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Abstract

In recent years, Orthogonal Recurrent Neural Networks (ORNNs) have gained
popularity due to their ability to manage tasks involving long-term dependencies,
such as the copy-task, and their linear complexity. However, existing ORNNs
utilize full precision weights and activations, which prevents their deployment on
compact devices.
In this paper, we explore the quantization of the weight matrices in ORNNs, leading
to Quantized approximately Orthogonal RNNs (QORNNs). The construction of
such networks remained an open problem, acknowledged for its inherent insta-
bility. We propose and investigate two strategies to learn QORNN by combining
quantization-aware training (QAT) and orthogonal projections. We also study
post-training quantization of the activations for pure integer computation of the
recurrent loop. The most efficient models achieve results similar to state-of-the-art
full-precision ORNN, LSTM and FastRNN on a variety of standard benchmarks,
even with 4-bits quantization.

1 Introduction

Motivation: Machine learning applications frequently encompass the analysis of time series
data, such as textual information and audio signals. Within the realm of deep learning, various
Recurrent Neural Network (RNN) architectures and transformers have demonstrated notable success
in addressing a diverse array of tasks associated with time series data.

These models typically require a substantial number of parameters for optimal performance and
involve numerous matrix-vector multiplications during inference, using matrices and vectors of
considerable sizes containing floating-point numbers. This does not allow for the deployment of these
networks on compact devices with memory and power constraints, as well as for real-time applications.
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Overcoming these constraints allows the use of RNNs across a large range of domains in edge-ML
and tinyML applications, as described in [1], such as healthcare, smart farming, environment, or
anomaly detection.

An effective and often unavoidable step1 to address these challenges is neural network quantization.
This technique aims to reduce the number of bits required to represent the weights and activations of
the network. As evaluated in [32, 22], with appropriate hardware and implementation, this accelerates
runtime computations, lowers power consumption, and, on the other hand, decreases the amount of
space needed for parameter storage. Other authors have gone further and implemented quantized
LSTMs on low-cost FPGAs to meet low-power requirements and provide real-time low-cost solutions,
see [15, 8].2

Our goal is to contribute to the field of quantization of RNNs, with a particular emphasis on
considering RNNs able to address tasks involving long-term dependencies such as the copy-task with
many time steps. In doing so, we broaden the scope of applications for quantized RNNs.

To achieve this objective, we introduce and compare two strategies for constructing Orthogonal
or approximately Orthogonal Neural Networks (ORNNs) with quantized weights. We call them
Quantized Orthogonal Recurrent Neural Networks (QORNNs). The orthogonality constraint of
ORNNs, which has been studied in the articles described in the Appendices A.1 and A.2, have indeed
the following advantages:

• Their memory complexity does not increase with the input length, and their computa-
tional complexity scales linearly with the input length. They are smaller compared to its
competitors, which is ideal for training and inference on long inputs.

• They are easy to learn and have excellent memorization ability, which permits to solve
efficiently important tasks with long-term dependencies such as the copy-task.

On the contrary, LSTM and GRU are known to struggle to solve the copy-task with many time steps:
performances comparable to a naive baseline, consisting of random guessing, have been reported in
[5, 6, 59, 40, 7]. For the copy-tasks studied in [34], the limitation comes rapidly as the length of the
sequence increases.

Contribution: This paper presents pioneering work in the exploration of the quantization of
(ORNN). Our main contributions can be summarized as follows:

• We investigate the factors influencing the impact of quantization on orthogonality and the
behavior of ORNNs.

• We propose two different Quantization-Aware Training (QAT) strategies for constructing
ORNNs with quantized weights, called Quantized and approximately Orthogonal Recurrent
Neural Networks (QORNN).

• We demonstrate the effectiveness of QORNNs by empirically showing that a QORNN,
encoded with only 5 bits for its weights, can effectively capture long-term dependencies in
the copy-task. Additionally, we achieve state-of-the-art results on the permuted pixel-by-
pixel MNIST (pMNIST) task, even with 4-bit quantization.

• We further expand our investigation by applying a simple Post-Training Quantization method
to the activations, reducing them to 12 bits without any loss in performance. Consequently,
we introduce the first fully quantized recurrence capable of solving the copy-task with
sequences longer than 1000 steps.

Organization of the paper: We discuss articles related to quantized RNNs in Section 2. Descrip-
tions of the main neural networks architecture handling time-series are given in Appendix A.1, and a
focus on the articles devoted to ORNNs is in Appendix A.2. The notations and technical descriptions
related to vanilla RNNs, orthogonality, and quantization are presented in Sections 3.1, 3.2, and 3.3,
respectively. The reasons why quantizing ORNN is unstable is described in Section 3.4. This section
also contains bounds on the orthogonality discrepancy of the quantization of orthogonal matrices.
The two algorithms for building QORNNs are detailed in Section 4. Finally, experiments and their

1For instance, the weights in an Google EdgeTPU are typically encoded as fixed-point numbers using 8 bits.
2In these two references, the only compression of the weights is due to quantization.
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results are presented in Section 5. Additional details can be found in the appendices. The code
implementing the experiments is available at ANONYMIZED.

2 Related works

In this section, we will solely discuss works that describe quantization methods designed for networks
manipulating time-series data. Nevertheless, additional bibliographical information on full-precision
models for time-series can be found in Appendix A.1. We also offer a comprehensive overview of
contributions related to Unitary and Orthogonal RNN3 in Appendix A.2.

On quantized RNNs: The pioneering article on the quantization of weights in RNNs is [52]. In
this article, the authors explore the quantization of vanilla RNNs, LSTMs, and GRUs. Then, the
existing articles consider the quantization of both weights and activations for LSTM [31, 50], LSTM
and vanilla RNN [32] or both LSTM and GRU [69, 4, 67, 2, 64]. The proposals differ in various
aspects including the quantization scheme and the optimization strategy. The performance on the
most commonly used tasks is summarized in Appendix A.3.

The article [42] contains the study of a compressed network named fastRNN whose weights are
quantized on 8 bits and activations on 16 bits. The architecture of fastRNN contains a skip-connection,
similar to the one of ResNET [26], and (optionally) a gating mechanism leading to a model called
fastGRNN.

To the best of our knowledge, no article has reported attempts to quantize architectures based on
Ordinary Differential Equations, nor on Structured State Space Models (SSSM), see Appendix A.1.

Similarly, we found no articles studying the quantization of ORNNs. The closest studies evaluate
quantized vanilla RNNs; see [52] and [32]. Both articles emphasize the difficulty of the problem and
only provide results for tasks involving short-term dependencies, such as the next character prediction
task on the Penn TreeBank (PTB) and text8 datasets. They explain that this difficulty stems from
instability.4 The problem of vanilla RNN quantization is also evoked in the recent survey [25].

Finally, this research contributed to the implementation of quantized RNNs and LSTMs on FPGA, as
reported in [15, 21, 8] and the references therein, leading to a drastic reduction in power consumption,
latency, and cost.

Conclusion on RNNs: Setting aside fastRNN temporarily, as indicated by the performances
reported in Appendix A.3 and [25], among the quantized RNNs, architectures follow the following
general rule

LSTM ≫ quantized LSTM and LSTM ≫ GRU ≫ quantized GRU

where ‘≫’ means ‘has better performances than’. For this reason, we compare the QORNNs obtained
by the proposed methods to the results of full-precision LSTM, which serves as an optimistic surrogate
for all existing quantized LSTM and GRU architectures. We also compare our results to those of
fastRNN and fastGRNN [42]. None of the existing quantized RNNs, LSTMs, or GRUs are able to
solve the copy-task with many timesteps.

On quantized Transformers: The complexity of transformers renders them irrelevant to the scope
of the present study, and therefore, we do not delve into this bibliography. However, the article [57]
was the first to address the quantization of weights and activations in BERT, and as described in the
recent survey [60], many subsequent articles have followed suit.

3 Preliminaries and notations

In this section, we provide the main ideas and notations used on the RNN architecture, orthogonality,
and quantization.

3Given that ORNNs achieve comparable performance to URNN [49], in the scope of lower complexity, we
limit this study to ORNN.

4We illustrate and evaluate this phenomenon in Sections 3.4.
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3.1 Vanilla RNNs

Vanilla RNNs define functions that take a time series as input and produce a vector (in the many-to-one
case) or a time series (in the many-to-many case) as outputs.

In order to define them, we consider positive integers 𝑛𝑖 and 𝑇 , and an input time series (𝑥𝑡)𝑇𝑡=1 ∈
(ℝ𝑛𝑖 )𝑇 of length 𝑇 , made of 𝑛𝑖-dimensional data points. Denoting the output size 𝑛𝑜 ∈ ℕ, the output
is either a vector in ℝ𝑛𝑜 or a time series in (ℝ𝑛𝑜 )𝑇 .

The architecture of the RNN is defined by a hidden layer size 𝑛ℎ ∈ ℕ, an activation function 𝜎 and
an output activation function 𝜎𝑜. The parameters defining the vanilla RNN are (𝑊 ,𝑈, 𝑉 , 𝑏𝑜) for a
recurrent weight matrix 𝑊 ∈ ℝ𝑛ℎ×𝑛ℎ , an input-to-hidden matrix 𝑈 ∈ ℝ𝑛ℎ×𝑛𝑖 , a hidden-to-output
matrix 𝑉 ∈ ℝ𝑛𝑜×𝑛ℎ , and bias 𝑏𝑜 ∈ ℝ𝑛𝑜 . The hidden-state is initialized with ℎ0 = 0 and then computed
using

ℎ𝑡 = 𝜎
(

𝑊 ℎ𝑡−1 + 𝑈𝑥𝑡
)

∈ ℝ𝑛ℎ , (1)
for 𝑡 ∈ J1, 𝑇 K.

In the many-to-one case, the output of the vanilla RNN is
𝜎𝑜(𝑉 ℎ𝑇 + 𝑏𝑜) ∈ ℝ𝑛𝑜 .

In the many-to-many case, the output of the vanilla RNN is
(

𝜎𝑜(𝑉 ℎ𝑡 + 𝑏𝑜)
)

𝑡∈J1,𝑇 K
∈ (ℝ𝑛𝑜 )𝑇 .

In all the experiments, 𝜎 is either the ReLU or the modReLU [27] activation functions, 𝜎𝑜 is the
identity function for regression tasks and the softmax function for classification tasks. The parameters
(𝑊 ,𝑈, 𝑉 , 𝑏𝑜) are learned and 𝑊 is constrained to be quantized and approximately orthogonal. The
matrix 𝑈 is also quantized.

3.2 Orthogonality

The matrix 𝑊 ∈ ℝ𝑛ℎ×𝑛ℎ is orthogonal if and only if
𝑊 ′𝑊 = 𝑊𝑊 ′ = 𝐼,

where 𝐼 denotes the identity matrix in ℝ𝑛ℎ×𝑛ℎ and 𝑊 ′ is the transpose of 𝑊 . This necessitates that
the columns (respectively, rows) of the matrix possess a Euclidean norm of 1, with the additional
condition that any two distinct columns (respectively, rows) exhibit a scalar product of 0. Among the
various properties of orthogonal matrices, it is important to note that the singular values of orthogonal
matrices are all equal to 1. Denoting 𝜎min(𝑊 ) and 𝜎max(𝑊 ) as the smallest and largest singular
values of 𝑊 , we have 𝜎min(𝑊 ) = 𝜎max(𝑊 ) = 1. In other words, multiplication by an orthogonal
matrix preserves norms. Orthogonal matrices constitute the Stiefel manifold [19] that we denote
𝑆𝑡(𝑛ℎ).

The motivation behind constraining the recurrent weight matrix to be orthogonal is to mitigate
instability and prevent issues such as vanishing or exploding gradients. This phenomenon has been
discussed in numerous articles, and we reiterate it for completeness in Appendix B.

In the models described in Section 4, we consider two strategies that rigorously impose 𝑊 to be
orthogonal. Both strategies establish a mapping from ℝ𝑛ℎ×𝑛ℎ to 𝑆𝑡(𝑛ℎ).

• projUNN: The first strategy employs the mapping 𝑃projUNN as defined and implemented,
referred to as projUNN-D, in [41]. This mapping computes the image 𝑃projUNN(𝑊 ) of matrix
𝑊 as the nearest orthogonal matrix in terms of the Frobenius norm. The implementation
relies on a closed-form expression derived in [39]. In the sequel, we use 𝑃projUNN to
implement a projected gradient descent algorithm solving a minimization problem involving
an orthogonality constraint.

• Björck: The second strategy apply a fixed and sufficiently large number of iterations of
the gradient descent algorithm minimizing ‖𝑊𝑊 ′ − 𝐼‖𝐹 , see Appendix C. The result-
ing mapping from ℝ𝑛ℎ×𝑛ℎ to the Stiefel manifold St(𝑛ℎ), denoted as 𝑃Björck, is surjective.
Therefore, minimizing 𝐿(𝑃Björck(𝑊 )) among unconstrained 𝑊 is equivalent to minimizing
𝐿(𝑊 ) among orthogonal 𝑊 . Notice that standard backpropagation permits to compute
𝜕𝐿◦𝑃Björck

𝜕𝑊

|

|

|

|𝑊
.
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Figure 1: Denote by 𝑞𝑘 the quantizer with bitwidth 𝑘 as defined in Section 3.3, 𝜎𝑚𝑖𝑛(𝑞𝑘(𝑊 )) and
𝜎𝑚𝑎𝑥(𝑞𝑘(𝑊 )) the smallest and largest singular values of the matrix 𝑞𝑘(𝑊 ) respectively for 𝑊 ∈
ℝ200×200 a uniformly sampled orthogonal matrix. (Left) ‖𝑊 𝑇−(𝑞𝑘(𝑊 ))𝑇 ‖𝐹

‖𝑊 𝑇
‖𝐹

for various 𝑘 and powers 𝑇 .
(Right) Boxplots for 1000 random orthogonal matrices 𝑊 of the ratio 𝜎𝑚𝑖𝑛(𝑞𝑘(𝑊 ))∕𝜎𝑚𝑎𝑥(𝑞𝑘(𝑊 ))
for various 𝑘.

3.3 Quantization

We consider in this paper the most common scheme of quantization: a uniform quantization with a
scaling parameter [54, 22]. For a quantization of bitwidth 𝑘, where 𝑘 ≥ 2, the possible values are
restricted to a set of size 2𝑘, defined as follows:

for a given 𝛼 > 0, 𝑘 = 𝛼
2𝑘−1

r
−2𝑘−1, 2𝑘−1 − 1

z
.

The set 𝑘 evenly distributes values between −𝛼 and 𝛼 − 𝛼
2𝑘−1 , with a quantization step of 𝛼

2𝑘−1 .

For given 𝑘 and 𝛼, the quantizer 𝑞𝑘 maps every 𝑊 ∈ ℝ𝑛ℎ×𝑛ℎ to the nearest element in 𝑛ℎ×𝑛ℎ
𝑘 based

on the Frobenius norm. In other words, for every (𝑖, 𝑗) ∈ J1, 𝑛ℎK2, the entry (𝑖, 𝑗) of the matrix 𝑞𝑘(𝑊 ),
denoted

(

𝑞𝑘(𝑊 )
)

𝑖,𝑗 , is the nearest element in 𝑘 to 𝑊𝑖,𝑗 .

When quantizing a matrix 𝑊 , we take the value 𝛼 = ‖𝑊 ‖max, where ‖𝑊 ‖max = max𝑖,𝑗 |𝑊𝑖𝑗|.
For ease of notation, we do not explicitly express the dependence on 𝛼. Note that, as is common
practice [54], when minimizing a function involving 𝑞𝑘(𝑊 ) with respect to 𝑊 , we treat 𝛼 as a
constant. Consequently, we do not backpropagate the gradient with respect to 𝛼. To backpropagate
through 𝑞𝑘, we employ the classical Straight-Through-Estimator (STE), described for completeness
in Appendix D.

3.4 QORNN are hard to train

The instability problem: We emphasize that quantizing vanilla RNN and ORNN is challenging. It
is identified as a difficult unstable problem in [52, 31, 32]. The instability can be attributed to the
following phenomena:

• The recurrent weight matrix is applied multiple times, rendering the network’s output highly
sensitive to even slight variations in the recurrent weight matrix. This also occurs during
backpropagation.

• The quantization of an orthogonal recurrent weight matrix generally results in a matrix that
is not orthogonal. This, too, can contribute to the instability of the RNN.

Let us illustrate the first point. We present in Figure 1-(Left) the values of ‖𝑊 𝑇−𝑞𝑘(𝑊 )𝑇 ‖𝐹
‖𝑊 𝑇

‖𝐹
for

different bitwidths 𝑘 and various power 𝑇 of the matrices5. Here, using the method described in
[48], 𝑊 ∈ ℝ200×200 is a random matrix sampled according to a uniform distribution over orthogonal
matrices of size 200 × 200, ‖.‖𝐹 represents the Frobenius norm, 𝑞𝑘 is the quantization described in
Section 3.3, and 𝑇 ∈ {1, 10, 100, 200}. On Figure 1-(Left), we see that 𝑞𝑘(𝑊 )𝑇 can be far from 𝑊 𝑇 ,

5The analysis made in this paragraph does not take into account the effect of the activation function
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especially for small bitwidths 𝑘 and large timesteps 𝑇 . As a result of this instability, the results of
the forward pass using the quantized recurrent weights are far from the results for the full-precision
recurrent weights, which may pose challenges in learning the quantized recurrent weights.

We illustrate the second point in Figure 1-(Right): We present boxplots of the ratio
𝜎𝑚𝑖𝑛(𝑞𝑘(𝑊 ))∕𝜎𝑚𝑎𝑥(𝑞𝑘(𝑊 )), where 𝜎𝑚𝑖𝑛(𝑞𝑘(𝑊 )) and 𝜎𝑚𝑎𝑥(𝑞𝑘(𝑊 )) are respectively the smallest and
largest singular values of 𝑞𝑘(𝑊 ). We uniformly sample 1000 orthogonal matrices 𝑊 as described
above, apply the quantizer 𝑞𝑘 to each of them for different bitwidths 𝑘, and compute the ratio
𝜎𝑚𝑖𝑛(𝑞𝑘(𝑊 ))∕𝜎𝑚𝑎𝑥(𝑞𝑘(𝑊 )). A ratio closer to 1 indicates a higher level of orthogonality. The box-
plots show that smaller bitwidths result in smaller expected ratios and more variable ratios.

Evaluating the approximate orthogonality of 𝑞𝑘(𝑊 ) Assume 𝑊 is orthogonal and denote
𝑊𝑞 = 𝑞𝑘(𝑊 ). We obtain the following bounds, proved in Appendix E, for the orthogonality
discrepancy of 𝑊𝑞:

‖𝑊𝑞𝑊
′
𝑞 − 𝐼‖𝐹 ≤ 2

𝑛ℎ
2𝑘−1

+
( 𝑛ℎ
2𝑘−1

)2
. (2)

Similarly, we can derive bounds on 𝜎min(𝑊𝑞) and 𝜎max(𝑊𝑞):

1 −
𝑛ℎ
2𝑘−1

≤ 𝜎min(𝑊𝑞) and 𝜎max(𝑊𝑞) ≤ 1 +
𝑛ℎ
2𝑘−1

. (3)

This permits to obtain guarantees of approximate orthogonality, but only when 𝑛ℎ ≪ 2𝑘−1, which
is not the common setting. Nevertheless, our experiments will show that the following proposed
methods are effective in practice, with strategies that enforce both constraints during training, as
detailed in the following section.

4 Quantized RNNs with approximate orthogonality constraints

In this section, we introduce the two strategies to build QORNN that are evaluated in Section 5.
The two strategies can be interpreted as different numerical schemes for solving the same highly
non-convex optimization problem, as presented in the following subsections.

4.1 Projected STE (STE-projUNN)

A QAT strategy is applied to directly learn quantized weights with approximate orthogonality
constraints (𝑞𝑘(𝑊 ), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜), for a given 𝑘, where (𝑊 ,𝑈, 𝑉 , 𝑏𝑜) are obtained using the projected
gradient descent algorithm solving the following constrained optimization problem:

{

min
(𝑊 ,𝑈,𝑉 ,𝑏𝑜)

𝐿(𝑞𝑘(𝑊 ), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜)

𝑊 is orthogonal,
(4)

where 𝐿 is the learning objective. Notice that at each iterate of the algorithm, 𝑊 is constrained
to be orthogonal. In the projected gradient descent algorithm, the gradients are computed using
backpropagation and the STE, and the projections onto the Stiefel manifold are computed using
𝑃projUNN. We use the implementation of the reference code from [41] in the 𝑃projUNN repository.

4.2 STE with 𝑃Björck (STE-Björck)

A QAT strategy inspired by [3] is applied to directly learn quantized weights with approximate or-
thogonality constraints (𝑞𝑘(𝑃Björck(𝑊 )), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜), for a given 𝑘, where (𝑊 ,𝑈, 𝑉 , 𝑏𝑜) is obtained
by a first-order algorithm solving the unconstrained optimization problem:

min
(𝑊 ,𝑈,𝑉 ,𝑏𝑜)

𝐿(𝑞𝑘(𝑃Björck(𝑊 )), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜),

where 𝐿 is the learning objective. The gradients are also computed using backpropagation and the
STE. Although 𝑊 is this time unconstrained, as already explained, since 𝑃Björck is surjective onto
the Stiefel manifold, solving this problem is equivalent to solving (4). However, the reformulation
leads to a different algorithm, a priori facilitating the evolution of the recurrent weight matrix 𝑊 .

We use the opensource library Deel-Torchlip for 𝑃Björck algorithm implementation.
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Table 1: Performance of various models and bitwidths for weights and wctivations on the Copy
Task, Sequential MNIST, Permuted MNIST, and Penn TreeBank Character Task (NC stands for ‘Not
Converged’, NU stands for ‘Not useful because of other figures’, FP for ‘full-precision’). Source of
figures: † from [4]; ∗ from[41] ;‡ from [42]

Model weight activation Copy-task pMNIST sMNIST PTB
bitwidth bitwidth cross-ent. accuracy accuracy BPC

LSTM FP FP NC 92.00∗ 98.90† 1.39†

FastRNN FP FP NC 90.83 96.44‡ 1.455
FastGRNN FP FP NC 92.9 NU 1.577
FastGRNN 8 16 NC NU 98.20‡ NU

STE-Bjorck

FP FP 6.4e-6 94.51 96.61 1.404
8 FP 1.6e-5 94.64 96.27 1.452
8 12 1.7e-5 94.76 96.20 1.452
6 FP 3.8e-5 93.93 94.81 1.476
6 12 3.7e-5 93.94 94.74 1.476
5 FP 2.5e-3 93.67 87.75 1.490
5 12 2.5e-3 93.67 87.70 1.490
4 FP NC 92.36 73.84 1.559
4 12 NC 92.33 73.38 1.559

ProjUNN FP FP 1.1e-12 94.3∗ 90.03 1.739

STE-ProjUNN
8 FP 2.0e-10 91.27 89.53 1.742
6 FP 6.5e-5 90.73 88.06 1.745
5 FP 1.0e-3 90.89 87.42 1.753

5 Experiments

In this section, we present the results of the models described in Section 4 across several standard
sequential tasks: the Copy-task in Section 5.1, the permuted and sequential pixel-by-pixel MNIST
tasks (pMNIST and sMNIST, respectively) in Section 5.2, and the next character prediction task using
the Penn TreeBank dataset in Section 5.3. The first tasks are particularly challenging due to their
reliance on long-term dependencies within the sequences, which makes them well-suited for ORNNs.
Conversely, the Penn TreeBank task is a language model problem characterized by shorter-term
dependencies. Similarly to the next character prediction task, sMNIST is known to be favorable to
LSTMs. An additional task, the Adding task, is detailed in Appendix J.

To evaluate the performance of the QORNN, we also compare it with other full-precision RNNs , or
when provided by other articles their quantized counterparts:

• LSTM [30] which also serves as an optimistic surrogate for all existing quantized models
with the exception of FastRNN, see Section 2 and Appendix A.3.

• ORRNs with the same hidden size as the quantized models, implemented using the projUNN-
D [41], or Bjorck algorithms.

• FastRNN [42], either by using the figures from the original article or through additional
experiments conducted with the reference code in floating-point.

In the subsequent results, instances where the RNNs did not outperform the naive baseline are denoted
by NC (Not-Converged).

To verify whether the recurrence of learned QORNN could be fully quantized, we include additional
results from a simple Post-Training-Quantization (PTQ) of the activations, detailed in Appendix F.

For each task, model sizes and hyperparameters were selected according to the loss value computed
on a validation dataset. A description of the problems, the training hyperparameters, additional results
and stability studies are provided in Appendix G, Appendix H, Appendix I and Appendix J.
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Table 2: Model sizes for Copy, MNIST, and Penn TreeBank tasks (Symbol 𝑘𝑃 stands for ‘kilo-
parameters’; 𝑘𝐵 for ‘kilo-Bytes’; NC stands for ‘Not Converged’, NU stands for ‘Not useful because
of other figures’). Source of figures: † from [4]; ∗ from[41] ;‡ from [42]

Model weight Copy-task sMNIST PTB
bitwidth 𝑘𝑃 size (𝑘𝐵) 𝑘𝑃 size (𝑘𝐵) 𝑘𝑃 size (𝑘𝐵)

LSTM FP NC NC 41.4† 162† 4300.8† 16800†

2 NC NC " 10† " 525†

FastRNN FP NC NC 30.8 120.2 1151.0 4496

FastGRNN FP NC NC NU NU 1151.0 4496
FastGRNN 8 NC NC 6‡ 6‡ NU NU

FP 70.4 275 30.8 120.2 1151.0 4496
STE-Bjorck 8 " 75.5 " 35.0 " 1274
or 6 " 58.9 " 27.9 " 1005.5
STE-projUNN 5 " 50.6 " 24.4 " 871.2

4 " NC " 20.8 " 737.0

5.1 Copy-task

We build RNNs solving the copy-task as described in [66], based on the setup outlined by [30]. The
input is a sequence of length 𝑇 = 𝑇0 + 20, where the initial 10 elements constitute a sequence for
the network to memorize, followed by a marker at 𝑇0 + 11. The RNN’s objective is to generate a
sequence of the same length, with the last ten elements replicating the initial 10 elements of the
input sequence. More details are given in Appendix G. This task is known to be a difficult long-term
memory benchmark, that classical LSTMs struggle to solve [5, 6, 59, 40, 7], when 𝑇0 is large.

The output activation 𝜎𝑜 is the softmax, and the prediction error is measured using the average
cross-entropy. The naive baseline has an expected cross-entropy of 10 log 8

𝑇0+20
.

As in [41], we conducted the experiments for 𝑇0 = 1000 timesteps, with ORNNs of size 𝑛ℎ = 256.
Details on the hyperparameters, learning curves, and results for 𝑛ℎ = 190 and 𝑇0 = 2000 are provided
in the Appendix G.

The fourth column of Table 1 reports the performance for this task. As reported above, LSTM
performance remains at the naive baseline level. FastRNN results were not documented in [42].
Similarly to what was reported in [37], none of our experiments with this model achieved convergence,
even with full precision weights. Conversely, both STE-projUNN and STE-Bjorck models converge
when 𝑘 ≥ 5. For 𝑘 = 8 the performance achieved by the QORNN nearly matches that of its floating
point counterpart. Our QORNN (configured with 𝑘 = 5 and 12 bits activations) is the first reported
RNN with a fully quantized recurrence capable of solving the copy-task for 𝑇0 = 1000. Additionally,
the size of this QORNN is below 51 kB, see Table 2.

5.2 Permuted and sequential pixel-by-pixel MNIST (pMNIST/sMNIST)

These tasks are also challenging long-term memory problems. Here, data examples are the 28 ×
28 images from the MNIST dataset, where each image is flattened to a 784-long sequence of 1-
dimensional pixels (normalized values in [0, 1]). For pMNIST the pixels are randomly shuffled
according to a fixed permutation. The model has to predict the hand-written digit class (10 outputs).
Note that pMNIST is a more challenging task for gated models such as LSTM, and is in general not
reported in the literature, see Table 4. However it is a classical benchmark task for ORNN.

In this section, we fix 𝑛ℎ = 170 for all models. We use the ReLU activation with the STE-Bjorck
strategies, and as recommended in [41] the modReLU activation with the STE-projUNN, see Ap-
pendix H for details.

For sMNIST task, ORNNs in floating point achieve performance comparable to FastRNN, albeit
slightly inferior to that of gated models (LSTM and FastGRNN). The STE-projUNN strategy struggles
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Table 3: Ablation study: comparison of STE-Bjorck, PTQ, STE-pen on permuted MNIST task

Task bitwidth 𝑘 STE-Bjorck PTQ STE-pen

pMNIST
4 92.36 13.3 44.9
6 93.93 42.2 75.4
8 94.64 90.2 71.0

to attain performance levels exceeding 90%. However, the STE-Bjorck model enables to achieve an
accuracy of 96.2% with 𝑘 = 8 bitwidth weights quantization and a fully quantized recurrence.

For pMNIST and STE-ProjUNN strategy, we could not replicate the projUNN performance reported
in [41]. However, as shown in Table 1, applying STE-Bjorck, with 𝑘 = 8 bitwidth quantization for
weight and 12 for activations, provides a QORNN with fully quantized recurrence that achieves results
comparable to those reported in [44, 41], which currently represent the state-of-the-art performance
on pMNIST with RNNs. Interestingly, even for 𝑘 = 4, the performance drop remains limited to 2.5%
with a network size with less than 21 kByte, see Table 2.

5.3 Character level Penn TreeBank

We present the results of QORNNs on a language modeling task. The Penn TreeBank dataset [47]
(PTB), which comprises sentences of length 150 (𝑇 = 150), consisting of 50 different characters
(𝑛𝑖 = 50). The goal of the task is to predict the next character based on the preceding ones (further
details can be found in Appendix I). Similar to sMNIST, this task is known to be favorable to LSTMs
The purpose of this experiment is to offer a balanced assessment of performance and to evaluate the
performance loss on a less favorable task. We also use PTB to perform further ablation studies in
Section 5.4 and evaluate the influence of hyperparameters in Appendix I. All experiments described
in this section are for 𝑛ℎ = 1024, except for the LSTM model where the performance of [4] are
reported, 1000 cells. As reported in the literature, we use the Bit Per Character measure (BPC).

The results for this task are reported in the last column of Table 1 and Table 4. The LSTM version
with ternary weights proposed in [4], see Table 4, achieves the best results both in performance and
size. For the QORNN, the STE-Bjorck strategy’s performance is lower by 0.1 BPC with a network
size of 872 kBytes.

5.4 Ablation study

In this section, we evaluate the influence QAT and projection (𝑃projUNN or 𝑃Björck) in the proposed so-
lutions. We study two additional strategies relaxing one of these constraints (detailed in Appendix K):

• PTQ strategy corresponds to training a full-precision ORNN without any QAT constraint,
and applying Post-Training Quantization on the learnt weights for all values of 𝑘.

• STE-pen strategy imposes soft-orthogonality using a regularization term of the form
𝜆‖𝑞𝑘(𝑊 )(𝑞𝑘(𝑊 ))′ − 𝐼‖𝐹 , where 𝜆 is a trade-off parameter. The quantized model is opti-
mized using the STE and does not use any kind of projection.

Table 3 provides a comparison on permuted MNIST and additional results are in Appendix K. PTQ
induces a large drop in performance for bitwidths 𝑘 < 8. This illustrates the difficulty of the problem.
Moreover, penalization fails to learn effectively across all bitwidths and learning is unstable. This
confirms that both QAT and projections are essential for learning QORNN models.

6 Conclusion and perspectives

In this article, we propose and study two algorithms to construct QORNNs. They enjoy the benefits of
ORNNs and work when ORNNs do. In particular, they manage to solve the copy-task for 𝑇0 = 1000
and 2000, which existing quantized RNNs were unable to do. We demonstrate that combining
orthogonalization and quantization-aware training is crucial for effectively training QORNN. In most
experiments, this combination is more efficient when using the Björck orthogonalization method.
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Future work on QORNNs could focus: 1/ on implementing QORNNs on dedicated hardware, 2/ on
developing learning approaches better taking into account the activation quantization. It is also very
much relevant to work on quantizing other models such as SSSMs to target longer dependencies such
as the Long Range Arena benchmarks described in [61].
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A Bibliography complements

A.1 Neural Networks for time series

Numerous neural network architectures have been developed specifically for handling time-series
data. Rather than attempting to provide an exhaustive overview of all these architectures, our focus is
on contextualizing Orthogonal and Unitary Recurrent Neural Networks (ORNN) within this diverse
landscape. A comprehensive bibliography on ORNN is deferred to Section A.2.

Vanilla RNNs as introduced by [65] are notoriously challenging to train due to issues with vanishing
and exploding gradients, [65, 9]. This reduces their ability to cope with long-term dependencies. As
described in Section 2 and reported in [52, 32, 25], quantizing Vanilla RNN is challenging and not
efficient.

LSTM [30] and GRU [16] are recurrent architectures that tackle vanishing gradient problems by
incorporating gating mechanisms. They have demonstrated outstanding performance in tasks such as
speech recognition [23] and neural machine translation [58]. LSTM and GRU are known to struggle
to solve certain tasks having long-term dependencies, such as the copy-task with many timesteps. On
the latter task, comparable performances to a naive baseline, consisting of random guessing, have
been reported in [5, 6, 59, 40, 7]. For the copy-tasks studied in [34], the limitation comes rapidly as
the length of the sequence increases. To the best of our knowledge, these are the only studies tackling
the copy-task using LSTM and GRU architectures. Several variants of quantized LSTM and GRU
have been studied in the literature, see Section 2.

ORNN (and URNN) are known to achieve superior performance compared to LSTM in handling time
series with long-term dependencies [5]. They explicitly address the issues of vanishing and exploding
gradients by imposing orthogonality (and unitary) constraints on the recurrent weight matrix of a
vanilla RNN, See Appendix A.2. As a bonus, a standard ORNN unit contains about four times fewer
parameters than an LSTM unit. To the best of our knowledge, quantization of ORNN has not been
previously investigated. A detailed bibliography on full-precision ORNN is in Appendix A.2.

Alternative architectures introduce a skip connection in the RNN, similar to the one in ResNet
architectures [26]. Several studies have contributed to the development of this idea [33, 10, 14]. To
the best of our knowledge, the only compressed –and therefore quantized– version of this architecture
is described in the study by [42].

Due to their ability to capture long-term dependencies and their flexibility, Transformer architectures
[62] have demonstrated great performance even for long sequences. However, they often require large
training datasets and entail computational complexities that render them unsuitable for this study.
Several contributions [57, 53, 17, 25] have demonstrated that quantization strategies are feasible. A
recent survey [60] is dedicated to this topic.

Many architectures based on an Ordinary Differential Equation also benefit from a skip connection
and have been studied in several works [13, 55, 56, 43, 38, 37, 20]. Among these, structured state
space sequence models (SSSM) [24] have shown effectiveness in handling tasks with very-long-term
dependencies, as described in [61]. To the best of our knowledge, no scientific work has yet studied
the quantization of these architectures.

Finally, alternatives that do not fit into the categories described above include the Independent
RNN [45], approaches that utilize alternatives to backpropagation [46, 51], or methods that model
infinite-depth networks [7].

To conclude, ORNNs is a method of choice when the two following properties are simultaneously
needed:

• The architecture has a memory complexity independent of the input length and exhibits
computational complexity that increases linearly with the input length. This characteristic
makes it ideal for training and inference tasks involving long inputs.

• The architecture is easy to learn and has excellent memorization ability, which permits to
solve efficiently important tasks with long-term dependencies such as the copy-task with
many timesteps.
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A.2 Orthogonal and unitary recurrent neural networks

Learning the unitary and orthogonal recurrent weight matrix of recurrent neural networks has a
rich history of study in the last decade. We describe the contributions in chronological order of
publication.

Unitary recurrent neural networks were introduced in [5]. In this article, the recurrent weight matrix
is the product of parameterized unitary matrices of predefined structures. They argue empirically that
URNNs are beneficial because they better capture long-term dependencies than LSTMs. Soon after,
the authors of [66] use the Cayley transform locally to build an iterative scheme capable of reaching
all unitary matrices. In [35], the authors parameterize the recurrent weight matrix as a product
of Givens rotations and a diagonal matrix. By doing so, they achieve more efficient models with
tunable complexity that can be trained more rapidly. In [49], the authors parameterize the recurrent
weight matrix as a product of Householder reflections to reduce the complexity of full-capacity
models. In the same line of research, the authors of [36] explore the use of product of unitary
Kronecker matrices. They incorporate a soft-orthogonality penalization term to enforce the unitary
constraints. The Kronecker architecture can be adjusted to reduce the complexity of the model. In
[63], the authors compare soft and hard-orthogonality constraints. They find that the parameter of the
soft-orthogonality strategy under study can be tuned to achieve an approximately orthogonal recurrent
matrix, leading to improved efficiency. In [27], the authors narrow their focus to orthogonal recurrent
weight matrices and parameterize the entire Stiefel manifold using the Cayley transform scaled by a
diagonal and orthogonal matrix. Similar to [49], the number of parameters defining the orthogonal
matrix is optimal. The authors of [68] use a parameterized Singular Value Decomposition (SVD)
to constrain the singular values of the recurrent weight matrix. In [44], the authors parameterize
orthogonal matrices using the exponential map. Finally, in [41], the authors develop two Riemannian
optimization strategies. The first one is based on the orthogonal projection onto the Unitary or Stiefel
manifold, and the other on Riemannian geodesic shooting. The algorithms are named ProjUNN, and
one of them is employed in the presented work. This choice is motivated by the experiments outlined
in [41].

A.3 Results in existing articles

In Table 4, we report existing results for full-precision RNNs and RNNs whose weights and activations
are quantized for different tasks. The performances obey the general rule

fp LSTM ≫ quantized LSTM and fp LSTM ≫ fp GRU ≫ quantized GRU
where ≫ means ‘has better performances than’and fp stands for full precision. As a consequence
and beside the notable exception of fastRNN, the results for full-precision LSTM provide optimistic
surrogates/proxies for the performances of existing quantized models.

B Memorization and stability, vanishing and exploding gradient

For a large 𝑇 , if the largest singular value 𝜎𝑚𝑎𝑥 of the weight matrix 𝑊 is smaller than 1, the initial
entries of the input (𝑥𝑡)𝑇𝑡=1 cannot be effectively retained in the hidden state ℎ𝑇 . This prevents
the consideration of long-term dependencies. Conversely, still considering large 𝑇 , if the smallest
singular value 𝜎𝑚𝑖𝑛 of 𝑊 is greater than 1, each multiplication by 𝑊 in (1) increases the magnitude
of ℎ𝑡, and the norm ‖ℎ𝑡‖ may tend towards infinity, leading to instability. For memorization and
stability issues, it is desirable for the singular values of 𝑊 to remain close to 1.

We arrive at the same conclusion when attempting to mitigate issues related to vanishing and exploding
gradients. As indicated in [5] and echoed in subsequent literature on URNNs, denoting 𝐿 the loss
function, we find that:

𝜕𝐿
𝜕ℎ𝑡

= 𝜕𝐿
𝜕ℎ𝑇

𝜕ℎ𝑇
𝜕ℎ𝑡

= 𝜕𝐿
𝜕ℎ𝑇

𝑇−1
∏

𝑖=𝑡

𝜕ℎ𝑖+1
𝜕ℎ𝑖

= 𝜕𝐿
𝜕ℎ𝑇

𝑇−1
∏

𝑖=𝑡
𝐷𝑖𝑊

′,
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Table 4: For every article, the best performance is in bold. The Table illustrates that full-precision
LSTM is an optimistic surrogate for all quantized RNNs except fastGRNN and fastRNN. We call
skip-RNN the network called FastGRNN-LSQ in [42].
Weights and activation columns: FP stands for ‘full precision’, t for ‘ternary’, any number should be
interpreted as a bitwidth.

Task Reference T Model Weights Activ. Score Metric
PTB [69] — LSTM FP FP 97 PPW

word 2 3 123
GRU FP FP 100

4 4 120
[32] 50 LSTM FP FP 97

4 4 100
[67] 30 LSTM FP FP 89.8

2 2 95.8
GRU FP FP 92.5

2 2 101.2
[42] 300 RNN FP FP 144.71

LSTM FP FP 117.4
skip-RNN FP FP 115.92
FastGRNN 8 16 116.11

[64] 35 LSTM FP FP 97.2
t t 110.3

GRU FP FP 102.7
t t 113.5

PTB [32] 50 RNN FP FP 1.05 BPC

char. 2 4 1.67

[52] 50 RNN 1 FP 1.37
[4] 100 LSTM FP FP 1.39

t 12 1.39

1 12 1.43

sequ. [4] 784 LSTM FP FP 98.9 Accuracy

MNIST t 12 98.8

1 12 98.6

[42] 784 LSTM FP FP 97.8

skip-RNN FP FP 98.72
FastGRNN 8 16 98.20

FastRNN 8 16 96.44
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where 𝐷𝑖 = diag(𝜎′(𝑊 ℎ𝑖−1 +𝑈𝑥𝑖)) is the Jacobian7 matrix of 𝜎 evaluated at the pre-activation point
and 𝑊 ′ is the transpose of 𝑊 . If all the singular values of 𝑊 are less than 1, those of 𝐷𝑖𝑊 ′ are
as well, causing the norm of 𝜕𝐿

𝜕ℎ𝑡
to rapidly approach 0 as 𝑡 decreases—resulting in the vanishing

gradient problem. Conversely, if some singular values of 𝑊 are greater than 1, depending on the
activation patterns and 𝜕𝐿

𝜕ℎ𝑇
, the norm may explode, leading to the exploding gradient problem. To

mitigate these phenomena, it is desirable for the singular values of 𝑊 to remain close to 1. In other
words, we aim for 𝑊 to be orthogonal or at least approximately orthogonal.

C The Björck algorithm

Björck algorithm [12] aims to minimize the regularization term

𝑅(𝑊 ) = ‖𝑊𝑊 ′ − 𝐼‖2𝐹 ,

As described in [3], the initialization is done with the matrix 𝐴0 = 1
𝜎max(𝑊 )𝑊 , where 𝜎max(𝑊 ) is

the largest singular value of 𝑊 , computed using the power iteration for a fixed number of iterations.
Then it applies a fixed and sufficiently large number of iterations, in practice 15, of the following
operation:

𝐴𝑘+1 = 𝐴𝑘

(

𝐼 +
𝑝
∑

𝑖=1
(−1)𝑝

(

− 1
2
𝑝

)

𝑄𝑝
𝑘

)

where 𝑄𝑘 = 𝐼 −𝐴′
𝑘𝐴𝑘 and

(𝑧
𝑝

)

= 1
𝑝!
∏𝑝−1

𝑖=0 (𝑧− 𝑖). As described in [3], we take 𝑝 = 1. In this case, the
Björck algorithm corresponds to several iterations of the gradient descent algorithm minimizing 𝑅:

𝐴𝑘+1 = 𝐴𝑘 −
1
2
𝐴𝑘(𝐴′

𝑘𝐴𝑘 − 𝐼) = 3
2
𝐴𝑘 −

1
2
𝐴𝑘𝐴

′
𝑘𝐴𝑘,

initialized at 𝐴0 =
1

𝜎max(𝑊 )𝑊 .

We compute
𝜕𝑃Björck

𝜕𝑊

|

|

|

|𝑊
using standard backpropagation but treat 𝜎max(𝑊 ) as a constant.

D The straight-through-estimator

Considering 𝛼 as fixed, the mapping 𝑊 ⟼ 𝑞𝑘(𝑊 ) is piecewise constant. Its gradient at 𝑊 , denoted
as 𝜕𝑞𝑘

𝜕𝑊
|

|

|𝑊
, is either undefined or 0. This issue is well-known in quantization-aware training, which

aim to minimize an objective 𝐿(𝑞𝑘(𝑊 )) with respect to 𝑊 , where 𝑊𝑞 ⟼ 𝐿(𝑊𝑞) is the learning
loss. Backpropagating the gradient using the chain rule

𝜕𝐿◦𝑞𝑘
𝜕𝑊

|

|

|

|𝑊
= 𝜕𝐿

𝜕𝑊𝑞

|

|

|

|

|𝑞𝑘(𝑊 )

𝜕𝑞𝑘
𝜕𝑊

|

|

|

|𝑊

is either not possible or results in a null gradient in this context.

To address this issue, backpropagation through the quantizer is performed using the straight-through
estimator (STE) [29, 11, 18]. The STE approximates the gradient using

𝜕𝐿◦𝑞𝑘
𝜕𝑊

|

|

|

|𝑊
≈ 𝜕𝐿

𝜕𝑊𝑞

|

|

|

|

|𝑞𝑘(𝑊 )
.

When minimizing models that involve 𝑞𝑘(𝑊 ), we consistently approximate the gradient using the
STE and treat 𝛼 as if it were independent of 𝑊 .

7Since it is not central to our article, we assume that all the entries of 𝑊 ℎ𝑖−1 + 𝑈𝑥𝑖 are non-zero, ensuring
that the Jacobian and 𝜎′ are well-defined.
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E Proof of the bounds (2) and (3)

Let us first prove (2). Assume 𝑊 is orthogonal and denote 𝐻 = 𝑊𝑞−𝑊 , where 𝑊𝑞 = 𝑞𝑘(𝑊 ). Since
𝑊 is orthogonal, we have ‖𝑊𝐻 ′

‖𝐹 = ‖𝐻 ′
‖𝐹 = ‖𝐻‖𝐹 , and 𝑊𝑊 ′ = 𝐼 . Using these equations,

we obtain:

‖𝑊𝑞𝑊
′
𝑞 − 𝐼‖𝐹 = ‖(𝑊 +𝐻)(𝑊 +𝐻)′ −𝑊𝑊 ′

‖𝐹

= ‖𝑊𝐻 ′ +𝐻𝑊 ′ +𝐻𝐻 ′
‖𝐹

≤ 2‖𝑊𝐻 ′
‖𝐹 + ‖𝐻𝐻 ′

‖𝐹

≤ 2‖𝐻‖𝐹 + ‖𝐻‖

2
𝐹 .

Considering that, with the quantization scheme defined in Section 3.3, we have ‖𝐻‖max ≤
𝛼

2𝑘−1 =
‖𝑊 ‖max
2𝑘−1 and noting that, since 𝑊 is orthogonal, ‖𝑊 ‖max ≤ 1, we have the inequalities

‖𝐻‖max ≤
1

2𝑘−1
. (5)

We then deduce that ‖𝐻‖𝐹 ≤ 𝑛ℎ‖𝐻‖max ≤
𝑛ℎ
2𝑘−1 . This leads to

‖𝑊𝑞𝑊
′
𝑞 − 𝐼‖𝐹 ≤ 2

𝑛ℎ
2𝑘−1

+
( 𝑛ℎ
2𝑘−1

)2

and (2) holds.

We prove (3) similarly. We first remark that, using (5), we also have 𝜎max(𝐻) ≤ 𝑛ℎ‖𝐻‖max ≤
𝑛ℎ
2𝑘−1

and that, since 𝑊 is orthogonal, we obtain

𝜎min(𝑊𝑞) ≥ 𝜎min(𝑊 ) − 𝜎max(𝐻) ≥ 1 −
𝑛ℎ
2𝑘−1

and
𝜎max(𝑊𝑞) ≤ 𝜎max(𝑊 ) + 𝜎max(𝐻) ≤ 1 +

𝑛ℎ
2𝑘−1

.

We conclude that (3) holds.

F Activation quantization and complexity

Representation: We use classical notations for fixed-point arithmetics. For integers 𝑘 ≥ 0 and
𝑙 ≥ 1, the set of 𝑙 bits fixed-point numbers with 𝑘 bits for the fractional part is denoted

Q𝑙,𝑘 = 1
2𝑘

r
−2𝑙−1, 2𝑙−1 − 1

z
⊂
[

−2𝑙−𝑘−1, 2𝑙−𝑘−1
[

⊂ ℝ.

When 𝑙 = 𝑘 + 1, we simply denote

Q𝑘 = Q𝑘+1,𝑘 = 1
2𝑘

q
−2𝑘, 2𝑘 − 1

y
⊂ [−1, 1[ .

Multiplications: With these notations, the result of the multiplication of two fixed-point numbers
𝑞 ∈ Q𝑙,𝑘 and 𝑞′ ∈ Q𝑙′,𝑘′ is such that 𝑞.𝑞′ ∈ Q𝑙+𝑙′−1,𝑘+𝑘′ .

Thus, the result of the multiplication of 𝑞 ∈ Q𝑘 by 𝑞′ ∈ Q𝑘′ is such that 𝑞.𝑞′ ∈ Q𝑘+𝑘′+1,𝑘+𝑘′ = Q𝑘+𝑘′ .

Additions: We only add fixed-point numbers with the same fractional size 𝑘. For instance, for 𝑞
and 𝑞′ ∈ Q𝑘 we have 𝑞 + 𝑞′ ∈ Q𝑘+2,𝑘.

Link with weight quantization: In Section 3.3, we consider a number of bits 𝑘 ∈ ℕ and, for the
quantization of the recurrent weights matrix 𝑊 ∈ ℝ𝑛ℎ×𝑛ℎ , we consider 𝛼𝑊 = ‖𝑊 ‖max > 0 and the
set of possible values for the entries of 𝑞𝑘(𝑊 ) is included in 𝛼𝑊 Q𝑛ℎ×𝑛ℎ

𝑘−1 . We write 𝑞𝑘(𝑊 ) = 𝛼𝑊 𝑊 ,

where 𝑊 ∈ Q𝑛ℎ×𝑛ℎ
𝑘−1 .

Similarly, for input weights 𝑈 ∈ ℝ𝑛ℎ×𝑛𝑖 , we consider 𝛼𝑈 = ‖𝑈‖max > 0 such that 𝑞𝑘(𝑈 ) = 𝛼𝑈𝑈 , for
𝑈 ∈ Q𝑛ℎ×𝑛𝑖

𝑘−1 .
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Input and Hidden state quantization The quantized hidden-state ℎ𝑡, for 𝑡 ∈ J1, 𝑇 K, is encoded
using 𝑘𝑎 bits, for 𝑘𝑎 ≥ 1. We also consider a fixed 𝛼ℎ > 0 such that the quantized hidden-states are
ℎ𝑡 = 𝛼ℎℎ̃𝑡, with ℎ̃𝑡 ∈ Q𝑛ℎ

𝑘𝑎−1
. Given a fixed 𝛼ℎ > 0, to avoid the confusion with 𝑞𝑘𝑎 whose scaling

parameter is variable, we denote by 𝑞𝛼ℎ𝑘𝑎 (𝑎) the closest element of 𝑎 ∈ ℝ, in 𝛼ℎQ𝑘𝑎−1. We extend this
definition to vectors.

In practice, 𝛼ℎ needs to be large enough so that 𝛼ℎQ𝑘𝑎−1 covers the interval of values of the full-
precision hidden-state variable entries. We can, however, increase 𝛼ℎ to some extent without
sacrificing performance. We will use this possibility later on.

Similarly, we quantize any input 𝑥𝑡, for 𝑡 ∈ J1, 𝑇 K using 𝑘𝑖 bits, for 𝑘𝑖 ≥ 1. For simplicity of
notations, we still denote 𝑥𝑡 as the quantized inputs. Using a fixed scaling factor 𝛼𝑖 > 0, we write
𝑥𝑡 = 𝛼𝑖�̃�𝑡, where �̃�𝑡 ∈ Q𝑛𝑖

𝑘𝑖−1
.

Again, 𝛼𝑖 can be chosen quite freely. In practice, we use the following values.

• For the copy-task and PTB, since the entries of 𝑥𝑡 are either 0 or 1, for all 𝑡, we use 𝛼𝑖 = 2.
Notice that the quantization does not affect the input as soon as 𝑘𝑖 ≥ 2.

• For the two pixel-by-pixel MNIST tasks, since the entries of 𝑥𝑡 are normalized 8 bit unsigned
integer value in [0, 1], we take 𝛼𝑖 = 1. The quantization does not affect the input as soon as
𝑘𝑖 ≥ 9.

Rescaling 𝑞𝑘(𝑈 ): It can be shown by induction that, for any real number 𝜆 > 0, and for all inputs
(𝑥𝑡)𝑇𝑡=1, the vanilla RNN of parameters (𝑊 ,𝑈, 𝑉 , 𝑏𝑜) using ReLU8 has the same output as the vanilla

RNN of parameters (𝑊 ,𝜆𝑈, 1𝜆𝑉 , 𝑏𝑜).

Indeed, considering an input (𝑥𝑡)𝑇𝑡=1, denoting (ℎ𝜆𝑡 )
𝑇
𝑡=1 the hidden-state variables when using

the parameters (𝑊 ,𝜆𝑈, 1𝜆𝑉 , 𝑏𝑜), and using (1), we have ℎ𝜆1 = 𝜆ℎ1, from which we obtain
ℎ𝜆2 = 𝜎(𝑊 𝜆ℎ1 + 𝜆𝑈𝑥2) = 𝜆ℎ2 etc

In fact, we have for all 𝑡 ∈ J1, 𝑇 K, ℎ𝜆𝑡 = 𝜆ℎ𝑡. Using 1
𝜆𝑉 leads to the announced statement.

In the sequel, we use this idea and instead of applying the network of quantized weights
(𝑞𝑘(𝑊 ), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜) = (𝛼𝑊 𝑊 , 𝛼𝑈𝑈, 𝑉 , 𝑏𝑜), for 𝑊 ∈ Q𝑛ℎ×𝑛ℎ

𝑘−1 and 𝑈 ∈ Q𝑛ℎ×𝑛𝑖
𝑘−1 , we take 𝜆 = 1

𝛼𝑖𝛼𝑈
and equivalently apply the network of parameters (𝛼𝑊 𝑊 , 1

𝛼𝑖
𝑈, 𝛼𝑖𝛼𝑈𝑉 , 𝑏𝑜).

The fixed-point arithmetic recurrence: For simplicity of notation, we drop the exponent 𝜆 and
remind that the quantized hidden-state variable is ℎ𝑡 = 𝛼ℎℎ̃𝑡 ∈ 𝛼ℎQ𝑛ℎ

𝑘𝑎−1
, for a fixed value of 𝛼ℎ that

we will choose later on, and a quantized input 𝑥𝑡 = 𝛼𝑖�̃�𝑡 ∈ 𝛼𝑖Q
𝑛𝑖
𝑘𝑖−1

. We define the quantized ReLU

function by the composition 𝑞𝛼ℎ𝑘𝑎 ◦𝜎.

The recurrence (1) using parameters (𝛼𝑊 𝑊 , 1
𝛼𝑖
𝑈, 𝛼𝑖𝛼𝑈𝑉 , 𝑏𝑜) and quantized ReLU becomes

𝛼ℎℎ̃𝑡 = ℎ𝑡 = 𝑞𝛼ℎ𝑘𝑎 ◦𝜎
(

𝛼𝑊𝑊 ℎ𝑡−1 +
1
𝛼𝑖
𝑈𝑥𝑡

)

= 𝑞𝛼ℎ𝑘𝑎 ◦𝜎
(

𝛼𝑊 𝛼ℎ𝑊 ℎ̃𝑡−1 + 𝑈�̃�𝑡
)

The matrix-vector multiplications 𝑊 ℎ̃𝑡−1 and 𝑈�̃�𝑡 can be computed using fixed-point multiplications
and additions. We leverage the freedom in choosing 𝛼ℎ to ensure that the multiplication by 𝛼𝑊 𝛼ℎ can
be performed with a simple bit-shift. More precisely, to perform the Post-Training Quantization of
the activation, given the quantized weights, we first compute maxℎ = max𝑡∈J1,𝑇 K ‖ℎ𝑡‖∞, for all the
full-precision ℎ𝑡 computed for the inputs in the train and validation datasets. We expect the constraint

𝛼ℎ ≥ maxℎ (6)
8We do not provide the details here but this idea can be adapted to modReLU.
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Table 5: Value of 𝛼𝑊 and 𝛼ℎ for activation quantification across the datasets and bitwidth.

Model weight Copy-task sMNIST pMNIST PTB
bitwidth 𝛼𝑊 𝛼𝑊 𝛼ℎ 𝛼𝑊 𝛼𝑊 𝛼ℎ 𝛼𝑊 𝛼𝑊 𝛼ℎ 𝛼𝑊 𝛼𝑊 𝛼ℎ

STE-Bjorck

4 − − 0.4338 2.0 0.3661 1.0 0.1952 1.0
5 0.2651 4.0 0.3656 2.0 0.3444 1.0 0.2350 1.0
6 0.2818 4.0 0.4094 4.0 0.3866 1.0 0.1661 1.0
8 0.2609 4.0 0.4073 2.0 0.6007 2.0 0.4827 1.0

Table 6: Computational complexity for matrix-vector multiplications in the recurrent layer of the
RNN. FP stands for in floating-point arithmetic, fpp stands for fixed-point precision additions, fpp𝑙,𝑙′
stands for fixed-precision multiplications between numbers coded using 𝑙 and 𝑙′ bits. We neglect the
bit-shifts and the accesses to the look-up table.

Layer Operation Full-precision Quantized weights Fully Quantized

Input matrix Mult. 𝑛𝑖.𝑛ℎ FP 𝑛ℎ FP 𝑛𝑖.𝑛ℎ fpp𝑘,𝑘𝑖
Add. 𝑛𝑖.𝑛ℎ FP 𝑘.𝑛𝑖.𝑛ℎ FP 𝑛𝑖.𝑛ℎ fpp

Recurrent matrix Mult. 𝑛ℎ.𝑛ℎ FP 𝑛ℎ FP 𝑛ℎ.𝑛ℎ fpp𝑘,𝑘𝑎
Add. 𝑛ℎ.𝑛ℎ FP 𝑘.𝑛ℎ.𝑛ℎ FP 𝑛ℎ.𝑛ℎ fpp

to limit the saturation effects of the activation quantization. We finally take for 𝛼ℎ the smallest
number satisfying the constraint (6) such that 𝛼𝑊 𝛼ℎ is a power of 2. The values of 𝛼𝑊 𝛼ℎ used in the
experiments are given in Table 5.

Finally, all the entries of 𝜎
(

𝛼𝑊 𝛼ℎ𝑊 ℎ̃𝑡−1 + 𝑈�̃�𝑡
)

belong to finite set whose size depends on

(𝑘, 𝑘𝑎, 𝑘𝑖) and 𝛼𝑊 𝛼ℎ. We can therefore directly compute ℎ̃𝑡 using a simple look-up table with-
out any floating point computation.

Complexity evaluation Table 6 gives the computational complexities for the matrix-vector multi-
plications appearing in the recurrent layer of the full-precision Floating Point RNN, the RNN whose
weights have been quantized, called Quantized weights, and the Fully Quantized RNN.

For RNNs using quantized weights, i.e. for the third column of Table 6, for instance for 𝑊 , we
decompose

𝑞𝑘(𝑊 ) =
𝛼𝑊
2𝑘−1

(

−2𝑘−1𝐵𝑘−1 +
𝑘−2
∑

𝑖=0
2𝑖𝐵𝑖

)

where, for all 𝑖 ∈ J0, 𝑘 − 1K, 𝐵𝑖 ∈ {0,+1}𝑛ℎ×𝑛ℎ is a binary matrix. This leads to the complexities in
the third column of Table 6.

For the Fully quantized network described in this section, we obtain the complexities in the last
column of Table 6.

Finally, for the copy-task and PTB, since the inputs 𝑥𝑡 are one-hot encoded and therefore binary,
the input layer can be computed using only 𝑛ℎ multiplications and (𝑘𝑖 − 1).(𝑛𝑖 − 1).𝑛ℎ additions in
floating point arithmetic, in the third column of Table 6, and fixed-precision arithmetic in last columns
of Table 6 respectively.

G Complements on the Copy-task experiments

Detailed task description: This task is the same experiment as in [66], based on the setup defined
by [30, 5]. The copy-task is known to be a difficult long-term memory benchmark, that classical
LSTMs struggle to solve [5, 6, 59, 27, 40, 7].

Here, input data examples are in the form of a sequence of length 𝑇 = 𝑇0+20, whose first 10 elements
represent a sequence for the network to memorize and copy. We use a vocabulary 𝑉 = {𝑎𝑖}

𝑝
𝑖=1 of

𝑝 = 8 elements, plus a blank symbol 𝑎0 and a delimiter symbol 𝑎𝑝+1. Each symbol 𝑎𝑖 is one-hot
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Figure 2: Evolution of Test Loss During Training for the copy-task with 𝑛ℎ = 256. (Left) STE-
projUNN ; (Right) STE-Bjorck.

encoded, resulting in an input time series where 𝑛𝑖 = 10 and an output time series where 𝑛𝑜 = 9 (𝑎𝑝+1
is not a target value).

An input sequence has its first 10 elements sampled independently and uniformly from 𝑉 , followed
by 𝑇0 occurrences of the element 𝑎0. Then, 𝑎𝑝+1 is placed at position 𝑇0 + 11, followed by another 9
occurrences of 𝑎0. The RNN is tasked with producing a sequence of the same length, 𝑇0 + 20, where
the first 𝑇0 + 10 elements are set to 𝑎0, and the last ten elements are a copy of the initial 10 elements
of the input sequence.

The naive baseline consists of predicting 𝑇0+10 occurrences of 𝑎0 followed by 10 elements randomly
selected from 𝑉 . Such a strategy results in an expected cross-entropy of 10 log 8

𝑇0+20
.

Hyperparameters: We use, as in [41], 512000 training samples, and 100 test samples.

As described in [41], for projUNN-D (i.e. projUNN (FP), and STE-projUNN strategies), we use
Henaff initialization [28]. For all approaches, we use modReLU for the activation function 𝜎 [27].

The initial learning rate is 7𝑒 − 4 for projUNN-D (i.e. projUNN (FP), and STE-projUNN strategies)
A divider factor of 32 is applied for recurrent weights update, as described in [41]. For STE-Bjorck
and Bjorck (FP) the initial learning rate is set to 1𝑒 − 4. For all methods, a learning rate schedule is
applied by multiplying the learning rate by 0.9 at each epoch. We use the RMSprop optimizer for
projUNN-D (i.e. projUNN (FP) and STE-projUNN strategies), applying the projUNN-D algorithm
with the LSI sampler and a rank 1 (as described in [41]). For STE-Bjorck, we use the classical Adam
optimizer. Batch size is set to 128.

The training spanned 10 epochs.

For LSTM (FP), we report the results given by [66], which indicates that in this setting LSTM (FP)
remains stuck at the naive baseline.

Complementary results: We present on Figure 2 the evolution of test loss during the training for
STE-projUNN and STE-Bjorck, for several bitwidths.

We present the results for the copy-task in Table 7 with 𝑇0 = 1000 time steps and 𝑛ℎ = 190. The
conclusions drawn are similar to those depicted in Table 1, where 𝑇0 = 1000 and 𝑛ℎ = 256. The
main difference between the results in Table 7 for 𝑛ℎ = 190 and Table 1 for 𝑛ℎ = 256 lies in the fact
that a smaller value of 𝑛ℎ allows achieving comparable performance but with a larger bitwidth 𝑘.
There appears to be a trade-off between hidden size and bitwidth. Ideally, the trade-off should be
optimized in order to diminish the networks size.

We present in Table 8 the results for the copy-task with 𝑇0 = 2000 time-steps and 𝑛ℎ = 256. This
task is more challenging to learn. Both STE-projUNN and STE-Bjorck needs a quantization that uses
6 bits reach a performance below the naive baseline. It seems likely that increasing the hidden size 𝑛ℎ
would allow for a reduction in bitwidth.
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Table 7: Performance for STE-Bjorck and STE-ProjUNN for the Copy-task for 𝑇0 = 1000 and
𝑛ℎ = 190 for several weight bitwidths.

Model 𝑇0 𝑛ℎ
weight

bitwidth

FP 5 6 8

STE-Bjorck 1000 190 8.1e-6 1.4e-2 1.0e-3 3.2e-05

STE-ProjUNN 1000 190 6.0e-10 2.9e-3 6.4e-4 2.4e-08

Table 8: Performance for STE-Bjorck and STE-ProjUNN on the Copy-task for 𝑇0 = 2000 and
𝑛ℎ = 256 for several weight bitwidths.

Model 𝑇0 𝑛ℎ
weight

bitwidth

FP 5 6 8

STE-Bjorck 2000 256 8.9e-6 NC 9.4e-3 4.3e-05

STE-ProjUNN 2000 256 4.2e-11 NC 7.1e-4 7.5e-06

H Complements on the sMNIST/pMNIST task experiments

Hyperparameters: We use the 60, 000 training samples and 10, 000 test samples from the MNIST
dataset.

As described in [41], we employ a random orthogonal matrix initialization for the recurrent weight
matrix. The activation function 𝜎 is ReLU for STE-Bjorck, and for PTQ and STE-pen in the ablation
study of Section 5.4. We utilize modReLU [27] for projUNN-D (i.e. projUNN (FP), STE-projUNN
strategies), as performances achieved with ReLU are inferior.

The initial learning rate is 1𝑒 − 3 for all strategies and weights. It remains constant for STE-pen, in
the ablation study. A learning rate schedule is applied by multiplying the learning rate by 0.2 every
60 epochs for projUNN-D (i.e. projUNN (FP) and STE-projUNN strategies) and STE-Bjorck.

We utilize the RMSprop optimizer for projUNN-D (i.e. projUNN (FP) and STE-projUNN strategies),
implementing the projUNN-D algorithm with the LSI sampler and a rank of 1 (as described in [41]).
For STE-Bjorck and STE-pen we employ the classical Adam optimizer.

For STE-pen, the regularization parameter 𝜆, which governs the trade-off between optimizing the
learning objective and the regularizer (see Equation (7)), is set to 1𝑒 − 1.

The batch size is set to 64 for STE-pen. For all other approaches, it is set to 128.

The training spanned 200 epochs.

LSTM results were taken from [4] for sMNIST and [41] for pMNIST.

For FastRNN, results for sMNIST task were given in [42]. For pMNIST task, we set the hidden
layer size to 𝑛ℎ = 128, using Tanh and Sigmoid as activation function for recurrent and the gate, as
described in [42].

Initial learning rate is set to 1𝑒−3, and a learning rate schedule is applied by multiplying the learning
rate by 0.7 every 60 epochs. Batch size is also set to 128. We also use the classical Adam optimizer.

Complementary results: We present on Figure 3 the evolution of training accuracy during the
training for STE-projUNN and STE-Bjorck, for several bitwidths.

We present the results for pMNIST in Table 9 with a larger hidden size, 𝑛ℎ = 360. The qualitative
conclusions drawn are similar to those depicted in Table 1 for 𝑛ℎ = 170. Note that STE-Bjorck with
𝑛ℎ = 360 achieves an accuracy higher than 93% even for 3 − 𝑏𝑖𝑡𝑠 quantization but with a model
parameters size of 62 kBytes.
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Figure 3: Evolution of the accuracy on the training set during training for pMNIST with 𝑛ℎ = 170.
(Left) STE-projUNN ; (Right) STE-Bjorck.

Table 9: Performance for STE-Bjorck and STE-ProjUNN on the pMNIST 𝑛ℎ = 360 for several
weight bitwidths

Model 𝑛ℎ
weight

bitwidth

FP 3 5 6 8

STE-Bjorck 360 95.43 93.32 95.71 95.51 95.20

STE-ProjUNN 360 93.28 44.29 92.17 93.06 93.10

I Complements on the Character level Penn TreeBank experiments

Detailed task description: The Penn TreeBank dataset consists of sequences of characters, utilizing
an alphabet of 50 different characters. The dataset is divided into 5017K training characters, 393K
validation characters, and 442K test characters. Sentences are padded with a blank value when
their size is less than the fixed sequence length of 150 characters. The task aims to predict the next
character based on the preceding ones. Formally expressed as time series, each sentence represents
an input time series of size 𝑛𝑖 = 50 (since characters are one-hot encoded) with 𝑇 = 150, and the
corresponding output time series is identical to the input time series but shifted by one character.

The models are evaluated using the Bit Per Character measure (BPC), which is the base-2 logarithm
of the likelihood on masked outputs (to exclude padded values for evaluation).

Hyperparameters: As described in [41], we take a random orthogonal matrix initialization for the
recurrent weights. We use ReLU as the activation function 𝜎 for STE-Bjorck. For projUNN-D (i.e.,
projUNN (FP) and STE-projUNN strategies), we utilize modReLU [27] as the activation function,
since performances achieved with ReLU were found to be inferior.

The initial learning rate is set to 1𝑒 − 3 for all strategies and weight types. A divider factor of 8 is
applied to recurrent weight updates for projUNN strategies. A learning rate schedule is implemented
by multiplying the learning rate by 0.2 every 20 epochs all strategies.

We employ the RMSprop optimizer for projUNN-D, utilizing the projUNN-D algorithm with the LSI
sampler and a rank 1, as described in [41]. For STE-Bjorck, we use the classical Adam optimizer.

The batch size is set to 128.

The training spanned 60 epochs.

For FastRNN, we set the hidden layer size to 𝑛ℎ = 1024, using Tanh and Sigmoid as activation
function for recurrent and the gate, as described in [42].

Initial learning rate is set to 1𝑒−4, and a learning rate schedule is applied by multiplying the learning
rate by 0.7 every 40 epochs. We use the classical Adam optimizer. Batch size is also set to 128. The
training spanned 120 epochs.
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Table 10: Performance for STE-Bjorck and STE-ProjUNN on Penn TreeBank with 𝑛ℎ = 2048 and
several weight bitwidths

Model 𝑛ℎ
weight

bitwidth

FP 4 5 6 8

STE-Bjorck 2048 1.45 1.53 1.45 1.43 1.45

STE-ProjUNN 2048 1.60 NC 1.79 1.66 1.60

Table 11: Influence of hyperparameters (Learning Rate, Batch size, intialization) on performances of
STE-Bjorck for bitwidth 𝑘 = 5

𝑘 hyperparameters

LR Batch size Random initialization

1e-4 1e-3 1e-2 1e-1 64 128 256 512 min median max
5 1.803 1.490 1.506 2.087 1.482 1.490 1.510 1.570 1.484 1.490 1.494

Complementary results: Table 10 presents supplementary results for a larger hidden size of
𝑛ℎ = 2048. Most results are similar to those obtained with 𝑛ℎ = 1024 for STE-Bjorck. While
STE-ProjUNN strategy achieves better results than those with 𝑛ℎ = 1024, they are still inferior to the
one obtained by STE-Bjorck strategy.

Influence of hyperparameters: Table 11 presents the influence of hyperparameters on the perfor-
mances of the PTB task for a the bitwidth 𝑘 = 5. Experiments were done for other task and other
bitwidth with the same conclusions and are not reported.

To obtain the figures on the right of Table 11, we run STE-Bjorck 5 times starting each time from
different random initialization. We observe a variation of amplitude 0.01 BPC depending on the
random initialization changes. We also observed, but do not report here, that, as expected, the greater
the bitwidth, the smaller the variance.

In the middle of Table 11, we see that batch size influences performance, with larger batch sizes
generally leading to worse outcomes. This effect may be related to the number of update steps during
training and could be mitigated by increasing the number of epochs.

On the left of Table 11, we see that the initial value of the learning-rate impacts the convergence, as
it is often the case: very small learning-rates tend to evolve slowly, requiring more epochs, while
excessively large rates fail to learn. The range of acceptable learning-rates is reasonably large.

J Complements on a regression task: Adding task

Detailed task description: We consider the Adding task as described in [5]. In this task, the input
to the RNN is a time series (𝑥𝑡)𝑇𝑡=1 ∈ (ℝ2)𝑇 . Denoting for all 𝑡, 𝑥𝑡 = (𝑥[0]𝑡, 𝑥[1]𝑡), the sequence
(𝑥[0]𝑡)𝑇𝑡=1 consists of random scalars sampled independently and uniformly from the interval [0, 1],
while (𝑥[1]𝑡)𝑇𝑡=1 consists of zeros except for two randomly selected entries set to 1. The positions of
the first and second occurrences of 1 are randomly selected, each following a uniform distribution
over the intervals J1, 𝑇 ∕2K and J𝑇 ∕2 + 1, 𝑇 K, respectively. The output is the sum of the two scalars
from the first sequence, located at the positions corresponding to the 1s in the second sequence:
∑

𝑡 𝑥[0]𝑡 ⋅ 𝑥[1]𝑡. As 𝑇 increases, this task evolves into a problem that requires longer-term memory.
Naively predicting 1 (the average value of the sum of two independent random variables uniformly
distributed in [0, 1]) for any input sequence yields an expected mean squared error (MSE) of ≈ 0.167,
serving as our naive baseline.

Hyperparameters: We follow [27] for most settings and consider 𝑇 = 750. We use as in [41],
100000 training samples, and 2000 test samples.

24



Table 12: Performance for STE-Bjorck and STE-ProjUNN on Adding-task 𝑇 = 750 with 𝑛ℎ = 170
and several weight bitwidths (naive baseline is 0.167).

Model 𝑛ℎ
weight

bitwidth

FP 2 3 5 6 8

LSTM 170 1.0e-4

STE-Bjorck 170 9.0e-3 0.153 0.065 0.040 0.034 8.8e-3

STE-ProjUNN 170 2.0e-4 0.170 0.165 0.080 0.147 0.062

Table 13: Performance for STE-Bjorck and STE-ProjUNN on Adding-task 𝑇 = 750 with 𝑛ℎ = 400
and several weight bitwidths (naive baseline is 0.167).

Model 𝑛ℎ
weight

bitwidth

FP 2 3 5 6 8

STE-Bjorck 400 5.3e-4 0.072 0.076 0.029 0.018 4.4e-3

STE-ProjUNN 400 2.0e-4 0.164 0.167 0.083 0.097 0.043

As described in [41], for all models, the activation function 𝜎 is the Rectified Linear Unit (ReLU),
and 𝜎𝑜 is the identity. The recurrent weight matrix is initialized to the identity matrix 𝐼 .

The initial learning rate is 1𝑒 − 4 for projUNN-D (i.e. projUNN (FP) and STE-projUNN strategies),
and 1𝑒 − 3 for STE-Bjorck. A divider factor of 32 is applied for recurrent weights update for
projUNN, as described in [41]. A learning rate schedule is applied by multiplying the learning
rate by 0.94 at each epoch. We use RMSprop optimizer for projUNN-D (i.e. projUNN (FP) and
STE-projUNN strategies) method, applying the projUNN-D algorithm with the LSI sampler and a
rank 1 (as described in [41]). For STE-Bjorck we use the classical Adam optimizer.

Batch size is set to 50.

The training spanned 50 epochs.

Note that, when learning with projUNN, the recurrent weight matrix remains very close to the identity
during the learning process. Since the quantization of such matrices would result in reverting to the
identity matrix, we have modified the quantization scheme for this experiment with STE-projUNN
strategies . The quantized matrix is defined as 𝑊𝑞 = 𝐼 + 𝑞𝑘(𝑊 − 𝐼).

All the performances are in Table 12 and Table 13.

In Table 12, we see the results for LSTM (FP) are aligned with those reported in [27], demonstrating
its capability to learn this task even over 750 time steps.

In Table 12, we observe that both STE-Bjorck and STE-projUNN achieve a lower MSE than the
naive baseline, even with only 2 or 3 bits. However, the STE-projUNN strategy is more challenging
to learn than STE-Bjorck. This is possibly due to the resulting matrices being close to the identity.

We present on Table 13 the test accuracy for a larger hidden size 𝑛ℎ = 400, STE-projUNN and
STE-Bjorck. Conclusions are similar to the ones established for 𝑛ℎ = 170. When compared to the
results displayed on Table 12, the results of STE-projUNN and STE-Bjorck almost systematically
improve. In particular, STE-Bjorck significantly beats the naive baseline even for 𝑘 = 2.

K Complements on the ablation study

K.1 Post-Training Quantization (PTQ)

For any value of 𝑘, the weights with approximate orthogonality constraints, and quantized using 𝑘
bits, are (𝑞𝑘(𝑊 ), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜), where (𝑊 ,𝑈, 𝑉 , 𝑏𝑜) is the full-precision parameters obtained using
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Table 14: Computation time for different models and several tasks

Task Model 𝑛ℎ 𝑇 epoch compute
time (minutes)

Copy-task STE-Bjorck 256 1020 38
STE-ProjUNN 256 1020 39

pMNIST

FastRNN 170 784 3.8
FastGRNN 170 784 4.2
STE-Bjorck 170 784 2.2
STE-ProjUNN 170 784 4.2

PTB

FastRNN 1024 150 0.57
FastGRNN 1024 150 0.86
STE-Bjorck 1024 150 1.07
STE-ProjUNN 1024 150 0.37

the projUNN-D algorithm [41] for solving
{

min
(𝑊 ,𝑈,𝑉 ,𝑏𝑜)

𝐿(𝑊 ,𝑈, 𝑉 , 𝑏𝑜)

𝑊 is orthogonal,

where 𝐿 is the learning objective.

K.2 Penalized STE (STE-pen)

A Quantized-Aware-Training (QAT) strategy is applied to directly learn quantized weights
(𝑞𝑘(𝑊 ), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜), with approximate orthogonality constraints, for a given 𝑘. The weights
(𝑊 ,𝑈, 𝑉 , 𝑏𝑜) are obtained using an implementation of the Straight-Through Estimator (STE) to
solve the following optimization problem:

min
(𝑊 ,𝑈,𝑉 ,𝑏𝑜)

𝐿(𝑞𝑘(𝑊 ), 𝑞𝑘(𝑈 ), 𝑉 , 𝑏𝑜) + 𝜆𝑅(𝑞𝑘(𝑊 )). (7)

Here, 𝐿 represents the learning objective, 𝑅 is the regularization term enforcing orthogonality as
defined by

𝑅(𝑊 ) = ‖𝑊𝑊 ′ − 𝐼‖2𝐹 ,
and 𝜆 is a parameter that balances the trade-off between minimizing 𝐿 and 𝑅.

For the experiment reported in Section 5.4, the regularization parameter 𝜆, which governs the trade-off
between optimizing the learning objective and the regularizer is set to 1𝑒 − 1.

L Complements on computation time

Table 14 presents the computation time per epoch for each task and each model. Experiments where
done on a NVIDIA GeForce RTX 3080 GPU.
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