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Abstract

This paper focuses on the feedback global stabilization and observer construction for a sterile
insect technique model. The Sterile Insect Technique (SIT) is one of the most ecological methods
for controlling insect pests responsible for worldwide crop destruction and disease transmission.

In this work, we construct a feedback law that globally asymptotically stabilizes a SIT model
at extinction equilibrium. Since the application of this type of control requires the measurement
of different states of the target insect population, and in practice, some states are more difficult
and very expensive to measure than others, it is important to know how to construct a state
estimator which from a few measured states, estimates the other ones as the one we build in the
second part of our work. In the last part of our work, we show that we can apply the feedback
control with estimated states to stabilize the full system.

Keywords: Sterile Insect Technique, Pest control, Feedback control design, Observer design,
Lyapunov stability, Mosquito population control, Vector-borne disease.

1 Introduction

The Sterile Insect Technique, or SIT, is presently one of the most ecological methods for controlling
insect pests responsible for disease transmission or crop destruction worldwide. This technique
consists of releasing sterile males into the insect pest population [8, 20, 29]. This approach aims to
reducing fertility and, consequently, reducing the target insect population after a few generations.
Classical SIT has been modeled and studied theoretically in a large number of papers to derive results
to study the success of these strategies using discrete, continuous, or hybrid modeling approaches
(for instance, the recent papers [2–4,10,11,25,28]).

Despite this extensive research, little has been done concerning the stabilization of the target
population near extinction after the decay caused by the massive initial SIT intervention and their
still major difficulties due to the complexity of the dependency on climate, landscape and many
other parameters which would be difficult to be integrated into the mathematical models studied.
Not being able to consider all these parameters in our mathematical models and knowing that these
external factors strongly impact the evolution of the density of the target population, we focus our
studies on releases that now depend on the target population density measurements since, as we
will see below, this makes our control more robust. Indeed, several tools can provide information
on the size of the wild population throughout the year and during monitoring. So, a control that
considers this information to adapt the size of the releases is possible and useful. This was already
the case of [1, 11] in which a state feedback control law gives significant robustness qualities to
the mathematical model of SIT. Although this approach provides evidence in terms of robustness
because the control is directly adjusted according to the density of the population, its application
requires continuously measuring the different states of the model. In practice, traps allow data to be
collected to analyze the control’s impact. New technology is being developed that may allow us to
obtain continuous data in the near future.
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However, specific categories of data are still problematic or very expensive to obtain. For example,
during a SIT intervention, it is difficult to measure the density of young females that have not yet
been fecundated or of females that were fecundated by wild males. We add in this work using
another control theory tool, which consists of constructing a state estimator for a dynamic system
and using these estimates to apply feedback control. A state observer or state estimator is a system
that provides an estimation of the natural state using some partial measurements of the real system.
In our case, using traps, wild males, as well as sterile males, can be measured. Using the observer
system technique, we have built a system that allows us to estimate all other states. The problem
of observer design for linear systems was established and solved by [22] and [26]. While Kalman’s
Observer [22] was highly successful for linear systems, extending it to nonlinear systems took a lot of
work. In several cases, the observer can be obtained from the extended Kalman filter by a particular
choice of the matrix gain using Linear Matrix Inequalities (LMIs). The development of the observer
in this paper was motivated by its application to the SIT model. A model of this process can be
contained in the process structure:

ẋ = Ax+B(y)x+Du, (1.1)

y = Cx, (1.2)

where y ∈ Rm is the output, x ∈ Rn is the state vector, and u ∈ Rp is the input. The output matrix
B(y) is such that the coefficients b(y)ij are bounded for all i, j. Our paper has three parts. A first
part where, thanks to the backstepping approach, we build a feedback control law that stabilizes
the zero population state for the SIT model for the mosquito population, which considers only the
compartments of young females and fertilized females presented in [5]. A second part in which we
construct a state estimator for the SIT model, then a final part where we show that the application
of this feedback, depending on the measured states and the ones estimated thanks to the state
estimator, globally stabilizes the system.

2 Mosquito Population dynamics

The mosquito life cycle has several phases. The aquatic stage comprises eggs, larvae, and pupa,
followed by the adult stage, where we consider both wild males and females. After emergence from
the pupa, a female mosquito needs to mate and get a blood meal before it starts laying eggs. Then
every 4 − 5 days, it will take a blood meal and lay 100 − 150 eggs at different places (10 − 15 per
place). For the mathematical description, we will consider the following compartments [5].

• E the density of population in aquatic stage,

• Y the density of young females, not yet laying eggs,

• F the density of fertilized and egg-laying females,

• M the density of males,

• Ms the density of sterile males,

• U the density of females that mate with sterile males.

The Y compartment represents the stage of the young female before the start of her gonotropic cycle,
i.e., when she mates and takes her first blood meal, which generally takes 3 to 4 days. The sterile
insect technique introduces male mosquitoes to compete with wild males. We denote by Ms the
density of sterile mosquitoes and by U the density of females that will mate with them. We assume
that a female mating mosquito has probability M

M+Ms
to mate with a wild male and probability

Ms
M+Ms

to mate with a sterile one. Hence, the transfer rate η from the compartment Y splits into

transfer rate of η1M
M+Ms

to compartment F and a transfer rate of η2Ms

M+Ms
to compartment U of females

2



that will be laying sterile (nonhatching) eggs. The mathematical model is the system of ordinary
differential equations presented in [17]

Ė = βEF (1− E

K
)− (δE + νE)E, (2.1)

Ṁ = (1− ν)νEE − δMM, (2.2)

Ẏ = ννEE − η1M

M +Ms
Y − η2Ms

M +Ms
Y − δY Y, (2.3)

Ḟ =
η1M

M +Ms
Y − δFF, (2.4)

U̇ =
η2Ms

M +Ms
Y − δUU, (2.5)

Ṁs = u− δsMs. (2.6)

The parameter δY is the mortality rate, for young females (they can die without mating for diverse
reason like predators or other hostile environmental conditions). Male mosquitoes can mate for most
of their lives. A female mosquito needs a successful mating to reproduce for the rest of her life.
βE > 0 is the oviposition rate; δE , δM , δF , δY > 0 are the death rates for eggs, wild adult males,
fertilized females and young females, respectively; νE > 0 is the hatching rate for eggs; ν ∈ (0, 1) the
probability that a pupa gives rise to a female, and (1−ν) is, therefore, the probability of giving rise to
a male. K > 0 is the environmental capacity for eggs. It can be interpreted as the maximum density
of eggs that females can lay in breeding sites. Since here the larval and pupal compartments are not
present, it is as if E represents all the aquatic compartments, in which case, in this term K represents
a logistic law’s carrying capacity for the aquatic phase, which also includes the effects of competition
between larvae. The control function u represents the number of mosquitoes released during the
SIT intervention. It is interesting to follow the evolution of the state U because female mosquitoes,
once fertilized by sterile males, will continue their gonotrophic cycle normally and, therefore, can
still transmit disease. We will assume in this document that

δs ≥ δM . (2.7)

In [5, 17], equilibria and their stability property were studied for the system without control.

Ė = βEF (1− E

K
)− (δE + νE)E, (2.8)

Ṁ = (1− ν)νEE − δMM, (2.9)

Ẏ = ννEE − (η1 + δY )Y, (2.10)

Ḟ = η1Y − δFF. (2.11)

(2.12)

It basic offspring number is R0 =
η1βEννE

δF (νE+δE)(η1+δY ) . For the rest of our work, we assume that

R0 > 1. (2.13)

3 Global stabilization by feedback law

We assume that wild males are more likely to fertilize young females because they are born on the
same egg-laying site. We define

∆η = η1 − η2 ≥ 0. (3.1)

Other authors, such as [5], have already studied the stability of this type of model. The difference
in our approach lies in the kind of control used initially for global stabilization. Indeed, in most of
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the prior studies the controls u studied were independent of system states. Some previous works
have considered certain simple applications of feedback control to SIT (see, for instance, [9, 11, 16]).
In a previous paper, [1], we used the backstepping method to build a feedback control system that
simplifies the SIT model, which is presented in [28], assuming that all females are immediately
fertilized. Here we consider the system

Ė = βEF (1− E

K
)− (δE + νE)E, (3.2)

Ṁ = (1− ν)νEE − δMM, (3.3)

Ẏ = ννEE − ∆ηM

M +Ms
Y − (η2 + δY )Y, (3.4)

Ḟ =
η1M

M +Ms
Y − δFF, (3.5)

U̇ =
η2Ms

M +Ms
Y − δUU, (3.6)

Ṁs = u− δsMs. (3.7)

Let N := [0,+∞)6 and X := (E,M, Y, F, U,Ms)
T . When applying a feedback law u : N → [0,+∞),

the closed-loop system is the system
Ẋ = H(x, u(X )), (3.8)

where H is the right side of the equation (3.2)-(3.7). The construction method remains the same
as in our previous paper [1]. In this work, we also consider solutions in the Filippov sense of
our discontinuous closed-loop system (see, for instance [7, 13, 15, 18, 19, 21] ). Let us define x :=
(E,M, Y, F, U)T . We must put the target system (3.2)-(3.6) in the following form to apply the
backstepping method (see, for instance [14, Theorem 12.24, page 334]).{

ẋ = f(x,Ms),

Ṁs = u− δsMs,
(3.9)

where f : R5 → R5 represents the right hand side of (3.2)-(3.6). We then consider the control system
ẋ = f(x,Ms) with the state being x ∈ D := [0,+∞)5 and the control being Ms ∈ [0,+∞). We
assume that Ms is of the form Ms = θM for a constant θ > 0 we define and study the closed-loop
system

ẋ = f(x, θM). (3.10)

where the offspring number is

R(θ) :=
βEη1ννE

δF (νE + δE)(∆η + (1 + θ)(η2 + δY ))
. (3.11)

Note that if R(θ) ≤ 1, 0 ∈ R5 is the only equilibrium point of the system in D. Our next proposition
shows that the feedback law Ms = θM stabilizes our control system ẋ = f(x,Ms) if R(θ) < 1.

Proposition 3.1 Assume that

R(θ) < 1. (3.12)

Then 0 is globally asymptotically stable in D for system (3.10).

Proof. We apply Lyapunov’s second theorem. To do so, we define V : [0,+∞)5 → R+, x 7→ V (x),

V (x) :=
(1 + 2R(θ))ννE

(νE + δE)(1−R(θ))
E + νM +

3R(θ)

(1−R(θ))
Y +

(2 +R(θ))βEννE
δF (νE + δE)(1−R(θ))

F + σU. (3.13)
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As (3.12) holds, V is of class C1, V (x) > V ((0, 0, 0, 0, 0)T ) = 0, ∀x ∈ [0,+∞)5 \ {(0, 0, 0, 0, 0)T },
V (x) → +∞ when ∥x∥ → +∞ with x ∈ D. and

V̇ (x) = − βEννE
(νE + δE)

F − νδMM − (1 + 2R(θ))ννE
(νE + δE)(1−R(θ))

βE
K

FE

− ν2νEE − η1βEννE
δF (νE + δE)(1 + θ)

Y − ση2
1 + θ

Y + ση2Y − σδUU.

By choosing

σ :=
η1βEννER(θ)

(1 + θ)η2(νE + δE)δF
(3.14)

we get

V̇ (x) = − βEννE
(νE + δE)

F − νδMM − (1 + 2R(θ))ννE
(νE + δE)(1−R(θ))

βE
K

FE

− ν2νEE − η1βEννE(1 + θ(1−R(θ)))

δF (νE + δE)(1 + θ)2
Y − σδUU.

and using once more (3.12), we get

V̇ (x) ≤ −cV (x), ∀x ∈ [0,+∞)5, (3.15)

with

c := min

{
ν(νE + δE)(1−R(θ))

(1 + 2R(θ))
, δM ,

δF (1−R(θ))

2 +R(θ)
,

η1βEννE(1 + θ(1−R(θ)))

δF (νE + δE)(1 + θ)2
(1−R(θ))

3R(θ)
, δU

}
> 0. (3.16)

This concludes the proof of Proposition 3.1. □
We define

ϕ :=
(2 +R(θ))η1βEννE − 3R(θ)∆ηδF (νE + δE)

δF (νE + δE)(1−R(θ))(1 + θ)
− η1βEννER(θ)

(1 + θ)2(δE + νE)δE
, (3.17)

and the map G : N := [0,+∞)5 → R, (xT ,Ms)
T 7→ G((xT ,Ms)

T ) by

G((xT ,Ms)
T ) :=

ϕY (θM +Ms)
2

α(M +Ms)(3θM +Ms)
+

((1− ν)νEθE − θδMM)(θM + 3Ms)

3θM +Ms

+ δsMs +
1

α
(θM −Ms) if M +Ms ̸= 0, (3.18)

G((xT ,Ms)
T ) := 0 if M +Ms = 0. (3.19)

Finally, let us define the feedback law u : N → [0,+∞), (xT ,Ms)
T 7→ u((xT ,Ms)

T ), by

u((xT ,Ms)
T ) := max

(
0, G((xT ,Ms)

T )
)
. (3.20)

The global stability result is the following.

Theorem 3.1 Assume that (3.12) holds. Then 0 ∈ N is globally asymptotically stable in N for
system (3.2)-(3.6) with the feedback law (3.20).

Lemma 3.1 Assume that (2.13) and (3.12) hold, then ϕ > 0.
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Proof.
Let us define ϕ1 := (2+R(θ))η1βEννE−3R(θ)∆ηδF (νE+δE)

δF (νE+δE)(1−R(θ))(1+θ) . We get from the relation (2.13) that

η1βEννE > δF (νE + δE)(η1 + δY ). So

ϕ1 >
2η1

(1 + θ)
+

(2 +R(θ))δY + 3R(θ)η2
(1−R(θ))(1 + θ)

. (3.21)

From relation (3.12) we get βEη1ννE
δF (νE+δE) < ∆η + (1 + θ)(η2 + δY ). Thus

ϕ >
2η1

(1 + θ)
+

(2 +R(θ))δY + 3R(θ)η2
(1−R(θ))(1 + θ)

− ∆ηR(θ) + (1 + θ)(η2 + δY )R(θ)

(1 + θ)2
,

>
2η1R(θ)

(1 + θ)
+

(2 +R(θ))δY + 3R(θ)η2
(1−R(θ))(1 + θ)

+
η2R(θ)

(1 + θ)2
− η1R(θ)

(1 + θ)2
− (η2 + δY )R(θ)

1 + θ
,

>
η1R(θ)(1 + 2θ)

(1 + θ)2
+

2R(θ)η2 + 2δY +R(θ)2(η2 + δY )

(1−R(θ))(1 + θ)
+

η2R(θ)

(1 + θ)2
,

> 0.

□
Proof of Theorem 3.1. Let α > 0 and define W : N → R by

W ((xT ,Ms)
T ) := V (x) + α

(θM −Ms)
2

θM +Ms
if M +Ms ̸= 0, (3.22)

W ((xT ,Ms)
T ) := V (x) if M +Ms = 0. (3.23)

We have

W is continuous, (3.24)

W is of class C1 on N \
{
(E,M, Y, F, U,Ms)

T ∈ N ; M +Ms = 0
}
, (3.25)

W ((xT ,Ms)
T ) → +∞ as ∥x∥+Ms → +∞, with x ∈ D and Ms ∈ [0,+∞), (3.26)

W ((xT ,Ms)
T ) > W (0) = 0, ∀(xT ,Ms)

T ∈ N \ {0}. (3.27)

From now on, and until the end of this proof, we assume that (xT ,Ms)
T is in D′ and until (3.37)

below we further assume that

(M,Ms) ̸= (0, 0). (3.28)

One has

Ẇ ((xT ,Ms)
T ) = ∇V (x) · f(x,Ms) + α(θM −Ms)

2(θṀ−Ṁs)(θM+Ms)−(θṀ+Ṁs)(θM−Ms)
(θM+Ms)2

,

= ∇V (x) · f(x, θM) +∇V (x) · (f(x,Ms)− f(x, θM))

+α(θM −Ms)
θṀ(θM+3Ms)−Ṁs(3θM+Ms)

(θM+Ms)2
.

∇V (x) · (f(x,Ms)− f(x, θM)) =



(1+2R(θ))ννE
(νE+δE)(1−R(θ))

ν
3R(θ)

(1−R(θ))
(2+R(θ))βEννE

δF (νE+δE)(1−R(θ))
η1βEννER(θ)

(1+θ)η2(νE+δE)δF

 ·


0
0

− ∆η(θM−Ms)
(M+Ms)(1+θ)Y
η1(θM−Ms)

(M+Ms)(1+θ)Y

− η2(θM−Ms)
(M+Ms)(1+θ)Y


=

ϕY (θM −Ms)

M +Ms
,
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Ẇ ((xT ,Ms)
T ) = ∇V (x) · f(x, θM) + α

(θM −Ms)

(θM +Ms)2[(∇V (x) · (f((xT ,Ms)
T )− f(x, θM)))(θM +Ms)

2

α(θM −Ms)

+θṀ(θM + 3Ms)− Ṁs(3θM +Ms)
]

= V̇ (x) + α
(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

−u(3θM +Ms) + δsMs(3θM +Ms)
]
. (3.29)

We take u as given by (3.20). Therefore, in case

ϕY (θM +Ms)
2

α(M +Ms)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
1

α
(θM −Ms)(3θM +Ms) > 0, (3.30)

u =
1

3θM +Ms

[ϕY (θM +Ms)
2

α(M +Ms)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
1

α
(θM −Ms)(3θM +Ms)

]
,

which, together with (3.29), leads to

Ẇ ((xT ,Ms)
T ) = V̇ (x)− (θM −Ms)

2(3θM +Ms)

(θM +Ms)2
. (3.31)

Otherwise, i.e. if (3.30) does not hold,

ϕY (θM +Ms)
2

α(M + γsMs)
+ ((1− ν)νEθE − θδMM)(θM + 3Ms)

+ δsMs(3θM +Ms) +
1

α
(θM −Ms)(3θM +Ms) ≤ 0, (3.32)

so, by (3.20),

u = 0. (3.33)

We consider two cases. If θM > Ms using (3.29), (3.32) and (3.33)

Ẇ ((xT ,Ms)
T ) ≤ V̇ (x)− (θM −Ms)

2(3θM +Ms)

(θM +Ms)2
,

≤ −cV (x)− (θM −Ms)
2

θM +Ms
,

≤ c1W ((xT ,Ms)
T ), (3.34)

with

c1 := min{c, 1} > 0. (3.35)

If θM ≤ Ms, using once more (3.29) and (3.33)

Ẇ ((xT ,Ms)
T ) = V̇ (x) + α

(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)

+ θ((1− ν)νEE − δMM)(θM + 3Ms) + δsMs(3θM +Ms)
]
. (3.36)
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Using (2.7) we get −δMM(θM + 3Ms) + δsMs(3θM + Ms) ≥ δM (Ms − θM)(Ms + θM), which,
together with (3.36) and the lemma 3.1, implies that

Ẇ ((xT ,Ms)
T ) ≤ V̇ (x)− αδM

(θM −Ms)
2

(θM +Ms)
,

≤ c2W ((xT ,Ms)
T ), (3.37)

with

c2 := min{c, αδM} > 0. (3.38)

Let us now deal with the case where (3.28) is not satisfied. Note that, for every τ ≥ 0, M(τ)+Ms(τ) >
0 implies that M(t) +Ms(t) > 0 for all t ≥ τ . Thus, if M(0) +Ms(0) = 0, there exists ts ∈ [0,+∞]
such that M(t) +Ms(t) = 0 if and only if t ∈ [0, ts] \ {+∞}. Let us study only the case ts ∈ (0,+∞)
(the case ts = 0 is obvious and the case ts = +∞ is a corollary of our study of the case ts ∈ (0,+∞)).
Let us first point out that, for every (M,Ms)

T ∈ [0,+∞)2 such that M +Ms > 0,

M

M +Ms
∈ [0, 1],

(θM +Ms)
2

(M +Ms)(3θM +Ms)
∈ [0, θ + 1], and

θM + 3Ms

3θM +Ms
∈ [0, 3]. (3.39)

Let t 7→ X (t) = (E(t),M(t), Y (t), F (t), U(t),Ms(t))
T be a solution (in the Filippov sense) of the

closed-loop system (3.2)-(3.6) such that, for some ts ∈ (0,+∞)

M(t) +Ms(t) = 0 ∀t ∈ [0, ts]. (3.40)

Note that (3.40) implies that
M(t) = Ms(t) = 0, ∀t ∈ [0, ts]. (3.41)

From (3.39), (3.41) and the definition of a Filippov solution, one has on (0, ts)

Ė

Ṁ

Ẏ

Ḟ

U̇

Ṁs


=



βEF (1− E
K )−

(
νE + δE

)
E

(1− ν)νEE − δMM
ννEE − κ(t)∆ηY − (η2 + δY )Y

η1Y κ(t)− δFF
η2(1− κ(t))Y − δUU

Y g1(t) + Eg2(t)− δsMs

 (3.42)

with

κ(t) ∈ [0, 1], g1(t) ∈
ϕ

α
[0, θ + 1] and g2(t) ∈ (1− ν)νEθ[0, 3]. (3.43)

From (3.41) and the second line of (3.42), one has

E(t) = 0, ∀t ∈ [0, ts]. (3.44)

From the first line of (3.42) and (3.44), we get

F (t) = 0, ∀t ∈ [0, ts]. (3.45)

Let us first consider the case where Y (0) = 0. Then, from the third line of (3.42) and (3.44), one
has

Y (t) = 0, ∀t ∈ [0, ts]. (3.46)

To summarize, from (3.41), the fifth line of (3.42), (3.44), (3.45), and (3.46)

E(t) = M(t) = Y (t) = F (t) = Ms(t) = 0 and U̇(t) = −δUU(t), ∀t ∈ [0, ts], (3.47)

which, with (3.13), (3.16), and (3.23), gives

Ẇ (t) = −σδUU(t) ≤ −δUW (t), ∀t ∈ [0, ts]. (3.48)
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Let us finally consider the case where Y (0) > 0. Then, from the third line of (3.42),

Y (t) > 0, ∀t ∈ [0, ts], (3.49)

which, together with the fourth line of (3.42) and (3.45), implies

κ(t) = 0, ∀t ∈ [0, ts]. (3.50)

To summarize, from (3.41), the third and the fifth line of (3.42), (3.44), (3.45), and (3.50),

E(t) = M(t) = F (t) = Ms(t) = 0, Ẏ (t) = −(η2 + δY )Y (t), and U̇(t) = η2Y − δUU(t), ∀t ∈ [0, ts],

which, with (3.13), (3.14), (3.16), and (3.23), gives

Ẇ (t) = −(η2 + δY )
3R(θ)

(1−R(θ))
Y (t) + η2σY (t)− σδUU(t)

= −R(θ)

(
(η2 + δY )

3

(1−R(θ))
− η1βEννE

(1 + θ)(νE + δE)δF

)
Y (t)− σδUU(t)

= −R(θ)

(
Q

(1−R(θ))(1 + θ)(νE + δE)δF

)
Y (t)− σδUU(t)

(3.51)

where

Q := 3(η2 + δY )(1 + θ)(νE + δE)δF − (1−R(θ))η1βEννE . (3.52)

To end the proof we have to prove that Q > 0. Using the relation (3.11) and (3.12) we have

βEη1ννE < R(θ)δF (νE + δE)∆η + δF (νE + δE)(1 + θ)(η2 + δY ). (3.53)

Recall that ∆η = η1 − η2. One has

Q = 3(η2 + δY )(1 + θ)(νE + δE)δF − η1βEννE +R(θ)η1βEννE

> 2(η2 + δY )(1 + θ)(νE + δE)δF −R(θ)∆η(νE + δE)δF +R(θ)η1βEννE

> 2(η2 + δY )(1 + θ)(νE + δE)δF −R(θ)η1(νE + δE)δF +R(θ)η1βEννE +R(θ)η2(νE + δE)δF .

From the relation (2.13), η1βEννE > δF (νE + δE)(η1 + δY ).

Q > 2(η2 + δY )(1 + θ)(νE + δE)δF −R(θ)η1(νE + δE)δF +R(θ)δF (νE + δE)(η1 + δY ) +R(θ)η2(νE + δE)δF

> 2(η2 + δY )(1 + θ)(νE + δE)δF +R(θ)(η2 + δY )(νE + δE)δF

> 0.

We get

Ẇ (t) ≤ −c′W (t), ∀t ∈ [0, ts], (3.54)

where

c′ := min{ Q

3(1 + θ)δF (νE + δE)
, δU}. (3.55)

This proves Theorem 3.1 and gives the global exponential stability and provides an estimate on the
exponential decay rate. □
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3.1 Numerical simulations

Note that η1 represents the natural fertility rate in the mosquito population. Wild males have
a shorter maturity time in their life cycle than females. Thus, the fertilization phase is essentially
around the hatching site. Sterile males are artificially released into the intervention region. We denote
by p with 0 ≤ p ≤ 1 the proportion of sterile males that are releases in the adequate places. Also,
the effective fertilization during the mating could be diminished due to the sterilization, which leads
us to assume that the effective mating rate of sterile insects is given by qη1 with 0 ≤ q ≤ 1. Putting
together these assumptions we get that the probability of young female mate with sterile males is
η2M

M+Ms
with η2 = pqη1. For the numerical simulation we take η1 = 1 and η2 = 0.7. The numerical

simulations of the dynamics when applying the feedback (3.20) gives figure 1. The parameters we
use are given in the following table.

Parameters Description Value

βE Effective fecundity 10
νE Hatching parameter 0.05
δE Mosquitoes in aquatic phase death rate 0.03
δF Fertilized female death rate 0.04
δY Young female death rate 0.04
δM Male death rate 0.1
δs Sterilized male death rate 0.12
ν Probability of emergence 0.49

Table 1: Value for the parameters of system (3.2)-(3.5) (see [5] [28]). Units are days−1 except for ν.

With the parameters given in table 1, condition (3.12) is θ > 102, 06. We fix K = 21000 and we
consider the persistence equilibrium as initial condition. That gives E0 = 20700,M0 = 5300, Y0 =
1500, F 0 = 13000 and U0 = M0

s = 0. We take θ = 290 and α = 90.

(a) Evolution of states E, M , Y and F (b) Evolution of Ms

Figure 1: (a): Plot of E,M, Y , F and U when applying the feedback (3.20) with the initial condition
z0. (b): Plot of Ms.
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Figure 2: Evolution of the control function u

Remark 3.1 It is important to note that the backstepping feedback control (3.20) does not depend
on the environmental capacity K, which is also an interesting feature for the field applications. Note
that N := [0,+∞)6 and X := (E,M, Y, F, U,Ms)

T the feedback satisfies

sup
ε→0

{|u(X )| : X ∈ N , ∥X∥1 ∈ B(0, ε)} −→ 0. (3.56)

The advantage of applying feedback control is that when the density of the target population decreases,
the control also decreases.

Remark 3.2 Let us assume that the heterogeneity of the intervention zone strongly impacts the
mating of female mosquitoes with sterile males more than we would have estimated. Suppose the
estimated mating rate for the control (3.20) is ηe2 = 0.7 and let the mating rate be ηr2 = 0.4 for the
dynamics. Keeping the other parameters and the same condition, we obtain the following figure.

11



(a) Evolution of states E, M , Y and F (b) Evolution of Ms

(c) Evolution of the control function u

Figure 3: (a): Plot of E,M, Y , F and U when applying the feedback (3.20) with ηe2 = 0.7 while
ηr2 = 0.4 for the dynamics. (b): Plot of Ms. (c): Plot of the feedback control function u.

This parameter considerably impacts the convergence time of the states of the system. Note that
with e = 3 × 10−1 of error difference, we still have convergence. Estimation errors of the order
of e = 10−2 will have a negligible impact on the convergence time. This is because the control
backstepping also depends on the states of the system. Thus, the states make a correction that can
compensate for a certain margin of error. Unlike control, which only depends on the parameters,
estimation errors have no correction from the dynamics. Therefore, this can be fatal to the success
of the intervention. In practice, many external factors impact the life cycle of mosquitoes. These
factors modify parameters such as birth, hatching, and fertilization rates. These factors are, for
example, rainfall and the topography of the region. A SIT model that can integrate these factors is
challenging to study. Success of SIT intervention depends strongly on the robustness. The results of
our previous test that is reported in Figure 3, show us the advantage feedback control can provide in
terms of robustness.

4 Observer design for SIT model

The application of feedback control requires measuring states such as eggs E and young females Y
of the intervention zone over time. In practice, it is always important to estimate the density of
adult mosquitoes to intervene in an area. These data are collected using mosquito traps distributed
throughout the region. Despite various technological advances to improve these traps, it should be
noted that some data are still easier to be measured than others. Measuring mosquito density in
the aquatic phase E is difficult, specially in a heterogeneous area. It is also challenging to measure

12



young females Y because females come in three categories, and we need to distinguish between
unfertilized and fertilized females. Males are more easily measured because they are distinguishable.
It can be also easy to distinguish wild males from laboratory males by marking processes applied
to laboratory males. In this part of our paper, we will assume that the density of wild males and
that of sterile males can be measured continuously. Our objective is to estimate the other densities.
Observer design for nonlinear dynamic systems is a technique used in control theory to estimate
the states of a system when only partial or indirect measurements are available. The difficulties in
dealing with observer problems for general nonlinear systems is the proof of global convergence of
the estimation error. Much literature exists on state observers and filters for nonlinear systems as
they play crucial roles in control theory. In this section we consider the SIT model for a population
with high environmental capacity K. So our control system is

Ė = βEF − (δE + νE)E, (4.1)

Ṁ = (1− ν)νEE − δMM, (4.2)

Ẏ = ννEE − ∆ηM

M +Ms
Y − (η1 + δY )Y, (4.3)

Ḟ =
η1M

M +Ms
Y − δFF, (4.4)

U̇ =
η2Ms

M +Ms
Y − δUU, (4.5)

Ṁs = u− µsMs, (4.6)

y1 = M, (4.7)

y2 = Ms, (4.8)

where the states is X = (E,M, Y, F, U,Ms)
T ∈ N , the control is u ∈ [0,+∞) and the output is

y = (M,Ms)
T ∈ R2

+.
In particular, in this model we are confronted with a difficulty in which most observer construction

theories are invalid because of the singularity at the origin. To go around this difficulty, we will use
the fact that the main nonlinearity term M

M+Ms
is bounded and essentially the most accessible data

to measure. This leads us to develop an observer for this type of system.

4.1 Observer design for class of nonlinear systems

The usual observers for linear systems are the Luenberger observer and the Kalman observer. The
observer design for a nonlinear system is a complex problem in control theory and has received much
attention from many authors yielding a large literature of methods. Among than, the most famous
are the change of coordinates to transform the nonlinear system into a linear system [6, 23, 24] and
a second approach consists in using the Extended Kalman Filter (EKF) [12,27]. The state observer
is called an exponential state observer if the observer error converges exponentially to zero. In this
section we provide an explicit construction of a global observer for the following system.{

ẋ(t) = Ax(t) +B(y(t))x(t) +Du(t),

y(t) = Cx(t),
(4.9)

where x(t) ∈ Rn, is the state vector, u(t) ∈ Rm is the input vector and y(t) ∈ Rp is the output
vector. A ∈ Rn×n and C ∈ Rm×n are the appropriate matrices. The matrice B(y(t)) is in the form

B(y(t)) =

n,n∑
i,j=1

bij(y(t))en(i)e
T
n (j). (4.10)

We assume that for all y(t) ∈ Rm the coefficients bij are bounded for all i = 1, · · · , n and
j = 1, · · · , n and denote

bij = max
t

(bij(y(t))) and bij = min
t
(bij(y(t))). (4.11)
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Then, the parameter vector b(t) remains in a bounded convex domain Sn,n of which 2(n
2) vertices

are defined by:

VSn,n = {η = (η11, · · · , η1n, · · · , ηnn)|ηij ∈ {bij , bij}}.

A state observer corresponding to (4.9) is given as follows:{
˙̂x(t) = Ax̂(t) +B(y(t))x̂+Du(t)− L(Cx̂− y(t)),

ŷ(t) = Cx̂(t),
(4.12)

where x̂(t) denotes the estimate of the state x(t). The dynamics of the observer error e(t) :=
x̂(t)− x(t) is ė(t) = (A− LC)e(t) +B(y(t))e(t) = (A+B(y(t))− LC)e(t). We define

A(b(t)) = A+

n,n∑
i,j=1

bij(y(t))eq(i)e
T
n (j). (4.13)

The dynamics of the observer error becomes

ė(t) = (A(b(t))− LC)e(t). (4.14)

The observation problem consists of finding a gain L such that (4.14) converges exponentially and
asymptotically towards zero. We use the following results in [30].

Theorem 4.1 The observer error converges exponentially towards zero if there exist matrices P =
P T > 0 and R of appropriate dimensions such that following Linear Matrix Inequalities (LMIs) are
feasible:

AT (η)P − CTR+ PA(η)−RTC + ξI < 0, (4.15)

∀ η ∈ VSn,n , (4.16)

for some constant ξ > 0. When these LMIs are feasible, the observer gain L is given by L = P−1RT .

Proof. We follow [30] and consider the following quadratic Lyapunov function

V(e) = eTPe, (4.17)

where P T = P > 0. We have V̇(e)(t) = e(t)TF (b(t))e(t), where F (b(t)) = (A(b(t)) − LC)TP +
P (A(b(t))−LC). For e(t) ̸= 0 the condition V(e(t)) > 0 is satisfied because P > 0 and the condition
V̇(e(t)) < 0 is satisfied if we have

F (b(t)) < 0 for all b(t) ∈ Sn,n. (4.18)

Since the matrix function F is affine in b(t), using a convexity argument we deduce that ∀ t ≥ 0

V̇(e(t)) < −ξγ∥e(t)∥2P , (4.19)

if the following condition is satisfied F (η) < −εI ∀ η ∈ UVn,q . Thus, if (4.15) holds, this inequality
is also satisfied. □

4.2 Application to the SIT model

We rewrite the output SIT models (4.1) -(4.7) of the study.{
Ẋ = AX +B(y)X +Gu,

y = CX,
(4.20)
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where X = (E,M, Y, F, U,Ms)
T ,

A =



−(δE + νE) 0 0 0 βE 0
(1− ν)νE −δM 0 0 0 0

ννE 0 −(η2 + δY ) 0 0 0
0 0 0 −δF 0 0
0 0 0 0 −δU 0
0 0 0 0 0 −δs

 , B(y) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −∆η y1

y1+y2
0 0 0

0 0 η1
y1

y1+y2
0 0 0

0 0 η2
y2

y1+y2
0 0 0

0 0 0 0 0 0


C =

(
0 1 0 0 0 0
0 0 0 0 0 1

)
.

As, N is an invariant set, one has 0 ≤ y1
y1+y2

≤ 1. Solving the corresponding equation of (4.15) in
MATLAB, we get

P = 104



0.0219 −0.1567 −0.1531 −0.1703 −0.0344 0
−0.1567 8.9301 −0.8472 −0.8081 −0.4929 0
−0.1531 −0.8472 4.5716 0.9277 1.0845 0
−0.1703 −0.8081 0.9277 4.3088 −2.3012 0
−0.0344 −0.4929 1.0845 −2.3012 4.7413 0

0 0 0 0 0 3.7267

 , L =



50.6342 0
1.4150 0
0.9426 0
2.6547 0
1.6023 0

0 0.3800

 .

R = 103
(

0.2352 0.9704 −0.4415 −1.1401 0.0690 0
0 0 0 0 0 1.4162

)
,

With the parameters given in table 1, we take initially x0 = (400, 100, 150, 120, 120, 50)T . and
x̂0 = (120, 70, 70, 50, 60, 0)T .

(a) Evolution of states E and corresponding Ê (b) Evolution of states Y and corresponding Ŷ

Figure 4: Simulation of the system and the observer
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(a) Evolution of states F and corresponding F̂ (b) Evolution of states U and corresponding Û

Figure 5: Simulation of the system and the observer

4.3 Global stability by an estimate feedback law

The control feedback (3.20) depends on the states E, M , Y and Ms. From the measurement of states
M and Ms, an observer system has been built in the previous section. This state observer is used
to estimate both eggs E and young females Y . In this section we show that u(X̂, y) stabilizes the
dynamics at the origin. We consider the coupled system{

Ẋ = f(X, û(X̂, y)),

˙̂
X = f(X̂, û(X̂, y))− L(Cx̂− y),

(4.21)

with

û(X̂, y) = max
(
0, S(X̂, y)

)
. (4.22)

where S : R4 × R2
+ → R, (X̂, y)T 7→ S(X̂, y) is defined by

S(X̂, y) := G(Ê,M, F̂ ,Ms) (4.23)

The main result of this section is the following theorem.

Theorem 4.2 Assume that (3.12) holds. Then 0 ∈ E = N × R6 is globally asymptotically stable in
D′ for system (4.21) with the feedback law (3.20).

Proof. Let λ > 0 and we define H : E → R by

H(X, X̂) = W (X) + λ
√
V(e) (4.24)

with e = X̂ −X.

H is continuous on E and C1 on E \
{
(X, X̂) ∈ E ; M +Ms = 0

}
, (4.25)

H(X, X̂) → +∞ as ∥(X, X̂)∥ → +∞, (4.26)

H(X, X̂) > H(0) = 0 ∀(X, X̂) ∈ E \ {0}. (4.27)

In this proof, from now on we assume that (X, X̂)T is in E . Until (4.33) included, we also assume
that

(M,Ms) ̸= (0, 0). (4.28)
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One has

Ḣ(X, X̂) = V̇ (x) + α
(θM −Ms)

(θM +Ms)2

[ϕY (θM +Ms)
2

α(M +Ms)

+((1− ν)νEθE − θδMM)(θM + 3Ms)

−û(X̂, y)(3θM +Ms) + δsMs(3θM +Ms)
]
+ λ

V̇(e)
2
√

V(e)
.

Replacing the term û(X̂, y) by û(X̂, y)− û(X, y) + û(X, y) we get

Ḣ(X, X̂) = Ẇ (X) + α
(θM −Ms)(3θM +Ms)

(θM +Ms)2
(u(X̂, y)− u(X, y)) + λ

V̇(e)
2
√

V(e)
. (4.29)

Lemma 4.1 There exist C > 0 such that, for all (X, X̂) ∈ E and for all y ∈ R2
+,

∥û(X̂, y)− û(X, y)∥ ≤ C∥X̂ −X∥. (4.30)

Note that V̇(e) ≤ −εγ∥e∥2P . Thanks to this lemma, there exists C ′ > 0 independent of y such that

Ḣ(X, X̂) ≤ Ẇ (X) + C ′∥e∥ − εγλ
∥e∥2P

2
√
V(e)

. (4.31)

Note that there exists a constant β > 0 such that and ∥e∥ ≤ β∥e∥P . So

Ḣ(X, X̂) ≤ Ẇ (X)− (
εγ

2
λ− βC ′)∥e∥P . (4.32)

Hence for λ > 2C ′β/εγ, that there exists a constant c0 > 0 such that

Ḣ(X, X̂) < −c0H(X, X̂), if M +Ms ̸= 0 (4.33)

Let us now deal with the case where (3.28) is not satisfied. As we explain previously
in the proof of the Theorem 3.1, we study only the case ts ∈ (0,+∞). Let t 7→
(E(t),M(t), Y (t), F (t), U(t),Ms(t), Ê(t), M̂(t), Ŷ (t), F̂ (t), Û(t), M̂s(t))

T be a solution (in the Filip-
pov sense) of the closed-loop system (4.21) such that, for some ts ∈ (0,+∞)

M(t) +Ms(t) = 0 ∀t ∈ [0, ts] (4.34)

Note that (4.34) implies that
M(t) = Ms(t) = 0, ∀t ∈ [0, ts] (4.35)

From (3.39), (3.41) and the definition of a Filippov solution, one has on (0, ts)

Ė

Ṁ

Ẏ

Ḟ

U̇

Ṁs


=



βEF (1− E
K )−

(
νE + δE

)
E

(1− ν)νEE − δMM
ννEE − κ(t)∆ηY − (η2 + δY )Y

η1Y κ(t)− δFF
η2(1− κ(t))Y − δUU

max(0, Ŷ g1 + Êg2)− δsMs

 (4.36)



˙̂
E
˙̂
M
˙̂
Y
˙̂
F
˙̂
U
˙̂
Ms


=



βEF̂ −
(
νE + δE

)
Ê

(1− ν)νEÊ − δMM̂

ννEÊ − κ(t)∆ηŶ − (η2 + δY )Ŷ

η1Ŷ κ(t)− δF F̂

η2(1− κ(t))Ŷ − δU Û

max(0, Ŷ g1 + Êg2)− δsM̂s


− LCX̂, (4.37)
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with

κ(t) ∈ [0, 1], g1(t) ∈
ϕ

α
[0, θ + 1] and g2(t) ∈ (1− ν)νEθ[0, 3]. (4.38)

From (4.35) and the second line of (4.36), one has

E(t) = 0, ∀t ∈ [0, ts] (4.39)

From the first line of (4.36) and (4.39), we get

F (t) = 0, ∀t ∈ [0, ts]. (4.40)

In the case where Y (0) = 0, from the third line of (4.36) and (4.39), one has

Y (t) = 0, ∀t ∈ [0, ts]. (4.41)

To summarize, from (4.35), the fifth line of (4.36), (4.39), (4.40), and (4.41)

E(t) = M(t) = Y (t) = F (t) = Ms(t) = 0 and U̇(t) = −δUU(t), ∀t ∈ [0, ts], (4.42)

which, with (3.13), (3.16), and (3.23), gives

Ẇ (t) = −σδUU(t) ≤ −δUW (t), ∀t ∈ [0, ts]. (4.43)

In the case where Y (0) > 0. Then, from the third line of (4.36),

Y (t) > 0, ∀t ∈ [0, ts], (4.44)

which, together with the fourth line of (4.36) and (4.40), implies

κ(t) = 0, ∀t ∈ [0, ts]. (4.45)

Referring to this case already studied in the proof of Theorem 3.1 we get

Ẇ (t) ≤ −c′W (t), ∀t ∈ [0, ts]. (4.46)

κ(t) ∈ [0, 1], g1(t) ∈
ϕ

α
[0, θ + 1] and g2(t) ∈ (1− ν)νEθ[0, 3], (4.47)

Ṁs(t) = max(0, Ŷ g1 + Êg2)− δsMs (4.48)

Since Ms(t) = 0 ∀t ∈ [0, ts], max(0, Ŷ g1 + Êg2) = 0. For all κ(t) ∈ [0, 1], in these two cases, the
dynamics of the observation error remains

ė = (A(κ(t))− LC)e, (4.49)

and one has

Ḣ(X, X̂) = −c′′W (X)− εγ

2
λ∥e∥P , (4.50)

and

Ḣ(X, X̂) < −λξγH(X, X̂). (4.51)

□
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4.4 Numerical simulations

We apply the backstepping control u function of the measured states y and the estimated states Ê
and Ŷ given by the relation (4.22) in the following condition.
We take initially x0 = (20000, 5000, 1500, 12000, 500) and x̂0 = (2000, 500, 150, 1200, 0).

(a) Evolution of states E and estimate Ê (b) Evolution of states Y and estimate Ŷ

(c) Evolution of states F and estimate F̂ (d) Evolution of states U and estimate Û

Figure 6: Simulation of the SIT model when applying backstepping feedback law of estimate and
measure states (4.22) .

Figure 7: Evolution of control function u(X̂, y).
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Conclusion

In this work, we have built a feedback control law to stabilize the SIT model presented in [5, 17]
at extinction. Control by state feedback is a type of control rarely proposed in the literature for
the overall stabilization of the SIT model. The advantage of this type of control is its robustness
to changing dynamics parameters. We have shown in Remark 3.1 that despite the margin of error
that can be made in the estimation of the dynamic parameters, this feedback control still make the
system converge to extinction.

In section 4 of our work, we build an observer for the SIT model. Using the measurement of male
mosquitoes, our state estimator gives us an estimate of the other states of the system. This aspect
is rarely studied for this type of dynamics. An accurate estimate of the mosquito population enables
resources to be allocated more efficiently. If intervention is effective in some areas but not in others,
resources can be reallocated to maximize impact. On the other hand, the data collected during the
SIT intervention provides essential information on the impact of the control in the conditions of the
intervention area. This will enable informed decisions on future control strategies to be adopted
according to conditions in the intervention zone by adding complementary methods or adapting
existing approaches.

One of the applications we made was to show in section 4.3 that by using the data estimated via
our observer to adjust the feedback control, we globally stabilize the system upon extinction. The
Figure 6 shows that the difficulty of estimating eggs and young females during an intervention can be
compensated by the application of the observer system. Data collected on the mosquito population
is also used in epidemic prevention programs. They help to adapt public health programs for better
control of mosquito-borne diseases.
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