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Abstract
In this article motivated by physical applications, the Zermelo navigation problem on the two-dimensional

sphere with a revolution metric is analyzed within the framework of minimal time optimal control. The
Pontryagin maximum principle is used to compute extremal curves and a neat geometric frame is intro-
duced using the Carathéodory-Zermelo-Goh transformation. Assuming that the current is of revolution,
the geodesics are sorted according to a Morse-Reeb classification. We then illustrate the relevance of
this classification using various examples from physics: the Lindblad equation in quantum control, the
averaged Kepler case in space mechanics and the Landau-Lifshitz equation in ferromagnetism.
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1 Introduction

A Zermelo navigation problem on the two-dimensional sphere M with a revolution metric is defined by a
pair (g, F0) where g is a metric of revolution on M and F0 is a smooth vector field on M called the current.
Using the control framework [9], the problem can be formulated as a minimal time transfer problem between
two points q0, q1 ∈M for the single-input control-affine system

dq

dt
(t) = F0(q(t)) +

2∑
i=1

ui(t)Fi(q(t)), (1)

where the control u = (u1, u2) is subject to the constraint ‖u‖2 = u21 + u22 6 1 and q = (r, θ) are the polar
coordinates for the metric of revolution g = dr2 +m2(r) dθ2 with m(r) > 0 (see [2]). The two smooth vector
fields

F1 =
∂

∂r
, F2 =

1

m(r)

∂

∂θ

form an orthonormal frame, and the current F0 is

F0(q) = µ1(q)
∂

∂r
+ µ2(q)

∂

∂θ
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where µ1(q) is the vertical component and µ2(q) is the horizontal component. The current is said to be of
revolution if µ1 and µ2 do not depend on θ. The surface M is the (closure of) the union of two domains: the
region of weak current where ‖F0‖g < 1 and the region of strong current where ‖F0‖g > 1.

The above problem is a generalization of the historical problem of the quickest nautical path introduced
and studied by Carathéodory and Zermelo in [10, 21] where one can find a complete study in the case of a
linear current, the metric being the Euclidean metric.

Borrowing the point of view of the historical problem, a neat geometric frame was introduced in [21],
parametrizing the curves by the heading angle α of the ship, extending the control system to a single-input
control-affine system

dq̃

dt
(t) = X(q̃(t)) + v(t)Y (q̃(t))

where q̃ = (r, θ, α) and v is the time derivative of α. This transform, referred to as the Carathéodory-
Zermelo-Goh transformation, leads to analyze the problem using iterated Lie brackets of the vector fields X
and Y .

In this article we perform the analysis in the case of revolution. Thanks to Clairaut condition, the
extremal dynamics can be integrated and studied using an extension of the Morse-Reeb classification for 2D
Hamiltonian system [3]. Preliminary results where obtained in [5] in the case of an horizontal current and are
here extended to the general case. Extremal curves are sorted by distinguishing r-periodic and r-aperiodic
curves.

Another contribution of this article is to analyze three case studies. The first is the so-called averaged
Kepler case, appearing also in space mechanics [3]. Geometrically it amounts to analyzing the effect of the
curvature on the historical example. It is a case of revolution, with horizontal current only. The second case
comes from quantum control and is related to the control of the Lindblad equation. We propose a simplified
dynamics model corresponding to a case of revolution with vertical current. The final study, based on [11],
concerns the Landau-Lifshitz model for ellipsoidal ferromagnetic samples. We propose an alternative frame
to study the controllability problem of the magnetic moment.

The article is organized in two sections. In Section 2, we recall the Pontryagin maximum principle [16]
and we present the geometric tools to analyze the extremals. The Carathéodory-Zermelo-Goh transformation
is introduced in details to classify the extremals with respect to the induced action of the feedback group. In
the case of revolution, the Morse-Reeb classification is introduced to refine the classification of the extremals.
It amounts roughly to extending the Liouville-Mineur-Arnold theorem [2]. Extremals are either r-periodic
or r-aperiodic curves, in relationship with weak and strong current domains. Section 3 provides the details
of the analysis in three case studies.

2 Pontryagin maximum principle and geometric analysis of the Hamilto-
nian dynamics

2.1 Pontryagin maximum principle

For i ∈ {1, 2}, let Fi be a smooth vector field on M ; we denote by Hi(q, p) = 〈p, Fi(q)〉 the Hamiltonian
lift, in local coordinates z = (q, p) the coordinates on T ∗M with p = (pr, pθ) (adjoint vector). The pseudo-
Hamiltonian is the cost-extended Hamiltonian defined by

H(z, u) = H0(z) +
2∑
i=1

uiHi(z) + p0
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where p0 ∈ R is the dual variable of the cost. We define the maximized Hamiltonian by

M(z) = max
‖u‖≤1

H(z, u).

According to the Pontryagin maximum principle [16], any minimal (or maximal) time trajectory, solution
of (1) on [0 , tf ], must be the projection onto M of an extremal, that is a quadruple (q(·), p(·), p0, u(·)), with
(p(·), p0) 6= (0, 0), satisfying

dq

dt
(t) =

∂H

∂p
(z(t), u(t)),

dp

dt
(t) = −∂H

∂q
(z(t), u(t)), (2)

and the maximization condition
H(z(t), u(t)) = M(z(t)) (3)

for almost every t ∈ [0 , tf ]. Moreover, we have M(z(t)) = 0 for every t ∈ [0 , tf ]. Furthermore, if the
trajectory is minimal time then p0 ≤ 0 and if the trajectory is maximal time then p0 ≥ 0.

The projection ontoM of an extremal is called a geodesic. Then, the Pontryagin maximum principle says
that any minimal time trajectory must be a geodesic. Recall anyway that this is only a necessary condition
for optimality and that, conversely, a geodesic may fail to be minimal time. A geodesic is said to be strict if
it has a unique extremal lift, up to scaling. An extremal is said to be normal if if p0 6= 0 and abnormal (or
exceptional) if p0 = 0. In the normal case, it is said to be hyperbolic if p0 < 0 and elliptic if p0 > 0.

In the present situation, it follows from the maximization condition that:

• extremal controls are given by ui(z) = Hi(z)/‖p‖g, for i = 1, 2, where

‖p‖g =
(
H2

1 (z) +H2
2 (z)

)1/2
=

(
p2r +

p2θ
m2(r)

)1/2

;

• the maximized Hamiltonian is M(z) = H0(z) + ‖p‖g + p0;

• any extremal is solution of the Hamiltonian system

dq

dt
(t) =

∂M

∂p
(z(t)),

dp

dt
(t) = −∂M

∂q
(z(t)).

2.2 Carathéodory-Zermelo-Goh transformation and geodesics parameterization

In their seminal study, Carathéodory and Zermelo introduced the heading angle to parameterize the geodesics [10],
which amounts to using the Goh transformation in optimal control. Since for the geodesics one has ‖u‖ = 1,
one can set u = (cosα, sinα), α being the heading angle of the ship. Let q̃ = (q, α) be the extended state
and set

X(q̃) = F0(q) + cosαF1(q) + sinαF2(q), Y (q̃) =
∂

∂α
.

This leads to augment (1) to the single-input control-affine system:

dq̃

dt
(t) = X(q̃(t)) + v(t)Y (q̃(t)) (4)

and the derivative of the heading angle v(t) = α′(t) ∈ R is called the accessory control. Denoting z̃ = (q̃, p̃),
p̃ = (p, pα), we define the extended pseudo-Hamiltonian by

H̃(z̃, v) = 〈p̃, X(q̃) + v Y (q̃)〉+ p0.
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By [4, Chapter 6], in this representation, geodesic curves become singular trajectories of (4).
Recall that the Lie bracket of two vector fields U , V is defined by

[U, V ](q̃) =
∂U

∂q̃
(q̃)V (q̃)− ∂V

∂q̃
(q̃)U(q̃)

and is related to the Poisson bracket by {HU , HV }(z̃) = dHU (z̃) · #—

HV (z̃) by the relation

{HU , HV }(z̃) = 〈p̃, [U, V ](q̃)〉,

where HU , HV are the Hamiltonian lifts of U and V . It is easy to check that

d

dt

∂H̃

∂v

∣∣∣∣
(q̃,p̃,v)

= 〈p̃, [Y,X](q̃)〉,

∂

∂v

d2

dt2
∂H̃

∂v

∣∣∣∣
(q̃,p̃,v)

= 〈p̃, [[Y,X], Y ](q̃)〉.

Proposition 1. Defining

D = det(Y, [Y,X], [[Y,X], Y ]),

D′ = det(Y, [Y,X], [[Y,X], X]),

D′′ = det(Y, [Y,X], X),

any extremal control v is given by the feedback

v(t) = vs(q̃(t)) = −D
′(q̃(t))

D(q(t))
(5)

and the geodesics are solutions of

dq̃

dt
(t) = X(q̃(t)) + vs(q̃(t))Y (q̃(t)) = Xs(q̃(t)). (6)

Moreover:

• hyperbolic geodesics are in the region where DD′′ > 0;

• elliptic geodesics are in the region where DD′′ < 0;

• abnormal (or exceptional) geodesics are in the region where D′′ = 0.

Proof. We refer to [4, Sec. 3.4]. A singular control-trajectory pair (q̃, v) satisfies

HY (z̃) = {HY , HX}(z̃) = 0

{{HY , HX}, HX}(z̃) + v {{HY , HX}, HY }(z̃) = 0

and this leads to

0 = 〈p̃, Y (q̃)〉 = pα,

0 = 〈p̃, [Y,X](q̃)〉,
0 = 〈p̃, [[Y,X], X](q̃) + v [[Y,X], Y ](q̃)〉.

Hence, since p̃ ∈ R3\{0}, p̃ can be eliminated. Moreover, every geodesic is strict and D(q̃) is never vanishing.
Hence, the geodesic control v(·) is given by (5). The geodesic classification follows.
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2.3 Feedback pseudo-group Gf and singularity analysis

Given a pair (X,Y ) of vector fields, the set of triples (ϕ, α, β), where ϕ is a local diffeomorphism and where
u = α(x)+β(x)u′, with β 6= 0, is a feedback, acts on (X,Y ). This action induces the pseudo-feedback group
Gf .

Theorem 1 ([4]). Let λs be the mapping which yields for each pair (X,Y ) the dynamics (6). Then λs is a
covariant mapping, i.e., the following diagram is commutative:

(X,Y ) Xs

(X ′, Y ′) X ′s

λs

Gf Gf

λs

Proof. The proof follows from straightforward computations on the determinants D, D′.

Definition 1. We define the collinear set by C = {q | ∃α, F0(q) + cosαF1(q) + sinαF2(q) = 0}.

Proposition 2.

1. The geodesic curves are immersed curves outside of the collinear set.

2. Only abnormal geodesics can be non-immersed curves when meeting the collinear set.

Proof. This comes from the relation between the set {‖F0‖g = 1} and the collinear set. Indeed take q0 ∈
{‖F0‖g = 1}, then there exists α0 such that:

F0(q0) + cosα0F1(q0) + sinα0F2(q0) = 0

so that for the dynamics q̇ = 0 when meeting the collinear set. If q(t) is a geodesic, one has pα = 0 and the
Hamiltonian vanishes. It is constant along any geodesic, hence the geodesic is abnormal.

Singularity analysis. A remarkable property of the geodesics already observed in the historical example
(see [10]) is the existence of a cusp singularity for the abnormal curves when meeting the set {‖F0‖g = 1}.
This serves as a model to construct a normal form to analyze in a general framework this situation [6].

Theorem 2. Let q1 ∈ {‖F0‖g = 1}. Let σ be a geodesic such that q1 = σ(0) is not an immersion at t = 0
and α1 be the heading at t = 0. Then the geodesic σ has an abnormal extremal lift and if α(·) is the heading
angle we have only two situations:

1. If α̇(0) 6= 0 and {‖F0‖g = 1} is regular at q1, then σ has a semi-cubical cusp at q1.

2. If α̇(0) = 0, then q̃1 = (q1, α1) is a singular point of the dynamics (6) and the spectrum of the linearized
dynamics is a feedback invariant.

Proof. The complete proof is provided in [6] but we indicate the main idea of the proof. The problem is
local in a neighborhood of q1 and we can choose coordinates (x, y) in which q1 = (0, 0), F0 = −∂/∂x and
g = a(x, y)

(
dx2 + dy2

)
(isothermal form). Moreover, F0 and F1 have opposite directions. It then suffices to

expand F0 = b(x, y)∂/∂x+ c(x, y)∂/∂y and g at (0, 0) to evaluate {‖F0‖g = 1}, D, D′ and D′′.

The following theorem describes the optimality properties of the geodesics in a conic neighborhood of the
small-time reference abnormal arc σa.
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Theorem 3. Assume that the reference abnormal arc has a semi-cubical cusp at t = 0, then for t small
enough:

1. The abnormal arc is minimal time from σa(t) = q0, t < 0, until σa(0) = q1.

2. Hyperbolic geodesics starting from q0 in a conic neighborhood of the abnormal arc are self-intersecting
and are minimal time up until their second intersection with the abnormal arc, this point being excluded.

3. Elliptic geodesics starting from q0 in a conic neighborhood of the reference abnormal are maximal time
and are confined in the weak current domain {‖F0‖g < 1}.

The behaviors of the geodesics described in Theorem 3 are represented on Figure 1.

q0

q2

q1
hyperbolic arc

abnormal arc

‖F0‖g = 1

‖F0‖g > 1

‖F0‖g < 1

Figure 1: Cusp singularity and self-intersecting arcs in a neighborhood of ‖F0‖g = 1.

Remark 1. In particular, within the framework of Theorem 3, it follows that the minimal control time
function is not continuous near the abnormal arc. This implies a loss of local controllability along this arc.

2.4 Optimality analysis

Let σ̃ be a reference geodesic defined on [0, tf ], σ̃(t) = (q(t), α(t)), σ̃(0) = (q0, α0) with q0 being a fixed initial
point. The first conjugate time along σ̃ is the first time t1c at which σ̃ ceases to be minimizing, compared
with geodesic curves q̃ such that q̃(0) = (q0, α̃0), |α0 − α̃0 small enough, that is in a conic neighborhood of
the reference geodesic. Fixing q0, the set of first conjugate points is called the conjugate locus C(q0). The
cut time tc is the first time at which σ ceases to be (globally) optimal. The set of cut points is called the
cut locus Σ(q0). Fixing q0 and q1 on M , we denote by T (q0, q1) the minimal time value function, that is,
T (q0, q1) = min tf among all trajectories q(·) such that q(0) = q0 and q(tf ) = q1. The problem is said to be
geodesically complete if for all q0, q1 ∈M there exists a minimal time geodesic joining q0 to q1.

Proposition 3.

1. Cusp points correspond to conjugate points along abnormal geodesics.

2. In a neighborhood of a cusp point q1 the time transfer from the point q0 to q2 (see Figure 1) is larger
along the hyperbolic arc than along the abnormal arc.

Proof. The first assertion comes from Theorem 3. The second assertion is obtained by straightforward
computations (see [6] for details).
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2.5 Liouville-Mineur-Arnold theorem and classification of geodesics in the Riemannian
case

We recall the standard Liouville-Mineur-Arnold theorem which is crucial to understand the Hamiltonian
dynamics (see [2]).

Theorem 4. Let (M,ω) be a 4-dimensional symplectic manifold. Let H and G be two smooth functions such
that {H,G} = 0,

#—

H,
#—

G are complete, and H, G are functionally independent. Consider the level surfaces
Tξ = {H = ξ1, G = ξ2} for any ξ = (ξ1, ξ2). If Tξ is connected and compact, then:

1. each Tξ is diffeomorphic to a 2-dimensional torus T 2 called a Liouville torus;

2. the Liouville foliation is locally trivial and there exist symplectic coordinates (I, ϕ) called action-angle
variables in which the dynamics of

#—

H become

dIk
dt

= 0,
dϕk
dt

= αk(I), k = 1, 2,

and the motion is quasi-periodic.

Application to the Riemannian case on the 2-sphere of revolution M = S2. Consider the family
of metrics on S2 given by gλ = dr2 +m2

λ(r) dθ with

m2
λ(r) =

sin2 r

1− λ sin2 r

where λ ∈ [0 , 1) is an homotopic parameter, λ = 0 corresponds to the round sphere and λ = 1 is the Grushin
case, which is singular at the equator r = π/2. They were introduced in [3]. The case λ = 4/5 corresponds
to the averaged Kepler case.

In the Riemannian case, minimizing the length is equivalent to minimize the energy so that from the
Pontryagin maximum principle we infer the following result.

Proposition 4. Geodesics are solutions of the Hamiltonian dynamics given by the Hamiltonian function

H =
1

2

(
H2

1 +H2
2

)
,

with Hi = 〈p, Fi〉, for i = 1, 2 and F1 =
∂

∂r
, F2 =

1

m(r)

∂

∂θ
. By homogeneity, one can parametrize by arc

length: H = 1/2, so that for the geodesics the r-dynamics is solution of(
dr

dt

)2

= 1− V (r, pθ) (7)

where V (r, pθ) = 1− p2θ
m2(r)

is the potential, and pθ is constant (Clairaut relation). The θ-dynamics satisfies

dθ

dt
=

pθ
m2(r)

. (8)

The metric is reflectionally symmetric with respect to the equator r = π/2 (m(r) = m(π− r)) and every
geodesic intersects the equator so that the dynamics can be integrated with q(0) = (π/2, 0).
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Proposition 5. One can assume that pθ ∈ [0 ,m(π/2)]. Geodesics are given by:

• the equator solution r = π/2 for pθ = m(π/2);

• the meridian solution for pθ = 0;

• geodesics which are quasi-periodic.

Proof. To integrate, one can substitute r by π/2 − r, so that the equator is identified to r = 0, while m(r)
is substituted by m(r) = cos2 r/(1 − λ cos2 r). Starting from the equator with 0 < pθ < 1/m(r), using the
ascending branch of (7), r oscillates periodically between −r+ ≤ r ≤ r+ where r+ is the positive root of
V (r, pθ) = 1. This leads to r-periodic geodesics.

The second step is to integrate by quadrature the equation (8). Altogether, this gives quasi-periodic
solutions which are either periodic or dense in a 2-dimensional torus.

Hence, the Riemannian case associated to the family of metrics gλ fits in the geodesic frame of the
Liouville-Mineur-Arnold theorem, provided that the homogeneity H(λp) = λ2H(p) is taken into account.
This opens the way to analyze the Zermelo navigation problem in the case of revolution, based on the
mechanical framework, which we do next.

2.6 Classification of the geodesics for Zermelo navigation problems on the two-sphere
for revolution metrics

Motivated by the applications, we restrict our study to metrics mλ(r) = sin2 r/(1−λ sin2 r) where λ ∈ [0 , 1].
For λ = 1 this corresponds to the singular Grushin case. The current takes the form

F0(q) = µ1(r)
∂

∂r
+ µ2(r)

∂

∂θ

and the maximized Hamiltonian is

M = pr µ1(r) + pθ µ2(r) + ‖p‖g + p0 (9)

with ‖p‖g =
√
p2r + p2θ/m

2(r). Moreover, one has M = 0 and the hyperbolic, elliptic and abnormal cases
correspond respectively to p0 < 0, p0 > 0 and p0 = 0. Using the Pontryagin maximum principle, we get the
following result.

Proposition 6. The geodesics dynamics are the solutions of

dr

dt
= µ1(r) +

pr
‖p‖g

dpr
dt

= −pr µ′1(r)− pθ µ′2(r)−
p2θ
‖p‖g

m′(r)

m3(r)

 (10)

dθ

dt
= µ2(r) +

pθ
‖p‖g

1

m2(r)
(11)

and pθ = constant.

Definition 2. Fixing pθ, the Hamiltonian dynamics (10) associated to M , restricted to the (r, pr)-space, is
called the Morse-Reeb dynamics.

The main point of the study of the geodesics is to analyze the behaviors of the Morse-Reeb dynamics.
To fix the geometric frame we recall next the Morse-Reeb classification of the orbits.
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2.6.1 A recap of Reeb classification of 2d-Hamiltonian systems

In this section we present a brief recap of the construction in the 2D Hamiltonian case to deduce our
construction, the presentation being based on references [1, 2, 15]. Without losing any generality, one can
assume that the 2d-symplectic manifold is the cotangent space T ∗M of a 1d-manifold M . Let z = (p, q) be
canonical (Darboux) coordinates. Let H(p, q) be an Hamiltonian where q ∈M and α = p dq is the Liouville
form on T ∗M and the 2-form ω is the derivative dα. We assume that O = (0, 0) is an equilibrium point of
the dynamics so that DH(O) = 0. Expanding in the jet-space at O, we note H2 the quadratic term of the
Hamiltonian.

Thanks to Williamson [20], the computations of normal (Jordan) forms in the 2n-case are reduced to the
action of the symplectic group Sp(n,R). Note that from [13] each symplectomorphism is locally represented
by a generating function. Among those, each diffeomorphismQ = f(q) with ∂f/∂q invertible can be extended
to a symplectic transformation with generating mapping

S(q, P ) = f(q)TP

so that

p =

(
∂f

∂q
(q)

)T
P, Q = f(q).

The diffeomorphism is denoted ϕ and the induced symplectomorphism #—ϕ . It is called a Mathieu transfor-
mation.

Note that in 2d-case Sp(1,R) = Sl(2,R) and the canonical form coincides with the volume form. From
generic point of view we have two situations. In symplectic coordinates the quadratic Hamiltonian is given
by:

• Elliptic case: H2(P,Q) = 1
2λ(P 2 +Q2);

• Hyperbolic case: H2(P,Q) = 1
2λ(PQ).

Lemma 1. In the previous computations the only linear symplectic invariant is λ which corresponds respec-
tively to the spectrum of

#—

H2 that is ±iλ in the elliptic case and ±λ in the hyperbolic case.

The second step following [1] is to construct the Birkhoff normal form at order m where the polynomic
term of the Taylor expansion of H is truncated at order 2m and writes

Hm = h(x),

where h(x) is a polynomial of degree m depending on:

• Elliptic case: x = (P 2 +Q2);

• Hyperbolic case: x = PQ.

This normal form is obtained using the Poincaré-Dulac method reducing the Hamiltonian by successive
compositions of symplectomorphisms close to the identity and parametrized by their generating functions,
see [13] for an algorithmic description of the method. This computation leads to compute a sequence of
symplectic invariants in the jet space, generalizing the spectrum λ of the quadratic part.

Lemma 2. Using the previous calculation, one gets a sequence of symplectic invariants which are the coef-
ficients of the Taylor series of h(x) at x = 0.
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Reeb classification. The previous computation leads to introduce the Reeb classification. The Birkhoff
normal leads to compute with an arbitrary accuracy the level sets of H which are in the coordinates (P,Q):

• Elliptic case: concentric circles;

• Hyperbolic case: they are identified to hyperbolas.

Let us introduce the orbits as level sets of H which form a one-dimensional foliation of the symplectic space
identified to T ∗M . Two points of the space are called equivalent if they belong to the same orbit and we
denote by ∼ this equivalence relation. The Reeb space denoted R is the the topological quotient space
T ∗M/∼. In this construction one can define a measure µ on the quotient space by projecting the canonical
measure on T ∗M on the quotient, using the canonical projection π.

Using this approach the singular points of the dynamics associated to
#—

H are the solutions of DH = 0,
that is the singular orbits. One can use [15] for a complete description of this construction to classify globally
the level sets of the Hamiltonian H and the introduction of the Reeb graph to encode this construction.

2.6.2 Extension of the Morse-Reeb classification to the Zermelo case

Roughly spoken it amounts to classifiy the Hamiltonian dynamics from (9) restricting to Mathieu symplec-
tomorphisms in the (r, pr) space. It has to be adapted using the following obvious property.

Lemma 3. The Hamiltonians M satisfies M(λp, λp0) = λM(p, p0) for λ > 0.

Introduction of the potential. From (10), one has:

p2r +
p2θ

m2(r)
= (p0 + pr µ1(r) + pθ µ2(r))

2
. (12)

and from the dynamics (10), we deduce:(
dr

dt
− µ1(r)

)2

= 1− p2θ
m2(r)(p0 + pr µ1(r) + pθ µ2(r))

2 . (13)

In particular, eq. (13) generalizes the eq. (7) of the Riemannian case, in the case of a parallel current.

Proposition 7. In the case of a parallel current: µ1(r) = 0, the r-dynamics is described by the mechanical
system: (

dr

dt

)2

= 1− V (r, pθ) (14)

where

V (r, pθ) =
p2θ

m2(r)(p0 + pθ µ2(r))
2

is the potential.

Hence, in particular we have [5].

Proposition 8. In the case of a parallel current, an equator r = r∗ constant solution of the geodesic dynamics
corresponds to a singular point of the Morse-Reeb dynamics with p∗r = 0. The pair (r∗, p∗θ) is given by solving
V = 1 and ∂V /∂r = 0. The associated singularity is hyperbolic (resp., elliptic) if and only if ∂

2V
∂r2

< 0 (resp.,
∂2V
∂r2

> 0). A separatrix geodesic such that r(t) → r∗ as t → ∞ is necessarily associated to an hyperbolic
equator (r∗, p∗θ).

10



Definition 3. In the case of parallel current, on the two-sphere of revolution, the elliptic case splits into
short r-periodic orbits contained in one hemisphere and long periodic orbits crossing the equatorial plane.

The case of a general current. If µ1(r) is not identically zero, pr occurs in the right-hand-side of
equation (13) and hence the r-dynamics has to be analyzed in a more general framework. We proceed as
follows. One can write (12) as a second order polynomial

P (pr) = a p2r + b pr + c = 0 (15)

with

a = 1− µ21(r), b = −2µ1(r)(p
0 + pθµ2(r)), c =

p2θ
m2(r)

− (p0 + pθµ2(r))
2
.

The discriminant of the polynomial P is given by

∆ = b2 − 4ac = 4(µ21(r)− 1)
p2θ

m2(r)
+ 4(p0 + pθµ2(r))

2
.

The r-dynamics writes
dr

dt
= µ1 +

pr
‖p‖g

.

Taking the square, one gets a second order equation:

P ′(pr) = a′p2r + b′pr + c′ = 0 (16)

with

a′ = a = 1− µ21, b′ = 0, c′ = − p2θ
m2

µ21.

Hence, the Morse-Reeb classification amounts to analyze the orbits solution of (15) and the dynamics on
each orbit is given by (10). In particular, one needs to solve P = P ′ = 0 and we introduce the following [19].

Definition 4. The resultant R(P, P ′) of the two polynomial is given by the determinant of the 4× 4 matrix
a 0 a 0
b a 0 a
c b c′ 0
0 c 0 c′

 .

Computations. We fix pθ and we compute the roots of R = 0. Details are given next in the Lindblad
case where practically, the discrete symmetric group has to be used to simplify the computations.

2.7 A case study with vertical current

2.7.1 Lindblad equation and simplified current.

The dynamics in the Euclidean coordinates q = (x, y, z) are given by

dx

dt
= −Γx+ u2z,

dy

dt
= −Γy − u1z,

dz

dt
= γ− − γ+z + u1y − u2x.

11



The set of parameters Λ = (Γ, γ−, γ=) is such that: Γ > γ+/2 > 0, γ+ > γ− so that the Bloch ball : |q| 6 1
is invariant for the dynamics. The parameter Γ is called the dephasing rate. We have γ+ = γ12 + γ21,
γ− = γ12 − γ21, where γ12, γ21 are the population relaxation rates.

The control is the complex Rabi laser frequency : u = u1 + iu2 and we assume that |u| 6 1. Denoting by

G1 =

 0 0 0
0 0 −1
0 +1 0

 , G2 =

 0 0 +1
0 0 0
−1 0 0

 ,

G1 and G2 correspond respectiveley to rotations around the axis Ox and Oy. The induced metric on the
2-sphere is the Grushin metric.

In order to simplify Lie brackets computations, the original system can be written as the control-affine
system

dq

dt
= (G0q + v0) + u1G1q + u2G2q

with

G0 =

−Γ 0 0
0 −Γ 0
0 0 −γ+

 , v0 =

 0
0
γ−

 ,

which corresponds to the action of the semi-direct product Gl(3,R)⊕s R3 ⊂ Gl(4,R) on the R3-space with
coordinates q identified to the affine space (1, q). The Lie bracket being given by

[(a,A), (b, B)] = (Ab−Ba,AB −BA).

Using spherical coordinates x = ρ sin r cos θ, y = ρ sin r sin θ, z = ρ cos r, and using a control feedback
preserving the Euclidean norm, the system writes:

dρ

dt
= γ− cos r − ρ(γ+ cos2 r + Γ sin2 r), (17)

dr

dt
= −γ− sin r

ρ
+

sin 2r

2
(γ+ − Γ) + v2, (18)

dθ

dt
= − cot r v1. (19)

Susch a system is defined in the Bloch ball which is 3-dimensional while the control v = (v1, v2) is valued in
the 2-dimensional unit ball. Hence, it corresponds to sub-Finsler geometric problem. It will define a Zermelo
type navigation problem in the so-called integrable case where γ− is interpreted as a dissipation parameter
setting γ− = 0.

The analysis of the orbits fits in the previous section except that singularities occur on the equator since
the metric g is singular, in particular the equator is not a solution. Note that we can take the homotopy
parameter λ < 1, λ ∼ 1.

Lemma 4. If γ− = 0, then, the current is vertical and is zero at the equator r = π/2 and is maximal in each
hemisphere at r = π/4, π/4 + π/2. It can be compensated by a feedback provided |γ+ − Γ| < 2, thus defining
a sub-Finsler problem.

12



If we set: r̃ = ln ρ, so that the first equation of (17) can be integrated by quadrature and becomes a
cyclic variable for the dynamics. This gives in fine two cyclic variables r̃ and θ. Introducing the adjoint
vector p = (pr̃, pr, pθ) the leading maximized Hamiltonian writes

M = −(γ+ cos2 r + Γ sin2 r) pr̃ +
sin 2r

2
(γ+ − Γ) pr +

√
p2r + p2θ cot2 r + p0.

Since pr̃ is constant, this gives a family like of Zermelo navigation problems on the 2-sphere of revolution
associated to the Grushin metric given in the dual form by:

‖p‖g =
√
p2r + p2θ cot2 r.

The problem is a test bed case to develop in more details the Morse-Reeb classification, using specific
symmetries.

Lemma 5.
– One has the following symmetries.

1. Since the current is vertical (µ2 = 0), one has either dθ
dt ≡ 0 if and only if pθ = 0 and if pθ 6= 0, dθ

dt is
not vanishing. Hence, we can assume pθ > 0.

2. The Hamiltonian M is invariant for the central symmetry (r, pr) 7→ (π − r,−pr).

In particular, one has:

Lemma 6. Due to the central symmetry, r-periodic geodesics split into short periodic orbits contained in
one hemisphere and long periodic orbits crossing the equator.

Lemma 7. Since µ1 is not identically zero, the set of solutions {r | 1− µ21(r) = 0} forms barriers and with
µ1(r) = sin 2r (γ+−Γ)/2, this leads if |γ+−Γ| > 2 to two barriers in each hemisphere, in which the dynamics
is trapped.

Lemma 8. Let t 7→ (r(t), pr(t)) be an orbit of the dynamics so that |pr(t)| → +∞ as t → +∞. Then, the
supporting orbit is not compact and moreover r(t)→ r0 as |t| → +∞, where r0 is a barrier.

2.7.2 A simplified model for the complete analysis and numerical simulations

The study of the Lindblad case comes down to the analysis of the family of systems on the 2D sphere with
revolution metric given by

• the vertical current: F0 = δ sin 2r ∂∂r , where δ is a parameter.

• the metrics m2
λ(r) = sin2 r/(1− λ sin2 r) where λ ∈ [0 , 1) is a homotopic parameter.

The current is zero at the poles and at the equator and ‖F0‖g is maximal at r = π/4, π/4 + π/2. The
Finsler case corresponds to |δ| < 1. In each hemisphere the two barriers coincide in the case |δ| = 1 and
the dynamics can be studied locally by expanding sin 2r at r = π/4 to describe the transition. For the case
|δ| > 1, the controllability property can be studied using the barriers since the current is pointing either
toward the poles or toward the equator.

13



r = 0

r = π/4

r = π/2

Figure 2: Representation of the current in the North hemisphere. On the left, δ > 0 while on the right δ < 0.

Computations of the singularities of the dynamics. We have M = prµ(r) + ‖p‖g + p0, with ‖p‖g =√
p2r + p2θ/m

2
λ(r), µ(r) = δ sin 2r and m2

λ(r) = sin2 r/(1− λ sin2 r). The dynamics reads

dr

dt
=
∂M

∂pr
= µ(r) +

pr
‖p‖g

dpr
dt

= −∂M
∂r

= −pr µ′(r) +
p2θ

m3
λ(r)

m′λ(r)

‖p‖g
.

Singularity analysis. We distinguish between two cases:

• Case pr = 0. We must solve µ(r) = 0 and pθm′λ(r) = 0. Since p 6= 0, one has pθ 6= 0 and we get the
solution µ(r) = m′λ(r) = 0 which corresponds to the equator r = π/2.

• Case pr 6= 0. They correspond to additional singularities whose determination is crucial in relationship
with short periodic orbits since every solution has to encircle a singular point. From the previous
equation, they exist only in the weak current domain where ‖F0‖g ≤ 1. In the round case m′λ = 0 we
must have µ′(r) = 0.

Existence of long periodic orbits.

Lemma 9. If the level set M = 0 is compact, without singular point and has a central symmetry with respect
to the point (r, pr) = (π/2, 0), then it contains a periodic trajectory (r, pr) of period T , and if p±r (0) are
distinct then we have two distinct geodesics q+(·) and q−(·) starting from the same point and intersecting
with the same length T/2 at a point such that r(T/2) = π − r(0).

Proof. The proof is similar to the Riemannian case to construct long periodic orbits starting from the equator
r(0) = π/2. Indeed, consider the equation (15) and assume that ∆ > 0. Let p±r be the two distinct roots and
let q±(·) = (r±(·), θ±(·)) be the two corresponding distinct geodesics with initial condition p±(0), starting
from (π/2, 0) and on the same level set M + p0 = 0. Using the central symmetry, r± are T -periodic and
moreover r+(T/2) = r−(T/2), θ+(T/2) = θ−(T/2).

Corollary 1. Long r-periodic orbits correspond to quasi-periodic geodesics preserving quasi-periodic of the
Riemannian case.
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Carathéodory-Zermelo-Goh geodesic representation. We have

X = (µ(r) + cosα)
∂

∂r
+

sinα

m(r)

∂

∂θ
, Y =

∂

∂α
,

in coordinates q̃ = (r, θ, α), and we compute

[Y,X](q̃) = sinα
∂

∂r
− cosα

m(r)

∂

∂θ
,

and

[[Y,X], Y ](q̃) = cosα
∂

∂r
+

sinα

m(r)

∂

∂θ
,

[[Y,X], X](q̃) = −µ′ sinα ∂

∂r
+
m′

m
(1 + µ cosα)

∂

∂θ
.

Hence,

D(q̃) =
1

m(r)
,

D′′(q̃) =
1

m(r)
(1 + µ(r) cosα)

and

D′(q̃) = sinα
m′

m2
(1 + µ cosα)− µ′

m
sinα cosα

=
sinα

m

(
m′

m
(1 + µ cosα)− µ′ cosα

)
.

The dynamics is

dr

dt
= µ(r) + cosα,

dθ

dt
=

sinα

m(r)
,

dα

dt
= −D

′(q̃)

D(q̃)
.

The representation is interesting because it encodes the geometric objects. In particular, one can compare
with the case study of the historical example of [5].

Proposition 9. In the case of a vertical current µ(r):

1. The collinear set is the barrier given by µ(r) + cosα = sinα = 0.

2. The limit abnormal arcs in strong current domains satisfy µ(r)m(r) sinα+ 1 = 0.

3. D′ vanishes along the collinear set.
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3 Applications

3.1 Numerical simulations for the simplified Lindblad model

We consider the simplified model of the Lindblad system. We first set δ = 1.25 and r0 = π/2. We can
observe on Figure 3 the geodesic flow. One can see that the flow is trapped between the two regions of
strong current since in the North hemisphere, the current is pointing down while in the South hemisphere,
it is pointing up. We can compute the cut locus which is simply given by an arc of the initial meridian (by
symmetry), see Figure 4.

0 π 2π

θ

0

π
2

π

r

Figure 3: Lindblad problem: δ = 1.25, r0 = π/2. Geodesic flow. The red curves correspond to geodesics.
The blue strips correspond to the domain of strong current.

0 π 2π

θ

0

π
2

π

r

Figure 4: Lindblad problem: δ = 1.25, r0 = π/2. Synthesis. The red curves correspond to geodesics. The
thick plain black line on the initial meridian is the cut locus. The blue strips correspond to the domain of
strong current.
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Figure 5: Lindblad problem: δ = 1.25, r0 = π/2. Spheres. The orange curves correspond to the spheres at
times t = {1.0, 3.0, 5.0, 7.2}. The thick plain black line on the initial meridian is the cut locus. The blue
strips correspond to the domain of strong current.

To complete the numerical simulations for the Lindblad problem, we provide geodesic flows in other
settings, see Figures 6 and 7. In Figure 6, δ = −1.25 and r0 = π/2. This figure can be compared to
Figure 3. We have represented only the right part of the geodesic flow, that is associated to pθ ≥ 0. When
δ is negative, the current is pointing up is the North hemisphere and down in the South one, which explains
why the geodesics reach the regions of weak current around the poles. Once the geodesics are in these two
regions, they are trapped due to the fact that the current has only a vertical component. The cut locus is
more difficult to obtain in this case than for the case where δ = 1.25 because of the folding of the geodesic
flow inside the regions of weak current around the poles. In Figure 7, on the top, δ is positive while on the
sub-figures at the bottom, δ is negative. One the left sub-figures, the initial point is in a region of strong
current while for the right sub-figures, the initial point is in a region of weak current around the North pole.
We can notice that when δ is positive, then the (hyperbolic) geodesics reach the region of weak current
around the equator and then are trapped, converging to a barrier either in the North hemisphere or the
South. When δ is negative the (hyperbolic) geodesics reach a region of weak current around the pole and
then are trapped converging again to a barrier.

3.2 The averaged Kepler case

The Riemannian problem related to the averaged Kepler problem in space mechanics (see [3]) can be extended
to a metric on a two-sphere of revolution defined in normal coordinates by

m2(r) =
sin2 r

1− λ sin2 r

where λ is a homotopic parameter, deforming the round sphere (for λ = 0) to the singular metric called
the Grushin case (for λ = 1) and λ = 4/5 corresponds to the averaged Kepler case. For this case, we will
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Figure 6: Lindblad problem: δ = −1.25, r0 = π/2. Geodesic flow. The red curves correspond to geodesics.
The blue strips correspond to the domain of strong current.

consider a constant current on the covering space. The problem is thus given by

F0 = v
∂

∂θ
, g = dr2 +m2(r)dθ2,

where v is a non-zero constant. Depending on the current at the initial point q0 = (r0, θ0), we are in the
weak (current) case if sin2 r0 <

1
v2+λ

, strong case if sin2 r0 >
1

v2+λ
and moderate case if sin2 r0 = 1

v2+λ
. In

the case where v2 + λ < 1, the current will be weak on the whole domain. So we shall assume: v2 + λ > 1.
The following is a crucial geometric property.

Proposition 10. On the two-sphere of revolution embedded in R3, the vector field F0 defines a linear vector
field, tangent to the sphere, and it corresponds to a uniform rotation whose axis is the axis of revolution.
For the metric the equator solution is also a stationary rotation since dθ

dt is constant so that the effect of the
current can be added to this rotation.

Integration of the geodesics. From the previous proposition, the integration follows from the Rieman-
nian case. Introducing the generalized potential, recall that the r-dynamics is given by:(

dr

dt

)2

= 1− V (r, pθ).

Taking the ascending branch starting from the equator r0 = π/2, we have

dr

dt
=

(
p2θ (1− λ sin2 r)

sin2 r (p0 + pθv)2

)1/2

,

Since M = 0, ‖p‖g = −(pθv + p0), then, using a time reparameterization, one gets:

dr

ds
=

(
p2θ (1− λ sin2 r)

sin2 r

)1/2

,
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Figure 7: Lindblad problem: δ = 1.25 (Top) and δ = −1.25 (Bottom), r0 = π/2 + π/4 (Left: strong current
at r0) and r0 = π/2 + 3π/8 (Right: weak current at r0). Geodesic flow. The red curves correspond to
(hyperbolic) geodesics. The blue strips correspond to the domain of strong current.

which is like the r-dynamics in the Riemannian case, with the addition of v. Then, we can determine the
first return mapping to the equator r0 = π/2:

∆θ

2
=

∫ r+

π/2

∂M/∂pθ
∂M/∂pr

dr

where r+ is the maximum of r(t). See Figure 8 for an illustration of the geodesic flow.
The geodesic curves are symmetric with respect to the equator, the cone of admissible direction being

symmetric with respect to the equator. This leads to the following stratification of the set of geodesics, using
the variable pθ.

Proposition 11. Assume that λ = 4/5 and v = 0.8, then starting from the equator and considering only the
ascending branch, geodesics split into (see also Figure 9):

• Abnormal given by paθ = −1/v;
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Figure 8: Kepler problem: λ = 4/5 and v = 0.8. Geodesic flow. The red curves correspond to hyperbolic
geodesics. The green curves to abnormal and the blue curves to elliptic geodesics. The blue strip corresponds
to the domain of strong current.

• Hyperbolic geodesics parameterized by pθ ∈ (paθ ,m(r0));

• Elliptic geodesics parameterized by pθ ∈ (−m(r0), p
a
θ).

Moreover, in the hyperbolic case, the set of geodesics can be stratified in four different classes:

• The equator which corresponds to r = π/2, pr = 0 and pθ = m(r0).

• The two pseudo-meridians (ascending and descending ones) which correspond, on the covering space,
to the non-compact case where pθ = 0.

• Generic r-periodic orbits which split in two different families namely orbits without self-intersections,
parameterized by pθ ∈ (0,m(r0)) and orbits with self-intersections, parameterized by pθ ∈ (paθ , 0) and
±pr(0) corresponding to the symmetric orbits.

Remark 2. The other geodesics in the flow are obtained by a symmetry with respect to the equator. See
Figure 10 for the complete classification.

The cut locus in this case will split into two branches. See Figures 11 and 12 and 13. The first branch
is associated to the cusp singularity of the abnormal directions, which are symmetric with respect to the
equator. The second branch of the cut locus is the persistence of the segment formed by the equator and
related to the tame behavior of the first return mapping corresponding to non self-intersecting geodesics.
The conjugate points can be numerically evaluated. They exist for different types of geodesics but occur
after the intersection of the geodesics with the equator.

20



0.5 1.0 1.5 2.0 2.5 3.0
−3

−2

−1

0

1

2

0.5 1.0 1.5 2.0 2.5 3.0
−3

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−3

−2

−1

0

1

2

3

Figure 9: Kepler problem: λ = 4/5 and v = 0.8. Orbits in the (r, pr) plane. The blue area represents the
domain of strong current where the abnormal and elliptic extremals belong. Top-Left: abnormal orbits in
green. Top-Right: elliptic orbits in blue. Bottom: hyperbolic orbits in red. The hyperbolic orbits without
self-intersections are in dashed lines while orbits with self-intersections are in plain lines. The equator
r = π/2 is a point at (r, pr) = (π/2, 0). The two pseudo-meridians give the transition between the two types
of hyperbolic orbits. They correspond to the horizontal lines: pr = ±1.

Theorem 5. Assume that the equator r0 = π/2 is in the strong current domain. Then the cut locus has two
branches, the first branch being formed by the abnormal curves occurring in the neighborhood of the cusp point
and associated to self-intersecting geodesics and the second branch being a segment of the equator, starting
by a cusp point of the conjugate locus and associated to non self-intersecting geodesics.

3.3 The Landau-Lifshitz model for ferromagnetic ellipsoidal samples

3.3.1 Model

This model is borrowed from [8]. We consider hereafter a particular Zermelo-type system modeling the
behavior of magnetization in a ferromagnetic sample of ellipsoidal shape. We introduce the magnetization
m and an external field u playing the role of a control, both being spatially uniform. Ellipsoidal domains
have been much studied in the literature dedicated to ferromagnetism (see [12, 14, 18]).

According to [12, 14], for uniform (in space) magnetizationsm on the ellipsoidal sample, the magnetization

21



no loop
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loop and meet abnormal
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hyperbolic

Figure 10: Kepler problem: λ = 4/5 and v = 0.8. Classification of the geodesics using the initial heading
angle α0 with the parameterization pθ = m(r0) cosα0 and pr(0) = sinα0. The term loop stands for self-
interesting geodesics. The red vertical line separate the self-interesting hyperbolic geodesics to the hyperbolic
geodesics without loops. The red dashed lines separate the hyperbolic geodesics interesting an abnormal to
the one without intersection with any abnormal. The abnormals are represented by the green lines. The
blue domain corresponds to the elliptic geodesics.
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Figure 11: Kepler problem: λ = 4/5 and v = 0.8. Synthesis. The magenta curves correspond to the
conjugate locus. The thick plain black line on the equator is one branch of the cut locus. The green curves
are part of the two abnormals which are contained in the cut locus, that is why they are also represented by
dashed black lines. The blue strip corresponds to the domain of strong current.

obeys the Landau-Lifshitz equation
dm

dt
= α (h0(m)− (h0(m) ·m)m)−m ∧ h0(m) in (0, T )

m(0) = m0
(20)

where α > 0 is a damping parameter, h0(m) = −Dm + u with a time-dependent external magnetic field
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Figure 12: Kepler problem: λ = 4/5 and v = 0.8. Synthesis. The thick plain black line on the equator is
one branch of the cut locus. The green curves are part of the two abnormals which are contained in the cut
locus, that is why they are also represented by dashed black lines. The red curves correspond to hyperbolic
geodesics until their cut points. The blue strip corresponds to the domain of strong current.
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Figure 13: Kepler problem: λ = 4/5 and v = 0.8. Spheres. The orange curves correspond to spheres. One
can notice the fan shape of spheres of small radii. The thick plain black line on the initial meridian is the
cut locus. The green curves are part of the two abnormals which are contained in the cut locus, that is why
they are also represented by dashed black lines. The blue strips correspond to the domain of strong current.

u, T > 0, m(t) ∈ S2 ⊂ R3, D = diag(γ1, γ2, γ3) denotes a diagonal matrix with nonnegative coefficients,
where each γi (i = 1, 2, 3) is a constant depending only on the semi-axes. We refer for instance to [11] for
the dependence of these coefficients on the geometry. Making a change of basis, we assume without loss of
generality that 0 6 γ1 6 γ2 6 γ3 6 1.
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3.3.2 Reduction to a 2-sphere Zermelo problem

The control applied to the ferromagnetic sample is a control whose maximal intensity U > 0 is prescribed,
which leads us to write

u =

u1u2
u3

 u21 + u22 + u23 6 U2 a.e. in R+.

Using adequate changes of unknowns and time reparametrization1, this leads to a control system of the form

q̇ = F0(q) +
3∑
i=1

viFi(q) (21)

with ‖v‖ 6 1.
Since the system evolves on the sphere, we introduce the coordinates

m =

 cos r
sin r cos θ
sin r sin θ

 ,

and we denote by q = (r, θ) the polar coordinates on the 2-sphere. Hence, the vector fields in (21) are given
by

F0(q) =

 αγ1 cos r sin r + (γ2 − γ3) cos θ sin θ sin r−
α(γ2 cos2 θ + γ3 sin2 θ) cos r sin r

α(γ2 − γ3) cos θ sin θ − γ1 cos r + (γ3 sin2 θ + γ2 cos2 θ) cos r

 ,

F1(q) =

(
−α sin r

1

)
, F2(q) =

(− sin θ + α cos θ cos r

−α sin θ + cos θ cos r

sin r

)
,

F3(q) =

(
cos θ + α sin θ cos r
α cos θ − sin θ cos r

sin r

)
.

Proposition 12. The Zermelo navigation problem associated to the Landau-Lifshitz model described above
is associated to the maximized Hamiltonian

M = 〈p, F0(q)〉+

√
p2r +

p2θ
sin2 r

+ p0

where the parameters are such that 0 6 γ1 6 γ2 6 γ3 and the metric is the standard metric on S2 given by
g = dr2 + sin2 rdθ2 with constant curvature 1.

Proof. Let us denote by G(q) = (F1(q), F2(q), F3(q)) the 2 × 3 matrix formed by concatenating the three
vector fields. Denoting

e1 =

 1
tan r
cos θ
sin θ

 , e2 =

 0
− sin θ
cos θ

 e3 =

 tan r
− cos θ
− sin θ

 ,

1Namely, we consider the new control function v(·) = u(·)/U and operate, with a slight abuse of notation, the change of
variable t← t/U . Moreover, we still denote by γi the real numbers γi/U .

24



one has
KerG(q) = Re1 and (KerG(q))⊥ = Span {e2, e3} .

The basis (e1, e2, e3) is orthonormal and direct, and moreover

‖e3‖2 = 1 + tan2 r =
1

cos2 r
.

Let us write the control v as
v = w1

e1
‖e1‖

+ w2
e2
‖e2‖

+ w3
e3
‖e3‖

so that

Gv = w2
Ge2
‖e2‖

+ w3
Ge3
‖e3‖

= w2

(
1
α

sin r

)
+ w3

(
−α | cos r|cos r
| cos r|

sin r cos r

)
.

One can assume by symmetry that q belongs to the Northern hemisphere so that r ∈ [0, π/2], where r = 0
is the pole. Hence, we have

Gv = w2

(
1
α

sin r

)
+ w3

(
−α
1

sin r

)
.

Hence, the controlled system rewrites as

q̇ = F0(q) +G′w with G′ =

(
1 −α
α

sin r
1

sin r

)
= (G′1, G

′
2).

One has

〈p,G′1〉2 + 〈p,G′2〉2 =
(
pr +

α

sin r
pθ

)2
+
(
−αpr +

pθ
sin r

)2
= (1 + α2)

(
p2r +

p2θ
sin2 r

)
.

Hence, the maximized Hamiltonian reads

M = p.F0(q) +
√

1 + α2

√
p2r +

p2θ
sin2 r

+ p0

and performing one more renormalization of the parameters γi, the proposition is proved.

The dynamics of the Landau-Lifshitz system (20) reveal a certain richness when the parameters γi and
α are varied, as illustrated by a wide variety of trajectory behaviours, see Figure 14. In particular, in [11],
the existence of basins on the 2-sphere, from which trajectories cannot escape, thus acting as barriers, was
demonstrated when the parameter α is chosen above a certain threshold. This phenomenon is illustrated in
Figure 15, and reflects an obstruction to global controllability.
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Figure 14: Case of revolution: α = 1.9, γ2 − γ1 = 1. Example of trajectories. There are no confinement
regions here.

3.3.3 Geometric properties and computation of ‖F0‖g = 1

Let us use the notation
F0(q) = µ1(q)

∂

∂r
+ µ2(q)

∂

∂θ
.

Proposition 13. The domains corresponding to ‖F0‖g = 1 are given by µ1(g)2 + sin2 rµ2(g)2 = 1, that is,

(α2 + 1) sin2 r
(

(γ2 − γ3)2 cos2 θ sin2 θ + cos2 r
(
γ1 − γ3 − (γ2 − γ3) cos2 θ

)2)
= 1.

The case of revolution corresponds to γ2 = γ3.

The following proposition characterizes the existence of boundaries delimiting strong and weak currents
zones (see Fig. 16). This comes to investigate the existence of solutions for the equation ‖F0‖g = 1.

Proposition 14.
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Figure 15: Case of revolution: α = 2.1, γ2 − γ1 = 1. Example of optimal trajectories, illustrating the
confinement regions from which the dynamics cannot escape.

1. When γ2 < γ3, then a solution exists if the renormalized coefficients satisfy

4

(α2 + 1)(γ1 − γ3)2
6 1.

2. In the case of revolution γ2 = γ3:

(a) ‖F0‖g = 1 is equivalent to
1 = (α2 + 1)(γ1 − γ3)2 sin2 r cos2 r.

(b) A solution exists if and only if the renormalized coefficients satisfy

4

(α2 + 1)(γ1 − γ3)2
6 1.

Proof. We focus on the first point, the second being an easy consequence of the writing of the equation in
the particular case γ2 = γ3. Hence, let us assume from now on that γ2 < γ3. For all (i, j) ∈ {1, 2, 3}, let us
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Figure 16: Boundary of weak and strong current domains on the 2-sphere. Top left: α = 2, γ1 = 1, γ2 = 2,
γ3 = 2. Top right: α = 1, γ1 = 2, γ2 = 2.5, γ3 = 2. Middle left: α = 2, γ1 = 1, γ2 = 2, γ3 = 2.9. Middle
right: α = 2, γ1 = 1, γ2 = 5, γ3 = 2. Bottom left: α = 2, γ1 = 2.9, γ2 = 3.9, γ3 = 2. Bottom right: α = 2,
γ1 = 2.9, γ2 = 3.9, γ3 = 2.

28



set γij = γi − γj , and c = 1/(α2 + 1). It is straightforward to see that solving ‖F0‖g = 1 is equivalent to the
existence of a pair (r, θ) such that ϕθ(sin r) = 0, where

ϕθ(X) = (γ31 − γ32 cos2 θ)2X2 − (γ232 cos2 θ sin2 θ + (γ31 − γ32 cos2 θ)2)X + c

= (γ31 − γ32 cos2 θ)2X2 − (γ221 cos2 θ + γ231 sin2 θ)X + c.

Hence, a solution exists if that there exists θ ∈ [0, 2π] such that the equation ϕθ(X) = 0 has a solution in
[0, 1].

Let us assume temporarily that γ21 > 0 so that the leading coefficient of the polynomial ϕθ(X) is non
degenerated. One has

ϕ′θ(X) = 2(γ31 − γ32 cos2 θ)2X − (γ221 cos2 θ + γ231 sin2 θ)

and therefore, ϕ′θ(0) = −(γ221 cos2 θ + γ231 sin2 θ) < 0. The function ϕθ is then convex and decreasing in a
neighborhood of 0. A solution thus exists provided that there exists θ ∈ [0, 2π] such that

min
X∈R

ϕθ(X) 6 0 and
(
ϕ′θ(1) > 0 or ϕθ(1) 6 0

)
.

We compute

ϕ′θ(1) = 2γ232 cos4 θ − γ32(γ32 + 2γ31) cos2 θ + γ231

ϕθ(1) = c− γ232 cos2 θ sin2 θ

min
R
ϕθ = c− (γ221 cos2 θ + γ231 sin2 θ)2

(γ21 cos2 θ + γ31 sin2 θ)2

and we obtain the necessary existence condition by noting that

max
R

ϕ′0(1) = γ221 > 0 and min
R
ϕ0 = c− γ231

4
.

Consider now the case γ21 = 0. The equation rewrites

1

γ232(α
2 + 1)

= sin2 r sin2 θ(1− sin2 r sin2 θ).

Since
max
r,θ

sin2 r sin2 θ(1− sin2 r sin2 θ) = 1/4,

the expected conclusion follows.

4 Conclusion

In this article we have developed and applied some techniques of geometric optimal control to classify and
analyze Zermelo navigation problems on two-spheres of revolution. We have illustrated our results on three
case studies, in the fields of quantum control, of orbital transfer and of micromagnetism, providing some
numerical simulations. Our findings can be used further to evaluate the fixed time accessibility sets and their
boundaries, for instance by combining the techniques of the present paper with a NMPC method (see [17]).
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