
HAL Id: hal-04433395
https://hal.science/hal-04433395v2

Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feedback stabilization and observer design for sterile
insect technique model

Kala Agbo Bidi

To cite this version:
Kala Agbo Bidi. Feedback stabilization and observer design for sterile insect technique model.
Mathematical Biosciences and Engineering, 2024, 21, pp.6263-6288. �10.3934/mbe.2024274�. �hal-
04433395v2�

https://hal.science/hal-04433395v2
https://hal.archives-ouvertes.fr


Feedback stabilization and observer design for sterile insect

technique model

Kala Agbo bidi
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INRIA équipe CAGE, F-75005 Paris, France, kala.agbo bidi@sorbonne-universite.fr

Abstract

This paper focuses on the feedback global stabilization and observer construction for a sterile
insect technique model. The sterile insect technique (SIT) is one of the most ecological methods
for controlling insect pests responsible for worldwide crop destruction and disease transmission.
In this work, we construct a feedback law that globally asymptotically stabilizes a SIT model at
extinction equilibrium. Since the application of this type of control requires the measurement of
different states of the target insect population, and, in practice, some states are more difficult or
more expensive to measure than others, it is important to know how to construct a state estimator
which from a few well-chosen measured states, estimates the other ones, as the one we build in
the second part of our work. In the last part of our work, we show that we can apply the feedback
control with estimated states to stabilize the full system.

Keywords: sterile insect technique; pest control; feedback control design; observer design; Lya-
punov stability; mosquito population control; vector-borne disease

1 Introduction

SIT is presently one of the most ecological methods for controlling insect pests responsible for disease
transmission or crop destruction worldwide. This technique consists in releasing sterile males into
the insect pest population [1–3]. This approach aims at reducing fertility and, consequently, reducing
the target insect population after a few generations. Classical SIT has been modeled and studied
theoretically in a large number of papers to derive results to study the success of these strategies
using discrete, continuous, or hybrid modeling approaches (for instance, the recent papers [4–10]).

Despite this extensive research, little has been done concerning the stabilization of the target
population near extinction after the decay caused by the massive initial SIT intervention and there
are still major difficulties due to the complexity of the dependency on climate, landscape and many
other parameters which would be difficult to be integrated into the mathematical models studied.
Not being able to consider all these parameters in our mathematical models and knowing that these
external factors strongly impact the evolution of the density of the target population, we focus our
studies on releases that now depend on the target population density measurements since, as we
will see below, this makes our control more robust. Indeed, several monitoring tools can provide
information on the size of the wild population throughout the year. So, a control that considers this
information to adapt the size of the releases is possible and useful. This was already the case of [9,11]
in which a state feedback control law gives significant robustness qualities to the mathematical model
of SIT. Although this approach provides evidence in terms of robustness because the control is directly
adjusted according to the density of the population, its application requires to continuously measure
the different states of the model. In practice, traps allow data to be collected to analyze the control’s
impact and technology is being developed that may allow us to obtain continuous data in the near
future.

However, specific categories of data are still problematic or very expensive to obtain. For example,
during a SIT intervention, it is difficult to measure the density of young females that have not yet
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been fecundated or of females that were fecundated by wild males. In this work we use another
control theory tool, which consists of constructing a state estimator for a dynamical system and
using this estimator to apply feedback control. A state observer or state estimator is a system that
provides an estimate of the natural state using some partial measurements of the real system. In our
case, using traps, wild males as well as sterile males, can be measured. Using the observer system
technique, we have built a system that allows us to estimate all other states.

The problem of observer design for linear systems was established and solved by [12] and [13].
While Kalman’s Observer [12] was highly successful for linear systems, extending it to nonlinear
systems took a lot of work. In several cases, the observer can be obtained from the extended
Kalman filter by a particular choice of the matrix gain using linear matrix inequalities (LMIs). The
development of the observer in this paper was motivated by its application to the SIT model. A
model of this process can be written as

ẋ = Ax+B(y)x+Du, (1.1)

y = Cx, (1.2)

where y ∈ Rm is the output, x ∈ Rn is the state vector, and u ∈ Rp is the input. The output matrix
B(y) is such that the coefficients b(y)ij are bounded for all i, j.

Our paper has three parts. In the first part, thanks to the backstepping approach, we build a
feedback control law that stabilizes the zero population state for the SIT model for the mosquito
population, which considers only the compartments of young females and fertilized females presented
in [14]. In the second part we construct a state estimator for the SIT model. Finally, in the third
part we show that the application of this feedback, depending on the measured states and the ones
estimated thanks to the state estimator, globally stabilizes the system.

2 Mosquito population dynamics

The mosquito life cycle has several phases. The aquatic stage comprises eggs, larvae, and pupa,
followed by the adult stage, where we consider both wild males and females. After emergence from
the pupa, a female mosquito needs to mate and then to get a blood meal before it can start laying
eggs. Then every 4−5 days, it will take a blood meal and lay 100−150 eggs at different places (10−15
per place). For the mathematical description, we will consider the following compartments [14].

• E the density of population in aquatic stage,

• Y the density of young females, not yet laying eggs,

• F the density of fertilized and egg-laying females,

• M the density of males,

• Ms the density of sterile males,

• U the density of females that mate with sterile males.

The Y compartment represents the stage of the young females before the start of their gonotropic
cycle, i.e., before they mate and take their first blood meal. It generally lasts for 3 to 4 days.
The sterile insect technique introduces male mosquitoes to compete with wild males. We denote by
Ms the density of sterile mosquitoes and by U the density of females that have mated with them.
We assume that a female mating mosquito has probability M

M+Ms
to mate with a wild male and

probability Ms
M+Ms

to mate with a sterile one. Hence, the transfer rate η from the compartment Y

splits into transfer rate of η1M
M+Ms

to compartment F and a transfer rate of η2Ms

M+Ms
to compartment

U of females that will be laying sterile (nonhatching) eggs. The mathematical model is the system
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of ordinary differential equations presented in [15]

Ė = βEF (1− E

K
)− (δE + νE)E, (2.1)

Ṁ = (1− ν)νEE − δMM, (2.2)

Ẏ = ννEE − η1M

M +Ms
Y − η2Ms

M +Ms
Y − δY Y, (2.3)

Ḟ =
η1M

M +Ms
Y − δFF, (2.4)

U̇ =
η2Ms

M +Ms
Y − δUU, (2.5)

Ṁs = u− δsMs. (2.6)

The parameter δY is the mortality rate, for young females (they can die without mating for diverse
reason like predators or other hostile environmental conditions). Male mosquitoes can mate for most
of their lives. A female mosquito needs a successful mating to be able to reproduce for the rest of her
life, βE > 0 is the oviposition rate; δE , δM , δF , δY , δs > 0 are the death rates respectively for eggs, wild
adult males, fertilized females, young females and sterile males; νE > 0 is the hatching rate for eggs;
ν ∈ (0, 1), the probability that a pupa gives rise to a female, and (1−ν) is, therefore, the probability
of giving rise to a male. K > 0 is the environmental capacity for eggs. It can be interpreted as the
maximum density of eggs that females can lay in breeding sites. Since here the larval and pupal
compartments are not present, we consider that E represents all the aquatic compartments, in which
case, this term K represents a logistic law’s carrying capacity for the aquatic phase, which also
includes the effects of competition between larvae. The control function u represents the number of
mosquitoes released during the SIT intervention. It is interesting to follow the evolution of the state
U because female mosquitoes, once fertilized by sterile males, will continue their gonotrophic cycle
normally and, therefore, can still transmit disease. We will assume in this work that

δs ≥ δM . (2.7)

In [14,15], equilibria and their stability property were studied for the system without control.

Ė = βEF (1− E

K
)− (δE + νE)E, (2.8)

Ṁ = (1− ν)νEE − δMM, (2.9)

Ẏ = ννEE − (η1 + δY )Y, (2.10)

Ḟ = η1Y − δFF. (2.11)

(2.12)

Its basic offspring number is R0 =
η1βEννE

δF (νE+δE)(η1+δY ) . For the rest of our work, we assume that

R0 > 1. (2.13)

3 Global stabilization by a feedback law

We assume that wild males are more likely to fertilize young females because they are born in the
same egg-laying site. We define

∆η = η1 − η2 ≥ 0. (3.1)

Other authors, such as in [14], have already studied the stability of this type of model. The
difference in our approach lies in the kind of control used initially for global stabilization. Indeed, in
most of the prior studies the controls u studied were independent of system states. Some previous
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works have considered certain simple applications of feedback control to SIT (see, for instance, [9,16,
17]). In a previous paper [11], we used the backstepping method to build a feedback control system
that simplifies the SIT model, which is presented in [4], assuming that all females are immediately
fertilized. Here we consider the system

Ė = βEF (1− E

K
)− (δE + νE)E, (3.2)

Ṁ = (1− ν)νEE − δMM, (3.3)

Ẏ = ννEE − ∆ηM

M +Ms
Y − (η2 + δY )Y, (3.4)

Ḟ =
η1M

M +Ms
Y − δFF, (3.5)

U̇ =
η2Ms

M +Ms
Y − δUU, (3.6)

Ṁs = u− δsMs. (3.7)

Let N := [0,+∞)6 and X := (E,M, Y, F, U,Ms)
T . When applying a feedback law u : N → [0,+∞),

the closed-loop system is the system
Ẋ = H(X , u(X )), (3.8)

where H is the right-hand side of Eqs (3.2)–(3.7). The construction method remains the same
as in our previous paper [11]. In this work, we also consider solutions in the Filippov sense of our
discontinuous closed-loop system (see, for instance [18–23] ). Let us define x := (E,M, Y, F, U)T . We
must rewrite the target system (3.2)–(3.6) in the following form to apply the backstepping method
(see, for instance [35, Theorem 12.24, page 334]):{

ẋ = f(x,Ms),

Ṁs = u− δsMs,
(3.9)

where f : R6 → R5 represents the right hand side of (3.2)–(3.6). We then consider the control
system ẋ = f(x,Ms) with the state being x ∈ D := [0,+∞)5 and the control being Ms ∈ [0,+∞).
We assume that Ms is of the form Ms = θM for a constant θ > 0. Then, we define and study the
closed-loop system

ẋ = f(x, θM). (3.10)

Its offspring number is

R(θ) :=
βEη1ννE

δF (νE + δE)(∆η + (1 + θ)(η2 + δY ))
. (3.11)

Note that if R(θ) ≤ 1, 0 ∈ R5 is the only equilibrium point of the system in D. Our next proposition
shows that the feedback law Ms = θM stabilizes our control system ẋ = f(x,Ms) if R(θ) < 1.

Proposition 3.1. Assume that

R(θ) < 1. (3.12)

Then 0 is globally exponentially stable in D for system (3.10). The exponential convergence rate is
bounded from above by the positive constant c defined by relation (3.16).

Proof. We apply Lyapunov’s second theorem. To do so, we define V : [0,+∞)5 → R+, x 7→ V (x),

V (x) :=
(1 + 2R(θ))ννE

(νE + δE)(1−R(θ))
E + νM +

3R(θ)

(1−R(θ))
Y +

(2 +R(θ))βEννE
δF (νE + δE)(1−R(θ))

F + σU, (3.13)

where σ > 0 is a constant, that we will choose later.
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As (3.12) holds, V is of class C1, V (x) > V ((0, 0, 0, 0, 0)T ) = 0, ∀x ∈ [0,+∞)5 \ {(0, 0, 0, 0, 0)T },
V (x) → +∞ when ∥x∥ → +∞ with x ∈ D and

V̇ (x) = − βEννE
(νE + δE)

F − νδMM − (1 + 2R(θ))ννE
(νE + δE)(1−R(θ))

βE
K

FE

− ν2νEE − η1βEννE
δF (νE + δE)(1 + θ)

Y − ση2
1 + θ

Y + ση2Y − σδUU.

By choosing

σ :=
η1βEννER(θ)

(1 + θ)η2(νE + δE)δF
(3.14)

we get

V̇ (x) = − βEννE
(νE + δE)

F − νδMM − (1 + 2R(θ))ννE
(νE + δE)(1−R(θ))

βE
K

FE

− ν2νEE − η1βEννE(1 + θ(1−R(θ)))

δF (νE + δE)(1 + θ)2
Y − σδUU.

and using once more (3.12), we get

V̇ (x) ≤ −cV (x), ∀x ∈ [0,+∞)5, (3.15)

with

c := min

{
ν(νE + δE)(1−R(θ))

(1 + 2R(θ))
, δM ,

δF (1−R(θ))

2 +R(θ)
, δU ,

η1βEννE(1 + θ(1−R(θ)))

δF (νE + δE)(1 + θ)2
(1−R(θ))

3R(θ)

}
> 0. (3.16)

This concludes the proof of Proposition 3.1. □

Remark 3.1. When the Allee effect is included in the model (for instance [4, Eq (2.5), Page 25]),
the control Ms = θM can still be used, and the proof of the stability result can still be done using the
same Lyapunov function (3.13).

We define

ϕ :=
(2 +R(θ))η1βEννE − 3R(θ)∆ηδF (νE + δE)

δF (νE + δE)(1−R(θ))(1 + θ)
− η1βEννER(θ)

(1 + θ)2(δE + νE)δF
, (3.17)

Q := 3(η2 + δY )(1 + θ)(νE + δE)δF − (1−R(θ))η1βEννE , (3.18)

and for α > 0, the map G : N := [0,+∞)6 → R, (xT ,Ms)
T 7→ G((xT ,Ms)

T ) by

G((xT ,Ms)
T ) :=

ϕY (θM +Ms)
2

α(M +Ms)(3θM +Ms)
+

((1− ν)νEθE − θδMM)(θM + 3Ms)

3θM +Ms

+ δsMs +
1

α
(θM −Ms) if M +Ms ̸= 0, (3.19)

G((xT ,Ms)
T ) := 0 if M +Ms = 0. (3.20)

Finally, let us define the feedback law u : N → [0,+∞), (xT ,Ms)
T 7→ u((xT ,Ms)

T ), by

u((xT ,Ms)
T ) := max

(
0, G((xT ,Ms)

T )
)
. (3.21)

The global stability result is the following.
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Theorem 3.1. Assume that (3.12) holds. Then 0 ∈ N is globally exponentially stable in N for
system (3.2)–(3.6) with the feedback law (3.21). The exponential convergence rate is bounded by the
positive constant cp defined by

cp := min{c, 1
α
, δM ,

Q

3(1 + θ)δF (νE + δE)
, δU}. (3.22)

Lemma 3.1. Assume that (2.13) and (3.12) hold, then ϕ > 0.

Proof.
Let us define ϕ1 := (2+R(θ))η1βEννE−3R(θ)∆ηδF (νE+δE)

δF (νE+δE)(1−R(θ))(1+θ) . We get from the relation (2.13) that

η1βEννE > δF (νE + δE)(η1 + δY ). So

ϕ1 >
2η1

(1 + θ)
+

(2 +R(θ))δY + 3R(θ)η2
(1−R(θ))(1 + θ)

. (3.23)

From relation (3.12) we get βEη1ννE
δF (νE+δE) < ∆η + (1 + θ)(η2 + δY ). Thus

ϕ >
2η1

(1 + θ)
+

(2 +R(θ))δY + 3R(θ)η2
(1−R(θ))(1 + θ)

− ∆ηR(θ) + (1 + θ)(η2 + δY )R(θ)

(1 + θ)2
,

>
2η1R(θ)

(1 + θ)
+

(2 +R(θ))δY + 3R(θ)η2
(1−R(θ))(1 + θ)

+
η2R(θ)

(1 + θ)2
− η1R(θ)

(1 + θ)2
− (η2 + δY )R(θ)

1 + θ
,

>
η1R(θ)(1 + 2θ)

(1 + θ)2
+

2R(θ)η2 + 2δY +R(θ)2(η2 + δY )

(1−R(θ))(1 + θ)
+

η2R(θ)

(1 + θ)2
,

> 0.

□
Proof of Theorem 3.1. Let α > 0 and define W : N → R by

W ((xT ,Ms)
T ) := V (x) + α

(θM −Ms)
2

θM +Ms
if M +Ms ̸= 0, (3.24)

W ((xT ,Ms)
T ) := V (x) if M +Ms = 0. (3.25)

We have

W is continuous, (3.26)

W is of class C1 on N \
{
(E,M, Y, F, U,Ms)

T ∈ N ; M +Ms = 0
}
, (3.27)

W ((xT ,Ms)
T ) → +∞ as ∥x∥+Ms → +∞, with x ∈ D and Ms ∈ [0,+∞), (3.28)

W ((xT ,Ms)
T ) > W (0) = 0, ∀(xT ,Ms)

T ∈ N \ {0}. (3.29)

From now on, and until the end of this proof, we assume that (xT ,Ms)
T is in N and until (3.44)

below we further assume that

(M,Ms) ̸= (0, 0). (3.30)

One has

Ẇ ((xT ,Ms)
T ) = ∇V (x)T · f(x,Ms) + α(θM −Ms)

2(θṀ−Ṁs)(θM+Ms)−(θṀ+Ṁs)(θM−Ms)
(θM+Ms)2

,

= ∇V (x)T · f(x, θM) +∇V (x)T · (f(x,Ms)− f(x, θM))

+α(θM −Ms)
θṀ(θM+3Ms)−Ṁs(3θM+Ms)

(θM+Ms)2
.
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Since

∇V (x)T · (f(x,Ms)− f(x, θM)) =



(1+2R(θ))ννE
(νE+δE)(1−R(θ))

ν
3R(θ)

(1−R(θ))
(2+R(θ))βEννE

δF (νE+δE)(1−R(θ))
η1βEννER(θ)

(1+θ)η2(νE+δE)δF

 ·


0
0

− ∆η(θM−Ms)
(M+Ms)(1+θ)Y
η1(θM−Ms)

(M+Ms)(1+θ)Y

− η2(θM−Ms)
(M+Ms)(1+θ)Y


=

ϕY (θM −Ms)

M +Ms
,

Ẇ ((xT ,Ms)
T ) = ∇V (x)T · f(x, θM) + α

(θM −Ms)

(θM +Ms)2[(∇V (x) · (f((xT ,Ms)
T )− f(x, θM)))(θM +Ms)

2

α(θM −Ms)

+θṀ(θM + 3Ms)− Ṁs(3θM +Ms)
]

= V̇ (x) + α
(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)
(3.31)

+((1− ν)νEθE − θδMM)(θM + 3Ms)

−u(3θM +Ms) + δsMs(3θM +Ms)
]
. (3.32)

We take u as given by (3.21). Therefore, in the case where

ϕY (θM +Ms)
2

α(M +Ms)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
1

α
(θM −Ms)(3θM +Ms) > 0, (3.33)

u =
1

3θM +Ms

[ϕY (θM +Ms)
2

α(M +Ms)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
1

α
(θM −Ms)(3θM +Ms)

]
,

which, together with (3.32), leads to

Ẇ ((xT ,Ms)
T ) = V̇ (x)− (θM −Ms)

2(3θM +Ms)

(θM +Ms)2
. (3.34)

Otherwise, i.e., if (3.33) does not hold,

ϕY (θM +Ms)
2

α(M + γsMs)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
1

α
(θM −Ms)(3θM +Ms) ≤ 0, (3.35)

so, by (3.21),

u = 0. (3.36)

We consider two cases. If θM > Ms using (3.32), (3.35) and (3.36)

Ẇ ((xT ,Ms)
T ) ≤ V̇ (x)− (θM −Ms)

2(3θM +Ms)

(θM +Ms)2
,

≤ −cV (x)− (θM −Ms)
2

θM +Ms
,

≤ −c1W ((xT ,Ms)
T ), (3.37)
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with

c1 := min{c, 1
α
} > 0. (3.38)

Otherwise, ff θM ≤ Ms, using once more (3.32) and (3.36)

Ẇ ((xT ,Ms)
T ) = V̇ (x) + α

(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)

+ θ((1− ν)νEE − δMM)(θM + 3Ms)

+ δsMs(3θM +Ms)
]
. (3.39)

Ẇ ((xT ,Ms)
T ) = V̇ (x) + α

(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)
+ θ((1− ν)νEE

]
+ α

(θM −Ms)

(θM +Ms)2

[
− δMM(θM + 3Ms) + δsMs(3θM +Ms)

]
. (3.40)

From Lemma 3.1 we deduce that ϕ > 0 and as (xT ,Ms)
T ∈ N , one has ϕY (θM+Ms)2

α(M+Ms)
+θ(1−ν)νEE ≥ 0.

So, θM −Ms ≤ 0 =⇒ α
(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)
+ θ(1− ν)νEE

]
≤ 0. (3.41)

Equation (3.40) becomes

Ẇ ((xT ,Ms)
T ) ≤ V̇ (x) + α

(θM −Ms)

(θM +Ms)2

[
− θδMM(θM + 3Ms) + δsMs(3θM +Ms)

]
. (3.42)

The inequality (2.7) gives δs ≥ δM and one has

−θδMM(θM + 3Ms) + δsMs(3θM +Ms) ≥ −θδMM(θM + 3Ms) + δMMs(3θM +Ms)

≥ δM (Ms − θM)(Ms + θM). (3.43)

(3.43) together with θM −Ms ≤ 0, implies that

Ẇ ((xT ,Ms)
T ) ≤ V̇ (x)− αδM

(θM −Ms)
2

(θM +Ms)
,

≤ −c2W ((xT ,Ms)
T ), (3.44)

with

c2 := min{c, δM} > 0. (3.45)

Let us now deal with the case where (3.30) is not satisfied. Note that, for every τ ≥ 0, M(τ)+Ms(τ) >
0 implies that M(t) +Ms(t) > 0 for all t ≥ τ . Thus, if M(0) +Ms(0) = 0, there exists ts ∈ [0,+∞]
such that M(t) +Ms(t) = 0 if and only if t ∈ [0, ts] \ {+∞}. Let us study only the case ts ∈ (0,+∞)
(the case ts = 0 is obvious and the case ts = +∞ is a corollary of our study of the case ts ∈ (0,+∞)).
Let us first point out that, for every (M,Ms)

T ∈ [0,+∞)2 such that M +Ms > 0, one has

M

M +Ms
≤ 1,

(θM +Ms)
2 ≤ (3θM +Ms)

2 and
(θM +Ms)

2

(M +Ms)(3θM +Ms)
≤ (3θM +Ms)

M +Ms
≤ 3θ + 1,

θM + 3Ms

3θM +Ms
=

θM

3θM +Ms
+

3Ms

3θM +Ms
≤ 1

3
+ 3 ≤ 4.
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So
M

M +Ms
∈ [0, 1],

(θM +Ms)
2

(M +Ms)(3θM +Ms)
∈ [0, 3θ + 1], and

θM + 3Ms

3θM +Ms
∈ [0, 4]. (3.46)

Let t 7→ X (t) = (E(t),M(t), Y (t), F (t), U(t),Ms(t))
T be a solution (in the Filippov sense) of the

closed-loop system (3.2)–(3.6) such that, for some ts ∈ (0,+∞)

M(t) +Ms(t) = 0, ∀t ∈ [0, ts]. (3.47)

Note that (3.47) implies that
M(t) = Ms(t) = 0, ∀t ∈ [0, ts]. (3.48)

From (3.46), (3.48) and the definition of a Filippov solution, one has on (0, ts)

Ė

Ṁ

Ẏ

Ḟ

U̇

Ṁs


=



βEF (1− E
K )−

(
νE + δE

)
E

(1− ν)νEE − δMM
ννEE − κ(t)∆ηY − (η2 + δY )Y

η1Y κ(t)− δFF
η2(1− κ(t))Y − δUU

Y g1(t) + Eg2(t)− δsMs

 (3.49)

with

κ(t) ∈ [0, 1], g1(t) ∈
ϕ

α
[0, 3θ + 1] and g2(t) ∈ (1− ν)νEθ[0, 4]. (3.50)

From (3.48) and the second line of (3.49), one has

E(t) = 0, ∀t ∈ [0, ts]. (3.51)

From the first line of (3.49) and (3.51), we get

F (t) = 0, ∀t ∈ [0, ts]. (3.52)

Let us first consider the case where Y (0) = 0. Then, from the third line of (3.49) and (3.51), one
has

Y (t) = 0, ∀t ∈ [0, ts]. (3.53)

To summarize, from (3.48), the fifth line of (3.49), (3.51), (3.52) and (3.53)

E(t) = M(t) = Y (t) = F (t) = Ms(t) = 0 and U̇(t) = −δUU(t), ∀t ∈ [0, ts], (3.54)

which, with (3.13), (3.16) and (3.25), gives

Ẇ (t) = −σδUU(t) ≤ −δUW (t), ∀t ∈ [0, ts]. (3.55)

Let us finally consider the case where Y (0) > 0. Then, from the third line of (3.49),

Y (t) > 0, ∀t ∈ [0, ts], (3.56)

which, together with the fourth line of (3.49) and (3.52), implies

κ(t) = 0, ∀t ∈ [0, ts]. (3.57)

To summarize, from (3.48), the third and the fifth line of (3.49), (3.51), (3.52) and (3.57),

E(t) = M(t) = F (t) = Ms(t) = 0, Ẏ (t) = −(η2 + δY )Y (t), and U̇(t) = η2Y − δUU(t), ∀t ∈ [0, ts],
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which, with (3.13), (3.14), (3.16) and (3.25), gives

Ẇ (t) = −(η2 + δY )
3R(θ)

(1−R(θ))
Y (t) + η2σY (t)− σδUU(t)

= −R(θ)

(
(η2 + δY )

3

(1−R(θ))
− η1βEννE

(1 + θ)(νE + δE)δF

)
Y (t)− σδUU(t)

= −R(θ)

(
Q

(1−R(θ))(1 + θ)(νE + δE)δF

)
Y (t)− σδUU(t)

(3.58)

where

Q := 3(η2 + δY )(1 + θ)(νE + δE)δF − (1−R(θ))η1βEννE . (3.59)

To end the proof we have to prove that Q > 0. Using the relation (3.11) and (3.12) we have

βEη1ννE < R(θ)δF (νE + δE)∆η + δF (νE + δE)(1 + θ)(η2 + δY ). (3.60)

Recall that ∆η = η1 − η2. One has

Q = 3(η2 + δY )(1 + θ)(νE + δE)δF − η1βEννE +R(θ)η1βEννE

> 2(η2 + δY )(1 + θ)(νE + δE)δF −R(θ)∆η(νE + δE)δF +R(θ)η1βEννE

> 2(η2 + δY )(1 + θ)(νE + δE)δF −R(θ)η1(νE + δE)δF +R(θ)η1βEννE +R(θ)η2(νE + δE)δF .

From the relation (2.13), η1βEννE > δF (νE + δE)(η1 + δY ).

Q > 2(η2 + δY )(1 + θ)(νE + δE)δF −R(θ)η1(νE + δE)δF +R(θ)δF (νE + δE)(η1 + δY ) +R(θ)η2(νE + δE)δF

> 2(η2 + δY )(1 + θ)(νE + δE)δF +R(θ)(η2 + δY )(νE + δE)δF

> 0.

We get

Ẇ (t) ≤ −c′W (t), ∀t ∈ [0, ts], (3.61)

where

c′ := min{ Q

3(1 + θ)δF (νE + δE)
, δU}. (3.62)

This proves Theorem 3.1 and gives the global exponential stability. From (3.38), (3.45) and (3.62)
we obtain an estimate on the exponential decay rate

cp := min{c, 1
α
, δM ,

Q

3(1 + θ)δF (νE + δE)
, δU}. (3.63)

□

3.1 Numerical simulations

Note that η1 represents the natural fertility rate in the mosquito population. Wild males have a
shorter maturity time in their life cycle than females. Thus, the fertilization phase is essentially
around the hatching site. Sterile males are artificially released into the intervention region. We
denote by p with (0 ≤ p ≤ 1) the proportion of sterile males that are released. Also, the effective
fertilization during the mating could be diminished due to the sterilization, which leads us to assume
that the effective mating rate of sterile insects is given by qη1 with 0 ≤ q ≤ 1. Putting together these
assumptions we get that the probability for a young female to mate with sterile males is η2M

M+Ms
with

η2 = pqη1. For the numerical simulation we take η1 = 1 and η2 = 0.7. The numerical simulations
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of the dynamics when applying the feedback (3.21) is given in Figure 1. The parameters we use are
given in the following table.

Table 1: Value for the parameters of system (3.2)–(3.5) (see [4, 14]). Units are days−1 except for ν.

Parameters Description Value

βE Effective fecundity 10
νE Hatching parameter 0.05
δE Mosquitoes in aquatic phase death rate 0.03
δF Fertilized female death rate 0.04
δY Young female death rate 0.04
δM Male death rate 0.1
δs Sterilized male death rate 0.12
ν Probability of emergence 0.49

With the parameters given in Table 1, condition (3.12) is θ > 102, 06. We fix K = 21000 and we
consider the persistence equilibrium z0 = (E0,M0, Y 0, F 0, U0,M0

s ) as initial condition. That gives
E0 = 20700,M0 = 5300, Y0 = 1500, F 0 = 13000 and U0 = M0

s = 0. We take θ = 290 and α = 90.

(a) Evolution of states E, M , Y , F and U (b) Evolution of Ms

(c) Evolution of the control function u

Figure 1: (a): Plot of E,M, Y , F and U when applying the feedback (3.21) with the initial condition
z0. (b): Plot of Ms. (c): Plot of the feedback control function u.

Remark 3.2. Note that the feedback satisfies

sup
ε→0

{|u(X )| : X ∈ N , ∥X∥1 ∈ B(0, ε)} −→ 0. (3.64)
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The advantage of applying feedback control is that when the density of the target population decreases,
the control also decreases.

Remark 3.3. It is important to note that the backstepping feedback control (3.21) does not depend
on the environmental capacity K, which is also an interesting feature for the field applications. In
the case K = +∞, the Eq (2.8) becomes

Ė = βEF − (δE + νE)E, (3.65)

and we prove by the same process that the same feedback law (3.21), ensures the exponential stability
of the SIT system (3.65),(3.3)–(3.7) with the same lower bound of the exponential convergence rate.

Our stabilization result is the following one.

Theorem 3.2. Assume that (3.12) holds and K = +∞. Then 0 ∈ N is globally exponentially stable
in N for system (3.65), (3.3)–(3.7) with the feedback law (3.21). The exponential convergence rate
is bounded by cp > 0 defined in (3.63).

Remark 3.4. Let us assume that the heterogeneity of the intervention zone strongly impacts the
mating of female mosquitoes with sterile males more than we would have estimated. Suppose the
estimated mating rate for the control (3.21) is ηe2 = 0.7 and let the mating rate is ηr2 = 0.4 for the dy-
namics. Keeping the other parameters and the same initial condition, we obtain the following figure.
This parameter considerably impacts the convergence time of the states of the system. Note that with

(a) Evolution of states E, M , Y ,
F and U

(b) Evolution of Ms
(c) Evolution of the control func-
tion u

Figure 2: (a): Plot of E,M, Y , F and U when applying the feedback (3.21) with ηe2 = 0.7 while
ηr2 = 0.4 for the dynamics. (b): Plot of Ms. (c): Plot of the feedback control function u.

e = 3×10−1 of error difference, we still have convergence. Estimation errors of the order of e = 10−2

will have a negligible impact on the convergence time. This is because the backstepping control also
depends on the states of the system. Thus, the states make a correction that can compensate for a
certain margin of error. Unlike control, which only depends on the parameters, estimation errors
have no correction from the dynamics. Therefore, this can be fatal to the success of the interven-
tion. In practice, many external factors impact the life cycle of mosquitoes. These factors modify
parameters such as birth, hatching, and fertilization rates. These factors are, for example, rainfall
and the topography of the region. A SIT model that can integrate these factors is challenging to
study (see [24]) . The success of a SIT intervention depends strongly on the robustness of the control
strategy. The results of our previous test that is reported in Figure 2, show us the advantage feedback
control can provide in terms of robustness.

4 Observer design for SIT model

The application of feedback control requires measuring states such as eggs E and young females Y
of the intervention zone over time. In practice, it is always important to estimate the density of
adult mosquitoes to intervene in an area. These data are collected using mosquito traps distributed
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throughout the region. Despite various technological advances to improve these traps, it should be
noted that some data are still easier to be measured than others. Measuring mosquito density in
the aquatic phase E is difficult, specially in a heterogeneous area. It is also challenging to measure
young females Y because females come in three categories, and we need to distinguish between
unfertilized and fertilized females. Males are more easily measured because they are distinguishable.
It can be also easy to distinguish wild males from laboratory males by marking processes applied
to laboratory males. In this part of our paper, we will assume that the density of wild males and
that of sterile males can be measured continuously. Our objective is to estimate the other densities.
Observer design for nonlinear dynamic systems is a technique used in control theory to estimate
the states of a system when only partial or indirect measurements are available. The difficulties in
dealing with observer problems for general nonlinear systems is the proof of global convergence of
the estimation error. Much literature exists on state observers and filters for nonlinear systems as
they play crucial roles in control theory. To simplify the nonlinearity F (1− E

K ) of the SIT model, in
this section we consider the simplified SIT model for environmental capacity K = +∞. On the one
hand, the reason for studying such a model is that the simplified model can be considered relevant
from a biological point of view within a large intervention domain or in areas where environmental
capacity is difficult to estimate. On the other hand, based on the result presented in Theorem 3.2,
the proposed feedback law (3.21) still stabilizes the simplified model around zero with the same
convergence rate. We consider the following output control system:

Ė = βEF − (δE + νE)E, (4.1)

Ṁ = (1− ν)νEE − δMM, (4.2)

Ẏ = ννEE − ∆ηM

M +Ms
Y − (η1 + δY )Y, (4.3)

Ḟ =
η1M

M +Ms
Y − δFF, (4.4)

U̇ =
η2Ms

M +Ms
Y − δUU, (4.5)

Ṁs = u− µsMs, (4.6)

y1 = M, (4.7)

y2 = Ms, (4.8)

where the states is X = (E,M, Y, F, U,Ms)
T ∈ N , the control is u ∈ [0,+∞) and the output is

y = (M,Ms)
T ∈ R2

+.
In particular, in this model we are confronted with a difficulty in which most observer construction

theories are invalid because of the singularity at the origin. To go around this difficulty, we will use
the fact that the main nonlinearity term M

M+Ms
is bounded and essentially the most accessible data

to measure. This leads us to develop an observer for this type of system.

4.1 Observer design for a class of nonlinear systems

The usual observers for linear systems are the Luenberger observer and the Kalman observer. Ob-
server design for a nonlinear system is a complex problem in control theory and has received much
attention from many authors yielding a large literature of methods. Among than, the most famous
are the change of coordinates to transform the nonlinear system into a linear system [25–29] and a
second approach consists in using the extended Kalman filter (EKF) [30–33]. The state observer is
called an exponential state observer if the observer error converges exponentially to zero. In this
section we provide an explicit construction of a global observer for the following system.{

ẋ(t) = Ax(t) +B(y(t))x(t) +Du(t),

y(t) = Cx(t),
(4.9)
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where x(t) ∈ Rn, is the state vector, u(t) ∈ Rp is the input vector and y(t) ∈ Rm is the output
vector. A ∈ Rn×n and C ∈ Rm×n are the appropriate matrices. The matrice B(y(t)) is in the form

B(y(t)) =

n,n∑
i,j=1

bij(y(t))en(i)e
T
n (j). (4.10)

We assume that for all y(t) ∈ Rm the coefficients bij are bounded for all i = 1, · · · , n and
j = 1, · · · , n and denote

bij = max
t

(bij(y(t))) and bij = min
t
(bij(y(t))). (4.11)

Then, the parameter vector b(t) remains in a bounded convex domain Sn,n of which 2(n
2) vertices

are defined by:

VSn,n = {η = (η11, · · · , η1n, · · · , ηnn)|ηij ∈ {bij , bij}}.

A state observer corresponding to (4.9) is given as follows:{
˙̂x(t) = Ax̂(t) +B(y(t))x̂+Du(t)− L(Cx̂− y(t)),

ŷ(t) = Cx̂(t),
(4.12)

where x̂(t) denotes the estimate of the state x(t). The dynamics of the observer error e(t) :=
x̂(t)− x(t) is ė(t) = (A− LC)e(t) +B(y(t))e(t) = (A+B(y(t))− LC)e(t). We define

A(b(t)) = A+

n,n∑
i,j=1

bij(y(t))eq(i)e
T
n (j). (4.13)

The dynamics of the observer error becomes

ė(t) = (A(b(t))− LC)e(t). (4.14)

The observation problem consists in finding a gain L such that (4.14) converges exponentially towards
zero. We use the following results in [34].

Theorem 4.1. The observer error converges exponentially towards zero if there exist matrices P =
P T > 0 and R of appropriate dimensions such that following LMIs are feasible:

AT (η)P − CTR+ PA(η)−RTC + ξI < 0, (4.15)

∀ η ∈ VSn,n , (4.16)

for some constant ξ > 0. When these LMIs are feasible, the observer gain L is given by L = P−1RT .

Proof. We follow [34] and consider the following quadratic Lyapunov function

V(e) = eTPe, (4.17)

where P is the matrix in Theorem 4.1. We have V̇(e)(t) = e(t)TF (b(t))e(t), where F (b(t)) =
(A(b(t)) − LC)TP + P (A(b(t)) − LC). For e(t) ̸= 0 the condition V(e(t)) > 0 is satisfied because
P > 0 and the condition V̇(e(t)) < 0 is satisfied if we have

F (b(t)) < 0 for all b(t) ∈ Sn,n. (4.18)

Since the matrix function F is affine in b(t), using a convexity argument we deduce that ∀ t ≥ 0

V̇(e(t)) < −ξ∥e(t)∥2P , (4.19)

if the following condition is satisfied F (η) < −ξI, ∀ η ∈ Vn,n. Thus, if (4.15) holds, this inequality
is also satisfied. □
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4.2 Application to the SIT model

We rewrite the output SIT models (4.1)–(4.7) as{
Ẋ = AX +B(y)X +Du,

y = CX,
(4.20)

where X = (E,M, Y, F, U,Ms)
T ,

A =



−(δE + νE) 0 0 0 βE 0
(1− ν)νE −δM 0 0 0 0

ννE 0 −(η2 + δY ) 0 0 0
0 0 0 −δF 0 0
0 0 0 0 −δU 0
0 0 0 0 0 −δs

 ,

B(y) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −∆η y1

y1+y2
0 0 0

0 0 η1
y1

y1+y2
0 0 0

0 0 η2
y2

y1+y2
0 0 0

0 0 0 0 0 0


C =

(
0 1 0 0 0 0
0 0 0 0 0 1

)
, D = (0, 0, 0, 0, 0, 1)T .

As, N is an invariant set, one has 0 ≤ y1
y1+y2

≤ 1. Solving the corresponding equation of (4.15) with
ξ = 1 in MATLAB, we get

P = 104



0.0219 −0.1567 −0.1531 −0.1703 −0.0344 0
−0.1567 8.9301 −0.8472 −0.8081 −0.4929 0
−0.1531 −0.8472 4.5716 0.9277 1.0845 0
−0.1703 −0.8081 0.9277 4.3088 −2.3012 0
−0.0344 −0.4929 1.0845 −2.3012 4.7413 0

0 0 0 0 0 3.7267

 , (4.21)

R = 103
(

0.2352 0.9704 −0.4415 −1.1401 0.0690 0
0 0 0 0 0 1.4162

)
, (4.22)

L =



50.6342 0
1.4150 0
0.9426 0
2.6547 0
1.6023 0

0 0.3800

 . (4.23)
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(a) Evolution of states E and corresponding Ê (b) Evolution of states Y and corresponding Ŷ

(c) Evolution of states F and corresponding F̂ (d) Evolution of states U and corresponding Û

Figure 3: Simulation of the system and the observer under the constant input. The dashed lines
illustrate the state estimate curves

With the parameters given in table 1, the result for a simulation run with x0 =
(400, 100, 150, 120, 120, 50)T , x̂0 = (120, 70, 70, 50, 60, 0)T and u = 500000 is plotted in Figure 3.
The asymptotic behavior of the different estimates Ê, F̂ , Ŷ and Û (dashed), illustrates the exponen-
tial convergence of the estimation error show in Theorem 4.1.

5 Dynamic output feedback

The feedback control (3.21) depends on the states E, M , Y and Ms. From the measurement of states
M and Ms, an observer system has been built in the previous section. This state observer is used
to estimate both eggs E and young females Y . In this section we show that u(X̂, y) stabilizes the
dynamics at the origin. We consider the coupled system{

Ẋ = f(X, û(X̂, y)),

˙̂
X = f(X̂, û(X̂, y))− L(Cx̂− y),

(5.1)

with

û(X̂, y) = max
(
0, S(X̂, y)

)
. (5.2)

where S : R4 × R2
+ → R, (X̂, y)T 7→ S(X̂, y) is defined by

S(X̂, y) := G(Ê,M, Ŷ ,Ms) (5.3)

The main result of this section is the following Theorem.
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Theorem 5.1. Assume that (3.12) holds. Then 0 ∈ E = N × R6 is globally exponentially stable
in E for system (5.1) with the feedback law (5.2). The convergence rate is bounded by the positive
constant ce defined by

ce := min{c1, c2, c′,
ξ

4
}. (5.4)

Proof. Let λ > 0 and we define H : E → R by

H(X, X̂) = W (X) + λ
√
V(e) (5.5)

with e = X̂ −X.

H is continuous on E and C1 on E \
{
(X, X̂) ∈ E ; M +Ms = 0

}
, (5.6)

H(X, X̂) → +∞ as ∥(X, X̂)∥ → +∞, (5.7)

H(X, X̂) > H(0) = 0, ∀(X, X̂) ∈ E \ {0}. (5.8)

In this proof, from now on we assume that (X, X̂)T is in E . Until (5.16) included, we also assume
that

(M,Ms) ̸= (0, 0). (5.9)

One has

Ḣ(X, X̂) = V̇ (X) + α
(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)

+((1− ν)νEθE − θδMM)(θM + 3Ms)

−û(X̂, y)(3θM +Ms) + δsMs(3θM +Ms)
]
+ λ

V̇(e)
2
√

V(e)
.

Replacing the term û(X̂, y) by û(X̂, y)− û(X, y) + û(X, y) we get

Ḣ(X, X̂) = Ẇ (X) + α
(θM −Ms)(3θM +Ms)

(θM +Ms)2
(u(X̂, y)− u(X, y)) + λ

V̇(e)
2
√

V(e)
. (5.10)

Lemma 5.1. There exist C > 0 such that, for all (X, X̂) ∈ E and for all y ∈ R2
+,

∥û(X̂, y)− û(X, y)∥ ≤ C∥X̂ −X∥. (5.11)

Note that V̇(e) ≤ −ξ∥e∥2P . Thanks to this lemma, there exists C ′ > 0 independent of y such that

Ḣ(X, X̂) ≤ Ẇ (X) + C ′∥e∥ − ξλ
∥e∥2P

2
√
V(e)

. (5.12)

Note that there exists a constant β > 0 such that and ∥e∥ ≤ β∥e∥P . So

Ḣ(X, X̂) ≤ Ẇ (X)− (
λξ

2
− βC ′)∥e∥P . (5.13)

Hence for λ = 4C ′β/ξ, and using the relation (3.38) and (3.45),

Ḣ(X, X̂) ≤ −min{c1, c2}W (X)− λξ

4
∥e∥P . (5.14)

We conclude that there exists a constant

cs := min{c1, c2,
ξ

4
} (5.15)
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such that

Ḣ(X, X̂) < −csH(X, X̂), if M +Ms ̸= 0. (5.16)

Let us now deal with the case where (3.30) is not satisfied. As we explained previously in
the proof of the Theorem 3.1, it is sufficient to study only the case ts ∈ (0,+∞). Let t 7→
(E(t),M(t), Y (t), F (t), U(t),Ms(t), Ê(t), M̂(t), Ŷ (t), F̂ (t), Û(t), M̂s(t))

T be a solution (in the Filip-
pov sense) of the closed-loop system (5.1) such that, for some ts ∈ (0,+∞)

M(t) +Ms(t) = 0 ∀t ∈ [0, ts] (5.17)

Note that (5.17) implies that
M(t) = Ms(t) = 0, ∀t ∈ [0, ts] (5.18)

From (3.46), (3.48) and the definition of a Filippov solution, one has on (0, ts)

Ė

Ṁ

Ẏ

Ḟ

U̇

Ṁs


=



βEF (1− E
K )−

(
νE + δE

)
E

(1− ν)νEE − δMM
ννEE − κ(t)∆ηY − (η2 + δY )Y

η1Y κ(t)− δFF
η2(1− κ(t))Y − δUU

max(0, Ŷ g1 + Êg2)− δsMs

 (5.19)



˙̂
E
˙̂
M
˙̂
Y
˙̂
F
˙̂
U
˙̂
Ms


=



βEF̂ −
(
νE + δE

)
Ê

(1− ν)νEÊ − δMM̂

ννEÊ − κ(t)∆ηŶ − (η2 + δY )Ŷ

η1Ŷ κ(t)− δF F̂

η2(1− κ(t))Ŷ − δU Û

max(0, Ŷ g1 + Êg2)− δsM̂s


− LCX̂, (5.20)

with

κ(t) ∈ [0, 1], g1(t) ∈
ϕ

α
[0, 3θ + 1] and g2(t) ∈ (1− ν)νEθ[0, 4]. (5.21)

From (5.18) and the second line of (5.19), one has

E(t) = 0, ∀t ∈ [0, ts] (5.22)

From the first line of (5.19) and (5.22), we get

F (t) = 0, ∀t ∈ [0, ts]. (5.23)

In the case where Y (0) = 0, from the third line of (5.19) and (5.22), one has

Y (t) = 0, ∀t ∈ [0, ts]. (5.24)

To summarize, from (5.18), the fifth line of (5.19), (5.22), (5.23) and (5.24)

E(t) = M(t) = Y (t) = F (t) = Ms(t) = 0 and U̇(t) = −δUU(t), ∀t ∈ [0, ts], (5.25)

which, with (3.13), (3.16) and (3.25), gives

Ẇ (t) = −σδUU(t) ≤ −δUW (t), ∀t ∈ [0, ts]. (5.26)

In the case where Y (0) > 0, from the third line of (5.19),

Y (t) > 0, ∀t ∈ [0, ts], (5.27)
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which, together with the fourth line of (5.19) and (5.23), implies

κ(t) = 0, ∀t ∈ [0, ts]. (5.28)

Referring to this case already studied in the proof of Theorem 3.1 we get

Ẇ (t) ≤ −c′W (t), ∀t ∈ [0, ts]. (5.29)

κ(t) ∈ [0, 1], g1(t) ∈
ϕ

α
[0, 3θ + 1] and g2(t) ∈ (1− ν)νEθ[0, 4], (5.30)

Ṁs(t) = max(0, Ŷ g1 + Êg2)− δsMs (5.31)

Since Ms(t) = 0 ∀t ∈ [0, ts], max(0, Ŷ g1 + Êg2) = 0. For all κ(t) ∈ [0, 1], in these two cases, the
dynamics of the observation error remains

ė = (A(κ(t))− LC)e, (5.32)

and one has

Ḣ(X, X̂) = −c′W (X)− λξ

2
∥e∥P . (5.33)

We conclude that there exists a constant

cw := min{c′, ξ
2
}, (5.34)

such that

Ḣ(X, X̂) ≤ −cwH(X, X̂). (5.35)

This proves Theorem 5.1 and gives the global exponential stability with the exponential decay rate
ce given by relation (5.4).

5.1 Numerical simulations

We apply the backstepping control u function of the measured states y and the estimated states Ê and
Ŷ given by the relation (5.2) with the following initial condition x0 = (20000, 5000, 1500, 12000, 500)
and x̂0 = (2000, 500, 150, 1200, 0).
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(a) Evolution of states E and estimate Ê (b) Evolution of states Y and estimate Ŷ

(c) Evolution of states F and estimate F̂ (d) Evolution of states U and estimate Û

Figure 4: Simulation of the SIT model when applying backstepping feedback law with estimated and
measured states (5.2) .

Figure 5: Evolution of control function u(X̂, y).

The response of system (5.1) to the backstepping control (5.2) is illustrated in the Figure 4.
The asymptotic convergence in large t of the different estimated Ê, F̂ , Ŷ and Û (dashed) to their
corresponding state variables E,F, Y and U respectively, illustrates the exponential convergence
of the estimation error stated in Theorem 4.1. The convergence of the states and their estimates,
towards zero, proves the efficiency of the control(5.2) as was show in the Theorem 5.1. Figure 5 shows
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that the applied control function decreases, when the density of the target population decreases.

6 Conclusion

In this work, we have built a feedback control law to stabilize the SIT model presented in [14,15] at
extinction. Control by state feedback is a type of control rarely proposed in the literature for the
overall stabilization of the SIT model. The feedback control (3.21) developed in this work has many
advantages including robustness to changing parameters. We have shown in Remark 3.4 that despite
the margin of error that can be made in the estimation of the parameters, this feedback control still
makes the system converge to extinction. Moreover its does not depend on environmental capacity
and this control law ensures exponential stability with the same convergence rate for the SIT system
even in the high environmental capacity limit (see Theorem 3.2). Remark 3.2 shows that when the
density of the target population decreases, the control also decreases

In Section 4 of our work, we built an observer for the SIT model where, using the measurement
of male mosquitoes, our state estimator gives us an estimate of the other states of the system. This
aspect is rarely studied for this type of dynamics. An accurate estimate of the mosquito population
enables resources to be allocated more efficiently. If the intervention is effective in some areas
but not in others, resources can be reallocated to maximize impact. On the other hand, the data
collected during the SIT intervention provides essential information on the impact of the control
in the conditions of the intervention area. This will enable informed decisions on future control
strategies to be adopted according to conditions in the intervention zone by adding complementary
methods or by adapting existing approaches.

One of the applications we made was to show in Section 5 that by using the data estimated
via our observer to adjust the feedback control, we globally stabilize the system upon extinction.
Figure 4 shows that the difficulty of estimating eggs and young females during an intervention can be
compensated by the application of the observer system. Data collected on the mosquito population
is also used in epidemic prevention programs. They help to adapt public health programs for better
control of mosquito-borne diseases.
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