in a forefoot versus rearfoot strike  pattern44. 

Figure 7.  Local and global complexity of motor primitives. (Condition x Synergy) interactions were found for 
(a) the HFD (ANOVA, F(6,747) = 14, p < 0.001) and (b) the HE (ANOVA, F(6,7450) = 3.4, p < 0.01) of motor 
primitives. Data are averaged across participants presenting the synergy of interest (see Supplementary Table 3), 
with individual data displayed. Significant adjustments determined by post-hoc analysis (multiple comparisons 
with Holm’s adjustment) are shown for HYPO vs. INIT (*), RLD vs. HYPO ($) (see Supplementary Table 5 for 
details). The number of symbols indicates the statistical level (three for p < 0.001).
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In addition, the hamstring muscle group is known to be involved in increasing walking and running  speed45,46. 
Its increased contribution may thus have contributed to accelerating the knee joint flexion of the swing leg, in 
an attempt to counteract the slowing of stride frequency, characteristic of simulated hypogravity running. This is 
supported by its increased contribution in the early flight phase, which came at the expense of the RF contribu-
tion due to reciprocal  inhibition47. However, the adjustments in hamstring contribution were not correlated with 
those in stride frequency. Further studies should therefore investigate the functional role of this muscle group 
during simulated hypogravity running in order to provide recommendations for pre-flight training of astronauts. 
As things stand, specific strengthening of this muscle group may be recommended.

Simulated hypogravity running resulted in wider stance motor primitives (higher FWHM of the braking 
and push-off primitives). Furthermore, the push-off primitives were shifted later in the running cycle (higher 
CoA). Such adjustments of the stance primitives has previously been observed in genetically modified mice 
lacking muscle spindles and Golgi tendon organs when compared to wild  type34,48. These results could therefore 
be attributed to the deteriorated proprioceptive feedback caused by simulated  hypogravity49,50. Yet, the oppo-
site adjustments found for early flight motor primitives, which were narrower, rather suggests the influence of 
temporal constraints: The stance phase was shortened during simulated hypogravity running, with the push-off 
phase being more affected than the braking  phase11, while the flight phase was prolonged. This is supported by 
the correlation analysis, which showed that the participants with the greatest decrease in stance time were those 
with the greatest widening of the push-off motor primitives. Thus, the lack of time to organize locomotor con-
trol during the stance phase may have been compensated for by increasing the overlap between the temporally 
adjacent braking and push-off motor primitives. Typically reported in the presence of external  perturbations26–30, 
such adjustment was not systematically observed across running cycles, as indicated by the decreased frequency 

Figure 8.  Correlation analysis of relative adjustments from INIT to HYPO. (a) Correlations between relative 
adjustments in spatiotemporal parameters of running and in motor primitives, as measured by linear metrics. 
(b) Correlations between relative adjustments in spatiotemporal parameters of running and in motor primitives, 
as measured by nonlinear metrics. Spearman’s rank correlations were performed on the data from the 
participants presenting the synergy of interest (see Supplementary Table 3). The blue shaded areas correspond to 
the 95% confidence interval. Non-significant correlations are shown in Supplementary Table 6.
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of overlaps. This is a first indication that simulated hypogravity running may constrain locomotor control, while 
allowing its flexibility.

The nonlinear analysis of the motor primitives supported this assumption of a higher locomotor control 
flexibility. On the one hand, three of the four primitives (those of braking, early flight, and S4) were more locally 
complex (higher HFD). This result may seem surprising given the literature on externally perturbed locomo-
tion, which reports a decrease in the HFD of motor  primitives27,28. However, it was expected since simulated 
hypogravity running is certainly perturbed, but also less mechanically contrained. Only the push-off primitives 
were not more locally complex. This is again attributed to the aforementioned high temporal constraints on 
push-off  phase11. Indeed, the correlation analysis showed that participants with the greatest decrease in stance 
time were those showing the lowest increase in the HFD of the push-off motor primitives. On the other hand, 
all motor primitives were more globally complex (higher HE) during simulated hypogravity running. Since the 
HE increased from 0 (sinusoidal time series) to 0.5 (random time series), it follows that the motor primitives 
were more irregular across running cycles in simulated hypogravity than in normogravity. This suggests that 
participants exerted less stride-to-stride  control51. The unintended horizontal support provided by the LBPPT 
 chamber52, in addition to the expected vertical support, could explain this reduced control effort. It would 
therefore be relevant to study its influence on muscle synergies. In any case, this is in line with the ‘minimum 
intervention principle’ used by humans to regulate locomotion: Deviations are corrected only when they interfere 
with task  performance53.

Is this increase in local and global complexity of motor primitives beneficial for simulated hypogravity run-
ning? Correlation analysis showed that participants with the greatest increase in the HFD of the braking and 
S4 motor primitives, and in the HE of the S4 motor primitives had the greatest decrease in stride frequency. All 
correlations were moderate to large, indicating a non-negligible relationship between these nonlinear metrics 
and stride frequency. Because it is systematically modified, stride frequency appears to be the spatiotemporal 
parameter that best describes the degree of adjustment to simulated hypogravity running. In this sense, it has 
been proposed that in mature and healthy biological systems, an optimal amount of variability reflects the flex-
ibility of locomotor control to  perturbations32,33. Less than optimal variability makes the system overly rigid, 
while greater than optimal variability makes the system overly noisy and unstable. Thus, the higher local and 
global complexity of the motor primitives observed in this study would reflect a more flexible locomotor control, 
allowing participants to optimally adjust to simulated hypogravity running. This finding may pave the way for 
the development of a feedback tool to improve astronauts’ ability to adjust to hypogravity.

Overall, our results revealed a specific reorganization of locomotor control in the face of the paradoxical 
nature of simulated hypogravity running, which combines reduced mechanical constraints with increased tem-
poral and sensory constraints. With human space exploration back in the spotlight, they deserve to be verified 
in simulated gravities closer to those of Mars or the Moon. They also need be confirmed in actual hypogravity: 
Subtle but systematic differences in the running pattern are known, suggesting potential differences in locomo-
tor  control54. In any case, the current results provide a first insight into locomotor control during simulated 
hypogravity running. They are a first step towards improving pre-flight training, per-flight countermeasures 
and post-flight rehabilitation of astronauts.

Methods
Participants
Thirty-eight recreational runners (age: 19 ± 1 years old [mean ± sd]; height: 177 ± 6 cm; mass: 69.3 ± 8.1 kg) volun-
teered for this study. We ensured that they had not suffered any musculoskeletal injury for more than 1 year, and 
had no history of any neurological impairment. All procedures were approved by the National Ethics Committee 
for Research in Sports Sciences (reference number: CERSTAPS IRB00012476-2021-31-03-96). All methods were 
carried out in accordance with the Declaration of Helsinki, and written informed consent was obtained from all 
participants prior to the experiment.

Experimental design
Participants were asked to run on a Lower Body Positive Pressure Treadmill (LBPPT) (VIA400X AlterG®, Fre-
mont, CA, USA) at their preferred speed (3.0 ± 0.2 m  s-1). They were instructed to remain in the center of its 
chamber to minimize involuntary horizontal  support52. The preferred speed was self-selected while running at 
100% body weight (1 g) during a familiarization session performed the week pior to the experimental protocol. 
After a 3-min warm-up to gradually reach the preferred speed, the experimental protocol consisted of two 9-min 
runs separated by a 4-min recovery period. Each run included 3 consecutive 3-min running conditions: The 
initial (INIT) and reloaded (RLD) conditions were run at 100% body weight, while the intermediate simulated 
hypogravity condition (HYPO) was run at 60% body weight (0.6 g). The transitions phases between the condi-
tions were progressive and lasted 12 ± 2 s.

Data recordings
The normal component of the ground reaction force was recorded using instrumented insoles (Loadsol, Novel®, 
Munich, Germany; 100 Hz) placed in standardized running shoes (Run active, Kalenji®). Surface electromyo-
graphic (sEMG) activity was recorded from 11 muscles of the right lower limb using bipolar electrodes (mini-
Wave COMETA®, Milan, Italy; 2000 Hz), including tibialis anterior (TA), gastrocnemius medialis (GaM), gastroc-
nemius lateralis (GaL), soleus (SOL), peroneus longus (PL), vastus medialis (VM), vastus lateralis (VL), rectus 
femoris (RF), biceps femoris (BF), semitendinosus and semimembranosus (STSM), and gluteus maximus (GM). 
Skin preparation and electrode placement followed the recommendations of the Surface Electromyography for 
the Non-Invasive Assessment of Muscles (SENIAM)  project55. To reduce motion artefacts, the electrodes were 
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wrapped with a self-adhesive and a tubular bandage around the thigh and shank. The recorded force and sEMG 
signals were synchronized. All data analyses were performed on the last 60 running cycles of each condition.

Spatiotemporal parameters of running
Touchdown and toe-off were identified from the normal component of the ground reaction force using a thresh-
old of 50 N. Stance time, flight time and stride frequency were calculated. The foot strike pattern (rearfoot or 
midfoot/forefoot) was obtained from sensors located in the anterior and posterior regions of the instrumented 
insoles.

EMG pre‑processing
The raw sEMG signals were first band-pass filtered (cutoff at 10 and 500 Hz). They were then high-pass filtered 
(cutoff at 50 Hz), full-wave rectified, and low-pass filtered (cutoff at 20 Hz) using a 4th order IIR Butterworth 
zero-phase  filter24. After subtracting the minimum, the sEMG signals were normalized to the maximum activity 
recorded for every muscle in each running  condition56. Each running cycle was then time-normalized to 200 
points, assigning 100 points to the stance phase and 100 points to the flight phase.

Muscle synergy extraction
Muscle synergies were extracted from the pre-processed sEMG signals using a custom R script (v3.6.3, R Founda-
tion for Statistical Computing, Vienna, Austria). The m = 11 muscles listed above were included in the analysis 
(TA, GaM, GaL, SOL, PL, VM, VL, RF, BF, STSM, GM). For each condition and participant, the m = 11 time-
dependent muscle activity vectors were grouped into a matrix V with dimensions m = 11 rows and n = 1200 
columns (200 points × 60 running cycles). The matrix V was factorized using the classical Gaussian Non-negative 
Matrix Factorization (NMF)  algorithm22,57 such that V ≈  VR = WH. The new matrix  VR, reconstructed by mul-
tiplying the matrices W and H, approximates the initial matrix V. The motor modules matrix W contained the 
time-invariant muscle weights that describe the relative contribution of each muscle within a given synergy. It 
had dimensions m × r, where “r” is the minimum number of synergies necessary to satisfactorily reconstruct the 
original matrix V. The motor primitive matrix H, with dimensions s × n, contained the time-dependent activation 
of each synergy. The update rules for W and H are presented in Eqs. (1) and (2).

where “T” is the transposed matrix and ⊙ the element-by-element multiplication.
The quality of the reconstruction was assessed by calculating the coefficient of determination  (R2) between 

the original and reconstructed matrices (V and  VR, respectively), as shown in Eqs. (3) and (4).

where SSE is the sum squared error, SST the sum squared total and V the average of the matrix V.
Iterations were stopped when the change in the calculated  R2 was less than 0.01% over the last 20  iterations24. 

This operation was first completed by setting the number of synergies to 1. It was then repeated by increasing 
the number of synergies, up to a maximum of 8 synergies. The number of 8 was chosen to be equal to 75% of the 
number of monitored muscles, as extracting a number of synergies equal to the number of monitored muscles 
would not reduce the dimensionality of the data. For each number of synergies, the factorization was repeated 
5 times, each time generating new randomized initial matrices W and H, to avoid local  minima58. The solution 
with the highest  R2 was then selected. To select the minimum number of synergies required to reconstruct the 
original sEMG signals, the curve of  R2 values vs. number of synergies was fitted using a simple linear regression 
model. The mean squared error between the curve and the linear regression was  calculated59. The lowest abscissa 
point was then removed and the error between this new curve and its new linear regression was calculated. This 
was repeated until there were 2 points left on the curve or the mean squared error was less than  10–4. This was 
done to find the most linear part of the curve of  R2 values vs. number of synergies, assuming that in this section 
the reconstruction quality could not be significantly increased by adding more synergies to the model.

Linear metrics for the analysis of muscle synergies
Co-contribution index
For each lower limb joint (hip, knee, ankle), we calculated a co-contribution index (CI) from the motor modules. 
To do this, we computed the mean contributions of the anterior ( ant ) and posterior ( post ) mobilizing  muscles60. 
For the hip, the anterior mobilizing muscle was the RF anterior and the posterior was the GM. For the knee, 
the anterior mobilizing muscles were RF, VL and VM and the posterior were the STSM and BF. For the ankle, 
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the anterior mobilizing muscle was the TA and the posteriors were the GaM, GaL, SOL and PL. Equation (5) 
defines the CI.

According to this definition, (i) CI = 0 when only the posterior muscles contribute to the considered joint; (ii) 
CI = 1 when only the anterior muscles contribute and (iii) CI = 0.5 if anterior and posterior muscles contribute 
equally.

Center of activity of motor primitives
We compared the averaged motor primitives (over the 60 considered running cycles) by evaluating first their 
center of activity (CoA). The CoA is an indication of when their main activation happens in time. It was cal-
culated as the angle of the vector (in polar coordinates) oriented towards the center of mass of that circular 
 distribution61. The polar direction represented the running cycle’s phase, 0° corresponding to the touchdown 
and 360° to the next touchdown. Equations (6), (7) and (8) define the CoA.

where “p” is the number of points of the running cycle (p = 200) and H is the motor primitive averaged over the 
60 running cycles.

Width of motor primitives
We also compared the averaged motor primitives based on their full width at half maximum (FWHM), which 
describe their duration. It was calculated, after subtracting their minimum, as the number of points exceeding 
half of their  maximum25,26. For each point of the running cycle (from 1 to 200), we also calculated the frequency 
at which motor primitives exceeded half of their maximum over the 60 running cycles, and the frequency at 
which they overlapped. Overlap occurred when at least two primitives exceeded half of their maximum at the 
same  time30,62.

Nonlinear metrics for the analysis of muscle synergies
Local complexity of motor primitives
To assess the local complexity of motor primitives (i.e. their “roughness” within each running cycle), we cal-
culated their Higuchi’s fractal  dimension63 (HFD). For each motor primitive H(t) = [H(1) H(2) … H(n)], we 
constructed k new times series as described in Eq. (9), where k ∈ ⟦2 ;  kmax⟧.

where t0 ∈ ⟦1; k⟧ is the first sample at initial time and ⌊ ⌋ the integer part. Then, we calculated the non-Euclidean 
Higuchi length Lt0k  of each new time series Ht0

k  as defined in Eq. (10).

The length of the motor primitive Lk was defined as the average of the k sets lengths as shown in Eq. (11).

If Lk ∝ k−HFD , then the curve is fractal with dimension HFD and this should lead the plot of log(Lk) vs. 
log(1/k) to fall on a straight line with slope HFD. The subsampling rate k was determined by repeating the pre-
vious operation for k = 1, 2, 3, … up to a maximum of k = 300, and then selecting the maximum value of k,  kmax, 
for which the curve of log(Lk) vs. log(1/k) was  linear31. Our data led us to choose  kmax = 10. HFD varies between 
1 and 2, with increasing values corresponding to a more locally complex (or rough) signal, and the value 1.5 
indicating a random Gaussian  noise63,64.
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Global complexity of motor primitives
To assess the global complexity of motor primitives (i.e. their irregularity across running cycles), we calculated 
their Hurst exponent (HE) following the rescaled range  approach65,66. For each motor primitive H(t) = [H(1) 
H(2) … H(n)], we constructed a new time series of length q (q ∈ ⟦1 ; n⟧), as described in Eq. (12).

Hq was then centred by substracting its mean Hq and a series of cumulative values Ht
q was established, as 

described in Eq. 13.

We determined the range Rq of the time series Ht
q (i.e. the difference between the maximum and minimum 

values) and its standard deviation Sq . We computed its rescaled range (Rq/Sq) . The value of q was determined 
by repeating the previous operations for q = n, n/2, n/4, n/8, … until a minimum of q = 2, and then selecting 
the value of q,  qinflex, where an inflexion point  occurred31. We finally calculated HE as the slope of the curve of 
log

(

q
)

 vs. log
(

Rq/Sq
)

 between q = 2 and q =  qinflex. Our data led us to choose  qinflex = 200. HE can vary between 0 
and 1. For 0.5 < HE < 1, the time series (i.e. motor primitive) is persistent, meaning that high values will probably 
be followed by other high values (and vice versa). For 0 < HE < 0.5, the time series is anti-persistent meaning 
that high values will probably be followed by low values (with frequent alternation between the two). HE = 0.5 
indicates a completely random series without any  persistence66.

Functional classification of muscle synergies
All the above calculations were conducted only for the motor primitives relative to fundamental synergies. 
The recognition of fundamental synergies was carried out by k-means clustering to reduce possible operator 
bias in the classification. We first clustered the average motor primitives (over the 60 running cycles), for each 
condition separately. This classification operation was performed for a number of clusters ranging from 1 to 
11 using the Hartigan Wong  algorithm67. For each number of clusters, the classification was repeated 20 times 
with different initializations of the centroids. The solution that minimized the intra-class variance was retained. 
The number of clusters was determined by fitting the curve of intra-class variance vs. number of clusters with 
a simple linear regression model, and processing in the same way as for the determination of the number of 
synergies (until mean squared error was less than  10–4). The motor modules were then classified by imposing the 
same number of clusters as previously obtained for the motor primitives. The average FWHM and CoA of the 
motor primitives were then summed and normalized by the number of points (i.e. 200). This value was used as a 
score to compare the k-means clustering of motor primitives and motor modules. Consistent clusters identified 
fundamental synergies, while discordant clusters identified combined synergies (linear combination of other 
simpler synergies). Due to the lack of consensus in the literature on how to interpret combined synergies, they 
were excluded from the analysis.

Statistics
For each variable, a linear mixed model (R package  LmerTest68) was performed using restricted maximum 
likelihood estimation. Joint, Muscle, Synergy, Condition and Run were considered as fixed effects when appro-
priate, and preferred running speed as covariate. The intercepts for the participants and the slope per condition 
depending on the foot strike pattern were chosen as random effects. The significance of the random effects was 
tested. The best model (i.e. the number of fixed effects and interactions) was selected by likelihood ratio tests of 
model comparisons using a backward selection method. An Analysis of Variance (ANOVA) (degrees of free-
dom estimated with the Satterthwaite formula) was then performed on the selected model. This was followed 
by multiple comparisons with Tukey (for main effects) and Holm (for interaction effects) adjustment. If the 
normality of the residuals was violated (Shapiro–Wilk test), a permutation ANOVA of the linear mixed model 
was performed (R package lmPerm, number of permutations: 10,000). The effect size (ES) was calculated using 
Cohen’s d  coefficient69 and assessed using the following thresholds: 0.2 to < 0.6, 0.6 to < 1.2 and 1.2 to < 2.0 for 
small, moderate and large effects,  respectively70. In cases where motor primitives could not be compared using 
conventional linear metrics (CoA and FWHM) because they exhibited a bimodal profile, we used a two-way 
(Condition, Run) repeated measures ANOVA based on the one-dimensional Statistical Parametric Mapping 
analysis (SPM) (Python package spm1d)35. This was followed by multiple comparisons with Bonferroni adjust-
ment. Finally, Spearman’s correlation tests were used to quantify the correlations between the adjustments in 
motor primitives (in CoA, FWHM, HFD and HE) and those in the spatiotemporal parameters of the running 
pattern (in stance time, flight time and stride frequency). The magnitude of Spearman correlation coefficients 
was interpreted using the following thresholds: 0.1 to < 0.3, 0.3 to < 0.5 and > 0.5 for small, moderate and large, 
 respectively70.

All the significance levels were set to α = 0.05 and the statistical analyses were performed using custom R and 
Python scripts (v3.9.7, 2021, Python Software Foundation, Wilmington, Delaware, USA). All results are presented 
in the text as estimated mean ± standard error.

Data availability
The raw data and the codes developed for their analysis are available to any researcher upon request to the cor-
responding author: Camille Fazzari (camille.fazzari@univ-amu.fr).
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