
HAL Id: hal-04433439
https://hal.science/hal-04433439v2

Submitted on 19 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Parametric WCET as a function of procedure
arguments: analysis and applications

Sandro Grebant, Clément Ballabriga, Julien Forget, Giuseppe Lipari

To cite this version:
Sandro Grebant, Clément Ballabriga, Julien Forget, Giuseppe Lipari. Parametric WCET as a function
of procedure arguments: analysis and applications. Journal of Systems Architecture, 2024, 148,
�10.1016/j.sysarc.2024.103086�. �hal-04433439v2�

https://hal.science/hal-04433439v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Parametric WCET as a function of procedure arguments:

analysis and applications*

Sandro Grebant, Clément Ballabriga, Julien Forget�, Giuseppe Lipari
firstname.lastname@univ-lille.fr

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
F-59000, Lille

France

Abstract

Traditional Worst-Case Execution Time analysis derives an upper-bound to the execution
time of a program for any possible combination of its software and hardware parameters. In
comparison, Parametric Worst-Case Execution Time analysis derives a WCET formula that
depends on the parameters. The formula can then be instantiated for some given parameter
values, to produce a WCET that is specific to those values, and thus usually tighter.

In this work, we present a technique that, by static analysis of binary code, automatically
produces a formula that represents the WCET of a procedure as a function of its arguments.
The formula captures how the control-flow, and thus the WCET, depends on the arguments
that appear in branch conditions (loop conditions and if-then-else conditions).

We detail two applications of this technique. In our first and main application, we show
that WCET formulas can be instantiated during the parametric analysis itself, to make it
modular. The code of a procedure is analysed only once, and the WCET of a call to that
procedure is obtained by instantiating the corresponding formula with the parameter values
passed at the call site.

Second, we show that WCET formulas can be instantiated at runtime, to implement
adaptive real-time systems. We discuss how this can be leveraged to: 1) implement real-
time systems that follow the recently proposed semi-clairvoyant mixed-criticality scheduling
approach; 2) implement adaptive control-command laws.

Keywords –Worst-Case Execution Time analysis, real-time systems, abstract interpretation

1 Introduction

In real-time safety critical systems, it is of paramount importance to guarantee that computation
is performed within certain time bounds. Avionics, aerospace, or autonomous car systems, are
all examples of real-time safety critical systems. To guarantee that real-time constraints are
satisfied, the developer needs first to compute bounds on the execution time of each task of the
system, and then to guarantee that all tasks are scheduled in such a way that they will always
meet their deadlines.

The execution time of a task often exhibits a large variability related to software parameters
(e.g. program inputs) or hardware parameters (e.g. cache state). Static Worst-Case Execution

*This work is partially funded by the French National Research Agency, Sywext project (ANR-19-CE25-0002).
�Corresponding author

Published journal article: https://doi.org/10.1016/j.sysarc.2024.103086

This work is licensed under a Creative Commons “Attribution-
NonCommercial-NoDerivatives 4.0 International” license.

https://doi.org/10.1016/j.sysarc.2024.103086
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Time (WCET) analysis aims at providing a safe upper-bound to the execution time of a task
for any possible combination of the software and hardware parameters. Ideally, the estimated
WCET must also be tight (close to the actual WCET) to keep resource over-provisioning to a
minimum.

Traditional WCET analysis produces a constant numeric upper-bound to the WCET, that
bounds the execution of the task for any possible combination of the hardware and software
parameters. Instead, parametric WCET analysis produces a formula that represents the WCET
as a function of the parameters. The formula can later be instantiated with actual parameter
values to provide an upper-bound to the execution time for those parameter values. The instan-
tiated WCET is usually tighter than in the traditional approach, as it considers a lower number
of possible execution scenarios1.

Formula instantiation can be performed either off-line (before system execution) or on-line
(during system execution). We propose to use formula instantiation during the WCET analysis
itself to make it modular. For each procedure, the analysis produces a formula that represents
the WCET as a function of the procedure arguments. The WCET for a procedure call is then
computed by instantiating the formula with the parameter values at the call site. This reduces
the complexity of the analysis, thus enabling to analyse more complex programs.

On-line formula instantiation can be used to implement an adaptive real-time system. A real-
time task typically releases periodically new jobs to execute. The task formula can be instantiated
at job release to determine the job WCET considering the current parameter values. The system
behaviour can then be adapted depending on the instantiated WCET. This can be leveraged to
implement systems that follow the model considered in semi-clairvoyant scheduling for mixed-
criticality systems [1, 15, 11], or to implement adaptive control-command laws.

1.1 Motivating example

We motivate our work with the example of Figure 1, previously presented in [27]. This proce-
dure is part of an implementation of the G.723 speech encoding standard, taken verbatim from
TACLeBench [24].

The G.723 codec is based on Adaptive Differential Pulse Code Modulation (ADPCM). During
the signal encoding, each sample sl of the input signal is compared against a value se predicted
based on previous samples. The difference d=sl-se is quantized to a logarithmic factor represented
by argument dqln. The procedure reconstructs the difference signal based on that value (it also
takes the sign of the value and the adaptive quantization step y as arguments). If the difference
dqln is low2 compared to the quantization step y (line 6), the reconstructed difference is set to
0 (line 73). Otherwise (else branch), the procedure computes the antilog of dql, assuming a
fixed-point signed representation of the real value dqln.

Our analysis, applied to the corresponding assembly code, detects that the branching instruc-
tion corresponding to source line 6 depends on two procedure arguments (arg2 a.k.a. dqln, and
arg3 a.k.a. y), and infers the branch conditions 4 × arg2 + arg3 ≤ −1 for the then case and
4×arg2+arg3 ≥ 0 for the else case. Then, it produces a WCET formula that depends on those
branch conditions.

Let us emphasize that the WCET variations are neither due to aberrant values, nor pre-
dictable before runtime, as they depend on the shape of the input signal.

1Reasoning with parametric values may render some auxiliary analyses more pessimistic (e.g. infeasible paths
analysis or cache analysis, as discussed in [5]), but experiments show that the pros usually outweigh the cons.

2Addition on logarithmic values (dqln and y) amounts to multiplication.
3dql is signed, in two’s complement, which explains the test at line 7.

2

1 int reconstruct(int sign , int dqln , int y)

2 {

3 short dql , dex , dqt , dq;

4
5 dql = dqln + (y >> 2);

6 if (dql < 0)

7 return ((sign) ? -0x8000 : 0);

8 else {

9 dex = (dql >> 7) & 15;

10 dqt = 128 + (dql & 127);

11 dq = (dqt << 7) >> (14 - dex);

12 return ((sign) ? (dq - 0x8000) : dq);

13 }

14 }

Figure 1: Speech encoding, reconstructing the difference signal

This example has been chosen for illustrative purposes thanks to its simplicity. It shows that
we can characterize the impact of argument values on the WCET of a procedure. The variation of
WCET for such small function is a few tens of processor cycles, hence it is not useful to instantiate
its WCET formula on-line: the evaluation function takes almost as much time as the potential
maximum variability (see line g723 enc reconstruct in Table 4 in Section 8.1.5). However, other
more complex functions show a much larger variability and computing the formula on-line makes
sense for those functions (see Section 8.1 for a complete set of experiments).

We underline the fact that, although procedure reconstruct is only a part of the complete
encoder program, it is representative of many signal processing algorithms, which are pervasive
in real-time systems, and whose computations and WCET vary depending on the input signal.

1.2 Contributions

In this paper we first present a parametric WCET analysis, which analyses the binary code of a
procedure to produce a formula that represents the WCET of the procedure as a function of its
arguments. Then, we detail how formula instantiation can be used during the WCET analysis
itself to make it modular. We also illustrate how on-line formula instantiation can be leveraged
to implement adaptive real-time systems.

Our approach is based on two of our previous works, on symbolic WCET computation [10],
and on abstract interpretation of binary code [9]. In a nutshell, symbolic WCET computation
starts from the Control-Flow Graph of the program (CFG), translates it into a Control-Flow
Tree (CFT), transforms the CFT into a WCET formula, and finally simplifies the formula to
reduce its size.

Although our analysis relies on foundations presented in the two papers mentioned above,
many novel contributions and extensions were necessary to make it work in a coherent and
automatic way. These extensions are detailed in this paper.

In the previous work, the programmer needed to manually specify which elements of the
program were parameters, and it was not possible to express conditional expression. In this
paper, we start by automatically identifying function arguments as parameters (Section 5.1).
Then, we devise an analysis that infers input conditions, that is to say predicates on procedure
arguments that serve as branch conditions, either in conditional statements or in loops. This
analysis extends the relational abstract interpretation of binary code proposed in [9] and is

3

presented in Section 5.2. Also, we introduce a new type of node in the CFT to represent branches
subject to input conditions. This is presented in Section 6.1. Second, in Section 6.2 we extend
the symbolic computation to support formulae where the input conditions appear as parameters.
Furthermore, in Section 6.3 we propose extensive simplification procedures to reduce the size of
the formulae. We also provide a compiler that generates C code, which is optimized to have low
WCET, to evaluate the formula on-line (Section 6.4).

We detail a modular extension of the symbolic analysis in Section 7. This extension concerns
both the abstract interpretation and the symbolic WCET computation steps.

Our evaluation consists of two parts. In Section 8.2 we illustrate how on-line formula in-
stantiation can be leveraged to implement adaptive real-time systems. Based on experiments on
TACLeBench, we demonstrate in Section 8.1 that our approach is adaptive, embeddable, and
also automated:

� Adaptivity : the instantiated WCET can vary significantly when we take into account the
value of the procedure arguments. Our approach detects dynamically infeasible paths, that
is to say paths that are infeasible because of the current procedure argument values.

� Embeddability : the size of the WCET formula and the instantiation time are kept to a
minimum, so as to enable on-line execution.

� Automation: our approach takes the binary code of a procedure as input and produces
a WCET formula dependent on the procedure arguments as output, without requiring
assistance from the programmer.

This paper is an extended version of [27]. The extensions include:

� The modular WCET analysis extension and its evaluation;

� The application of our method to the implementation of adaptive real-time systems;

� A more in-depth presentation of the background ([10], [9]), so as to make the paper more
self-contained;

� A more detailed presentation of the inference of input conditions.

2 Related work

The most widely used WCET analysis technique is the Implicit Path Enumeration Technique
(IPET) [32]. It takes as input a representation of the compiled program in the form of a graph
(the Control-Flow Graph – CFG), and explores it to build an Integer Linear Programming (ILP)
problem. The graph structure and the hardware features (pipeline, cache, etc.) are encoded by
linear constraints, and the solution of the problem is a numerical upper bound to the execution
time of the program. An extensive survey on WCET and IPET is available in [48].

Symbolic techniques have been considered in WCET analysis for different purposes. In [12,
13, 18], authors use symbolic techniques to speed up the analysis. In [34], symbolic analysis is
used to trade off analysis time against tightness. Wilhelm et al. [49] model the effect of pipelines
on the WCET using symbolic states. Reineke et al. [38] demonstrate how to represent various
architectural effects, e.g. processor frequency, memory latencies or memory sizes, using symbolic
WCET analysis. However, even though these approaches are symbolic, their results are not
parametric.

The problem of computing WCET formulae that depend on various parameters has been
studied before. Approaches that rely on source code analysis have been proposed. In [46], authors

4

proposed a technique that produces a parametric formula with loop bounds as parameters.
Coffman et al. [19] extended this approach so that it can compute the maximum between several
parametric paths at runtime. The technique has then been used in [35, 36] for energy-aware
scheduling. Lisper proposed a technique based on symbolic ILP in [33], but the symbolic ILP
solver makes the approach computationally inefficient. One limitation of source code analysis is
the need to account for compiler optimizations that may change the structure of the Control-Flow
Graph, making the resulting WCET pessimistic.

Regarding binary-level analyses, in [5] Altmeyer et al. rely on symbolic ILP [25] to adapt
IPET analysis to the parametric case. In [16], Bygde et al. propose a different non-IPET
approach: the minimal propagation algorithm, which is more efficient but also less tight. Althaus
et al. [3, 4] try to improve on both efficiency and tightness with a parametric path analysis.

Tree-based WCET analysis has first been considered in [37]. Later, tree-based parametric
WCET analyses have been considered as a parametric alternative to IPET. Colin et al. [21]
introduced a tree-based program representation dedicated to parametric WCET analysis. This
representation associates two expressions to each node of the tree: a parametric WCET expres-
sion, and a frequency expression that represents the number of executions of the tree. However,
authors did not consider the problem of producing such a model from a program. Ballabriga et
al. [10] also proposed a tree-based parametric WCET computation approach and detailed how
to produce the tree model from a CFG. Their approach can represent a wider range of hardware
and software timing effects than previous tree-based WCET analyses. It supports parametric
loop bounds and parametric execution blocks (blocks of code whose WCET is a parameter).
However, the programmer needs to manually specify which elements of the program are param-
eters. One could consider using parametric execution blocks to represent parametric conditional
statements, by replacing each conditional statement by a parametric execution block, where the
parameter represents the WCET of the different alternatives of the conditional statement. This
would, however, cause space explosion for nested conditional statements.

Our work is indirectly related to infeasible paths analysis, for which several approaches have
been proposed in the WCET analysis community: using abstract interpretation [30, 44, 17],
symbolic execution [28, 29], or SMT solvers [14, 40, 41]. A survey about infeasible paths analysis
can be found in [23]. These works focus on detecting (and exploiting) statically infeasible paths,
i.e. program paths that can never be executed because of some exclusive branch conditions and
assignments. In comparison, our approach detects dynamically infeasible paths, that is to say
paths that are infeasible because of the current procedure argument values.

We conclude this section with a summary of how our work compares with existing works.
First, existing works mostly consider parametric loop bounds only, none considers conditional
statements with parametric conditions. Our experiments show that programs containing loop
bounds that depend on procedure arguments are rarer than programs containing conditional
statements that depend on procedure arguments. Second, the kind of WCET formulas supported
by existing works is simpler than in our work: a single parameter, or additions between a single
parameter and a constant (except [33], although that approach has other limitations). This
is insufficient to represent many input conditions, such as for instance that of the motivating
example of Figure 1. In comparison, we support conjunctions on linear inequalities on parameters.
Finally, no existing work is simultaneously adaptive, automated and embeddable.

3 Overview

We illustrate the workflow of our approach on the program of Figure 2. Starting from the binary
code of function f , the analysis consists of the following steps.

5

1 f: @ int f(int n) {

2 @ ... @ /* A */

3 str r0 , [fp , #-32] @ /* A */

4 @ ... @ /* A */

5 ldr r3 , [fp , #-32] @ /* A */

6 cmp r3 , #10 @ if (n <= 10) /* A */

7 bgt .L2 @ { /* still A */

8 @ ... @ /* C */

9 b .L3 @ } /* C */

10 .L2: @ else {

11 @ ... @ /* B */

12 .L3: @ }

13 @ ... @ /* D */

14 ldr r3 , [fp , #-32] @ /* D */

15 cmp r3 , #-1 @ if (n <= -1) /* D */

16 bgt .L4 @ { /* still D */

17 @ ... @ /* F */

18 b .L5 @ } /* F */

19 .L4: @ else {

20 @ ... @ /* E */

21 .L5: @ }

22 @ ... @ /* G */

23 bx lr @ return; /* still G */

24 .global main @ }

25 main: @ int main() {

26 @... @ /* ... */

27 ldr r0 , [fp , #-8] @ /* Setting parameters */

28 bl f @ f(i); /* function call */

29 @ ... @ }

Figure 2: Running example

Seq

A Alt1

B

r0 ≥ 11

C

r0 ≤ 10

D Alt2

E

r0 ≥ 0

F

r0 ≤ −1

G
(10)

(ω(B)) (5)

(ω(D))

(10) (10)

(5)

Figure 3: Control-Flow Tree for function f of Figure 2

6

CFG extraction the binary code is translated into a Control-Flow Graph, where nodes are
basic blocks4 and edges represent the program control-flow. We obtain a CFG with basic blocks
A to G. We rely on OTAWA [8] for this step.

Hardware analysis the hardware analysis infers the WCET of each basic block. Let us assume
that the resulting WCET obtained for A,E, F is 10, for C,G is 5, and that the WCET of B and
D are symbolic (denoted ω(B), ω(D)). We also rely on OTAWA for this step.

Inferring input conditions the abstract interpreter identifies the value stored in r0 as an
argument (a.k.a. n) of procedure f at line 1 (as per function call conventions). At line 7, it infers
r0 ≥ 11 as the input condition for branching to label L2 (a.k.a. block B) and r0 ≤ 10 if the
program does not branch. Similarly, the input conditions r0 ≥ 0 and r0 ≤ −1 are inferred at
line 16. We extend the abstract interpretation analysis of [9] to infer predicates on conditional
branches and loops which depend on function arguments (see Section 5).

CFT with symbolic input conditions The CFG is translated into the Control-Flow Tree
(CFT) depicted in Figure 3. It consists of a sequence (the root node Seq) of basic blocks (A, D,
G) and of alternatives (Alt1 , Alt2) between two subtrees (B or C, resp. E or F). Output edges
of alternative nodes are annotated with the input conditions inferred by the abstract interpreter.
We extend the CFT of [10] with a new type of alternative node to model conditional branches
(see Section 6.1).

WCET formula The CFT is translated into a WCET formula. In order to support input
conditions, a new ⊛ operator is introduced in Section 6.2. In the example, the formula contains
symbolic values, therefore it cannot be reduced to a numeric value. Instead, we reduce its size
using special simplification rules described in Section 6.3. After simplification, the WCET is
as follows (formulas will be presented more formally in Section 4.1):{

25 + ω(B) + ω(D) if r0 ≥ 11

30 + ω(D) otherwise

Formula instantiation The formula is instantiated when symbolic values become known. For
instance, assuming n = 0 (i.e. r0 = 0), ω(B) = ω(D) = 8, we obtain a WCET of 38. Note
that a non-parametric analysis would produce a higher WCET in this case, namely 41. The
instantiated WCET reflects the fact that execution paths that include B are infeasible when
n = 0. In Section 6.4, we present a simple compiler that, starting from a (previously simplified)
formula, produces C code whose WCET is low and can be easily bounded. It can be embedded
in the program to enable adaptive scheduling.

4 Background

In this section we recall the theoretical background from previous papers on which our work
relies.

7

Loop (l1)

Seq

H1 Loop (l2)

Seq

H2 A

H2

H1

(a) Before transformation

Loop (l1)

Seq

H Loop (l2)

Seq

H2 fm A

H2

H

(l2, [10, 0])

(b) After transformation

Figure 4: Instruction cache transformation

4.1 Symbolic WCET computation

We first recall the main concepts of symbolic WCET computation [10]. It starts from a CFG
representation of the binary program under analysis. First, it translates the CFG into a Control-
Flow Tree (CFT). A Control-Flow Tree is similar to a Control-Flow Graph, in the sense that it
also represents the possible execution paths of a program, albeit with a tree structure. Being a
tree structure, the CFT is prone to recursive WCET analysis. The WCET of a CFT is expressed
as a formula that follows the tree structure and in which we can easily introduce symbolic values.

The construction of the CFT from a CFG only works for CFGs that contain no irreducible
loops (i.e. loops with multiples entries). However, in the general case it is possible to transform
CFGs with irreducible loops by using node splitting algorithms, with relatively low overhead [31,
47]. More generally, structure-breaking instructions (such as goto, break, continue, or multiple
return), cause basic block aliasing in the CFG to CFT construction. However, experiments show
that the increase in the size of the CFT is relatively small compared to the size of the CFG [10].

4.1.1 Control-Flow Tree

The set of Control-Flow Trees T is defined inductively as follows.

Definition 4.1 (CFT). Let n,m ∈ N∗, t1, . . ., tn, ∈ T n. A control-flow tree t ∈ T is one of:

� Leaf(b), which represents the execution of a portion b of the program (typically a basic
block);

� Alt(t1, . . . , tn), which represents an alternative between the execution of trees t1, . . ., tn;

4A basic block is a sequence of instructions such that if the first instruction of this sequence is executed, then
the remaining instructions of that sequence are executed as well.

8

� Loop(l, tb, n, te), which represents a loop, identified uniquely by l, that repeats the execution
of tree tb, with a maximum number of iterations n, and exits from the loop executing the
tree te;

� Seq(t1, . . . , tn), which represents a sequential execution of trees t1, . . ., tn.

Example 4.1. Figure 4a shows a CFT with a loop nested into another loop, repeating several
times the code in the basic block A. Nodes H1 and H2 are the loop tests, repeated at the beginning
of each iteration of the loop and also when exiting the loop (the dashed edge indicates the exit
node).

4.1.2 Abstract WCET

When located inside a loop, successive iterations of a CFT node can yield different WCETs. The
WCET of a CFT is represented as an abstract WCET.

Definition 4.2 (Abstract WCET). The abstract WCET of a CFT is a pair a = (l, w), where l
is a loop identifier and w is a list of integers sorted in non-increasing order. The presence of a
value n in w means that the CFT may have an execution time n, but only once each time l is
entered. The smallest value of w is implicitly repeated indefinitely.

Example 4.2. (l, [10, 10, 5, 3]) represents the WCET of a node inside some loop l. The WCET
of the node is at most twice 10, once 5, and 3 for all other iterations of loop l.

Example 4.3. Let us illustrate how we can represent the effect of the instruction cache. Consider
the CFT of Figure 4a. Assume that a cache categorization technique [2] determines that A
contains a first-miss cache access for loop l2, i.e. the instruction is in the cache for all iterations
of l2 except the first one. Assume also that the cache miss penalty is 10 cycles. This is modeled
in Figure 4b by a leaf fm (a virtual block) with WCET (l2, [10, 0]).

Representing a WCET as a list of integers instead of a single integer is a key difference
compared to other existing tree-based WCET analysis techniques. This allows to account for
execution times that are sensitive to the execution context and thus to significantly improve the
tightness of the WCET.

The following definitions on the CFT topology are required to define operations on abstract
WCET.

Definition 4.3. Let t be a CFT, t1 and t2 be two sub-trees of t, where t1 is a loop with identifier
l1 and t2 is a loop with identifier l2. Then:

� We say that loop l1 contains loop l2, denoted l2 ⊑ l1, if t2 is a sub-tree of t1. Also, by
definition, for any loop l we have l ⊑ l;

� ⊤ is a fictive loop that contains any loop of t;

� ⊥ is a fictive loop that contains no loop of t;

� Let L denote the set of loop identifiers of t. Then, (L ∪ {⊤,⊥},⊑) is a lattice5;

� l1 ⊓ l2 denotes the greatest lower bound of l1 and l2, that is to say the greatest element of
{l : l ⊑ l1 ∧ l ⊑ l2}

5For every pair of loops l1, l2, their supremum is their closest common ancestor loop in the CFT (or ⊤ if
no such ancestor exists). Their infinimum is their closest common descendant loop (or ⊥ if no such descendant
exists).

9

We now recall operations on abstract WCETs. Let |w| denote the number of elements of w.

Definition 4.4. Let a = (l, w) and a′ = (l′, w′) be abstract WCETs. Then:

� θ = (⊤, [0]) is the null abstract WCET;

� w[n] denotes the (n+ 1)th element of list w if n ≤ |w|, or w[|w|] otherwise;

� a⊕ a′ = (l”, w”) is such that: ∀i ∈ N, w”[i] = w[i] + w′[i] and l” = l ⊓ l′ (a pointwise sum
on the size of the longest of the two lists w and w′);

� a ⊎ a′ = (l ⊓ l′, (w ∪ w′) \ {k : k < max(m,m′)), where m, m′ denote respectively the
smallest value of w and w′ (an order-preserving list union, except that elements smaller
than infinitely repeated ones are dropped);

� (l, w)n,l
′
represents an iteration over (l, w). There are two cases (see Example 4.5 for

illustration):

(l, w)n,l
′
=

{
(⊤, [

∑n−1
i=0 w[i]]) if l = l′

(l,
⋃

i∈N[
∑n−1

j=0 w[i× n+ j]]) otherwise

Example 4.4. We illustrate operations on abstract WCET below:

� Let w = (l, [10, 10, 5, 3]). Then w[2] = 5, and w[5] = 3 since 3 is repeated infinitely;

� (l, [4, 3, 2])⊕ (l′, [3, 1]) = (l ⊓ l′, [4 + 3, 3 + 1, 2 + 1]) = (l ⊓ l′, [7, 4, 3]);

� (l, [4, 3, 2]) ⊎ (l′, [3, 2, 1]) = (l ⊓ l′, [4, 3, 3, 2]). Value 1 is dropped because it is smaller than
the minimum WCET of the left operand;

� (l, [5, 4])4,l = (⊤, [5 + 4 + 4 + 4]) = (⊤, [17]);

� Assuming l ̸= l′, we have (l, [5, 4])4,l
′
= (l, [5 + 4× 3, 4× 4]) = (l, [17, 16]).

4.1.3 Computing the WCET of a control-flow tree

Using the abstract WCET representation above, the abstract WCET ω(t) of a CFT t is computed
inductively on the CFT structure as follows:

ω(Leaf(b)) = ω(b)

ω(Seq(t1, . . . , tn)) = ω(t1)⊕ . . .⊕ ω(tn)

ω(Alt(t1, . . . , tn)) = ω(t1) ⊎ . . . ⊎ ω(tn)

ω(Loop(l, tb, n, te)) = ω(tb)
n,l ⊕ ω(te)

Example 4.5. In Figure 4b, there are two nested loops: l1 and l2. The first-miss leaf fm has
WCET (l, [10, 0]). When l = l1 (resp. l = l2) a cache miss occurs each time we enter l1 (resp.
l2). In the first case, for a complete execution of the program, the miss penalty applies only once,
whereas in the second case it applies for every iteration of l1, since l2 is entered at each iteration
of l1. Assuming ω(A) = (⊤, [15]), ω(H1) = (⊤, [5]), ω(H2) = (⊤, [5]), assuming 3 iterations for
each loop l1, l2, and denoting t the CFT of Figure 4b, we have:

ω(t) = ((⊤, [5])⊕ ((⊤, [5])⊕ (l, [10, 0])⊕ (⊤[15]))3,l2 ⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])
= ((⊤, [5])⊕ (l, [30, 20])3,l2 ⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])

10

If l = l1 (single miss):

ω(t) = ((⊤, [5])⊕ (l1, [70, 60])⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])
= (l1, [80, 70])

3,l1 ⊕ (⊤, [5])
= (⊤, [220])⊕ (⊤, [5])

= (⊤, [225])

If l = l2 (three misses):

ω(t) = ((⊤, [5])⊕ (⊤, [70])⊕ (⊤, [5]))3,l1 ⊕ (⊤, [5])
= (⊤, [80])3,l1 ⊕ (⊤, [5])
= (⊤, [240])⊕ (⊤, [5])

= (⊤, [245])

When some parameters of the CFT are unknown, ω(t) produces a formula containing symbolic
values. The set of WCET formulae produced by ω(t) is defined by the following grammar:

w ::= constw | symb | w ⊕ w | w ⊎ w | wl,it

it ::= int | symb

Term constw represents the set of constant abstract WCET values (e.g. (l2, [10, 0])). Term
symb corresponds to a set of symbols used to denote unknown values. Term int corresponds to
the set of integer literals. Term l corresponds to the set of loop identifiers. For now, symbols
can be of two kinds (this will be extended in the following sections):

� A symbolic WCET. For instance, X ⊎ (l, {4}), where X is an unknown WCET;

� A symbolic loop bound. For instance, (l, {5, 3})N,l′ , where N is an unknown integer loop
bound.

ω(t) produces a formula that is linear in the size of t. When the formula contains symbolic
values, it cannot be reduced to a single operand. However, in order to decrease its size and
evaluation time, the formula is reduced using simplification rules based on mathematical prop-
erties of the abstract WCET operations. For instance, ((l, {5})⊕X) ⊎ ((l, {4})⊕X) reduces to
(l, {5})⊕X (see Section 6.3 for more details).

4.2 Abstract interpretation of binary code

We will now recall the main concepts of the abstract interpretation procedure of [9]. Abstract
interpretation [22] is a general static analysis method that infers program invariants. It propa-
gates an abstract state of the program, which overapproximates the set of all possible concrete
states, until a fixpoint is reached. It is sound, in the sense that the invariants it infers hold for
any possible concrete program state.

While abstract interpretation usually targets source code, we rely on the abstract interpreta-
tion procedure for binary code proposed in [9] because we want to inject the inferred invariants
into our WCET analysis, which takes as input a CFG reconstructed from a binary program. We
summarize the main features of this interpretation procedure below.

11

Table 1: Abstract states at several program points in Figure 2

line Polyhedron Registers Memory

2 p2 = ⟨⟩ R♯
2 = {r0 : x0, fp :

x1}
4 p4 = ⟨x2 = x0, x3 = x1 − 32⟩ R♯

2 ∗♯4 = {x3 : x2}

6 p4
R♯

6 = {r0 : x4, r3 :
x2, fp : x1}

∗♯4

8 p8 = p4 ⊓⋄ ⟨x2 ≤ 10⟩ R♯
6 ∗♯4

11 p11 = p4 ⊓⋄ ⟨x2 > 10⟩ R♯
6 ∗♯4

4.2.1 Polyhedra

A Polyhedron is defined as follows.

Definition 4.5 (Polyhedron). Let V be a set of variables and C be a set of linear constraints
(equalities and/or inequalities) on the variables in V. Then, ⟨c1, . . . , cm⟩ is the polyhedron con-
sisting in all the vectors in Zn that satisfy the constraints c1, . . . , cm, where ci ∈ C for 1 ≤ i ≤ m.

Less formally, a polyhedron p can be viewed as the multi-dimensional geometrical shape
that represents the set of possible values of the variables of V for which all the equalities and
inequalities in C are satisfied. The variables of a polyhedron are also called its dimensions in the
literature. We denote:

� p” = p ⊓⋄ p′ the polyhedron consisting of the union of the constraints of p and p′;

� vars(p) the set of variables of p;

� proj(p, {x0, . . . , xn}) the projection of a polyhedron p on a subset {x0, . . . , xn} of its vari-
ables. The result is a polyhedron p′ with less variables, such that every possible value
{v0, . . . , vn} that satisfies the constraints of p also satisfies the constraints of p′ and vice
versa.

To better understand the meaning of the projection operation, it may be useful to think of
geometric shapes in a 3D space: a projection on the variables (x, y) of a cube in (x, y, z) is simply
the geometric projection of the cube on the plane (x, y). We will use projections in Section 5 to
explain how we treat input conditions when building a symbolic formula.

4.2.2 Abstract state

Let R denote the set of hardware registers, V denote the set of polyhedra variables, P denote
the set of polyhedra on V. The set of abstract states is defined as A = P × (R → V)× (V → V).

Definition 4.6 (Abstract state). An abstract state a ∈ A is a tuple (p,R♯, ∗♯), which consists of
a polyhedron p, a register mapping R♯ and an address mapping ∗♯. We have R♯(r) = v iff the
variable v represents the value of the register r in p. Also, we have ∗♯(x1) = x2 iff x2 represents
the value at the memory address represented by the variable x1.

Example 4.6. In the following abstract state, register r0 contains a positive value and address
7872 contains a value greater than that of r0:

(⟨x1 ≥ 0, x2 = 7872, x3 ≥ x1⟩, {r0 : x1}, {x2 : x3})

12

In the rest of the paper, we use the term data location to refer indistinctly to registers or
memory addresses. We denote m′ = m[x : y] the mapping such that m′(x) = y and ∀x′ ̸= x :
m′(x′) = m(x′).

4.2.3 Interpretation procedure

A program procedure F is represented as a sequence of labeled instructions l0 : I0, l1 : I1, . . . , ln :
RET, where Ik is the instruction at label lk (0 ≤ k ≤ n) and RET returns the control-flow to the
caller6. The result of the interpretation M = interpret(F) maps labels of program procedure F
to their corresponding abstract states: M [lk] denotes the abstract state immediately before the
execution of instruction Ik. For more details on procedure interpret, the reader is referred to [9].
An important specificity of the interpretation procedure is that the mapping between variables
and data-locations can change as the interpretation progresses.

Example 4.7. Table 1 details the abstract states at several points of the program of Figure 2.
We assume that the value of n is not modified in the program. Until line 4, the register r0

contains the value n, represented by variable x0. Assume that r0 is used to store the result of
some arithmetic operation at line 4. As a result, at line 6 the value of r0 does not correspond
to argument n anymore, instead it is mapped to a new variable x4 that corresponds to the value
computed at line 4. However, note that variable x0 still represents the value of the argument n
in the abstract state at line 6.

5 Inferring input conditions

In this section, we extend the abstract interpretation analysis from [9] to infer the input conditions
of a binary program. We consider 32-bit ARM programs, but the analysis can easily be extended
to other architectures with similar procedure call conventions.

5.1 Identifying procedure arguments

By convention [6], 32-bit ARM programs pass the first four arguments of a procedure call through
registers r0, r1, r2 and r3. Additional arguments are passed through the stack. In our experi-
ments, we found that few procedures use more than four arguments. Therefore, in the following
we only consider arguments passed through these registers, which we call input registers.

We modify the abstract interpreter so that it identifies the polyhedra variables that are asso-
ciated to input registers. As the variable-to-data-location mapping evolves during the interpreter
progression, a variable represents a procedure argument if and only if it is mapped to one of the
input registers in the abstract state at the starting location of the procedure.

More formally, let F denote the procedure under analysis. Let A♯
0 denote the argument map-

ping of F , that associates a polyhedron variable to each argument of F . For ARM programs, we
let A♯

0 = {r0 : x0, r1 : x1, r2 : x2, r3 : x3}, where x0, . . . , x3 are fresh variables. We slightly modify

the procedure interpret so that it takes A♯
0 as the initial register mapping. As a consequence, for

all location lk of F , the procedure arguments are always represented by the variables of A♯
0.

Example 5.1. In Figure 2, at line 1, r0 is mapped to x0. Now assume that line 4 changes
the value of r0. Thus, r0 is mapped to another variable: x4. Nevertheless, in the subsequent
abstract states (e.g. the branch at line 7) the analysis correctly identifies that x0 corresponds to
a procedure argument and that x4 does not.

6For procedures with several exit edges, the CFG reconstruction step adds a single node to which all exit edges
point.

13

5.2 From polyhedra to input conditions

In this section, we explain how we extract input conditions from the abstract states of the
program.

5.2.1 Conditional statements

When the interpreter analyses a conditional branching instruction, it adds the corresponding
condition to the abstract state of the branch target; this is called filtering. We modify the analysis
so that, whenever a filtering occurs, we project the resulting polyhedron over the variables
corresponding to procedure arguments. As a result, we obtain a polyhedron corresponding to
the constraints that the input registers must satisfy in order to branch to the corresponding
location. These constraints consist in a conjunction of inequalities on input registers, which we
call input conditions.

More formally, let F denote the procedure under analysis. Let A♯
0 denote the argument

mapping of F . Let M = interpret(F). Let lk be a label of F such that F [lk] is a conditional
branching instruction, and lt be a direct successor of lk (either lk+1 or the branch target). Then,

the input condition for the edge (lk, lt) is computed as c = proj(pt, Img(A♯
0)), where pt is the

polyhedron of M [lt] and Img denotes the image of a mapping.

Example 5.2. In Figure 2, in the abstract state at line 8 of Table 1, the register r3 is associated
to the variable x2, which is equal to x0 (i.e. the procedure argument). Since line 8 is in the then
block of the conditional statement, it contains the filtering condition x2 ≤ 10. To obtain the input
condition, we project the polyhedron over the variable x0:

proj(⟨x2 = x0, x3 = x1 − 32, x2 ≤ 10⟩, {x0}) = ⟨x0 ≤ 10⟩

In the general case, the input conditions are passed unchanged to the CFT builder. There
are however two particular cases:

� If the projected polyhedron has no constraints (c = ⟨⟩, universe polyhedron), this either
means that the branch condition is not related to procedure argument, or that it can not
be represented by the polyhedra formalism (e.g. it contains a disjunction). In that case,
we set the input condition to true. This may introduce execution paths that are feasible
in the CFT, while they are infeasible in the actual program. From a WCET point-of-view,
this is safe, as it can only cause over-approximation (no under-approximation);

� If the projected polyhedron has unsatisfiable constraints (empty polyhedron), the branch
target is dead code, then the input condition is set to false.

5.2.2 Loop bounds

If the branch instruction is located in a loop header, we compute a loop bound instead of a
condition. This is done using a “ghost” register, that does not correspond to an actual data-
location used by the program but represents the induction variable of the loop7. The register is
set to 0 at the entry of the loop and is incremented at each loop iteration.

More formally, let F denote the procedure under analysis. Let A♯
0 denote the argument map-

ping of F . LetM = interpret(F). Let lk be a loop header (identified as such by the CFG builder),

M [lk] = (pk,R♯
k, ∗

♯
k), and rg denote the ghost register of lk. Function lbound(pk,A♯

0,R
♯
k[rg]) com-

putes the loop bound as follows. First, it computes pk′ = proj(pk,A♯
0 ∪ {R

♯
k[rg]}). From there,

two cases can occur:
7In a way, it represents information similar to execution counters in the IPET method

14

1 f: @ int f(int x){

2 @ ... @ // r0 contains x

3 str r0 , [fp , #-16] @ // (fp -16) contains x

4 mov r3 , #1 @ int res = 1;

5 str r3 , [fp , #-8] @

6 mov r3 , #0 @ int i = 0;

7 str r3 , [fp , #-12] @

8 .L2: @ do{ // mov gr , #0

9 ldr r3 , [fp , #-8] @

10 lsl r3 , r3 , #1 @ res += res;

11 str r3 , [fp , #-8] @

12 ldr r3 , [fp , #-12] @

13 add r3 , r3 , #1 @ i++;

14 str r3 , [fp , #-12] @

15 ldr r2 , [fp , #-12] @

16 ldr r3 , [fp , #-16] @ // add gr , gr , #1

17 cmp r2 , r3 @ }

18 blt .L2 @ while(i < x);

19 ldr r3 , [fp , #-8] @

20 mov r0 , r3 @ // r0 contains res

21 @ ... @ return res;

22 bx lr @ }

Figure 5: Assembly and C code of a loop

� We have pk′ = ⟨0 ≤ R♯
k[rg],R

♯
k[rg] ≤ e⟩, where e is a linear expression on variables in A♯

0.
Then e is the loop bound;

� Otherwise, we are not able to compute a loop bound and it must be provided by the user.

Example 5.3. The code of a simple f consisting of a simple loop is detailed in Figure 5. When
entering the loop, the ghost register gr is initialized to 0 inside the abstract state of the analysis,
similarly to a mov gr, #0, as shown in comment at line 8. Then, at the end of each iteration gr

is incremented. At the end of the loop interpretation, the state of the loop contains the bound
to the value of the ghost register. Thus, assuming that x0 is the variable that corresponds to the
argument x, we have: R♯(gr) ≤ x0. We simply replace R♯(gr) with lb such that we have lb ≤ x0.

6 Symbolic WCET with input conditions

In this section, we detail how we extend the symbolic WCET computation approach from [10]
to support input conditions.

6.1 Control-flow Tree with input conditions

We extend the previous definition of alternative nodes so that an input condition is associated
to each alternative.

Definition 6.1. Let (t1, . . . , tn) be a tuple of CFTs, (e1, . . . , en) be a tuple of input conditions
and 1 ≤ k ≤ n. The deterministic alternative node Alt(e1 → t1, . . . , en → tn) represents an

15

alternative between the execution of one tree among (t1, . . . , tn), such that the tree tk can be
executed only if ek is true.

We use the term deterministic alternative because values of parameters that appear in the
input conditions determine which sub-tree of the alternative is executed. In comparison, in
non-deterministic alternatives, any sub-tree of the alternative can be executed, whatever the
parameter values.

Example 6.1. Figure 3 depicts the CFT obtained for the program of Figure 2. For instance, we
can see that the input condition r0 ≥ 11, whose inference was detailed in Example 5.2, appears
as an input condition to execute B in the deterministic alternative node Alt1 .

Concerning loop nodes, their definition remains unchanged, except that the loop bound n
can now be a linear expression on procedure arguments.

Example 6.2. The node Loop(l, t1, 4×r0+r1, t2) represents a loop identified by l, that executes
4× r0+ r1 times the tree t1 and exits by executing the tree t2.

6.2 WCET formulas with input conditions

We define a new operator ⊛ that multiplies a WCET by an input condition. It has higher priority
than operators ⊕ and ⊎, but lower priority than the other operators. It is used to compute the
WCET of an Alt node:

ω(Alt(e1 � t1, . . . , en � tn)) = e1 ⊛ ω(t1) ⊎ . . . ⊎ en ⊛ ω(tn)

Definition 6.2. Let e be an input condition and w be an abstract WCET.

e⊛ w =

{
w if e is true

θ otherwise

Example 6.3. The subtree Alt1 of Figure 3 is translated into the formula (r0 ≥ 11) ⊛ ω(B) ⊎
(r0 ≤ 10)⊛ (⊤, {5}). This corresponds to ω(B) if r0 ≥ 11, or to (⊤, {5}) otherwise.

The set of WCET formulae produced by ω(t) is now defined by the following grammar:

w ::= constw | symb | w ⊕ w | w ⊎ w | ipred ⊛ w | (w)l,it
it ::= symb | linexp
linexp ::= int | reg | int ∗ reg | linexp + linexp
ipred ::= linineq | linineq ∧ ipred
linineq ::= linexp ≤ int | linexp ≥ int

As previously, constw represents constant abstract WCET values, symb unknown values, and
int integer literals. The novelty compared to the previous grammar of Section 4.1.3 is the
introduction of terms linexp and ipred. Term linexp represents integer linear expressions on
register names (reg). Term ipred represents conjunctions of linear inequations on register names.

6.3 Simplifying WCET formulas

The size of the formula ω(t) is linear in the number of nodes of t. In this section, we detail
simplification rules to reduce the size of WCET formulae. The simplification procedure applies
simplification rules in an order that follows the classic integer arithmetic simplification strategy
described in [20].

16

Commutativity

(ek ∧ el)⊛ w1 7→ (el ∧ ek)⊛ w1 if el ◁ ek (1)

ek ⊛ w1 ⊕ el ⊛ w2 7→ el ⊛ w2 ⊕ ek ⊛ w1 if el ◁ ek (2)

ek ⊛ w1 ⊎ el ⊛ w2 7→ el ⊛ w2 ⊎ ek ⊛ w2 if el ◁ ek (3)

Factorization

ek ⊛ w1 ⊕ el ⊛ w1 7→ w1 if el ⇔ ¬ek (4)

ek ⊛ w1 ⊎ el ⊛ w1 7→ w1 if el ⇔ ¬ek (5)

ek ⊛ w1 ⊕ el ⊛ w2 7→ ek ⊛ (w1 ⊕ w2) if ek ⇔ el (6)

ek ⊛ w1 ⊎ el ⊛ w2 7→ ek ⊛ (w1 ⊎ w2) if ek ⇔ el (7)

ek ⊛ w1 ⊕ (ek ∧ el)⊛ w2 7→ ek ⊛ (w1 ⊕ el ⊛ w2) (8)

ek ⊛ w1 ⊎ (ek ∧ el)⊛ w2 7→ ek ⊛ (w1 ⊎ el ⊛ w2) (9)

Multiplication

ek ⊛ θ 7→ θ (10)

ek ⊛ w1 7→ θ if ek ⇔ false (11)

ek ⊛ w1 7→ w1 if ek ⇔ true (12)

ek ⊛ (el ⊛ w1) 7→ ek ⊛ w1 if ek ⇔ el (13)

Loops

(ek ⊛ w1)
it,l 7→ ek ⊛ (w1)

it,l (14)

Figure 6: Rewriting rules with input conditions

17

6.3.1 Simplification rules

The new simplification rules for WCET formulae that contain input conditions are detailed in
Figure 6. ek and el are input conditions, w1 and w2 are abstract WCETs, l is a loop identifier
and it is a loop bound. These rules are added to the rules of [10]. For each rule of the form
l 7→ r we must prove that l = r. We illustrate the general proof principle for rule (8) below. The
equivalence proofs of l and r for all these rules can be found in A.

Property 6.1. ek ⊛ w1 ⊕ (ek ∧ el)⊛ w2 = ek ⊛ (w1 ⊕ el ⊛ w2)

Proof. Case by case on the possible values of ek and el. We write 0 (resp. 1) as a shorthand for
false (resp. true).

1. Case: ek = 0
0⊛ w1 ⊕ (0 ∧ el)⊛ w2 = θ ⊕ 0⊛ w2 = θ

0⊛ (w1 ⊕ el ⊛ w2) = θ

2. Case: el = 0
ek ⊛ w1 ⊕ (ek ∧ 0)⊛ w2 = ek ⊛ w1 ⊕ 0⊛ w2 = ek ⊛ w1

ek ⊛ (w1 ⊕ 0⊛ w2) = ek ⊛ (w1 ⊕ θ) = ek ⊛ w1

3. Case: ek = el = 1

1⊛ w1 ⊕ (1 ∧ 1)⊛ w2 = w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ (w1 ⊕ 1⊛ w2) = 1⊛ (w1 ⊕ w2) = w1 ⊕ w2

Factorization rules require to test the equivalence of input conditions. The equivalence test
is detailed in Section 6.3.2. For distributivity rules, we rely on an order relation ◁ on input
conditions (see Section 6.3.3 below) so that they can only be applied in one direction, to ensure
termination of the simplification. Multiplication rules are direct consequences of the definition
of the operator ⊛.

6.3.2 Testing input conditions equivalence

Checking the equivalence of an input condition to either true or false is straightforward. No
simplification rule can create a new predicate that is equivalent to true or false. Therefore, we
can simply check syntactically that the input condition is the predicate true or the predicate
false.

In other cases, to test the equivalence of two input conditions, we first put them in canonical
form. Then, we test the syntactic equality of the canonical forms. This equivalence test is
exact if and only if the polyhedra domain used by the abstract interpretation procedure always
represents equivalent constraints by syntactically identical terms. This is the case for the Parma
Polyhedra Library [7], which we use in our implementation. An input condition is in canonical
form iff:

1. The left-hand side of comparison operators is 0;

2. Comparison operators are either ≤ or =;

3. Terms are ordered by increasing symbol identifiers;

4. The last term is a constant.

Example 6.4. The canonical form of input condition 10 ≥ 15 + r1+ r0 is 0 ≤ −r0− r1− 5.

18

6.3.3 Termination of the simplification procedure

The orientation of each rule is such that either of the following holds: 1) r has less operands
than l; 2) r has less parentheses than l; 3) input conditions in l are “smaller” than those in r
according to relation ◁ (defined below). Based on these properties, we can define a strict order
relation ≺ such that we have l ≺ r for each rule. This ensures that the simplification procedure
terminates. The ordering relation on input conditions is defined as follows:

ek ◁ el ⇔(lid(ek) < lid(el)) ∨
(lid(ek) = lid(el) ∧ size(ek) < size(el)) ∨
((conj(ek) = false ∧ conj(el) = false) ∧
(lid(ek) = lid(el)) ∧ (size(ek) = size(el)) ∧
(linconst(ek) < linconst(el)))

(15)

Where lid returns the lowest symbol identifier (or −1 if there is no parameter), size returns the
number of terms in an input condition, linconst returns the constant (−1 for a conjunction) of
the input condition and conj is true iff the input condition is a conjunction of input conditions.

Example 6.5. Consider the input conditions 0 ≤ r0+ r1+ 10 ∧ 0 ≤ r2. We have:

lid(0 ≤ r0+ r1+ 10 ∧ 0 ≤ r2) = 0

size(0 ≤ r0+ r1+ 10 ∧ 0 ≤ r2) = 6

linconst(0 ≤ r0+ r1+ 10) = 10

conj(0 ≤ r0+ r1+ 10 ∧ 0 ≤ r2) = true

6.4 Formula instantiation

We compile the simplified formula into a C procedure, whose arguments correspond to the
arguments of the procedure under analysis. This procedure can be executed off-line, e.g. for
sensitivity analysis, or on-line, e.g. to implement an adaptive real-time system.

In order to enable aggressive optimizations by the C compiler, we produce code that respects
the following rules: 1) the program is standalone, i.e. it has no library dependencies; 2) each
value of a WCET list is declared as a separate variable; 3) there are as few loops and function
calls as possible, and no pointers. Experiments show that the resulting executable program has
very low execution time (see Section 8.1.5).

Note that since the WCET of a procedure is the worst-case for any possible execution scenario,
executing the instantiation code before executing the procedure cannot increase the WCET of
the procedure.

7 Modular WCET analysis of pure functions

In this section, we present an extension of our approach, a modular analysis that analyzes each
procedure independently. This extension is currently limited to pure functions, that is to say
functions without side-effects. Supporting side-effects, that is to say pointers, is significantly
more challenging due to possible pointer aliasing in the procedure arguments.

7.1 Modular abstract interpretation

In our previous abstract interpretation analysis [9], each procedure call caused an analysis of the
callee within the context of the caller (virtual inlining), possibly leading to several analyses of

19

Algorithm 1 Summary construction

1: function ConstructSummary(P)
2: A♯ ← {r0 : x0, r1 : x1, r2 : x2, r3 : x3}
3: A♯

1 ← A♯

4: s← (⊤,A♯
1, ∅)

5: (pP ,R♯
P , ∗

♯
P)← interpret(s, P)

6: ps ← proj(pP , Img(A♯) ∪ {R♯
P (r0)})

7: return (ps,A♯,R♯
P)

the same procedure. Virtual inlining has two negative impacts on the analysis complexity. First,
when a procedure is called several times in the same program, it must be analysed each time.
Second, the number of variables used to analyze a procedure has an exponential impact on the
complexity of the analysis of the procedure. Virtual inlining adds variables of the sub-procedure
to those of the calling procedure, thus exponentially impacting the complexity.

In this section we detail a modular abstract interpretation analysis, which relies on the ex-
tensions previously presented in this paper. Each procedure is analyzed only once per program
analysis, and in isolation from other procedures. This significantly reduces the complexity of
the analysis and improves its scalability. The approach is similar to the functional approach
to inter-procedural data-flow analysis [42], although we consider a significantly more complex
abstract domain. Modular abstract interpretation has been considered before (e.g. in [43]), but
only for analysis of source code.

The modular analysis consists of two parts: 1) inferring a summary for each procedure,
representing how a call to the procedure impacts the state of the caller; 2) deriving call predicates
for each procedure call, which represent inferred constraints on the values of the procedure
arguments at the call site. Call predicates are not required for the modular abstract interpretation
of the program, they are only used during the symbolic WCET computation step.

In the following, a program is represented as a set of procedures P, one of which is the main
procedure, i.e. the entry point of the program. As previously, a procedure P ∈ P is defined as a
sequence of labeled instructions l0 : I0, . . . , ln : RET.

7.1.1 Procedure summary

In the 32-bit ARM convention [6], the value returned by a procedure is stored in register r0. The

summary of a procedure is defined as a tuple (p,A♯
0,R♯), where:

� p is a polyhedron that represents the abstract state of the analysis at the end of the
procedure interpretation;

� A♯ is the argument mapping of the procedure;

� R♯ is a register mapping;

� There is no memory mapping since we only consider procedures without side effects.

Let F denote the procedure under analysis. Let A♯
0 denote the argument mapping of F . Let

M = interpret(F). Let le be the end label of F , i.e. F [le] = RET . Let M [le] = (pe,R♯
e, ∗♯e).

Then, the summary of F is (pe′ ,A♯
0,R♯

e)), where pe′ = proj(pe, Img(A♯) ∪ {R♯
e(r0)}).

20

1 add_nozero: @ int add_nozero(int a , int b){

2 add r2 , r0 , r1 @ int res = a+b;

3 cmp r2 , #0 @

4 bne .L2 @ if(res == 0){

5 add r2 , r2 , #1 @ res ++;

6 .L2: @ }

7 mov r0 , r2 @ return res;

8 bx lr @ }

9

(a) Arm32 assembly code

(b) Abstract interpretation of the procedure

Label Polyhedron Registers

1 p1 R♯
1 = A♯ = {r0 : x0, r1 : x1}

3 p3 = ⟨x2 = x0 + x1⟩ R♯
3 = R♯

1[r2 : x2]

5 p5 = p3 ⊓⋄ ⟨x2 = 0⟩ R♯
5 = R♯

3

6 p6 = p5 ⊓⋄ ⟨x3 = x2 + 1⟩ R♯
6 = R♯

3[r2 : x3]

7 p7 = ⟨x0 + x1 ≤ x2 ≤ x0 + x1 + 1⟩ R♯
7 = R♯

3

8 p8 = p7 ⊓⋄ ⟨x4 = x2⟩ R♯
8 = R♯

7[r0 : x4]

Figure 7: A simplified pure function that sums its inputs and never returns 0

1 caller: @ int caller(int x, int y, int z){

2 add r3 , r0 , r1 @ int f = x + y;

3 mov r1 , r2 @ // set z as second argument

4 mov r0 , r3 @ // set f as first argument

5 bl add_nozero @

6 mov r3 , r0 @

7 mov r0 , r3 @ return add_nozero(f, z);

8 bx lr @ }

9

(a) Arm32 assembly code

(b) Abstract interpretation of the procedure

Label Polyhedron Registers

1 p1′ R♯
1′ = {r0 : x5, r1 : x6, r2 : x7}

3 p3′ = p1′ ⊓⋄ ⟨x8 = x5 + x6⟩ R♯
3′ = R♯

1′ [r3 : x8]

5 p5′ = p3′ ⊓⋄ ⟨x9 = x7, x10 = x8⟩ R♯
5′ = R♯

3′ [r0 : x10, r1 : x9]

Figure 8: A procedure that calls add nozero

21

Algorithm 2 Summary instantiation

1: function InstantiateSummary((ps,A♯
s,R♯

s), (p,R♯, ∗♯))
2: (pt,A♯

t,R
♯
t)← fresh((ps,A♯

s,R♯
s))

3: p′t ← pt
4: for all a ∈ Dom(A♯) do

5: p′t ← p′t[R♯(a)/A♯
t(a)]

6: p′ ← p ⊓⋄ p′t
7: R♯

1 ← R♯

8: for all r ∈ Dom(R♯
t) do

9: if R♯
t(r) ∈ p′ then

10: R♯
1 ← R

♯
1[r : R♯

t(r)]

11: return (p′,R♯
1, ∗♯)

Example 7.1. The procedure add nozero in Figure 7 is a pure function. Its return value depends
on its two input arguments. To ease understanding, the assembly code is slightly simplified
compared to what a compiler would actually produce. The procedure is summarized as:

(proj(p8, Img(A♯) ∪ {R♯
8(r0)}),A♯,R♯

8) =

(⟨x0 + x1 ≤ x4, x4 ≤ x0 + x1 + 1⟩,A♯,R♯
8)

In other words, arg1 + arg2 ≤ return value ≤ arg1 + arg2 + 1.

7.1.2 Summary instantiation

Let p[xi/xj] denote the polyhedron resulting from the substitution of variable xj by xi in p.
The instantiation of a procedure summary is detailed in Algorithm 2. It takes as arguments the
procedure summary (ps,A♯

s,R♯
s) and the abstract state at the procedure call (p,R♯, ∗♯). At line 2,

it creates a fresh copy of the summary, where all the variables of the summary are substituted
by fresh variables. From line 3 to line 5, it substitutes the variables mapped to procedure
arguments in the summary by the actual argument variables at the call site. Line 6 intersects
the (modified) polyhedron of the summary with the polyhedron at the call site. From line 7 to
line 10, it updates the register mapping of the caller to account for the register modifications
performed by the callee. Line 11 returns the abstract state obtained after the call.

Example 7.2. The procedure caller of Figure 8 calls the procedure add nozero at label 5. By
instantiating the summary obtained in Example 7.1, we obtain the abstract state (p6′ ,R♯

6′ , ∗
♯
6′) at

label 6 of caller, with:

p6′ = p5′ ⊓⋄ (⟨x′
0 + x′

1 ≤ x′
4 ≤ x′

0 + x′
1 + 1⟩[x10/x

′
0, x9/x

′
1])

R♯
6′ = R

♯
8[r0 : x′

4, r1 : x9]

∗♯6′ = {}

where x′
n denotes the fresh variable substituted for xn in the summary.

7.1.3 Call predicates

We derive call predicates at each call site. Each call predicate relates one argument of the callee
to the arguments of the caller. In other words, it provides information on how this argument
passed to the callee depends on the arguments of the caller.

22

Definition 7.1 (Call predicate). Let f be a procedure with an instruction that calls a procedure
g at label li. Let M = interpret(f), (p,R♯, ∗♯) = M [li]. Let Af denote the set of variables mapped
to the arguments of f . Let Agi be such that Agi(j) denotes the variables of the (j+1)th argument
passed to g at call site li

8. The call predicate cpredgi(j) is defined as:

cpredgi(j) = export(proj(p, Img(Af) ∪ {Agi(j)}))

where export(p′) exports p′ as a set of constraints, after substituting Af (k) by the identifier f_k,
and Agi(j) by the identifier g_i_j.

Example 7.3. Consider the procedure caller in Figure 8. For the call to caller at label 5, we
have:

cpredadd nozero(0) = export(proj(p5′ , {x5, x6, x7, } ∪ {x10})
= export(⟨x10 = x5 + x6⟩)
= {add nozero0 = caller0 + caller1}

Similarly, we obtain cpredadd nozero(1) = {add nozero1 = caller2}

7.2 Modular WCET analysis

In this section, we detail the modular WCET analysis, which relies on the input conditions and
call predicates inferred by the abstract interpretation.

7.2.1 Procedure calls and control-flow trees

In our previous work on symbolic WCET computation [10], for each procedure call, the CFT
of the callee is inlined in the CFT of the caller. Instead, for our modular WCET analysis we
introduce a new kind of tree to represent a procedure call.

Definition 7.2 (Call control-flow tree). Let f be a procedure and (m1, . . . ,mn) be a set of call
predicates. The tree Call(f, (m1, . . . ,mn)) represents a call to the procedure f , where mk =
cpredf (k) for 1 ≤ k ≤ n.

The abstract WCET of a call is defined as:

ω(Call(f, (m1, . . . ,mn))) = f (m1, . . . ,mn)

where f identifies the WCET formula of f .

Example 7.4. Let us consider the example of Figure 8. Let w1 denote the WCET of instructions
at lines 2-4, and w2 denote the WCET of instructions at lines 6-8. Then, based on the call
predicates obtained in Example 7.3, the WCET of procedure caller is:

w1 ⊕ add nozero(add nozero1 = f1 + f2, add nozero2 = f3)⊕ w2

8In the following we omit subscript i when clear from context.

23

7.2.2 Simplification

We instantiate sub-formulas of procedure calls during formula simplification. To do so, we update
input conditions so that they depend on arguments of the caller rather than on arguments of the
callee. More formally, we introduce the following simplification rule:

f (m1, . . . ,mn) 7→ inst(f , p,Dom(p))

where9:

p = ⟨m1, . . . ,mn⟩
inst((l,w), p, vs) = (l,w)

inst(w ⊕ w′, p, vs) = inst(w, p, vs)⊕ inst(w′, p, vs)

inst(w ⊎ w′, p, vs) = inst(w, p, vs) ⊎ inst(w′, p, vs)

inst(e⊛ w, p, vs) = proj(p ⊓⋄ ⟨e⟩, vs)⊛ inst(w, p ⊓⋄ ⟨e⟩, vs)

inst(wn,l, p, vs) =

{
inst(w, p, vs)n,l if n is constant

inst(w, p, vs)lbound(p⊓⋄⟨lb≤n⟩},vs,lb),l otherwise

Example 7.5 (Sub-formula instantiation). Consider the two procedures caller and add nozero
of Figure 7 and Figure 8. Assume the WCET of add nozero to be: w3 ⊕ ((add nozero1 +
add nozero2 = 0)⊛ w4)⊕ w5.

After simplification, we obtain the following WCET for procedure caller:

w1 ⊕ (w3 ⊕ ((caller1 + caller2 + caller3 = 0)⊛ w4)⊕ w5)⊕ w2

8 Evaluation

In this section we present the evaluation of our approach. First, we detail experiments on
TACLeBench. Second, we illustrate how on-line formula instantiation can be leveraged to im-
plement adaptive real-time systems.

8.1 Experiments

We first present our experimental setup, to enable the reproduction of our experiments. Then,
we detail our benchmarks selection criteria. Finally, we provide metrics obtained by running our
tool on the selected benchmarks.

8.1.1 Experimental setup

We implemented our approach10 as an extension to OTAWA, an open-source WCET analysis
tool [8]. We used the following setup:

� Auxiliary analyses: loop bounds that are not symbolic are computed by Polymalys as
detailed in [9];

� Infeasible paths analysis: none;

9Recall that function lbound was defined in Section 5.2.2
10See WCET-procedure-arguments-as-parameters.md at https://gitlab.cristal.univ-lille.fr/

otawa-plugins/WSymb.

24

https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb
https://gitlab.cristal.univ-lille.fr/otawa-plugins/WSymb

� Hardware analyses: the pipeline analysis is adapted from the Exegraph method [39] as de-
tailed in [27]. The cache analysis is based on the classic cache categorization approach [26],
combined with CFT transformations as previously illustrated in Example 4.3;

� Processor model: 1 ALU, 1 FPU, 1 MU. Integer addition costs 1 cycle, floating point
addition 3 cycles, multiplication 6 cycles, division 15 cycles. Processor has a 4 stages
pipeline (fetch, decode, execute, commit), a fetch queue of size 3, fetches 2 instructions per
cycle, and can execute up to 4 instructions in parallel;

� L1 instruction cache: 64KB, LRU replacement policy, 1-way. The miss penalty is 10 cycles;

� Compilation: each benchmark is compiled as a standalone binary file using GCC version
10.3.1 for ARM, with flags -O0 -g -nostdinc -nostdlib -mtune=cortex-a8 -mfpu=neon -
mfloat-abi=hard. cjpeg wrbmp uses a custom memcpy implementation in order to compile
with gcc, which does not compile without standard library otherwise;

� Analyses execution times: measured on an Intel® Core� i7-8550U CPU @ 1.80GHz Ö 8
with 16 GB of RAM.

8.1.2 Benchmark selection

We run our experiments on the TACLeBench benchmarks suite [24]. We did not analyze all the
procedures of the benchmarks:

� 11 programs are not supported by OTAWA (out of the 54 of TACLeBench): 2 because of
recursions (fac and recursion), 9 because of the incomplete support for division instructions
(adpcm dec, adpcm enc, ammunition, cjpeg transupp, epic, h264 dec, huff enc, quicksort
and susan);

� 181 procedures have arguments, out of the 1032 procedures of the supported programs;

� Procedures that contain switch-cases are excluded from the experiments, due to incomplete
support by Otawa;

� The only data-type supported by the polyhedra analysis is integers. Thus it derives incor-
rect results for 4 procedures (gsm enc norm, isqrt usqrt, st calc Var Stddev and st sqrtf);

� The polyhedra analysis is intractable for 31 procedures: it either executes for more than an
hour, or runs out-of-memory. This happens for procedures with complex memory access
patterns, which lead to an explosion of the number of variables in the polyhedron.

Among the remaining procedures, we present only the procedures for which the polyhedra
analysis derived at least one input condition. Each procedure name is prefixed with the program
it is part of (e.g. fft modff is from the fft program). Only gsm dec Long Term Synthesis Filtering
and mpeg2 dist2 have more than 4 arguments; we simply ignore the additional arguments.

Four procedures only have symbolic loop bounds: audiobeam adjust delays, audiobeam -
calculate energy, audiobeam find max in array and audiobeam find min in arr. Five procedures
have both symbolic loops bounds and symbolic conditional statements: audiobeam calc distances,
g723 enc quan, ludcmp test, minver minver and minver mmul. The remaining procedures only
have symbolic conditional statements.

25

Table 2: WCET variability (in cycles)

Procedure IPET
CFT

Lowest Highest Diff (%)

audiobeam adjust delays 9,261 1,718 9,383 81.7

audiobeam calc distances 174,295 340 176,550 98.1

audiobeam calculate energy 303 303 303 0.0

audiobeam find max in arr 5,274 1,331 5,366 75.2

audiobeam find min in arr 5,327 1,384 5,429 74.5

audiomeam wrapped dec 525 490 525 6.7

audiobeam wrapped dec offset 316 281 316 11.1

audiobeam wrapped inc 563 528 563 6.2

audiobeam wrapped inc offset 344 309 344 10.2

cjpeg wrbmp write colormap 1,266,466 1,188,091 1,288,709 7.8

fft modff 319 319 319 0.0

g723 enc quan 4,621 341 5,291 93.6

g723 enc reconstruct 702 335 702 38.9

gsm dec APCM inverse -
quantization

15,024 15,259 15,297 0.2

gsm dec APCM quantization -
xmaxc to exp mant

1,311 1235 1,353 8.7

gsm dec asl 855 268 855 68.7

gsm dec asr 420 290 420 31.0

gsm dec Long Term -
Synthesis Filtering

47,389 48,652 48,703 0.1

gsm dec sub 343 305 343 11.1

gsm enc asl 855 268 855 68.7

gsm enc asr 420 290 420 31.0

gsm enc div 5,072 3,287 5,092 35.4

gsm enc sub 343 305 343 11.1

lift do impulse 1,117 1,135 1,197 5.2

ludcmp test 108,705 9,741 110,841 91.2

minver minver 53,356 359 57,141 99.4

minver mmul 12,300 380 12,492 97.0

mpeg2 dist2 134,023 134,305 134,368 0.0

ndes getbit 383 349 383 8.9

rijndael dec fseek 470 380 470 19.1

rijndael enc fseek 449 381 449 15.1

26

8.1.3 WCET variability

Table 2 summarizes our results regarding WCET variability. As illustrated in Section 8.2, this
variability can be leveraged to implement adaptive systems. The Procedure column contains the
name of the analyzed procedure. We first report the WCET computed with IPET. The CFT
sub-columns indicate the Lowest and the Highest WCET computed by our technique, as well as
the difference between these two columns as a percentage (in the Diff column). We relied on
manual code inspection to determine parameter values that yield the lowest and highest WCET
values. Automating this process in non-trivial and will be the subject of future works.

For 26 out of 31 procedures, the variability, i.e. the difference between the highest and the
lowest WCET, is more than 5%. Many examples exhibit from 30% to 70% variability, usually
due to symbolic conditional statements. Although our tool supports loop bounds expressed as
linear expressions on parameter values, benchmarks only contain loop bounds expressed either
as a constant or as a single parameter.

The highest variability values (those over 90%) are exhibited when loop bounds are set to 0,
which is not likely to happen commonly in actual applications. Similarly, for minver minver the
lowest WCET is obtained for an unlikely argument value: it occurs when the size of the matrix
is lower than 2 or higher than 500, in which case the procedure returns immediately.

Only two procedures exhibit no variability even though their WCET formula contains sym-
bols. The formula for fft modff contains an if-then-else whose condition depends on the proce-
dure arguments. However, the input condition inferred for one of the two if-then-else branches
is approximated to true, because the corresponding condition contains a disjunction (the input
condition inferred for the other branch is not approximated, that condition is a conjunction).
Furthermore, the WCET for that branch is higher than that of the other branch. Thus the
WCET of the whole if-then-else is always the same, it does not change depending on argument
values. The formula for audiobeam calculate energy contains a symbolic loop bound, however its
maximum value is 0 in TACLeBench.

The Highest WCET is slightly higher than the WCET inferred by IPET (1.4% on average,
0% minimum, 12.7% maximum). This is because: 1) the transformation from CFG to CFT can
introduce execution paths that do not exist in the CFG (see [10] for details); 2) the hardware
analyses are slightly more pessimistic in our approach (e.g. loops with multiple exits impair
the pipeline analysis, loop headers duplicated by the transformation to CFT impair the cache
analysis).

8.1.4 Analysis time

The analysis times of IPET and our technique are presented in Table 3. The IPET column
indicates the analysis time for IPET. The CFT sub-columns indicate the analysis time for our
technique: Polyhedra indicates the time spent for the abstract interpretation, while Symbolic
WCET indicates the time spent for the WCET computation. The sum of the Polyhedra and the
Symbolic WCET columns give the global execution time of our technique.

For small procedures, the analysis times are similar for the IPET analysis, the polyhedra
analysis, and the symbolic WCET computation. This is because the execution time for the CFG
reconstruction dominates the execution time of the actual analysis.

For bigger procedures, the analysis time increases, and the analysis times for IPET and for
the Symbolic WCET computation (without considering polyhedra analysis times) are similar.
This is because the cache analysis, performed by both, dominates the rest of the analysis. Its
complexity is exponential in the depth of loop nests. In some cases, the polyhedra analysis
has higher execution times. This corresponds to programs with many memory accesses, which
cause the introduction of many variables and constraints. Furthermore, we also noticed that

27

Table 3: Analysis times (in seconds)

Procedure IPET
CFT

Polyhedra Symbolic WCET

audiobeam adjust delays 1.120 1.006 1.096

audiobeam calc distances 222.809 20.881 216.863

audiobeam calculate energy 0.242 0.099 0.246

audiobeam find max in arr 0.869 0.346 0.827

audiobeam find min in arr 0.852 0.471 0.820

audiomeam wrapped dec 0.303 0.034 0.297

audiobeam wrapped dec offset 0.163 0.022 0.162

audiobeam wrapped inc 0.463 0.039 0.455

audiobeam wrapped inc offset 0.241 0.015 0.238

cjpeg wrbmp write colormap 7.234 113.109 7.383

fft modff 0.140 0.007 0.141

g723 enc quan 0.247 0.598 0.244

g723 enc reconstruct 24.510 0.045 24.790

gsm dec APCM inverse -
quantization

6.551 8.199 6.441

gsm dec APCM quantization -
xmaxc to exp mant

1.067 0.184 1.033

gsm dec asl 0.495 0.059 0.484

gsm dec asr 0.272 0.028 0.266

gsm dec Long Term Synthesis -
Filtering

2.175 2.844 2.095

gsm dec sub 0.226 0.022 0.220

gsm enc asl 0.498 0.057 0.483

gsm enc asr 0.274 0.025 0.266

gsm enc div 0.904 0.409 0.874

gsm enc sub 0.225 0.015 0.219

lift do impulse 0.391 0.058 0.385

ludcmp test 4.702 21.641 4.636

minver minver 72.026 645.606 71.018

minver mmul 1.714 6.300 1.640

mpeg2 dist2 9.410 37.567 9.154

ndes getbit 0.381 0.035 0.357

rijndael dec fseek 0.259 0.053 0.252

rijndael enc fseek 0.212 0.057 0.204

28

a
u
d
io
b
e
a
m

a
d
ju
st

d
e
la
y
s

a
u
d
io
b
e
a
m

c
a
lc

d
is
ta

n
c
e
s

a
u
d
io
b
e
a
m

c
a
lc
u
la
te

e
n
e
rg

y
a
u
d
io
b
e
a
m

fi
n
d

m
a
x
in

a
rr

a
u
d
io
b
e
a
m

fi
n
d

m
in

in
a
rr

a
u
d
io
b
e
a
m

w
ra

p
p
e
d

d
e
c

a
u
d
io
b
e
a
m

w
ra

p
p
e
d

d
e
c
o
ff
se
t

a
u
d
io
b
e
a
m

w
ra

p
p
e
d

in
c

a
u
d
io
b
e
a
m

w
ra

p
p
e
d

in
c
o
ff
se
t

c
jp

e
g
w
rb

m
p

w
ri
te

c
o
lo
rm

a
p

ff
t
m
o
d
ff

g
7
2
3
e
n
c
q
u
a
n

g
7
2
3
e
n
c
re
c
o
n
st
ru

c
t

g
sm

d
e
c
[.
..
]
q
u
a
n
ti
z
a
ti
o
n

g
sm

d
e
c
[.
..
]
e
x
p

m
a
n
t

g
sm

d
e
c
[.
..
]
F
il
te
ri
n
g

g
sm

d
e
c
a
sl

g
sm

d
e
c
a
sr

g
sm

d
e
c
su

b
g
sm

e
n
c
a
sl

g
sm

e
n
c
a
sr

g
sm

e
n
c
d
iv

g
sm

e
n
c
su

b
li
ft

d
o
im

p
u
ls
e

lu
d
c
m
p

te
st

m
in
v
e
r
m
in
v
e
r

m
in
v
e
r
m
m
u
l

m
p
e
g
2
d
is
t2

n
d
e
s
g
e
tb

it
ri
jn
d
a
e
l
d
e
c
fs
e
e
k

ri
jn
d
a
e
l
e
n
c
fs
e
e
k

0
50
100
150
200
250
300
350
400
450
500
550

N
u
m
b
er

o
f
o
p
er
a
n
d
s

Before simplification
After simplification

Figure 9: Symbolic WCET formula size before and after simplification

our extensions to support input conditions have very little to no impact on the symbolic WCET
analysis time.

The major difference between our work and IPET concerning analysis time is the abstract
interpretation part, which extracts input conditions. There are many ways to improve the
scalability of this part of our approach, by adapting the rich set of optimization techniques
developed by the community on abstract interpretation over the past decades. Nonetheless, our
approach is already capable of producing WCET formulas for programs that are currently out
of the scope of other tools in the literature.

8.1.5 Embeddability

The size of the initial and simplified formulae are reported in Figure 9. A simplified formula
typically contains between 10 and 50 operands. Its size depends on the number of input conditions
in the non-simplified formula. The largest formula (minver minver) is reduced to 15% of its initial
size by our simplification procedure.

Table 4 reports instantiation times (in cycles) for a selection of procedures with various
characteristics, in terms of WCET, variability, and formula size. Instantiation indicates the
WCET of the instantiation program computed by OTAWA. Max gain is the difference between
the highest and the lowest WCET. WCET reports the Highest WCET of Table 2. Op reports
the number of operands in the formula, from Figure 9.

On-line instantiation can be considered only when Max gain is significantly larger than In-
stantiation. This is the case for most procedures of Table 2, and the difference is actually quite
large. For instance, for cjpeg wrbmp write colormap, the instantiation takes 105 cycles while
100, 513 cycles can be reclaimed for other tasks. On the other extreme, the instantiation time of
audiobeam wrapped dec offset is larger than its WCET, so on-line instantiation offers no benefit.

29

Table 4: Instantiation times (in cycles)

Procedure Inst.
Max

WCET Op
gain

audiobeam adjust delays 155 7,665 9,383 5

audiobeam calc distances 137 176,210 176,550 19

audiobeam find max in arr 119 4,035 5,366 3

audiobeam find min in arr 119 4,045 5,429 3

audiobeam wrapped dec offset 74 35 525 10

cjpeg wrbmp write colormap 105 100,618 1,288,709 20

g723 enc quan 143 4,950 5,291 8

g723 enc reconstruct 235 273 702 18

gsm dec asl 232 587 855 30

ludcmp test 1,472 101,100 110,841 42

minver minver 2,564 56,782 57,141 87

mpeg2 dist2 100 63 134,368 18

0 1 2 3 4
0

5

10

15

20

25

Loop nesting level

A
n
al
y
si
s
ti
m
e
(s
)

ln

Classic
Modular

0 1 2 3 4
0

5

10

15

20

25

Loop nesting level

A
n
al
y
si
s
ti
m
e
(s
)

ln complex

Classic
Modular

Figure 10: Comparison between classic and modular analysis time (in seconds)

8.1.6 Modular WCET analysis

We use two synthetic programs11, ln and ln complex, to emphasize the benefits of the modular
analysis. They call a procedure at different loop nest levels: from ln0 (no loop, only a procedure
call), to ln4 (loop > loop > loop > loop > procedure call). ln calls a simple procedure that
performs 4 additions. ln complex calls a procedure that contains conditional statements and
performs an addition in each branch. Increasing the loop nest level stresses the analysis, because
the number of times the procedure call is analyzed is exponential in the nesting level. Even though
widening is applied to speedup analysis convergence, the body of a loop must be analyzed at
least two times (possibly more depending on the widening operator).

Figure 10 details the abstract interpretation time for different loop nest levels. Modular corre-
sponds to the modular analysis time and Classic to the non-modular analysis time. Results show
that when there is no loop in the program (ln0), the modular abstract interpretation is slightly

11https://gitlab.cristal.univ-lille.fr/sgrebant/artificial-benchmarks.

30

https://gitlab.cristal.univ-lille.fr/sgrebant/artificial-benchmarks

slower. This is due to the overhead for computing the procedure summary and instantiating it.
However, when the procedure is analyzed repeatedly (i.e. ln1, ln2, ln3 and ln4), the modular
analysis is significantly faster. This is especially true for ln3 and ln4 of ln complex, where the
non-modular analysis fails after 5 hours, with a segmentation fault, whereas the modular analysis
completes the analysis in less than 20 seconds.

We also ran the complete modular WCET analysis on compatible procedures of TACLeBench.
In comparison to the non-modular analysis, resulting WCET values are unchanged. In terms of
analysis time, the impact of the modular analysis on the symbolic WCET computation part is
negligible, because this part has a low complexity.

8.2 Application to adaptive real-time systems

In this section, we discuss the application of our WCET estimation approach to adaptive real-
time systems. Real-time literature usually focuses on schedulability analysis for such systems.
Instead, here we consider practical implementation aspects.

8.2.1 Semi-clairvoyant mixed-criticality scheduling

Recently, adaptive scheduling has gained interest following work on semi-clairvoyant scheduling
for mixed-criticality systems [1]. The system model is based on the dual-criticality model of
Vestal [45], where a system has two distinct criticality levels, LO (for low) and HI (for high).
The workload consists of a set of tasks {τi(χi, [C

L
i , C

H
i]), Ti}0≤i<n, where:

� χi ∈ {LO,HI} denotes the criticality of the task;

� CL
i and CH

i denote the LO-criticality and HI-criticality WCET of the task, such that
CL

i ≤ CH
i

� Ti is the period of the task and defines the minimum duration between two successive
releases, also called job, of the task12.

In semi-clairvoyant scheduling, the WCET of a job is estimated at its release. This estimate
γi,j equals either CL

i or CH
i . The system starts in LO-criticality mode, where every job of must

complete before its deadline (the next job released by the same task). Whenever the estimate
γi,j of any job equals CH

i , the system switches to HI-criticality mode, where only HI-criticality
jobs need to complete before their deadlines.

Figure 11 depicts a possible implementation of such a system in C. Each job (one step of
the loop) first acquires current input values (getInputs). Its WCET estimate is obtained by
applying the WCET instantiation function of the task to the input values (fWCET(inputs)). If it
exceeds the LO-WCET of the task, the system switches to HI-criticality. Note that there is no
distinction between the code of LO and HI-criticality tasks. However, only LO-criticality tasks
are suspended at mode switch (by suspendAllLo). Function doWork implements the actual task
functionality.

The scheduler function (schedule) is called at periodic time intervals (as defined by the sched-
uler time granularity) and also when a task starts waiting for its next release (when it executes
waitPeriod). Before switching to the new higher priority task, it tests whether the system can
transition back to LO-criticality mode (goBackToLo), in which case it does so by resuming all
LO-criticality tasks (resumeAllLo). Suspended tasks are simply ignored when selecting the next
task to schedule. Resuming a task puts it back into the list of tasks ready to be scheduled.

12[1] assumes a more general model of jobs that may or may not be released periodically. We opt for a periodic
model to make the discussion more concrete.

31

1 void mixedCritTask () {

2 int inputs [4];

3
4 while (1) {

5 getInputs(inputs);

6 if(fWCET(inputs)>CLo)

7 suspendAllLo ();

8 doWork ();

9 waitPeriod ();

10 }

11 }

(a) Task code (LO or HI task)

1 void schedule () {

2 saveContext ();

3
4 if(goBackToLo ())

5 resumeAllLo ();

6 selectNextTask ();

7
8 restoreContext ();

9 }

(b) Scheduler code

Figure 11: Implementing semi-clairvoyant mixed-criticality scheduling

There is a slight difference between the implementation proposed in Figure 11 and the the-
oretical semi-clairvoyant model: in Figure 11, the WCET estimation occurs at the start time of
the job (i.e. at the time when it is first selected for execution by the scheduler), while in the
theoretical model it occurs at the release time of the job. To adhere more closely to the theoret-
ical model, we can simply move L5-7 out of the task function and into the callback function of
the periodic timer of the task. This timer is the actual trigger for new job releases; its callback
is usually triggered by interruption and is thus not delayed by the scheduler. The pros and cons
of both options (at release time or at start time) will be explored in future works.

8.2.2 Adaptive control

In adaptive control, the controller of the system adapts to parameters which vary or are initially
uncertain. Such control is commonly used in embedded systems, as illustrated in the simple
example of Figure 1. The parameter-space is often large, making control law computation very
intensive. Implementing such adaptive control in real-time systems induces a tradeoff between
control precision and computation time.

Figure 12 depicts the implementation of an adaptive control task using our WCET estimation
approach. The time budget for a job is estimated after input acquisition (getBudget). The esti-
mated WCET for the job is compared against its budget. If the estimation exceeds the WCET,
the job executes a simplified version of the control law (simpleWork), which gives imprecise results
but executes quickly. Otherwise, it executes a more refined control law (complexWork) that gives
better results but takes more time to execute.

9 Conclusion

We presented a parametric WCET analysis that accounts for the effect of procedure argument
values on the control-flow of the procedure. It first infers input conditions by abstract inter-
pretation. Then, based on these results, the analysis produces a parametric WCET formula
that depends on the procedure arguments. We also detailed a modular version of the analysis.
Experiment show that our approach is adaptive and embeddable. We also illustrated how this
approach can be used to implement adaptive real-time systems.

For future works, we plan to extend the modular analysis to support non-pure functions.
The main challenge lies in developing an inter-procedural abstract interpretation procedure that

32

1 void adaptiveTask () {

2 int inputs [4];

3
4 while (1) {

5 getInputs(inputs);

6 if(fWCET(inputs)>getBudget ())

7 simpleWork ();

8 else

9 complexWork ();

10 waitPeriod ();

11 }

12 }

Figure 12: Implementing an adaptive control task

supports procedures with side-effects.

A Rewriting rules equivalence proofs

In the following proofs, ek and el are input conditions, w1 and w2 are abstract WCETs, it
is an integer and l is a loop identifier. For the sake of readability, true and false values are
replaced respectively by 1 and 0. The proofs of all the rules of Figure 6 are presented, except for
rules (10), (11) and (12) since those are direct consequences of the application of the ⊛ operator
semantic and thus are correct by construction. All the proofs are case by case proofs on the
possible values of ek and el.

Proof of rule (1). Property: (ek ∧ el)⊛w1 = (el ∧ ek)⊛w1. The proof directly follows from the
commutativity of ∧.

Proof of rule (2). Property: ek ⊛ w1 ⊕ el ⊛ w2 = el ⊛ w2 ⊕ ek ⊛ w1

1. Case ek = 0
0⊛ w1 ⊕ el ⊛ w2 = θ ⊕ el ⊛ w2 = el ⊛ w2

el ⊛ w2 ⊕ 0⊛ w1 = el ⊛ w2 ⊕ θ = el ⊛ w2

2. Case el = 0
ek ⊛ w1 ⊕ 0⊛ w2 = ek ⊛ w1 ⊕ θ = ek ⊛ w1

0⊛ w2 ⊕ ek ⊛ w1 = θ ⊕ ek ⊛ w1 = ek ⊛ w1

3. Case ek = el = 1
1⊛ w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ w2 ⊕ 1⊛ w1 = w2 ⊕ w1 = w1 ⊕ w2

Proof of rule (3). Property: ek ⊛ w1 ⊎ el ⊛ w2 = el ⊛ w2 ⊎ ek ⊛ w2

1. Case ek = 0
0⊛ w1 ⊎ el ⊛ w2 = θ ⊎ el ⊛ w2 = el ⊛ w2

el ⊛ w2 ⊎ 0⊛ w1 = el ⊛ w2 ⊎ θ = el ⊛ w2

33

2. Case el = 0
ek ⊛ w1 ⊎ 0⊛ w2 = ek ⊛ w1 ⊎ θ = ek ⊛ w1

0⊛ w2 ⊎ ek ⊛ w1 = θ ⊎ ek ⊛ w1 = ek ⊛ w1

3. Case ek = el = 1
1⊛ w1 ⊎ 1⊛ w2 = w1 ⊎ w2

1⊛ w2 ⊎ 1⊛ w1 = w2 ⊎ w1 = w1 ⊎ w2

Proof of rule (4). Property: ek ⊛ w1 ⊕ el ⊛ w1 = w1 if el ⇔ ¬ek

1. Case ek = 1 ∧ el = 0
1⊛ w1 ⊕ 0⊛ w1 = w1 ⊕ θ = w1

2. Case ek = 0 ∧ el = 1
0⊛ w1 ⊕ 1⊛ w1 = θ ⊕ w1 = w1

Proof of rule (5). Property: ek ⊛ w1 ⊎ el ⊛ w1 = w1 if el ⇔ ¬ek

1. Case ek = 1 ∧ el = 0
1⊛ w1 ⊎ 0⊛ w1 = w1 ⊎ θ = w1

2. Case ek = 0 ∧ el = 1
0⊛ w1 ⊎ 1⊛ w1 = θ ⊎ w1 = w1

Proof of rule (6). Property: ek ⊛ w1 ⊕ el ⊛ w2 = ek ⊛ (w1 ⊕ w2) if ek ⇔ el

1. Case ek = el = 0
0⊛ w1 ⊕ 0⊛ w2 = θ ⊕ θ = θ

0⊛ (w1 ⊕ w2) = θ

2. Case ek = el = 1
1⊛ w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ (w1 ⊕ w2) = w1 ⊕ w2

Proof of rule (7). Property: ek ⊛ w1 ⊎ el ⊛ w2 = ek ⊛ (w1 ⊎ w2) if ek ⇔ el

1. Case ek = el = 0
0⊛ w1 ⊎ 0⊛ w2 = θ ⊎ θ = θ

0⊛ (w1 ⊎ w2) = θ

2. Case ek = el = 1
1⊛ w1 ⊎ 1⊛ w2 = w1 ⊎ w2

1⊛ (w1 ⊎ w2) = w1 ⊎ w2

34

Proof of rule (8). Property: ek ⊛ w1 ⊕ (ek ∧ el)⊛ w2 = ek ⊛ (w1 ⊕ el ⊛ w2)

1. Case ek = 0
0⊛ w1 ⊕ (0 ∧ el)⊛ w2 = θ ⊕ 0⊛ w2 = θ ⊕ θ = θ

0⊛ (w1 ⊕ el ⊛ w2) = θ

2. Case el = 0

ek ⊛ w1 ⊕ (ek ∧ 0)⊛ w2 = ek ⊛ w1 ⊕ 0⊛ w2 = ek ⊛ w1 ⊕ θ = ek ⊛ w1

ek ⊛ (w1 ⊕ 0⊛ w2) = ek ⊛ (w1 ⊕ θ) = ek ⊛ w1

3. Case ek = el = 1

1⊛ w1 ⊕ (1 ∧ 1)⊛ w2 = w1 ⊕ 1⊛ w2 = w1 ⊕ w2

1⊛ (w1 ⊕ 1⊛ w2) = w1 ⊕ w2

Proof of rule (9). Property: ek ⊛ w1 ⊎ (ek ∧ el)⊛ w2 = ek ⊛ (w1 ⊎ el ⊛ w2)

1. Case ek = 0
0⊛ w1 ⊎ (0 ∧ el)⊛ w2 = θ ⊎ 0⊛ w2 = θ ⊎ θ

0⊛ (w1 ⊎ el ⊛ w2) = θ

2. Case el = 0

ek ⊛ w1 ⊎ (ek ∧ 0)⊛ w2 = ek ⊛ w1 ⊎ 0⊛ w2 = ek ⊛ w1 ⊎ θ = ek ⊛ w1

ek ⊛ (w1 ⊎ 0⊛ w2) = ek ⊛ (w1 ⊎ θ) = ek ⊛ w1

3. Case ek = el = 1
1⊛ w1 ⊎ (1 ∧ 1)⊛ w2 = w1 ⊎ 1⊛ w2 = w1 ⊎ w2

1⊛ (w1 ⊎ 1⊛ w2) = w1 ⊎ w2

Proof of rule (13). Property: ek ⊛ (el ⊛ w1) = ek ⊛ w1 if ek ⇔ el

1. Case ek = el = 0
0⊛ (0⊛ w1) = θ

0⊛ w1 = θ

2. Case ek = el = 1
1⊛ (1⊛ w1) = w1

1⊛ w1 = w1

Proof of rule (14). Property: (ek ⊛ w1)
it,l = ek ⊛ (w1)

it,l

1. Case ek = 0
(0⊛ w1)

it,l = (θ)it,l = θ

0⊛ (w1)
it,l = θ

2. Case ek = 1
(1⊛ w1)

it,l = (w1)
it,l

1⊛ (w1)
it,l = (w1)

it,l

35

References

[1] K. Agrawal, S. Baruah, and A. Burns. Semi-Clairvoyance in Mixed-Criticality Scheduling.
In 2019 IEEE Real-Time Systems Symposium (RTSS), pages 458–468, Hong Kong, China,
Dec. 2019. IEEE. ISSN: 2576-3172. doi:10.1109/RTSS46320.2019.00047.

[2] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior prediction by ab-
stract interpretation. In R. Cousot and D. A. Schmidt, editors, Static Analysis, Lec-
ture Notes in Computer Science, pages 52–66, Berlin, Heidelberg, 1996. Springer. doi:

10.1007/3-540-61739-6_33.

[3] E. Althaus, S. Altmeyer, and R. Naujoks. Precise and efficient parametric path analy-
sis. SIGPLAN Not., 46(5):141–150, Apr. 2011. URL: http://doi.org/10.1145/2016603.
1967697, doi:10.1145/2016603.1967697.

[4] E. Althaus, S. Altmeyer, and R. Naujoks. Symbolic Worst Case Execution Times. In
A. Cerone and P. Pihlajasaari, editors, Theoretical Aspects of Computing – ICTAC 2011,
Lecture Notes in Computer Science, pages 25–44, Berlin, Heidelberg, 2011. Springer. doi:
10.1007/978-3-642-23283-1_5.

[5] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm. Parametric Timing Analysis for
Complex Architectures. In 2008 14th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 367–376, Kaohsiung, Taiwan, Aug.
2008. IEEE. ISSN: 2325-1301. doi:10.1109/RTCSA.2008.7.

[6] Arm. Procedure Call Standard for the Arm® Architecture, 2023. URL:
https://developer.arm.com/Additional%20Resources/ABI-Procedure%20Call%

20Standard%20for%20the%20Arm%20Architecture.

[7] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software
systems. Science of Computer Programming, 72(1):3–21, 2008.

[8] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An Open Toolbox for Adap-
tive WCET Analysis. In S. L. Min, R. Pettit, P. Puschner, and T. Ungerer, editors, Software
Technologies for Embedded and Ubiquitous Systems, Lecture Notes in Computer Science,
pages 35–46, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-16256-5_6.

[9] C. Ballabriga, J. Forget, L. Gonnord, G. Lipari, and J. Ruiz. Static Analysis Of Binary
Code With Memory Indirections Using Polyhedra. In VMCAI’19 - International Conference
on Verification, Model Checking, and Abstract Interpretation, volume 11388 of LNCS, pages
114–135, Cascais, Portugal, Jan. 2019. Springer. URL: https://hal.archives-ouvertes.
fr/hal-01939659, doi:10.1007/978-3-030-11245-5_6.

[10] C. Ballabriga, J. Forget, and G. Lipari. Symbolic WCET Computation. ACM Transactions
on Embedded Computing Systems, 17(2):1–26, 2017. URL: https://dl.acm.org/doi/10.
1145/3147413, doi:10.1145/3147413.

[11] S. Baruah and P. Ekberg. Graceful Degradation in Semi-Clairvoyant Scheduling. In
B. B. Brandenburg, editor, 33rd Euromicro Conference on Real-Time Systems (ECRTS
2021), volume 196 of Leibniz International Proceedings in Informatics (LIPIcs), pages
9:1–9:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/13940, doi:10.4230/
LIPIcs.ECRTS.2021.9.

36

https://doi.org/10.1109/RTSS46320.2019.00047
https://doi.org/10.1007/3-540-61739-6_33
https://doi.org/10.1007/3-540-61739-6_33
http://doi.org/10.1145/2016603.1967697
http://doi.org/10.1145/2016603.1967697
https://doi.org/10.1145/2016603.1967697
https://doi.org/10.1007/978-3-642-23283-1_5
https://doi.org/10.1007/978-3-642-23283-1_5
https://doi.org/10.1109/RTCSA.2008.7
https://developer.arm.com/Additional%20Resources/ABI-Procedure%20Call%20Standard%20for%20the%20Arm%20Architecture
https://developer.arm.com/Additional%20Resources/ABI-Procedure%20Call%20Standard%20for%20the%20Arm%20Architecture
https://doi.org/10.1007/978-3-642-16256-5_6
https://hal.archives-ouvertes.fr/hal-01939659
https://hal.archives-ouvertes.fr/hal-01939659
https://doi.org/10.1007/978-3-030-11245-5_6
https://dl.acm.org/doi/10.1145/3147413
https://dl.acm.org/doi/10.1145/3147413
https://doi.org/10.1145/3147413
https://drops.dagstuhl.de/opus/volltexte/2021/13940
https://doi.org/10.4230/LIPIcs.ECRTS.2021.9
https://doi.org/10.4230/LIPIcs.ECRTS.2021.9

[12] B. Benhamamouch, B. Monsuez, and F. Védrine. Computing WCET using symbolic exe-
cution. In Second International Workshop on Verification and Evaluation of Computer and
Communication Systems (VECoS 2008), pages 1–12, Leeds, UK, July 2008. ScienceOpen.
Publisher: BCS Learning & Development. URL: https://www.scienceopen.com/

hosted-document?doi=10.14236/ewic/VECOS2008.12, doi:10.14236/ewic/VECOS2008.

12.

[13] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. The Auspicious Couple: Sym-
bolic Execution and WCET Analysis. In C. Maiza, editor, 13th International Work-
shop on Worst-Case Execution Time Analysis, volume 30 of OpenAccess Series in In-
formatics (OASIcs), pages 53–63, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2013/4122,
doi:10.4230/OASIcs.WCET.2013.53.

[14] B. Blackham, M. Liffiton, and G. Heiser. Trickle: Automated infeasible path detection using
all minimal unsatisfiable subsets. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 169–178, Berlin, Germany, Apr. 2014. IEEE.
doi:10.1109/RTAS.2014.6926000.

[15] A. Burns and R. I. Davis. Schedulability Analysis for Adaptive Mixed Criticality Systems
with Arbitrary Deadlines and Semi-Clairvoyance. In 2020 IEEE Real-Time Systems Sym-
posium (RTSS), pages 12–24, Houston, TX, Dec. 2020. IEEE. doi:10.1109/RTSS49844.

2020.00013.

[16] S. Bygde, A. Ermedahl, and B. Lisper. An efficient algorithm for parametric WCET
calculation. Journal of Systems Architecture, 57(6):614–624, June 2011. URL:
https://www.sciencedirect.com/science/article/pii/S1383762110000676, doi:10.

1016/j.sysarc.2010.06.009.

[17] T. Chen, T. Mitra, A. Roychoudhury, and V. Suhendra. Exploiting Branch Constraints
without Exhaustive Path Enumeration. In R. Wilhelm, editor, 5th International Workshop
on Worst-Case Execution Time Analysis (WCET’05), volume 1 of OpenAccess Series in
Informatics (OASIcs), pages 46–49, Dagstuhl, Germany, 2007. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://doi.org/10.4230/OASIcs.WCET.2005.816, doi:
10.4230/OASIcs.WCET.2005.816.

[18] D. Chu and J. Jaffar. Symbolic simulation on complicated loops for WCET Path Analysis.
In 2011 Proceedings of the Ninth ACM International Conference on Embedded Software
(EMSOFT), pages 319–328, New York, NY, USA, Oct. 2011. Association for Computing
Machinery.

[19] J. Coffman, C. Healy, F. Mueller, and D. Whalley. Generalizing parametric timing analy-
sis. SIGPLAN Not., 42(7):152–154, June 2007. URL: http://doi.org/10.1145/1273444.
1254795, doi:10.1145/1273444.1254795.

[20] J. S. Cohen. Computer alegebra and symbolic computation: mathematical methods. AK
Peters, Natick, Mass, 2003.

[21] A. Colin and G. Bernat. Scope-tree: a program representation for symbolic worst-case
execution time analysis. In Proceedings 14th Euromicro Conference on Real-Time Systems.
Euromicro RTS 2002, pages 50–59, Vienna, Austria, June 2002. IEEE. doi:10.1109/

EMRTS.2002.1019185.

37

https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/VECOS2008.12
https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/VECOS2008.12
https://doi.org/10.14236/ewic/VECOS2008.12
https://doi.org/10.14236/ewic/VECOS2008.12
http://drops.dagstuhl.de/opus/volltexte/2013/4122
https://doi.org/10.4230/OASIcs.WCET.2013.53
https://doi.org/10.1109/RTAS.2014.6926000
https://doi.org/10.1109/RTSS49844.2020.00013
https://doi.org/10.1109/RTSS49844.2020.00013
https://www.sciencedirect.com/science/article/pii/S1383762110000676
https://doi.org/10.1016/j.sysarc.2010.06.009
https://doi.org/10.1016/j.sysarc.2010.06.009
http://doi.org/10.4230/OASIcs.WCET.2005.816
https://doi.org/10.4230/OASIcs.WCET.2005.816
https://doi.org/10.4230/OASIcs.WCET.2005.816
http://doi.org/10.1145/1273444.1254795
http://doi.org/10.1145/1273444.1254795
https://doi.org/10.1145/1273444.1254795
https://doi.org/10.1109/EMRTS.2002.1019185
https://doi.org/10.1109/EMRTS.2002.1019185

[22] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’77, pages
238–252, New York, NY, USA, Jan. 1977. Association for Computing Machinery. URL:
http://doi.org/10.1145/512950.512973, doi:10.1145/512950.512973.

[23] S. Ding and H. B. K. Tan. Detection of Infeasible Paths: Approaches and Challenges. In L. A.
Maciaszek and J. Filipe, editors, Evaluation of Novel Approaches to Software Engineering,
Communications in Computer and Information Science, pages 64–78, Berlin, Heidelberg,
2013. Springer. doi:10.1007/978-3-642-45422-6_5.

[24] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl, R. B.
Sørensen, P. Wägemann, and S. Wegener. TACLeBench: A Benchmark Collection to Sup-
port Worst-Case Execution Time Research. In 16th International Workshop on Worst-Case
Execution Time Analysis, pages 2:1–2:10, Toulouse, France, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: https://hal.archives-ouvertes.fr/hal-02610690,
doi:10.4230/OASIcs.WCET.2016.2.

[25] P. Feautrier. Parametric integer programming. RAIRO - Operations Research, 22(3):243–
268, 1988. URL: http://www.rairo-ro.org/10.1051/ro/1988220302431, doi:10.1051/
ro/1988220302431.

[26] C. Ferdinand and R. Wilhelm. Efficient and Precise Cache Behavior Prediction for
Real-Time Systems. Real-Time Systems, 17(2):131–181, Nov. 1999. doi:10.1023/A:

1008186323068.

[27] S. Grebant, C. Ballabriga, J. Forget, and G. Lipari. WCET analysis with procedure ar-
guments as parameters. In The 31st International Conference on Real-Time Networks and
Systems (RTNS 2023), RTNS 2023, Dortmund, Germany, June 2023. ACM, New York,
USA. doi:10.1145/3575757.3593655.

[28] J. Gustaffson, A. Ermedahl, and B. Lisper. Algorithms for Infeasible Path Calculation. In
F. Mueller, editor, 6th International Workshop on Worst-Case Execution Time Analysis
(WCET’06), volume 4 of OpenAccess Series in Informatics (OASIcs), pages 1–6, Dagstuhl,
Germany, 2006. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://doi.
org/10.4230/OASIcs.WCET.2006.667, doi:10.4230/OASIcs.WCET.2006.667.

[29] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic Derivation of Loop
Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution. In 2006 27th
IEEE International Real-Time Systems Symposium (RTSS’06), pages 57–66, Rio de Janeiro,
Brazil, Dec. 2006. IEEE. doi:10.1109/RTSS.2006.12.

[30] C. Healy and D. Whalley. Automatic detection and exploitation of branch constraints for
timing analysis. IEEE Transactions on Software Engineering, 28(8):763–781, Aug. 2002.
doi:10.1109/TSE.2002.1027799.

[31] J. Janssen and H. Corporaal. Making graphs reducible with controlled node splitting. ACM
Trans. Program. Lang. Syst., 19(6):1031–1052, Nov. 1997.

[32] Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. In Proceedings of the ACM SIGPLAN 1995 workshop on Languages, compilers,
& tools for real-time systems, LCTES ’95, pages 88–98, New York, NY, USA, Nov. 1995.
Association for Computing Machinery. URL: http://doi.org/10.1145/216636.216666,
doi:10.1145/216636.216666.

38

http://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-45422-6_5
https://hal.archives-ouvertes.fr/hal-02610690
https://doi.org/10.4230/OASIcs.WCET.2016.2
http://www.rairo-ro.org/10.1051/ro/1988220302431
https://doi.org/10.1051/ro/1988220302431
https://doi.org/10.1051/ro/1988220302431
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1145/3575757.3593655
http://doi.org/10.4230/OASIcs.WCET.2006.667
http://doi.org/10.4230/OASIcs.WCET.2006.667
https://doi.org/10.4230/OASIcs.WCET.2006.667
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1109/TSE.2002.1027799
http://doi.org/10.1145/216636.216666
https://doi.org/10.1145/216636.216666

[33] B. Lisper. Fully automatic, parametric worst-case execution time analysis. In J. Gustafs-
son, editor, Proc. 3rd International Workshop on Worst-Case Execution Time Analysis
(WCET’2003), pages 77–80, Porto, July 2003.

[34] R. Metta, M. Becker, P. Bokil, S. Chakraborty, and R. Venkatesh. TIC: a scalable model
checking based approach to WCET estimation. ACM SIGPLAN Notices, 51(5):72–81,
June 2016. URL: http://doi.org/10.1145/2980930.2907961, doi:10.1145/2980930.

2907961.

[35] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and D. Whalley. ParaScale: exploit-
ing parametric timing analysis for real-time schedulers and dynamic voltage scaling. In 26th
IEEE International Real-Time Systems Symposium (RTSS’05), pages 10 pp.–242, Miami,
FL, USA, Dec. 2005. IEEE. ISSN: 1052-8725. doi:10.1109/RTSS.2005.33.

[36] S. Mohan, F. Mueller, M. Root, W. Hawkins, C. Healy, D. Whalley, and E. Vivancos. Para-
metric timing analysis and its application to dynamic voltage scaling. ACM Trans. Embed.
Comput. Syst., 10(2):25:1–25:34, Jan. 2011. URL: http://doi.org/10.1145/1880050.
1880061, doi:10.1145/1880050.1880061.

[37] C. Y. Park and A. C. Shaw. Experiments with a program timing tool based on a source-level
timing schema. IEEE Computer, 24(5):48–57, 1991.

[38] J. Reineke and J. Doerfert. Architecture-parametric timing analysis. In 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 189–200,
Berlin, Germany, Apr. 2014. IEEE. ISSN: 1545-3421. doi:10.1109/RTAS.2014.6926002.

[39] C. Rochange and P. Sainrat. A Context-Parameterized Model for Static Analysis of Execu-
tion Times. In P. Stenström, editor, Transactions on High-Performance Embedded Archi-
tectures and Compilers II, volume 5470, pages 222–241. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. URL: http://link.springer.com/10.1007/978-3-642-00904-4_12,
doi:10.1007/978-3-642-00904-4_12.

[40] J. Ruiz and H. Cassé. Using SMT Solving for the Lookup of Infeasible Paths in Binary Pro-
grams. In F. J. Cazorla, editor, 15th International Workshop on Worst-Case Execution Time
Analysis (WCET 2015), volume 47 of OpenAccess Series in Informatics (OASIcs), pages
95–104, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL:
http://doi.org/10.4230/OASIcs.WCET.2015.95, doi:10.4230/OASIcs.WCET.2015.95.

[41] J. Ruiz, H. Cassé, and M. de Michiel. Working Around Loops for Infeasible Path Detection
in Binary Programs. In 2017 IEEE 17th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 1–10, Shanghai, China, Sept. 2017. IEEE. ISSN:
2470-6892. doi:10.1109/SCAM.2017.13.

[42] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. New York
University. Courant Institute of Mathematical Sciences, 1978.

[43] P. Sotin and B. Jeannet. Precise interprocedural analysis in the presence of pointers to the
stack. In Programming Languages and Systems: 20th European Symposium on Program-
ming, ESOP 2011, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2011, Saarbrücken, Germany, March 26–April 3, 2011. Proceedings
20, pages 459–479. Springer, 2011.

39

http://doi.org/10.1145/2980930.2907961
https://doi.org/10.1145/2980930.2907961
https://doi.org/10.1145/2980930.2907961
https://doi.org/10.1109/RTSS.2005.33
http://doi.org/10.1145/1880050.1880061
http://doi.org/10.1145/1880050.1880061
https://doi.org/10.1145/1880050.1880061
https://doi.org/10.1109/RTAS.2014.6926002
http://link.springer.com/10.1007/978-3-642-00904-4_12
https://doi.org/10.1007/978-3-642-00904-4_12
http://doi.org/10.4230/OASIcs.WCET.2015.95
https://doi.org/10.4230/OASIcs.WCET.2015.95
https://doi.org/10.1109/SCAM.2017.13

[44] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. Efficient detection and exploitation
of infeasible paths for software timing analysis. In Proceedings of the 43rd annual Design
Automation Conference, DAC ’06, pages 358–363, New York, NY, USA, July 2006. As-
sociation for Computing Machinery. URL: http://doi.org/10.1145/1146909.1147002,
doi:10.1145/1146909.1147002.

[45] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Exe-
cution Time Assurance. In 28th IEEE International Real-Time Systems Symposium (RTSS
2007), pages 239–243, Dec. 2007. ISSN: 1052-8725. doi:10.1109/RTSS.2007.47.

[46] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric Timing Analysis. In
Proceedings of the 2001 ACM SIGPLAN workshop on Optimization of middleware and
distributed systems, OM ’01, pages 88–93, New York, NY, USA, Aug. 2001. Associa-
tion for Computing Machinery. URL: http://doi.org/10.1145/384198.384230, doi:

10.1145/384198.384230.

[47] T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying loops in decompila-
tion. In Proceedings of the 14th International Conference on Static Analysis, SAS’07, pages
170–183, Berlin, Heidelberg, 2007. Springer-Verlag.

[48] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The worst-case execution-time problem—overview of methods and survey of
tools. ACM Transactions on Embedded Computing Systems, 7(3):1–53, Apr. 2008. URL:
https://dl.acm.org/doi/10.1145/1347375.1347389, doi:10.1145/1347375.1347389.

[49] S. Wilhelm and B. Wachter. Symbolic state traversal for WCET analysis. In Proceedings
of the seventh ACM international conference on Embedded software - EMSOFT ’09, page
137, Grenoble, France, 2009. ACM Press. URL: http://portal.acm.org/citation.cfm?
doid=1629335.1629354, doi:10.1145/1629335.1629354.

40

http://doi.org/10.1145/1146909.1147002
https://doi.org/10.1145/1146909.1147002
https://doi.org/10.1109/RTSS.2007.47
http://doi.org/10.1145/384198.384230
https://doi.org/10.1145/384198.384230
https://doi.org/10.1145/384198.384230
https://dl.acm.org/doi/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389
http://portal.acm.org/citation.cfm?doid=1629335.1629354
http://portal.acm.org/citation.cfm?doid=1629335.1629354
https://doi.org/10.1145/1629335.1629354

	Introduction
	Motivating example
	Contributions

	Related work
	Overview
	Background
	Symbolic WCET computation
	Control-Flow Tree
	Abstract WCET
	Computing the WCET of a control-flow tree

	Abstract interpretation of binary code
	Polyhedra
	Abstract state
	Interpretation procedure

	Inferring input conditions
	Identifying procedure arguments
	From polyhedra to input conditions
	Conditional statements
	Loop bounds

	Symbolic WCET with input conditions
	Control-flow Tree with input conditions
	WCET formulas with input conditions
	Simplifying WCET formulas
	Simplification rules
	Testing input conditions equivalence
	Termination of the simplification procedure

	Formula instantiation

	Modular WCET analysis of pure functions
	Modular abstract interpretation
	Procedure summary
	Summary instantiation
	Call predicates

	Modular WCET analysis
	Procedure calls and control-flow trees
	Simplification

	Evaluation
	Experiments
	Experimental setup
	Benchmark selection
	WCET variability
	Analysis time
	Embeddability
	Modular WCET analysis

	Application to adaptive real-time systems
	Semi-clairvoyant mixed-criticality scheduling
	Adaptive control

	Conclusion
	Rewriting rules equivalence proofs

